Multiple radial solutions for Neumann problems involving the mean extrinsic curvature operator in Minkowski space

Jean Mawhin*

We use critical point theory for convex, lower semicontinuous perturbations of C^1 -functionals to establish existence of multiple radial solutions in a ball or an annulus $\mathcal{A} = \{x \in \mathbb{R}^N : R_1 \leq |x| \leq R_2\}$ ($0 \leq R_1 < R_2$) for some Neumann problems involving the mean extrinsic curvature operator in Minkowski space $\mathcal{M}(v) := \operatorname{div}\left(\frac{\nabla v}{\sqrt{1-|\nabla v|^2}}\right)$.

In what follows $\alpha > 0$, $p > q \ge 2$, $m \ge 2$, $\lambda > 0$, $b, h : [R_1, R_2] \to \mathbb{R}$, $f : [R_1, R_2] \times \mathbb{R} \to \mathbb{R}$ are continuous, and $F(r, u) := \int_0^u f(r, v) \, dv$ is such that

$$\lim_{|x|\to 0} \sup \frac{pF(r,x)}{|x|^p} < \alpha \quad uniformly \ in \ r \in [R_1, R_2]. \tag{0.1}$$

and that for some $\theta > p$ and $x_0 > 0$ one has

$$0 < \theta F(r, x) \le x f(r, x) \quad \text{for all} \quad r \in [R_1, R_2] \quad \text{and} \quad |x| \ge x_0. \tag{0.2}$$

Teorema 0.1. If, in addition to (0.1) and (0.2),

- (i) either $\liminf_{x\to 0-}\frac{F(r,x)}{|x|^p}\geq 0$ uniformly in $r\in [R_1,R_2]$ or $\liminf_{x\to 0+}\frac{F(r,x)}{x^p}\geq 0$ uniformly in $r\in [R_1,R_2]$
- (ii) $\int_{R_1}^{R_2} r^{N-1} b(r) dr > 0$,

problem

$$-\mathcal{M}(v) + \alpha |v|^{p-2}v = f(|x|, v) + \lambda b(|x|)|v|^{q-2}v \quad in \ \mathcal{A}, \quad \frac{\partial v}{\partial \nu} = 0 \quad on \quad \partial \mathcal{A},$$

has at least two nontrivial solutions for sufficiently small values of λ .

Those assumptions correspond to problems with *convex-concave nonlinearities*.

Teorema 0.2. If, in addition to (0.1) and (0.2),

(i)' there exists
$$k_1, k_2 > 0$$
 and $0 < \sigma < m$ such that $-l(r) \le F(r, x) \le k_1 |x|^{\sigma} + k_2$, for all $(r, x) \in [R_1, R_2] \times \mathbb{R}$, where $l \ge 0$ is measurable and $\int_{R_1}^{R_2} r^{N-1} l(r) dr < +\infty$;

(ii)' either
$$\lim_{|x|\to\infty} \int_{R_1}^{R_2} r^{N-1} F(r,x) dr = +\infty$$
,
or $F_{\pm}(r) := \lim_{x\to\pm\infty} F(r,x)$ exist for all $r \in [R_1, R_2]$ and
 $F(r,x) < F_{+}(r)$, $\forall r \in [R_1, R_2]$, $x \ge 0$,
 $F(r,x) < F_{-}(r)$, $\forall r \in [R_1, R_2]$, $x \le 0$

^{*}Research Institute of Mathematics and physics, UCL, Louvain-la-Neuve, Belgium, email: jean.mawhin@uclouvain.be

(iii)'
$$\int_{R_1}^{R_2} r^{N-1} h(r) dr = 0,$$

problem

$$-\mathcal{M}(v) + \lambda |v|^{m-2}v = f(|x|, v) + h(|x|) \quad \text{in } \mathcal{A}, \quad \frac{\partial v}{\partial \nu} = 0 \quad \text{on} \quad \partial \mathcal{A}$$

has at least three nontrivial solutions for sufficiently small values of $\lambda.$

Results of this type are called *multiplicity results near resonance*.

This is a joint work with Cristian Bereanu and Petru Jebelean.