Provas de Cálculo Vetorial e Geometria Analítica

Período 2013.2

Sérgio de Albuquerque Souza

26 de março de 2014

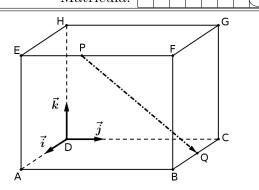
UNIVERSIDADE FEDERAL DA PARAÍBA

CCEN - Departamento de Matemática

Turno: Tarde

http://www.mat.ufpb.br/sergio

Cálculo Vetorial e Geometria Analítica 1^a Prova


Data: 07/Nov/2013 Prof.: Sérgio

Curso: Nome:

Período: 13.2 Turma: 14 Matrícula:

Observações:

- Use a constante $S = \frac{2n+3+(-1)^n}{4}$ onde n é o último número de sua matrícula, nas questões abaixo.
- Considere o paralelepípedo ABCDEFGH e os vetores $\overrightarrow{DA} = 12\overrightarrow{i}, \overrightarrow{DC} = 9\overrightarrow{j}$ e $\overrightarrow{DH} = 3\vec{k}$.

1ª Questão Considerando os vetores $\vec{a} = \vec{i} + 2\vec{j} + \underline{\mathcal{S}}\vec{k}$, $\vec{b} = -\vec{i} + \underline{\mathcal{S}}\vec{j} + 2\vec{k}$ e $\vec{c} = (\underline{\mathcal{S}} - 4)\vec{i} + \vec{j} - \vec{k}$, onde $\mathcal{B} = \{\vec{i}, \vec{j}, \vec{k}\}$ é uma base ortonormal de \mathbb{R}^3 . Assinale as alternativas corretas

i) Se $\overrightarrow{EP} = (9 - \underline{\mathcal{S}})\vec{j}$ e $\overrightarrow{CQ} = \underline{\mathcal{S}}\vec{i}$, então o vetor \overrightarrow{PQ} é igual a:

(a)
$$-7\vec{i} + 5\vec{j} - 3\bar{k}$$

(a)
$$-7\vec{i} + 5\vec{j} - 3\vec{k}$$
 (c) $-10\vec{i} + 2\vec{j} - 3\vec{k}$ (e) $-8\vec{i} + 4\vec{j} - 3\vec{k}$

(e)
$$-8\vec{i} + 4\vec{j} - 3\bar{k}$$

(b)
$$-11\vec{i} + \vec{j} - 3\vec{k}$$
 (d) $-9\vec{i} + 3\vec{j} - 3\vec{k}$

(d)
$$-9\vec{i} + 3\vec{j} - 3\vec{k}$$

ii) O vetor $\vec{u} = \vec{a} + 2\vec{b} - \mathcal{S}\vec{c}$ é igual a:

(a)
$$-\vec{i} + 6\vec{j} + 12\vec{k}$$
 (c) $2\vec{i} + 3\vec{j} + 6\vec{k}$ (e) $2\vec{i} + 5\vec{j} + 10\vec{k}$

(c)
$$2\vec{i} + 3\vec{j} + 6\vec{k}$$

(e)
$$2\vec{i} + 5\vec{j} + 10\vec{k}$$

(b)
$$-6\vec{i} + 7\vec{j} + 14\vec{k}$$
 (d) $3\vec{i} + 4\vec{j} + 8\vec{k}$

(d)
$$3\vec{i} + 4\vec{j} + 8\vec{k}$$

- iii) O valor da expressão da por $(\vec{a} + 2\vec{b}) \cdot \mathcal{S}\vec{c}$ é:
 - (a) 2
- (b) 4
- (c) 6
- (d) 8
- (e) 10
- (f) NDA

- iv) O valor numérico para o $cos(\vec{a}, \vec{b})$ é:

 - (a) $\frac{7}{0}$ (b) $\frac{11}{14}$ (c) $\frac{5}{7}$ (d) $\frac{19}{30}$ (e) $\frac{1}{2}$

