Tempo de duração: 4 horas:

PRIMEIRA PARTE: Questionarios envolvendo definições, conceitos e propriedades.

			s afirmações segui s que melhor conve							CONTRACTOR OF THE PARTY	mero	5 0
1.	()	$A \cap B = A$ quando,	е	sòm	ente	e q	uand	0 _			
2.	()	0 cilindro seção é um quadra			_			é	aque	le	eı
3.	()	A altura de um ec seu volume mede							ratri	z 0	, 51
4.	()	Se tg0 = 3, enti									
			sen 0 =									
5.	()	A tangente varia do o sen 0 vari									qu
6.	()	No octaedro regul	ar	exi	ster	m				vér	ti
7.	()	O determinante de possui				iz	quad	rad	a de	orde	271
8.	()	0 determinante	1	a	2a	+	d				
				1	b	26	+	d				
				1	e	20	+	d				
			é nulo, porque _				_					_
9.	()	Escreva na forma	a +	bi	, _	12	2+1	3 <u>i</u>	_=		

10. () A derivada de 3 $x^2 - 8x + 13$ é

11. ()
$$\frac{k=2}{k=-3} \frac{K}{k+4} = \frac{1}{1}$$

- 12. () A razão entre as áreas do círculo de raio r e de seu quadrante é
- 13. () A equação $\frac{2}{x^2} + \frac{y^2}{b^2} = 1$, define _____
- lu. () Em um triângulo o lado opôsto ao ângulo obtuso, em função dos outros dois lados, vale _____
- 15. () Numa hipérbole existem _____ eireulos diretores.
- 16. () 0 limite de $\frac{1}{n^2}$ quando \underline{n} tende para infinito $\underline{\hat{e}}$
- 17. () Para que $x^5 = m^2 x^3 + mx + 1$, seja divisível por x = 1, devemos ter m =
- 18. () Seja o conjunto A dos números positivos pares e o conjunto B dos números positivos divisíveis por 3.

 0s 4 primeiros elementos de AAB são
- 19. () A soma dos n números impares é
- 20. () A função _____ e o inverso da função logaritmica

- II Coloque no espaço, à esquerda da questão, a letra (u, v, x, y, z) correspondente a opção que julgar mais correto.
- Se quase tôdo elemento de um conjunto A pertence a outro conjunto B, então necessariamente.
 - u) A é um sub conjunto de B
 - v) Existe uma interseção entre \underline{A} e \underline{B}
 - x) Os conjuntos são iguais
 - y) B é sub conjunto de A
 - z) nada acima é verdadeiro
- 2. () A hipérbole define-se como o lugar geométrico de tôdos os pontos de um plano tais que:
 - u) a soma de suas distâncias a dois pontos fixos é constante.
 - v) a razão de suas distâncias a dois pontos fixos é constante.
 - x) a diferença de suas distâncias a dois pontos fixos e constante.
 - y) o produto de suas distâncias a dois pontos fixos é constante.
 - z) estão equidistantes de dois pontos fixos.
- 3. () Se uma função passa por um máximo ou por um mínimo, então nêsse ponto:
 - u) Sua derivada segunda se anula
 - v) Sua derivada primeira se anula
 - x) Sua derivada primeira é positiva
 - y) Sua derivada primeira é negativa
 - z) Nada acima é verdadeiro

4. () É sempre verdadeira a proposição:

- u) Por um ponto dado sobre uma reta pode passar apenas uma perpendicular a essa reta.
- v) Por um ponto dado fora de um circulo pode passar apenas uma tangente ao circulo.
- x) Se dois planos são perpendiculares entre si, todas as retas contidas nesses dois planos são também perpendiculares entre si.
- y) Se um plano contém uma reta paralela a um outro plano, então os dois planos são paralelos.
- z) Se um plano contem uma reta perpendicular a outro plano, então os dois planos são perpendiculares entre si.
- 5. () Se a e b são numeros reais positivos, então:

