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ABSTRACT

In this work we deal with surfaces immersed inR3 with constant mean curvature and circular

boundary. We improve some global estimates for area and volume of such immersions obtained

by other authors. We still establish the uniqueness of the spherical cap in some classes of cmc

surfaces.
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1 INTRODUCTION AND STATEMENT OF RESULTS

The global structure and classification of compact surfaces immersed in a three space form with

constant mean curvature (cmc-surfaces) had been the subject of a plenty of research papers in the

last decades.

In contrast with the case of closed cmc surfaces, the structure and classification of cmc com-

pact surfaces with nonempty boundary are almost unknown, also in the simplest case of circular

boundary. The only known examples are the umbilical ones and some non embedded examples

with genus bigger than two, constructed by Kapouleas (Kapouleas 1993). Barbosa (Barbosa 1990)

studied the case where the surface is contained in a sphere of radius1
|H | and proved that such a

surface must be a spherical cap. Later (Barbosa 1991) extended this result to the case where the

surface is contained in a cylinder of radius1|H | . Barbosa and Jorge (Barbosa and Jorge 1994) and

Alias, López and Palmer (Alias et al. 1999) proved that if the surface is stable then it must be a

spherical cap.

The lack of examples and the analogy with the case without boundary become natural the

question of the uniqueness of the umbilical examples under the following hypothesis (a problem

nowadays known as spherical cap conjecture).
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CONJECTURE. Let� be a compact surface with boundary∂� andψ : � → R
3 be an isometric

immersion with non zero constant mean curvatureH such thatψ(∂�) is a circle.

• If � has genus zero, thenψ(�) is a spherical cap.

• If � is embedded, thenψ(�) is a spherical cap.

If M is a compact surface, with planar boundary, embedded inR
3 with non zero constant mean

curvatureH and it is contained in one of the half spaces determined by the plane of the boundary,

then the Alexandrov’s method of reflection (Alexandrov 1958) shows thatM has all the symetries

of its boundary. Thus, if∂M is a circle,M is a surface of revolution and therefore a spherical cap

(Darboux 1914). In this way, the conjecture above is true for the subclass of embedded surfaces

that are contained in one of the half spaces determined by the plane of the boundary.

In this work, we will consider the first item of the previous conjecture, that is, we will be

interested in the case where� has genus zero. As usual we define the area and the volume ofψ

respectively as:

A(ψ) :=
∫
�

d� =
∫
�

|ψu ∧ ψv| dudv (1)

and

V (ψ) := −1

3

∫
�

〈ψ, N 〉 d� = −1

3

∫
�

〈ψ,ψu ∧ ψv〉 dudv, (2)

whereN represents the Gauss map ofψ, ψu = ∂ψ

∂u andψv = ∂ψ

∂v
.

Notice that ifψ : � → R
3 is an isometric immersion with constant mean curvatureH �= 0

andψ(∂�) is a plane curve of length L that limits a regionR of areaA(R), then, using the flux

formula (Kusner 1985), it is easy to show that|H | ≤ L
2A(R) . In particular ifψ(∂�) is an unitary

circle, we have|H | ≤ 1. The initial demonstration of this fact was made by H. Heinz (Heinz 1969)

and it doesn’t use the flux formula. The equality|H | = L
2A(R) is characterized by the author in

(Hinojosa 2002) without the hypothesis that the curve of the boundary is a circle.

Now we will consider spherical caps of mean curvature H, whose boundary is an unitary circle.

Let us denote, respectively, forA− andA+ the areas of the small and big caps. It is easy to see that:

A− = 2π

H2

(
1 −

√
1 − H2

)
and A+ := 2π

H2

(
1 +

√
1 − H2

)
.

López and Montiel (López and Montiel 1995) showed that if the immersionψ is not umbilical,

then

A = A(ψ) > A+ := 2π

H2

(
1 +

√
1 − H2

)
. (3)

From this result and by using the Minkowski formula, the same authors (López and Montiel 1996)

obtained estimates for the volume which do not depend on the mean curvatureH.More precisely,

they showed that ifψ is not umbilical, then

V >
2π

3
.
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Our first result is an improvement of the estimates cited above establishing the following result.

