Constrained Schrödinger-Poisson system with Non constant interaction

GAETANO SICILIANO *

We are dealing with a Schrödinger-Maxwell system in a bounded domain of \mathbb{R}^3 ; the unknowns are the charged standing waves $\psi = e^{-i\omega t}u(x)$ in equilibrium with a purely electrostatic potential ϕ . The system is not autonomous, in the sense that the coupling depends on a function q = q(x). The non-homogeneous Neumann boundary conditions on ϕ prescribe the flux of the electric field \Im and give rise to a necessary condition. On the other hand we consider the usual normalizing condition in L^2 for u.

Under mild assumptions involving \Im and the function q = q(x), we prove that this problem has a variational framework: its solutions can be characterized as constrained critical points. Then, by means of the Ljusternick-Schnirelmann theory, we get the existence of infinitely many solutions.

This work is in collaboration with Lorenzo Pisani.

^{*}CMCC-UFABC, email: gaetano.siciliano@ufabc.edu.br