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W 1,1
0 solutions in some borderline cases of

calderon-zygmund theory
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1 Old results

Let Ω be a bounded open set in RN , N ≥ 2.

1.1 Linear problems

{
−div

(
M(x)∇u

)
= f(x), in Ω;

u = 0, on ∂Ω;
(1)

A If M(x) is smooth, the Calderon-Zygmund 1 theory states

f ∈ Lm(Ω) ⇒ u ∈ W 1,m∗
0 (Ω), 1 < m < ∞ ;

B If M(x) is only bounded and elliptic, Guido Stampacchia proved (by duality) the same result for 1 < m < 2N
N+2 ,

that is for infinite energy solutions 2.

1.2 Nonlinear problems, p = 2

For nonlinear boundary value problems with differential operators of Leray-Lions type, we proved (last century)
that

C there exists a distributional solution u such that [B] still holds.

1.3 Nonlinear problems, p 6= 2

The simplest example of nonlinear boundary value problem is the Dirichlet problem for the p–Laplace operator,
with 1 < p < N , {

−div
(|∇u|p−2∇u

)
= f(x), in Ω;

u = 0, on ∂Ω;
(2)

so that the growth of the differential operator is p − 1. The classical theory of nonlinear elliptic equations states
that W 1,p

0 (Ω) is the natural functional spaces framework to find weak solutions of (2), if the function f belongs to
the dual space of W 1,p

0 (Ω).
This approach fails if p = 1.
On the one hand, if p > 1, for the model problem (2), the existence of W 1,p

0 (Ω) solutions also fails if the right
hand side is a function f ∈ Lm(Ω) (m ≥ 1) which does not belong to the dual space of W 1,p

0 (Ω): it is possible to
find distributional solutions in function spaces “larger” than W 1,p

0 (Ω), but contained in W 1,1
0 (Ω) (see [1], [2]).
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1(see also recent results by Haim Brezis)
2(If m > 2N

N+2
the result is false)



We present our results only on model problem (2), not for general Leray-Lions operators with p-coercivity;
existence of solutions with nonregular right hand side, for general nonlinear problems, are contained in [1], [2]; in
particular, we recall the following results.

Theorem 1.1. Let m = 1 and 2− 1
N < p < N. Then there exists a distributional solution u ∈ W 1,q

0 (Ω), q < N(p−1)
N−1 ,

of (2) .

Observe that N(p−1)
N−1 > 1 if and only if p > 2− 1

N .

Theorem 1.2. Let 2− 1
N < p < N . If ∫

Ω

|f | log(1 + |f |) < ∞, (3)

then there exists a distributional solution u ∈ W
1,

N(p−1)
N−1

0 (Ω) of (2).

Theorem 1.3 (Calderon-Zygmund theory for infinite energy solutions). If f ∈ Lm(Ω), sup
(
1, N

N(p−1)+1

)
< m <

Np
pN+p−N = (p?)′,

p > 1 + 1
m − 1

N , then there exists a distributional solution u ∈ W
1,(p−1)m?

0 (Ω) of (2).

Remark 1.4. Of course if p = 2 the above result is [C] of Subsection 1.2.

2 New: existence results in W 1,1
0 (Ω)

Now we will state existence results of W 1,1
0 (Ω) distributional solutions. The existence is a consequence of the fact

that we improve the existence of Theorem 1.2 and Theorem 1.3 in some borderline cases.

Theorem 2.1. Let f ∈ Lm(Ω), m = N
N(p−1)+1 , 1 < p < 2 − 1

N . Then there exists a distributional solution

u ∈ W 1,1
0 (Ω) of (2).

Theorem 2.2. Assume (3) and p = 2− 1
N . Then there exists a distributional solution u ∈ W 1,1

0 (Ω) of (2).
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