- (f) NDA
- v) Qual dos vetores abaixo é perpendicular ao vetor $\vec{v} = \vec{a} + \underline{\mathcal{S}}\vec{c}$?
- (a) $-3\vec{i} 2\vec{j} + 7\vec{k}$ (c) $-5\vec{i} 2\vec{j} + 3\vec{k}$ (e) $-7\vec{i} + 6\vec{j} \vec{k}$
- (b) $-4\vec{i} 3\vec{j} + 5\vec{k}$ (d) $-6\vec{i} + \vec{j} + \vec{k}$ (f) NDA

vi) O vetor $\vec{w} = \vec{a} \times \vec{b}$ é igual à:

(a) $-5\vec{i} - 5\vec{i}$ (b) $-12\vec{i} - 5\vec{i}$		(c) $-21\vec{i} - (d) \ 3\vec{i} - 3\vec{j}$	v	(e) $0\vec{i} - 4\vec{j}$ (f) NDA	$+4\vec{k}$
A área do tri	ângulo LMN ,		$\vec{a} \in \overrightarrow{LN} = \vec{b}$, é:		
(a) $\frac{7\sqrt{11}}{2}$	(b) $\frac{3\sqrt{3}}{2}$	(c) $2\sqrt{2}$	(d) $\frac{5\sqrt{3}}{2}$	(e) $3\sqrt{6}$	(f) NDA

viii) O resultado dado pela expressão $(\vec{a} \times \vec{b}) \cdot \vec{c}$ é:

vii)

(a)
$$-5$$
 (b) -12 (c) -35 (d) -15 (e) -8 (f) NDA

- ix) A soma das coordenadas do vetor $\vec{d} = 10\vec{i} 5\vec{j} + 5\vec{k}$ em relação a base $\{\vec{a}, \vec{b}, \vec{c}\}$, ou seja, o valor de x + y + z onde $\vec{d} = x\vec{a} + y\vec{b} + z\vec{c}$ é:
 - (a) -5 (b) 0 (c) 5 (d) 4 (e) -4 (f) NDA
- ${f 2^a}$ Questão Dados três vetores, não nulos, ${\vec p}$, ${\vec q}$ e ${\vec r}$ quaisquer em ${\Bbb R}^3$, assinale com a letra ${f V}$ para VERDADEIRO ou a letra ${f F}$ para FALSO, marcando a opção correta, os itens abaixo.
 - i) Se $\vec{p}-\underline{\mathcal{S}}\vec{q}=\vec{0}$, implica necessariamente que os vetores \vec{p} e \vec{q} são L.I.
 - ii) Se \vec{p} e $\underline{\mathcal{S}}\vec{q}$ são L.D. então o produto $\vec{p}\cdot\vec{q}\neq 0$
 - iii) Se \vec{r} é perpendicular aos vetores \vec{p} e \vec{q} então $(\vec{p} + \underline{\mathcal{S}}\vec{q}) \cdot \vec{r}$ é nulo.
 - $(a)\ \ V,V,V \qquad (b)\ \ V,V,F \qquad (c)\ \ V,F,V \qquad (d)\ \ F,V,V \qquad (e)\ \ F,F,V \qquad (f)\ \ F,F,F$
- ${f 3^a}$ Questão Considerando os vetores da primeira questão, mostre que $\{\vec{a},\vec{b},\vec{c}\}$ é uma base para do \mathbb{R}^3 . JUSTIFIQUE SUA RESPOSTA, USANDO O TEOREMA

Boa Sorte Tabela de Respostas 1 i) 1 ii) 1 iii) 1 iv) 1 v) 1 vi) 1 vii) 1 viii) 1 ix) $\mathbf{2}$ (a) **((** (p) **(**b) (b) **(** (b) **((**b) **(b**) (c) (d) (e) **e** (e) (e) (e) **e** (e) **e e** (e) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f)

Cálculo Veto 1 ^a Prova - 13	Geon	netri	ia A	tica Oata	7/N	ov/	201	3				Tur	P ma:		Sérg Taro	
Nome:					,	,										
Matrícula:								_			Assir	natur	a			_

