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ABSTRACT

In this work we will deal with disc type surfaces of constant mean curvature in the three dimensional

hyperbolic space which are given as graphs of smooth functions over planar domains. From the

various types of graphs that could be defined in the hyperbolic space we consider in particular

the horizontal and the geodesic graphs. We proved that if the mean curvature is constant, then

such graphs are equivalent in the following sense: suppose thatM is a constant mean curvature

surface in the 3-hyperbolic space such thatM is a geodesic graph of a functionρ that is zero at

the boundary, then there exist a smooth functionf, that also vanishes at the boundary, such that

M is a horizontal graph off. Moreover, the reciprocal is also true.

Key words: hyperbolic space, geodesic and horizontal graphs, constant mean curvature, elliptic

partial differential equations.

To describe the hyperbolic space we consider the half-space model, that is,H
3 := {(x1, x2, x3) ∈

R
3 : x3 > 0} with the metric given byds2 = 1

x2
3

(
dx2

1 + dx2
2 + dx2

3

)
.

Let P ⊂ H
3 be a totally geodesic hyperplane and� ⊂ P an open, simply connected and

bounded domain. We considerρ : � → R a real smooth function. Without loss of generality we

fix P := {x2 = 0}.
The horizontal graph ofρ in H

3 is the following set

Gh(ρ) := {
(x1, ρ(x1, x3), x3) , (x1, x3) ∈ �

}
. (1)
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Horizontal graphs with constant mean curvature inH
3 had been studied by Barbosa and Earp (see,

for example, (Barbosa and Earp 1997), (Barbosa and Earp 1998a,b)). We know that ifGh(ρ) has

constant mean curvatureH in H
3, thenρ satisfies the following partial differential equation

div

(∇ρ

Wρ

)
= 2

x3

(
H + ρ3

Wρ

)
, (2)

where∇ρ is the euclidean gradient ofρ andW 2
ρ = 1 + |∇ρ|2.

The geodesic graph ofρ in H
3 is defined as the set

Gg(ρ) := {
(x1, x3 tanhρ, x3 sech ρ) , (x1, x3) ∈ �

}
. (3)

Little is known about geodesic graphs with constant mean curvature inH
3. Some results can be

found in (Nelli and Semmler 1999) and (Semmler 1997). WhenGg(ρ) has mean curvatureH in

H
3 the functionρ satisfies the following equation

div

(∇ρ

W

)
= 2 coshρ

v2

(
H + sinhρ

W

)
, (4)

where W 2 = cosh2 ρ + v2 |∇ρ|2 and |∇ρ|2 = ρ2
u + ρ2

v .

Note that the equations (2) and (4) are elliptic and quasilinear, so the maximum principle is

true for both. Consequently, if the mean curvatureH(u, v) is different to zero at any point of�,

then the horizontal and geodesic graphs of functions which are zero at the boundary of� lie in

only one of the halfspaces determined by the plane of their boundary. In this case, it is possible to

choose a sign forρ.

Theorem 1. Let M ⊆ H
3 be a surface of constant mean curvature H �= 0 given as the geodesic

graph of a smooth function ρ : � → R such that ρ |∂�= 0, that is, M = Gg (ρ) . Then there exists

f : � → R with f |∂�≡ 0 such that M = Gh (f ).

Sketch of the proof. If M is not a horizontal graph, then there existsp ∈ P such that the

horocicleLp := {p + t (0, 1, 0); t ∈ R} intersectsM at least in two pointsq1 andq2. But, as

observed above, we can considerρ ≥ 0, so thatq1 and q2 will be obtained witht > 0. Let

a := max{x2 : (x1, x2, x3) ∈ M} the maximum value ofx2 when (x1, x2, x3) ∈ M. Note that

0 < a < ∞ sinceM �= � andM is compact. Now set

W :=
⋃
p ∈ �

0< t≤ a

{p − t (0, 1, 0)}.

Note that(∂W � P)∪M is a topological closed submanifold inH3, then it bounds an open domain

R in H
3.

For any real numbert, lets Pt be a totally geodesic plane inH3 given byPt := {x2 = t},
Mt := {(x1, x2, x3) ∈ M : x2 > t} andM∗

t the reflection ofMt with respect to the planePt .
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It is clear that we haveMt �= φ for 0 ≤ t < a. If t < a anda − t is sufficiently small, then

M∗
t ⊂ R. Sett0 := inf {b ∈ R : M∗

t ⊂ R, ∀t ∈ (b, a)}.
The existence ofq1 andq2 in M ∩ Lp implies t0 > 0. Now we prove that this leads to the

existence of a plane of symmetry ofM. That is impossible sinceM is contained in only one of the

sides ofPt .

