On a resonant problem for the p-Laplacian *

GREY ERCOLE[†]

In this talk we address the following resonant problem

$$\begin{cases} -\Delta_p u = \lambda_p |u|^{q-2} u & \text{in } \Omega, \\ u = 0 & \text{on } \partial\Omega \end{cases}$$
(0.1)

in a bounded and smooth domain Ω , where λ_p is the first eigenvalue of the *p*-Laplacian operator Δ_p , p > 1, and $q \in [1, p) \cup (p, p^*)$.

The main result is the following:

Teorema 0.1. Let $\{u_q\}_{q \in [1,p) \cup (p,p^{\star})}$ be an arbitrary family of positive solutions of (0.1). The convergence $u_q \to \theta_p e_p$ holds in $C^1(\overline{\Omega})$ as $q \to p$, where

$$\theta_p := \exp\left(\left\| e_p \right\|_p^{-p} \int_{\Omega} e_p^p \left| \ln e_p \right| dx \right)$$

and e_p is the positive and L^{∞} -normalized first eigenfunction of the p-Laplacian.

As a consequence of this result the function $q \in [1, p^{\star}) \to \lambda_q := \min \left\{ \frac{\|\nabla u\|_p^p}{\|u\|_q^p} : u \in W_0^{1, p}(\Omega) / \{0\} \right\}$ is differentiable at q = p and d is a second of the function of $q \in [1, p^{\star}) \to \lambda_q$ is differentiable at q = p and

$$\frac{d}{dq} \left[\lambda_q \right]_{q=p} = \lambda_p \ln(\theta_p \left\| e_p \right\|_p)$$

Moreover, the asymptotic behavior (as $q \to p$) of positive solutions $u_{\lambda,q}$ of the Lane-Emden problem

$$\begin{cases} -\Delta_p u = \lambda |u|^{q-2} u & \text{in } \Omega \\ u = 0 & \text{on } \partial \Omega \end{cases}$$

is completely determined in the space $C^1(\overline{\Omega})$, for each $\lambda > 0$.

As the same time, we also prove that the function $q \in [1, p^*) \to \lambda_q |\Omega|^{\frac{p}{q}}$ is strictly decreasing and Lipschitz continuous in each closed interval contained in $[1, p^*)$. Moreover, if $1 this function is absolutely continuous in the closed interval <math>[1, p^*]$.

^{*}The author thanks the support of FAPEMIG and CNPq, Brazil

[†]Departamento de Matemática - ICEx, Universidade Federal de Minas Gerais, email: grey@mat.ufmg.br