UNIVERSIDADE FEDERAL DA PARAÍBA CCEN - Departamento de Matemática

	htt	p://www.ma	at.ufpb.bi	r/sergio			X\$
2ª Prova	Cálculo	o Vetoria	l e Ge	ometria A	nalític	ea	
Prof.: Sérgio D	Data: 12/Dez/.	2013				Turno:	Tarde
Curso: N	Vome:						
Período: 13.2	Turma: 14			Matrícul	la:		
Observações:							
• Use a constan	ite $\boxed{\mathcal{S}}$ como ser	ndo o último	número	de sua matrícu	la, nas c	questões a	abaixo
• Considere os	pontos $A = (1, 1)$	$(2,3), B = (\underline{\mathcal{S}})$	3+1,3,5) e $C = (2, \underline{12} -$	$-\mathcal{S}, -2).$		
1 ^a Questão Assina a opção correta, os		s abaixo, con	n (V) VE	RDADEIRO ot	ı (F) FA	LSO, ma	rcando
1. () O ângulo do plano $(\overrightarrow{n_{\beta}})$	entre um plano e o vetor diret		$a \ a \ é \ sem$	pre igual ao âng	gulo entr	e o veto i	norma
2. () Se $a \in b$ s a reta b .	são duas retas c	oncorrentes	e um pla	no α contém a	reta a ,	então α (contém
3. () Paralelo (1, 2, 3).	a um plano β	qualquer, ex	iste um	único plano qu	e contér	n o pont	o A =
(a) V,V,V	(c) V	$_{ m V,F,V}$	(e)	F,V,V	(g)	$_{\mathrm{F,F,V}}$	
(b) V,V,F	(d) V	$_{ m V,F,F}$	(f)	F,V,F	(h)	F,F,F	
2ª Questão Em re	elação à reta r	definida pelo	s pontos	$A \in B$, determ	ine:		
1. Qual dos pon	tos abaixo perte	ence à reta r	:				
(a) $(-2,1,1)$) (d) ((13, 4, 7)	(g)	(-8, 1, 1)	(j)	(5, 4, 7)	
(b) $(9,4,7)$	(e) (-6, 1, 1)	(h)	(1, 4, 7)	(k)	(14, 2, 4)	
(c) $(-4, 1, 1)$) (f) (17, 4, 7)	(i)	(0, 1, 1)	(1)	NDA	
2. Qual dos veto	ores abaixo é pa	ralelo à reta	r:				
(a) $(14, 2, 4)$	(d) ((0, -1, -2)	(g)	(6, 2, 4)	(j)	(-6, -1,	-2)
	(e)						
	(f) (NDA	
3. A distância d	o ponto C à ret	sa r é:					
(a) $\sqrt{126}$	(d) v	$\sqrt{75}$	(g)	$\sqrt{42}$	(j)	$\sqrt{27}$	
(b) $\sqrt{107}$	(e) v	$\sqrt{62}$	(h)	$\sqrt{35}$	(k)	$\sqrt{20}$	
(c) $\sqrt{90}$	(f) v	$\sqrt{51}$	(i)	$\sqrt{30}$	(l)	NDA	

- ${\bf 3^a}$ Questão Em relação ao plano α definido pelos pontos $A,\,B$ e C, determine:
 - 1. Qual dos pontos abaixo pertence ao plano $\alpha :$