THEOREM 1. If ψ is not umbilic, then A > 29
10 π and V > 9

10 π.

The estimates in the above theorem allow us to show uniqueness of the spherical caps in the

class of immersions of the type above in which two of the three numbersA, V andH are fixed. In

other terms, given real numbersA, V andH we define the following sets in the class of immersions

ψ : � → R
3 such thatψ(∂�) is a circle and� has genus zero

CA,H := {ψ has constant mean curvatureH and areaA} .
CA,V := {ψ has areaA and volumeV } .
CH,V := {ψ has constant mean curvatureH and volumeV } .

We then are able to prove

THEOREM 2. If there is some spherical cap S ∈ CA,H or S ∈ CA,V , then S is the unique element

of this set. Moreover, if |H | > 2
√

2
3 , the same conclusion is true for CH,V .

2 PROOF OF THEOREM 1

Let� be a genus zero oriented compact surface andψ : � → R
3 be an isometric immersion with

non zero constant mean curvatureH . We suppose thatψ(∂�) is a circle which, without loss of

generality, we may assume as beingx2 + y2 = 1 in the planez = 0. Let A andV be the area and

the volume ofψ as defined respectively by the equations (1) and (2). Under these conditions, it is

easy to verify that

�|ψ |2 = 4 (1 + H〈N , ψ〉) ,
whereN is the Gauss map ofψ. Using Stoke’s Theorem we then obtain the so-called Minkowski

formula

A − 3H V = −1

2

∫
∂�

〈ψ, ν〉, (4)

whereν denotes the unit positively oriented co-normal vector field along∂�. Since the geodesic

curvature ofψ(∂�) is given bykg = −〈ψ, ν〉, we may write down the equation (4) in the form

A − 3H V = 1

2

∫
∂�

kg. (5)

However by using twice the Cauchy-Schwarz inequality it follows that
(∫

∂�

kg

)2

=
(∫

∂�

〈ψ, ν〉
)2

≤ 2π
∫
∂�

〈ψ, ν〉2 = 2π
∫
∂�

(
1 − 〈ν, e3〉2

)

≤ 4π2 −
(∫

∂�

〈ν, e3〉
)2

.

Now, by the flux formula (see Kusner 1985) we have that∫
∂�

〈ν, e3〉 = 2πH.
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Therefore we conclude that

|A − 3H V | = 1

2

∫
∂�

kg ≤ π
√

1 − H2, (6)

and the equality occurs if and only if the immersionψ is totally umbilical. Now, using the fact that

|σ |2 = 4H2 − 2K we obtain by integration that∫
�

|σ |2 =
∫
�

(
4H2 − 2K

) = 4H2A − 2
∫
�

K .

By the Gauss-Bonnet theorem and equation (5) we obtain∫
�

K = 2π − 2(A − 3H V ).

Therefore ∫
�

|σ |2 = 4H2A − 4π + 4(A − 3H V ). (7)

On the other hand, a result of Barbosa and Jorge (see Barbosa and Jorge 1994) establishes that if∫
�

|σ |2 ≤ 8π, thenψ is totally umbilical. From this, we conclude that ifψ is not totally umbilical,

then

4H2A − 4π + 4(A − 3H V ) > 8π.

So, 3π − H2A < A − 3H V and by equation (6) we have that ifψ is not totally umbilical, then

A >
3 − √

1 − H2

H2
π. (8)

We now consider the following functiong : (0, 1] → R

g(H) = 3 − √
1 − H2

H2
π.

It is easy to see that this function has an absolute minimum at the pointH0 = 2
√

3
√

2 − 4 and

g(H0) = 3 −
√

17− 12
√

2

12
√

2 − 16
π >

29

10
π.

