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ABSTRACT
In this work we will deal with disc type surfaces of constant mean curvature in the three dimensional
hyperbolic space which are given as graphs of smooth functions over planar domains. From the
various types of graphs that could be defined in the hyperbolic space we consider in particular
the horizontal and the geodesic graphs. We proved that if the mean curvature is constant, then
such graphs are equivalent in the following sense: supposeéthata constant mean curvature
surface in the 3-hyperbolic space such thats a geodesic graph of a functignthat is zero at
the boundary, then there exist a smooth functjfptthat also vanishes at the boundary, such that
M is a horizontal graph of. Moreover, the reciprocal is also true.

Key words: hyperbolic space, geodesic and horizontal graphs, constant mean curvature, elliptic
partial differential equations.

To describe the hyperbolic space we consider the half-space model, tHat:is, {(x1, xo, x3) €
R3 : x3 > 0} with the metric given byls? = % (dx? + dx3 + dx3) .

Let P c H® be a totally geodesic hyp?érplane afidc P an open, simply connected and
bounded domain. We consider: @ — R a real smooth function. Without loss of generality we
fix P:= {x, = 0}.

The horizontal graph o in H? is the following set

Gu(p) := {(x1, p(x1, x3), x3) , (x1, x3) € Q} . (1)
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Horizontal graphs with constant mean curvaturglirhad been studied by Barbosa and Earp (see,
for example, (Barbosa and Earp 1997), (Barbosa and Earp 1998a,b)). We knowGhét)ithas
constant mean curvatufé in H2, thenp satisfies the following partial differential equation

v 2
div (—p) - < (H + ﬂ) , @)
Wp X3 Wp

whereVp is the euclidean gradient gfand Wﬁ =1+|Vpl%
The geodesic graph of in H? is defined as the set

G,(p) := {(x1, x3tanhp, xzsech p) , (x1, x3) € Q} . 3

Little is known about geodesic graphs with constant mean curvatdfig.irSome results can be
found in (Nelli and Semmler 1999) and (Semmler 1997). WGep) has mean curvaturd in
H2 the functionp satisfies the following equation

. (Vp 2 coshp sinhp
div (W) =2 (H + W , (4)

where W2 = coslt p + v2|Vp|? and IVpl|? = p2 + p2.

Note that the equations (2) and (4) are elliptic and quasilinear, so the maximum principle is
true for both. Consequently, if the mean curvattfé:, v) is different to zero at any point @2,
then the horizontal and geodesic graphs of functions which are zero at the boundatfie o
only one of the halfspaces determined by the plane of their boundary. In this case, it is possible to
choose a sign fop.

THEOREM 1. Let M € H? be a surface of constant mean curvature H # 0 given as the geodesic
graph of a smooth function p : Q@ — R suchthat p |se= 0, thatis, M = G, (p) . Thenthere exists
f:Q — Rwith f |3o= 0 suchthat M = G, (f).

SKETCH OF THE PROOF. If M is not a horizontal graph, then there exigts= P such that the
horocicleL, := {p +¢(0,1,0); ¢+ € R} intersectsM at least in two pointg;; andg,. But, as
observed above, we can consiger> 0, so thatg; andg, will be obtained withr > 0. Let

a = max{xy : (x1, x2, x3) € M} the maximum value ok, when (xq, x2, x3) € M. Note that
0 < a < oo sinceM # Q andM is compact. Now set

W:= [J (p—1(0.1,0).

pe
O<t<a

Note that(dW ~. ) U M is a topological closed submanifoldli#, then it bounds an open domain
R in HE.

For any real number, lets P, be a totally geodesic plane Ii® given by P, := {x, = ¢},
M, = {(x1, x2, x3) € M : xp > t} and M the reflection ofM, with respect to the plang,.
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It is clear that we haved; # ¢ for0 <t < a. If t < a anda — ¢ is sufficiently small, then
M} C R.Settg :=inf{be R: M C R,Vt € (b, a)}.

The existence of; andg, in M N L, impliesz, > 0. Now we prove that this leads to the
existence of a plane of symmetry 8. That is impossible sinc#f is contained in only one of the
sides ofP,.

For anyt > to, we haveM; N P_, = ¢. In particular, My N P_, = ¢. Moreover,M; N
(W N\ (P_, U Py)) = ¢, sinceplye = 0. Thus we haveMl; N M # ¢. Therefore there exists
po € M, suchthatpg € My N M, wherepg denotes the reflection gf with respect to the plane
P,.

The following are all the possibilities for the relative positions of the pojgtand pg.

1. poeint (M,O) and pg§ e aM,;
2. poeint(M,) and pgeint(M);
3. po = pg € 3(My).

We prove that the above possibilities do not occur. Details can be found in (Hinojosa 2000).
So, the assumption th is not a horizontal graph leads to a contradiction. d

In order to show that a horizontal graph is also a geodesic one we study a Dirichlet problem
for the equation 4. The necessaryriori estimates for this approach are given in the following
results.

Let 2 c P be a bounded domain, such that the curve= 42 has geodesic curvature greater
than or equal to 1. Lep, f : @ — R be functions such that|,o = flse = 0. Denote by
G = G,(p) andG := G, (f) their graphs and byt e H their mean curvatures respectively.
Represent byV the domain of® bounded byG U G* whereG* is the reflection of5 with respect
to the planéP. With this notation, we have the following proposition.

ProposITION 2. Suppose that H is a positive constant satisfying |#| < H. If h is constant or
Ih| <1, wehave G ¢ W.