(a) $(11, 4, 0)$	(d) $(6, 12, 2)$	(g) $(7,8,0)$	(j) (18, 6, 2)
(b) $(2,14,2)$	(e) $(5, 10, 0)$	(h) $(14, 8, 2)$	(k) (4,1,2)
(c) $(3, 12, 0)$	(f) $(10, 10, 2)$	(i) (9,6,0)	(l) NDA
2. Qual dos vetores abai	xo é perpendicular pl	ano α :	
(a) $(-46, 14, 16)$	(d) $(17, -22, -23)$	(g) $(-22, 74, 40)$	(j) $(25, -2, 1)$
			(k) (-2, -1, -2)
	(f) $(13, -32, -23)$		
3. A distância da origen	n $O = (0,0,0)$ ao plan	ο α:	
(a) $\frac{120}{\sqrt{1722}}$	(d) 111	(a) $\frac{48}{}$	(i) <u>111</u>
(a) $\sqrt{1722}$	(d) $\frac{111}{\sqrt{2322}}$	(g) $\frac{48}{\sqrt{810}}$	(j) $\frac{111}{\sqrt{1530}}$
(b) $\frac{123}{\sqrt{1800}}$	(d) $\frac{111}{\sqrt{2322}}$ (e) $\frac{24}{\sqrt{630}}$	(h) $\frac{75}{\sqrt{1050}}$	(k) $\frac{124}{\sqrt{2622}}$
120			$\sqrt{2622}$
(c) $\frac{120}{\sqrt{2070}}$	(f) $\frac{15}{\sqrt{642}}$	(i) $\frac{96}{\sqrt{1302}}$	(l) NDA
$\mathbf{4^a}$ Questão Dado o plan $\frac{y-2}{2}=\frac{z+2}{2}$ determine: 1. Com relação à posiçã	, \		$\frac{d}{d} = a \text{ reta } s : \frac{x-1}{2} = a$
(a) Coincidentes	(c) Concorr	rentes (e	e) Contida no plano
(b) Paralelos	(d) Reverse	`	i) NDA
2. A interseção entre à 1	eta s e o plano π :	·	•
(a) (10, 11, 7)	(d) $(3,4,0)$	(g) (6,7,3)	(j) (9, 10, 6)
(b) (11, 12, 8)		(h) (7, 8, 4)	(k) Ø
(c) $(2,3,-1)$		(i) (8,9,5)	(l) NDA
3. A distância entre a re	eta s e o plano π é:		
(a) $\frac{6}{\sqrt{12}}$ (c) $\frac{1}{\sqrt{12}}$	18 (a) 30	(g) $\frac{42}{}$	$\frac{54}{}$ (k) 0
		(g) $\frac{42}{\sqrt{12}}$ (i	
(b) $\frac{12}{\sqrt{12}}$ (d) -	$\frac{24}{\sqrt{12}}$ (f) $\frac{36}{\sqrt{12}}$	(h) $\frac{48}{\sqrt{12}}$ (j	$\frac{60}{\sqrt{12}}$
4. O ângulo entre a reta	s e o plano π é:		
(a) 0^o (b) 3	0^{o} (c) 45^{o}	(d) 60° (e)	e) 90° (f) NDA
			Pag Conto
Cálgula Vatarial - Carre	ia Analítica		Boa Sorte
Cálculo Vetorial e Geometr 2ª Prova - 13.2	Data: 12/Dez	/2013	Prof.: <i>Sérgio</i> Turma: 14 - Tarde
NI			

Assinatura

Matrícula:

UNIVERSIDADE FEDERAL DA PARAÍBA

CCEN - Departamento de Matemática

 $\rm http://www.mat.ufpb.br/sergio$

3ª Prova	Cálcu	lo Vetori	al e Geometri	a Analít	sica
Prof.: Sérgio	Data: 11/Mar/2	2013			Turno: Tarde
Curso:	Nome:				
Período: 13.2	Turma: 14		Ma	atrícula:	
	_		o o último número d spondentes a cada it		
1 ^a Questão Ass SAS, os itens aba	(/ -	a sentenças	VERDADEIRAS ou	ı no (F) pa	ra sentenças FAL-
	cônica de equaçã 3) e raio igual a		$2\underline{\mathcal{S}}x - 6y - 2\underline{\mathcal{S}} + 8$	= 0 é uma	circunferência de
2. (V)(F) Em	n uma cônica se a	$= \left[4 + (-1)\right]$	$[\underline{S}]$ e $b = 4$, significa	que a cônic	a é uma hipérbole;
			$P = (x, y)$ no plano $= 2a$, onde e F_1 , F_2		
	os pontos $(\underline{\mathcal{S}}, 2)$, entro de uma côni		$)^{\underline{S}}$]) e (\underline{S} , 4) são resma elipse;	spectivamer	nte um vértice, um
5. (V)(F) Na	cônica de equaçã	$x^2 - 4x =$	$4\underline{\mathcal{S}}$ o foco é o ponto	$o\left(\underline{\mathcal{S}}+1,0\right)$	
2ª Questão Er	n relação à cônic	a $C: \frac{(x+\underline{\mathcal{S}})}{10}$	$\frac{(-5)^2}{5} + [(-1)^{\mathcal{S}}] \frac{(y)}{[4]}$	$\frac{-\underline{\mathcal{S}}+6)^2}{+(-1)\underline{\mathcal{S}}]^2} :$	= 1 , temos que:
1. O gráfico o	da cônica C em \mathbb{F}	\mathbb{R}^2 representa	a:		
(a) Uma	circunferência	(d) Uma	a parábola	(g) Duas	s retas
(b) Uma	elipse	(e) Um	ponto	(h) Uma	reta
(c) Uma	hipérbole	(f) O v	azio	(i) NDA	
2. O centro d	la cônica C é o p	onto:			
(a) $(0, -1)$	1) (d)	(-3, 2)	(g) $(5, -6)$	((2, -3)
(b) $(-1, 0)$	0) (e)	(-4, 3)	(h) $(4, -5)$	(1	(1,-2)
(c) $(-2, 1)$	1) (f)	(-5, 4)	(i) $(3, -4)$	(l) NDA
3. São vértice	es da cônica C os	pontos:			
(a) $(6, -3)$	3) e $(-2, -3)$	(e) $(2, 1)$	e) e $(-6,1)$	(i) $(5, -$	(1) e (1, -6)
(b) $(1,3)$	e(-3,-2)	(f) (-3)	,7) e (-7,2)	(j) (8, -	5) e $(0, -5)$
(c) $(4, -1)$	1) e $(-4, -1)$	(g) $(0,3)$	3) e $(-8,3)$	(k) (3,1)) e $(-1, -4)$
(d) $(-1, \frac{1}{2})$	5) e $(-5,0)$	(h) (-5)	,9) e (-9,4)	(l) NDA	

4. São os focos da cônica ${\cal C}$ os pontos:

$x = 0$ com à quádrica Q _		com eixo
		00111 01110
(e) é um ponto	(i) eixo x	
(f) é o vazio	(j) eixo y	
(g) são duas retas	(k) eixo z	
(h) é uma reta	(l) NDA	
y = 0 com a quádrica Q		com eixo
(e) é um ponto	(i) eixo x	
(f) é o vazio	(j) eixo y	
(g) são duas retas	(k) eixo z	
(h) é uma reta	(l) NDA	
		com eixo
_		
` '		
	` ,	
(e) circular	(i) de uma fe	olha
(f) elíptica	(i) de dues f	College
(g) hiperbólica	(J) de duas i	Omas
(h) parabólica	(k) NDA	
ea Q em \mathbb{R}^3 .		
		Boa Sorte
alítica		Prof.: Sérgio
	(e) é um ponto (f) é o vazio (g) são duas retas (h) é uma reta $y = 0 \text{ com a quádrica } Q = 0$ (e) é um ponto (f) é o vazio (g) são duas retas (h) é uma reta $z = 0 \text{ com a quádrica } Q = 0$ (e) é um ponto (f) é o vazio (g) são duas retas (h) é uma reta (e) é um ponto (f) é o vazio (g) são duas retas (h) é uma reta (e) circular (f) elíptica (g) hiperbólica (h) parabólica (a) Q em \mathbb{R}^3 .	(e) é um ponto (f) é o vazio (g) são duas retas (h) é uma reta (l) NDA $y = 0 \text{ com a quádrica } Q$ (e) é um ponto (f) é o vazio (g) são duas retas (h) é uma reta (l) NDA $z = 0 \text{ com a quádrica } Q$ (i) eixo z (j) eixo z (k) eixo z (l) NDA $z = 0 \text{ com a quádrica } Q$ (i) eixo z (l) NDA $z = 0 \text{ com a quádrica } Q$ (i) eixo z (l) NDA $z = 0 \text{ com a quádrica } Q$ (l) eixo z (l) NDA $z = 0 \text{ com a quádrica } Q$ (l) eixo z (l) NDA $z = 0 \text{ com a quádrica } Q$ (l) eixo z (l) NDA $z = 0 \text{ com a quádrica } Q$ (l) eixo z (l) NDA $z = 0 \text{ com a quádrica } Q$ (l) eixo z (l) NDA $z = 0 \text{ com a quádrica } Q$ (l) eixo z (l) NDA