For anyt ≥ t0, we haveM∗
t ∩ P−a = φ. In particular,M∗

t0
∩ P−a = φ. Moreover,M∗

t0
∩

(∂W � (P−a ∪ P0)) = φ, sinceρ|∂� = 0. Thus we haveM∗
t0

∩ M �= φ. Therefore there exists

p0 ∈ Mt0 such thatp∗
0 ∈ M∗

t0
∩ M, wherep∗

0 denotes the reflection ofp0 with respect to the plane

Pt0.

The following are all the possibilities for the relative positions of the pointsp0 andp∗
0.

1. p0 ∈ int
(
Mt0

)
and p∗

0 ∈ ∂M;

2. p0 ∈ int
(
Mt0

)
and p∗

0 ∈ int (M);

3. p0 = p∗
0 ∈ ∂(Mt0).

We prove that the above possibilities do not occur. Details can be found in (Hinojosa 2000).

So, the assumption thatM is not a horizontal graph leads to a contradiction. �

In order to show that a horizontal graph is also a geodesic one we study a Dirichlet problem

for the equation 4. The necessarya priori estimates for this approach are given in the following

results.

Let � ⊂ P be a bounded domain, such that the curve� := ∂� has geodesic curvature greater

than or equal to 1. Letρ, f : � → R be functions such thatρ|∂� = f |∂� ≡ 0. Denote by

G := Gg(ρ) and G̃ := Gh(f ) their graphs and byh e H their mean curvatures respectively.

Represent bỹW the domain ofH3 bounded bỹG∪ G̃∗ whereG̃∗ is the reflection of̃G with respect

to the planeP. With this notation, we have the following proposition.

Proposition 2. Suppose that H is a positive constant satisfying |h| < H . If h is constant or

|h| < 1, we have G ⊂ W̃.

Assuming that the geodesic curvature of∂� is greater than or equal to one, the previous

proposition allows to estimate|∇ρ| by |∇f | . Moreover, it is easy to see thatρ is bounded in� by

a constant which does not depend onh. In fact, | sinh(ρ) | ≤ |f |
inf
�

{x3} .

Having the estimate in the boundary given by the above proposition, it is necessary now to get

a global estimate in�. That is given by the following lemma.

Lemma 3. Let ρ, H : � → R be real functions of class C3 and C1, respectively, such that

div

(∇ρ

W

)
= 2 coshρ

v2

(
H + sinhρ

W

)
,
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where W 2 = cosh2 ρ + v2 |∇ρ|2 and |∇ρ|2 = ρ2
u + ρ2

v . Let us assume that ρ is bounded in �

and |∇ρ| is bounded in ∂�. Then |∇ρ| is bounded in � by a constant that depends only on sup
�

|ρ|
and sup

∂�

|∇ρ| .
The proof of this lemma involves a long calculation based upon a suitable change of coordinates

suggested by a corresponding result in (Caffarelli et al. 1988). The complete proof of Lemma 3

and Proposition 2 can be found in (Hinojosa 2000).

The theorem below gives a result concerning existence of geodesic graphs. The main corollary

of this theorem affirms that, in the case of constant mean curvature, a horizontal graph is also

geodesic. This allows to show the mentioned equivalence for these kind of graphs.

Theorem 4. Let � ⊂ P be a bounded domain such that ∂� has curvature greater than or equal

to 1. Let f : � → R be a smooth function such that f |∂� ≡ 0 and G̃ = Gh(f ) ⊂ H
3 be the

horizontal graph of f. Let us assume that G̃ has constant mean curvature H �= 0. Then there exists

ρ : � → R such that ρ|∂� ≡ 0 and the geodesic graph of ρ, G = Gg(ρ), has also mean curvature

H.

Corollary 5. Let G̃ ⊂ H
3 be a horizontal graph of a smooth function f : � ⊂ P → R such that

f |∂� ≡ 0, where � ⊂ P is a bounded domain such that ∂� has curvature greater than or equal to

1. Let us assume that G̃ has constant mean curvature H �= 0, then there exists a smooth function

ρ that is zero at the boundary ∂� and for which G̃ = Gg(ρ).