Assuming that the geodesic curvatureast is greater than or equal to one, the previous
proposition allows to estimat® p| by |V f| . Moreover, it is easy to see thatis bounded ir2 by

a constant which does not depend/ornn fact, | sinh(p) | < im'cfx‘s}.
Q

Having the estimate in the boundary given by the above proposition, it is necessary now to get
a global estimate i®. That is given by the following lemma.

LeEmMA 3. Let p, H : © — R bereal functions of class C® and C?, respectively, such that

v .
Jiv (Wp> _ 2 coshp (H+ smhp) ’

v2 w
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where W2 = coslf p + 12 |Vp|?> and |Vp|? = p? + p?. Let usassume that p is bounded in
and |V p| isbounded in 2. Then |V p| isbounded in €2 by a constant that depends only on sup|p|
Q

and sup|Vp|

The proof of this lemmainvolves a long calculation based upon a suitable change of coordinates
suggested by a corresponding result in (Caffarelli et al. 1988). The complete proof of Lemma 3
and Proposition 2 can be found in (Hinojosa 2000).

The theorem below gives a result concerning existence of geodesic graphs. The main corollary
of this theorem affirms that, in the case of constant mean curvature, a horizontal graph is also
geodesic. This allows to show the mentioned equivalence for these kind of graphs.

THEOREM 4. Let @ C P be a bounded domain such that 92 has curvature greater than or equal
tol Let f: Q — R beasmooth function such that f|sq = 0and G = G,(f) C H? bethe
horizontal graph of f. Let usassume that G has constant mean curvature H # 0. Thenthere exists
p : Q — Rsuchthat p|so = 0and thegeodesic graph of p, G = G, (p), hasalso mean curvature
H.

COROLLARY 5. Let G C H?3 bea horizontal graph of a smooth function f : @ C P — R such that
flaa =0, where 2 C P isabounded domain such that 32 has curvature greater than or equal to
1. Let usassume that G has constant mean curvature 5 = 0, then there exists a smooth function
o that is zero at the boundary 9€2 and for which G = G,(p).

We are going to sketch the proof of the Theorem 4:

The existence of such functign: @ — R is equivalent to the existence of a solution for the
following Dirichlet problem:

0 (p) =div () — 2%% (H + 32y =0  inQ )
p=0 inag ,
whereW? = coslt p + v?|[Vp|> and |Vp|*> = p? + p2.

In order to apply the Continuity Method as stated in (Gilbarg and Trudinger 1983) we construct
a family of quasilinear eliptic operatorg,, ¢ € [0, 1] as follows.

The operatoQ can be written in the following form

1 B 2 coshp sinhp
All uu A12 uv A22 Vv I h
0 (p) = ( Puw + A0y + A% pyy) + 3 ¥ + =

where

A = coslt o+ vzpf, A = —2v2pupv, A?? = coslt o+ vzpf and
B = — (vp, + sinhp coshp) |V /.
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Now we consider the functiorg, , 75 : [0, 1] — [0, 1] given by,

2Ht , if t€[0,5] andH > 1

Ti) =1 1, if te[5.1] andH > 1
t, if H<1
and
t, If H>1
To(t) =
1, if H<1,

as well as the family of operato@, defined by

1
0 (p) = 375 (AT pu + A%pu + A%py)
B 2 coshp sinhp
+‘Tl(t){ﬁ_ 02 (Tz(l‘)H-l— % )}

We have also the associated Dirichlet problems

L(0)=0 inQ
{Q(p) in )

p=0 in 9Q2.

In this way each solution of the Dirichlet problem given by the equations (6) represents a
geodesic graph of mean curvatutle where

H, = TOTa0H + @0 -1 S 4 1y — 2 )
P2 ! w B w3 coshp
Therefore, we have
|sinhp| v2|B|
H, H 1-— .
|H;| < T1()T2(t)H + (1 — T1(2)) { W 2W3 coshp
Nevertheless, we prove that
|sinhp| v?|B| -
114 2W3coshp —
In this way
|H,| < T1(0)T2()H + 1 = T1(2). 8
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By comparison between the values Bf and H while ¢ varies we obtain th&€* bound in the
boundary, through the Proposition 2, for the solutions of the Dirichlet problems (6). The Lemma
3 supplies thec! uniform estimates g2, that is, there exists a constafit > 0 such that

lplyg = suplp| +sup|Vp| < Cy
Q Q
for any solutionC? to the problem (6), where the constafhtis independent of and H, .
So, there exists a constafit> 0 independent op and: such that any solutiog?“ () of
the Dirichlet problems (6) satisfi@spriori

lplcr < C.

The Theorems 11.8 and 13.7 in (Gilbarg and Trudinger 1983) guarantee the existemce of
C?* () solution of the problem

Q1(p) =0 in Q
p=0 in 9Q2.
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RESUMO

Consideramos superficies com curvatura média constante no 3-espaco hiperbélico que sdo dadas como gra-
fico de uma funcao suave definida em um aberto limitado e simplesmente conexo contido em um hiperplano
totalmente geodésico. Dos varios tipos de gréficos que podemos definir no espaco hiperbdlico consideramos
em particular o gréafico horizorlita o geodésico. Provamos que se a curvatura média é constante, entdo tais
gréficos sédo equivalentes no seguinte sentido: suponh® guema superficie de curvatura média constante

no 3-espaco hiperbdlico tal que é o grafico geodésico de uma fungéigue se anula no bordo do seu
dominio, entdo existe uma outra fun¢éo sugvgue também se anula no bordo e tal gdet o grafico
horizontal def. Além disso, a reciproca é verdadeira.

Palavras-chave: espaco hiperbdlico, grafico geodésico e horizontal, curvatura média constante, equacdes
diferenciais parciais elipticas.
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