(a) (-5,7) e (-5,1) (b) (5,-3) e (5,-9) (c) (7,-3) e (-3,-3) (d) (3,1) e (-7,1) (e) (5,-3) e (5,-9) (f) (1,1) e (1,-5) (j) (-3,5) e (-3,-1)

UNIVERSIDADE FEDERAL DA PARAÍBA

CCEN - Departamento de Matemática

http://www.mat.ufpb.br/sergio

Final Cálculo Vetorial e Geometria Analítica

Prof.: Sérgio Data: 25/Mar/2014 Turno: Tarde
Curso: Nome:

Período: 13.2 Turma: 14 Matrícula:

Observações:

- ullet Use a constante $\overline{\mathcal{S}}$ como sendo o último número de sua matrícula, nas questões abaixo.
- Considere os pontos $A = (1, 2, 3), B = (\underline{S}, -1, 2), C = (2, 3, 4) \in D = (-1, 2 \underline{S}, \underline{S} + 5).$
- **1ª Questão** Considere os vetores $\vec{u} = \overrightarrow{AB}$, $\vec{v} = \overrightarrow{AC}$ e $\vec{w} = \overrightarrow{AD}$:
 - 1. A área do paralelogramo formado pelos vetores \vec{u} e \vec{v} é:
 - (a) $\sqrt{78}$ (d) $\sqrt{14}$ (g) $\sqrt{206}$ (j) $\sqrt{56}$ (b) $\sqrt{24}$ (e) $\sqrt{6}$ (h) $\sqrt{134}$ (k) $\sqrt{168}$ (c) $\sqrt{38}$ (f) $\sqrt{8}$ (i) $\sqrt{104}$ (l) NDA
 - 2. O volume do paralelepípedo formado pelos vetores $\vec{u},\,\vec{v}$ e \vec{w} é:
 - (a) 78 (d) 14 (g) 56 (j) 38 (b) 206 (e) 24 (h) 134 (k) 6 (c) 8 (f) 104 (i) 168 (l) NDA
 - 3. Qual a soma das coordenadas do vetor $\vec{a} = -3\vec{i} (2\underline{S} + 3)\vec{j} + \vec{k}$ em relação à base $\{\vec{u}, \vec{v}, \vec{w}\}$, ou seja, o valor de x + y + z onde $\vec{a} = x\vec{u} + y\vec{v} + z\vec{w}$ é:
 - (a) -7 (d) 0 (g) -5 (j) -3

 (b) -6 (e) -2 (h) 3 (k) -4

 (c) -1 (f) 1 (i) 2 (l) NDA
- $\mathbf{2^a} \ \mathbf{Quest\~ao} \ \text{Considerando à reta} \ r: \left\{ \begin{array}{l} x = -1 + (2\underline{\mathcal{S}} 2)t \\ y = (2 \underline{\mathcal{S}}) 6t & \text{e o plano } \pi \\ z = (\underline{\mathcal{S}} + 5) 2t \end{array} \right.$ definido pelos pontos $A, B \in C$, Temos:
 - 1. Qual dos vetores abaixo é paralelo à reta r:
 - (a) $-2\vec{i} + 6\vec{j} + 2\vec{k}$ (e) $-35\vec{i} + 15\vec{j} + 5\vec{k}$ (i) $6\vec{i} 9\vec{j} 3\vec{k}$ (b) $-2\vec{i} 3\vec{j} 1\vec{k}$ (f) $-20\vec{i} + 12\vec{j} + 4\vec{k}$ (j) $30\vec{i} 15\vec{j} 5\vec{k}$ (c) $-9\vec{i} + 9\vec{j} + 3\vec{k}$ (g) $1\vec{i} + 3\vec{j} + 1\vec{k}$ (k) $16\vec{i} 12\vec{j} 4\vec{k}$ (d) $48\vec{i} 18\vec{j} 6\vec{k}$ (h) $0\vec{i} 6\vec{j} 2\vec{k}$ (l) NDA
 - 2. Qual dos vetores abaixo é perpendicular ao plano π :