$$u) log_b a - log_b = 1$$

$$x) (log a)^{log b} = 1$$

$$y) \log_{b} a = \frac{1}{\log b}$$

$$z$$
) $a^b = 1$

6. () A equação $x^2 - y^2 = a^2$ representa: u) Um círculo v) Uma elipse x) Uma hiperbole equilatera y) Uma parábola z) Uma elipse de excentricidade unitaria 7. () Se um ponto divide um segmento de reta na razão - 1, seu conjugado harmônico: u) se situa no interior do segmento v) se situa num dos extremos do segmento x) se situa no infinito y) não existe z) no exterior do segmento, a uma distância finita. 8. () Tôda progressão geométrica: u) é uma série convergente v) é uma série divergente x) é uma série geometrica y) é uma série aritmética z) em caso algum é uma série 9. () Tôda equação algébrica do grau n, em que o coefi ciente do termo de major grau é diferente da unidade: u) tem todas as raízes fracionárias v) tem pelo menos uma raíz fracionária x) tem raizes multiplas y) não tem raizes fracionárias z) tem pelo menos uma raiz imaginaria

16. () A área total de um cilindro equilátero é:

$$x) \frac{1}{3} \pi r^2$$

- z) nada acima é verdadeiro.
- 11. () A projeção de um solido sobre o plano YZ é um cir culo. Se a interseção do sólido com um plano parale lo ao plano XZ é uma semi círculo, o sólido é:
 - u) uma esfera
 - v) um cilindro
 - x) um cone
 - y) um hemisfério
 - z) nada acima
- 12. () Na equação Ax + By + C = O, a declividade da reta é igual a:

- u) todo o campo real
- v) wa a 0
- x)0 a 00
- y)2a 00
- z) nada acima é verdadeiro

14. () A condição para que uma equação do 2º grau a duas variáveis represente uma circunferência é que:

- u) os têrmos do 2º grau tenham coeficientes iguais
- v) que não tenha têrmo em x
- x) que não tenha têrmo em y
- y) que não tenha termo independente
- z) nada acima é verdadeiro.

15. () O valor da derivada num ponto de uma curva é igual:

- u) ao coeficiente angular da tangente à curva no ponto
- v) ao coeficiente angular da normal a curva no ponto
- x) ao coeficiente angular da reta que une o ponto da curva a origem dos eixos
- y) nada acima é verdadeiro

$$A = \begin{bmatrix} 2 & 0 & 3 \\ -1 & 4 & 9 \end{bmatrix} \qquad B = \begin{bmatrix} -1 & 0 & -1 \\ 0 & -1 & 1 \end{bmatrix}$$
 é
$$u) \begin{bmatrix} 2 & 0 & -3 \\ 0 & -4 & 9 \end{bmatrix}$$

$$\forall) \begin{bmatrix} -1 & 0 & -8 \\ 0 & 3 \end{bmatrix}$$

$$x \begin{bmatrix} -2 & 0 & 4 & 3 \\ 0 & -4 & 9 \end{bmatrix}$$
$$y \begin{bmatrix} -9 & 0 & -1 \\ 3 & 0 & 0 \end{bmatrix}$$

z) não é possível

18. ()
$$\int \sin x \cos^2 x =$$

$$\nabla$$
) $sen^3x + C$

$$x$$
) sen $x - \cos x + C$

$$y = \frac{\cos^3}{3} + C$$

$$z) = \frac{\cos^3}{3} + C$$

- 19. () A constante de integração na integral indefinida existe porque:
 - u) as funções que diferem por uma constante têm derivadas iguais
 - v) as funções de mesmo graus têm derivadas iguais
 - x) as funções desprovidas de têrmos independentes têm derivadas iguais

y) nada acima é verdadeiro.

20. () Assinale a identidade verdadeira:

$$u) n! = (n-1) n$$

$$v) (n + 2) = n + 2$$

$$x) (n-1)! = n!n$$

$$y) (n+1)! = n! (n+1)$$

z) nada acima é verdadeiro

SEGUNDA PARTE: Problemas com caráter objetivo.

Resolva as seguintes questões indicando a marcha seguida para chegar ao resultado final e os cál culos correspondentes. Não serão atribuidos pontos às resoluções cujos resultados não estejam devidamente justificados.

l - Corta-se um pedaço de arame de com primento d em dois outros que deverão ser vergados nas formas de um quadrado e de um circulo, respectivamente. Para que a soma das áreas destas figuras seja minima, em que razão o arame deve ser cortado.

2 - Verificar a identidade:

(cossec x + 1) tg x =
$$\sqrt{\frac{\text{sen x + 1}}{1 - \text{sen x}}}$$

Demonstrar que a área do triângulo em função das coordenadas dos seus vertices é dada por:

A Banca Examinadora

16601 (15)