We are going to sketch the proof of the Theorem 4:

The existence of such functionρ : � → R is equivalent to the existence of a solution for the

following Dirichlet problem:

{
Q (ρ) = div

(∇ρ

W

) − 2 coshρ
v2

(
H + sinhρ

W

) = 0 in �

ρ = 0 in ∂� ,
(5)

whereW 2 = cosh2 ρ + v2 |∇ρ|2 and |∇ρ|2 = ρ2
u + ρ2

v .

In order to apply the Continuity Method as stated in (Gilbarg and Trudinger 1983) we construct

a family of quasilinear eliptic operatorsQt , t ∈ [0, 1] as follows.

The operatorQ can be written in the following form

Q (ρ) = 1

W 3

(
A11ρuu + A12ρuv + A22ρvv

) + B

W 3
− 2 coshρ

v2

(
h + sinhρ

W

)

where

A11 = cosh2 ρ + v2ρ2
v , A12 = −2v2ρuρv, A22 = cosh2 ρ + v2ρ2

u and

B = − (vρv + sinhρ coshρ) |∇ρ|2.
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Now we consider the functionsT1 , T2 : [0, 1] → [0, 1] given by,

T1(t) :=



2Ht , if t ∈ [
0, 1

2H

]
andH ≥ 1

1 , if t ∈ [
1

2H
, 1

]
andH ≥ 1

t , if H < 1

and

T2(t) :=


t , if H ≥ 1

1 , if H < 1,

as well as the family of operatorsQt defined by

Qt (ρ) = 1

W 3

(
A11ρuu + A12ρuv + A22ρvv

)
+ T1(t)

{
B

W 3
− 2 coshρ

v2

(
T2(t)H + sinhρ

W

)}
.

We have also the associated Dirichlet problems{
Qt (ρ) = 0 in �

ρ = 0 in ∂� .
(6)

In this way each solution of the Dirichlet problem given by the equations (6) represents a

geodesic graph of mean curvatureHt, where

Ht = T1(t)T2(t)H + (T1(t) − 1)
sinhρ

W
+ (1 − T1(t))

v2B

2W 3 coshρ
. (7)

Therefore, we have

|Ht | ≤ T1(t)T2(t)H + (1 − T1(t))

{ |sinhρ|
W

+ v2|B|
2W 3 coshρ

}
.

Nevertheless, we prove that

|sinhρ|
W

+ v2|B|
2W 3 coshρ

≤ 1.

In this way

|Ht | ≤ T1(t)T2(t)H + 1 − T1(t). (8)
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By comparison between the values ofHt andH while t varies we obtain theC1 bound in the

boundary, through the Proposition 2, for the solutions of the Dirichlet problems (6). The Lemma

3 supplies theC1 uniform estimates in�, that is, there exists a constantC1 > 0 such that

|ρ|1,� := sup
�

|ρ| + sup
�

|∇ρ| ≤ C1

for any solutionC2 to the problem (6), where the constantC1 is independent oft andHt .

So, there exists a constantC > 0 independent ofρ andt such that any solutionC2,α
(
�

)
of

the Dirichlet problems (6) satisfiesa priori

|ρ|C1 < C .

The Theorems 11.8 and 13.7 in (Gilbarg and Trudinger 1983) guarantee the existence ofρ ∈
C2,α

(
�

)
solution of the problem {

Q1 (ρ) = 0 in �

ρ = 0 in ∂�.
�
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RESUMO

Consideramos superfícies com curvatura média constante no 3-espaço hiperbólico que são dadas como grá-

fico de uma função suave definida em um aberto limitado e simplesmente conexo contido em um hiperplano

totalmente geodésico. Dos vários tipos de gráficos que podemos definir no espaço hiperbólico consideramos

em particular o gráfico horizontal e o geodésico. Provamos que se a curvatura média é constante, então tais

gráficos são equivalentes no seguinte sentido: suponha queM é uma superfície de curvatura média constante

no 3-espaço hiperbólico tal queM é o gráfico geodésico de uma funçãoρ que se anula no bordo do seu

domínio, então existe uma outra função suavef que também se anula no bordo e tal queM é o gráfico

horizontal def. Além disso, a recíproca é verdadeira.

Palavras-chave: espaço hiperbólico, gráfico geodésico e horizontal, curvatura média constante, equações

diferenciais parciais elípticas.
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