Therefore,

A > g(H) ≥ g(H0) >
29

10
π. (9)

This proves the first part of Theorem 1.

Now, the equations (6) and (8) imply that

V >
π

3H3

(
3 −

√
1 − H2 − H2

√
1 − H2

)
. (10)

In order to prove the second part of Theorem 1, we define the function

f (H) = π

3H3

(
3 −

√
1 − H2 − H2

√
1 − H2

)
.

We verify easily thatf has an absolute minimum at the pointH1 =
√

9
√

73−75
2 and thatf (H1) >

9
10π.

This completes the proof of Theorem 1.
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3 PROOF OF THEOREM 2

We begin by studying the classCA,H . If there exists a spherical capS in S ∈ CA,H , thenA = A−
or A = A+. Thus, by the equation (3) (Lopez and Montiel 1995) we conclude that any element of

CA,H is totally umbilical.

Now, suppose that there exists a spherical capS ∈ CA,V . We must prove that anyψ ∈ CA,V

is totally umbilical. If this is not the case, then Theorem 1 implies thatV > 19
10π . Then, we may

suppose thatS is the larger cap. LetH andh be respectively the mean curvatures ofψ andS. If

ψ is not umbilical, then by Theorem 1 we have

2π

h2
(1 +

√
1 − h2) = A = A(ψ) >

2π

H2
(1 +

√
1 − H2)

ThereforeH > h. On the other hand,A − 3hV = −π√
1 − h2 and, for the equation (4) we have

A − 3H V = −1
2

∫
∂�

〈ψ , ν〉. Therefore

(A − 3hV )− (A − 3H V ) = 1

2

∫
∂�

〈ψ , ν〉 − π
√

1 − h2.

Now, it follows from equations (4) and (6) that∣∣∣∣
∫
∂�

〈ψ , ν〉
∣∣∣∣ ≤ 2π

√
1 − H2,

we conclude that 3V (H − h) ≤ π
√

1 − H2 − π
√

1 − h2 and since thatH > h we have 3V (H −
h) < 0. So,H < h, which contradicts the former inequality. From this contradiction, we have that

ψ should be totally umbilical.

Finally, we consider the classCH,V . We suppose that there exists a spherical capS ∈ CH,V

with |H | > 2
√

2
3 . If there exists a non totally umbilicalψ ∈ CH,V , then

A = A(ψ) > A+ = 2π

H2
(1 +

√
1 − H2).

Sinceψ is not totally umbilical, thenψ is not stable. Therefore,
∫
�

|σ |2 ≥ 8π . Then, using

formula (7), we obtain 4A(H2 − 1) − 4π + 12H V ≥ 8π . Using the fact thatA > A+, we have

that 4H2A+ − 4π − 4(A+ − 3H V ) ≥ 8π. Now, replacing the value ofA+ in the equation above,

we obtain|H | ≤ 2
√

2
3 . However, by hypothesis,|H | > 2

√
2

3 . From this contradiction, we conclude

thatψ is totally umbilical.

ACKNOWLEDGMENTS

I want to thank my advisor, Professor J. Lucas Barbosa, and also Professor A. G. Colares, by the

encouragement and many helpful conversations. Special gratefulness to my colleage J. Herbert S.

de Lira for the innumerable conversations and help.

Work partially supported by Programa de Apoio ao Desenvolvimento Científico e Tecnológico

(PADCT) /CT-INFRA/Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

/Ministério da Ciência e Tecnologia (MCT) Grant # 620120/2004-5.

An Acad Bras Cienc (2006)78 (1)



6 PEDRO A. HINOJOSA

RESUMO

Neste artigo, estudamos superfícies imersas emR
3 com curvatura média constante e bordo circular. Me-

lhoramos algumas estimativas globais para área e volume destas imersões obtidas por outros autores. Esta-

belecemos, além disso, a unicidade da calota esférica em algumas classes de superfícies cmc.

Palavras-chave: Superfícies com bordo, Curvatura média constante, calota esférica, área, volume.
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