(a) $-4\vec{i} - 2\vec{j} + 6\vec{k}$	(e) $4\vec{i} + 4\vec{j} - 8\vec{k}$	(i) $-6\vec{i} - 9\vec{j} + 15\vec{k}$
(b) $8\vec{i} + 24\vec{j} - 32\vec{k}$	(f) $6\vec{i} + 12\vec{j} - 18\vec{k}$	$(j) -2\vec{i} + 1\vec{j} + 1\vec{k}$
•	(g) $-12\vec{i} - 54\vec{j} + 66\vec{k}$	(k) $-10\vec{i} - 35\vec{j} + 45\vec{k}$
	(h) $10\vec{i} + 40\vec{j} - 50\vec{k}$	(l) NDA
3. A interseção entre à reta r e o	o plano π :	
(a) $(-9, -4, 15)$ (d) $(-2, -4, 15)$	(9) (-7, -2, 1)	(j) (-4, 1, 10)
(b) $(-8, -3, 14)$ (e) $(0, 8)$	(5,6) (h) $(-6,-1,1)$	(k) (-5, 0, 11)
(c) $(1,6,5)$ (f) \emptyset	(i) $(-3, 2, 9)$	(l) NDA
3ª Questão Com relação à quádric	$\operatorname{ca} Q: \frac{(x-\underline{\mathcal{S}})^2}{0} - \frac{(y-\underline{\mathcal{S}})^2}{16} +$	$-\frac{(z-\underline{S})^2}{(z-\underline{S})^{2/2}} = 1$, temos:
1. São focos da cônica, resultado	o da interseção do plano π_1	$z = \underline{S} \text{ com à quádrica } Q,$
os pontos:		
	(e) $(7,2)$ e $(-3,2)$	(i) $(4,-1)$ e $(-6,-1)$
	(f) $(12,7)$ e $(2,7)$	(j) $(6,1)$ e $(-4,1)$
	(g) $(8,3)$ e $(-2,3)$	(k) $(13,8)$ e $(3,8)$
(d) $(5,0)$ e $(-5,0)$	(h) $(9,4)$ e $(-1,4)$	(l) NDA
2. São vértices da cônica, resulta Q , os pontos:	ado da interseção do plano	$\pi_2: y = \underline{\mathcal{S}} \text{ com à quádrica}$
(a) $(-1,3)$ e $(-1,-5)$	(e) $(5,2)$ e $(-1,2)$	(i) $(1,5)$ e $(1,-3)$
	(f) (7,4) e (1,4)	(j) (7,11) e (7,3)
(c) (9,6) e (3,6)	(g) (5,9) e (5,1)	(k) $(3,7)$ e $(3,-1)$
(d) $(9,13) e (9,5)$	(h) $(3,0)$ e $(-3,0)$	(l) NDA
3. A quádrica Q é uma		<u>.</u>
(a) esfera	(e) circular	(i) de uma folha
	(f) elíptica	· /
-	(g) hiperbólica	(j) de duas folhas
. , -	(h) parabólica	(k) NDA
4. Faça um esboço da quádrica o	$Q \text{ em } \mathbb{R}^3.$	
		D 0 ,
		Boa Sorte
Cálculo Vetorial e Geometria Analític Final - 13.2 Data	ra	Prof.: Sérgio
-	a: 25/Mar/2014	Turma: 14 - Tarde

Assinatura

Matrícula: