$W_0^{1,1}$ solutions in some borderline cases of calderon-zygmund theory

LUCIO BOCCARDO *- THIERRY GALLOUET

1 Old results

Let Ω be a bounded open set in \mathbb{R}^N , $N \geq 2$.

1.1 LINEAR PROBLEMS

$$\begin{cases} -\operatorname{div}(M(x)\nabla u) = f(x), & \text{in } \Omega; \\ u = 0, & \text{on } \partial\Omega; \end{cases}$$
(1)

A If M(x) is smooth, the Calderon-Zygmund ¹ theory states

$$f \in L^m(\Omega) \Rightarrow u \in W_0^{1,m^*}(\Omega), 1 < m < \infty$$

B If M(x) is only bounded and elliptic, Guido Stampacchia proved (by duality) the same result for $1 < m < \frac{2N}{N+2}$, that is for infinite energy solutions ².

1.2 Nonlinear problems, p = 2

For nonlinear boundary value problems with differential operators of Leray-Lions type, we proved (last century) that

C there exists a distributional solution u such that [B] still holds.

1.3 Nonlinear problems, $p \neq 2$

The simplest example of nonlinear boundary value problem is the Dirichlet problem for the p-Laplace operator, with 1 ,

$$\begin{cases} -\operatorname{div}(|\nabla u|^{p-2}\nabla u) = f(x), & \text{in } \Omega;\\ u = 0, & \text{on } \partial\Omega; \end{cases}$$
(2)

so that the growth of the differential operator is p-1. The classical theory of nonlinear elliptic equations states that $W_0^{1,p}(\Omega)$ is the natural functional spaces framework to find weak solutions of (2), if the function f belongs to the dual space of $W_0^{1,p}(\Omega)$.

This approach fails if p = 1.

On the one hand, if p > 1, for the model problem (2), the existence of $W_0^{1,p}(\Omega)$ solutions also fails if the right hand side is a function $f \in L^m(\Omega)$ $(m \ge 1)$ which does not belong to the dual space of $W_0^{1,p}(\Omega)$: it is possible to find distributional solutions in function spaces "larger" than $W_0^{1,p}(\Omega)$, but contained in $W_0^{1,1}(\Omega)$ (see [1], [2]).

^{*}Dip. di matematica Guido Castelnuovo, SAPIENZA Univ. di Roma , email: boccardo@mat.uniroma1.it

¹(see also recent results by Haim Brezis)

²(If $m > \frac{2N}{N+2}$ the result is false)

We present our results only on model problem (2), not for general Leray-Lions operators with *p*-coercivity; existence of solutions with nonregular right hand side, for general nonlinear problems, are contained in [1], [2]; in particular, we recall the following results.

THEOREM 1.1. Let m = 1 and $2 - \frac{1}{N} . Then there exists a distributional solution <math>u \in W_0^{1,q}(\Omega)$, $q < \frac{N(p-1)}{N-1}$, of (2).

Observe that $\frac{N(p-1)}{N-1} > 1$ if and only if $p > 2 - \frac{1}{N}$.

Theorem 1.2. Let $2 - \frac{1}{N} If$

$$\int_{\Omega} |f| \log(1+|f|) < \infty, \tag{3}$$

then there exists a distributional solution $u \in W_0^{1,\frac{N(p-1)}{N-1}}(\Omega)$ of (2).

THEOREM 1.3 (Calderon-Zygmund theory for infinite energy solutions). If $f \in L^m(\Omega)$, $\sup\left(1, \frac{N}{N(p-1)+1}\right) < m < \frac{Np}{pN+p-N} = (p^*)'$,

 $p > 1 + \frac{1}{m} - \frac{1}{N}$, then there exists a distributional solution $u \in W_0^{1,(p-1)m^*}(\Omega)$ of (2).

REMARK 1.4. Of course if p = 2 the above result is [C] of Subsection 1.2.

2 New: existence results in $W_0^{1,1}(\Omega)$

Now we will state existence results of $W_0^{1,1}(\Omega)$ distributional solutions. The existence is a consequence of the fact that we improve the existence of Theorem 1.2 and Theorem 1.3 in some borderline cases.

THEOREM 2.1. Let $f \in L^m(\Omega)$, $m = \frac{N}{N(p-1)+1}$, $1 . Then there exists a distributional solution <math>u \in W_0^{1,1}(\Omega)$ of (2).

THEOREM 2.2. Assume (3) and $p = 2 - \frac{1}{N}$. Then there exists a distributional solution $u \in W_0^{1,1}(\Omega)$ of (2).

References

- L. BOCCARDO, T. GALLOUËT: Nonlinear elliptic and parabolic equations involving measure data, J. Funct. Anal., 87 (1989), 149–169.
- [2] L. BOCCARDO, T. GALLOUËT: Nonlinear elliptic equations with right hand side measures; Comm. Partial Differential Equations, 17 (1992), 641–655.
- [3] L. BOCCARDO, T. GALLOUËT: $W_0^{1,1}$ solutions in some borderline cases of Calderon-Zygmund theory; J. Differential Equations, to appear.
- [4] L. BOCCARDO: Some nonlinear Dirichlet problems in L¹ involving lower order terms in divergence form. Progress in elliptic and parabolic partial differential equations (Capri, 1994), 43–57, Pitman Res. Notes Math. Ser., 350, Longman, Harlow, 1996.