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Resumo

Neste trabalho provamos alguns resultados de existéncia e multiplicidade de solugoes

para equacoes do tipo
(=A)*u+V(2)u= f(r,u) em RN

onde 0 < a < 1, N > 2a, (—A)® denota o Laplaciano fracionario, V : RY — R ¢ uma
funcao continua que satisfaz adequadas condicoes e f : RN x R — R ¢ uma funcao con-
tinua que pode ter crescimento critico no sentido da desigualdade de Trudinger-Moser
ou no sentido do expoente critico de Sobolev. A fim de obter nossos resultados usa-
mos métodos variacionais combinados com uma versao do Principio de Concentracao-

Compacidade devido a Lions.

Palavras-chave: Laplaciano fracionéario; métodos variacionais; desigualdade de Trudinger-

Moser; expoente critico de Sobolev.
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Abstract

In this work we prove some results of existence and multiplicity of solutions for equa-
tions of the type
(=A)*u+V(z)u = f(x,u) in RY,

where 0 < o < 1, N > 2a, (—A)® denotes the fractional Laplacian, V : RY — R is a
continuous function that satisfy suitable conditions and f : RN xR — R is a continuous
function that may have critical growth in the sense of the Trudinger-Moser inequality
or in the sense of the critical Sobolev exponent. In order to obtain our results we
use variational methods combined with a version of the Concentration-Compactness

Principle due to Lions.

Keywords: Fractional Laplacian; variational methods; Trudinger-Moser’s inequality;

critical Sobolev exponent.
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Introduction

In this work, we study the existence and multiplicity of solutions for elliptic

equations of the type
(=A)*u+V(z)u= f(r,u) in RY, (0.1)

where 0 < o < 1, N > 2a, V : RY - R and f: RY x R — R are continuous functions
that satisfy suitable conditions and (—A)* denotes the fractional Laplacian which can

be defined for a sufficiently regular function v : R — R by

(—A)u(z) = —%C(N, o) / uz+y) ﬂ;"(ﬁ;y) = 2u®@) 4y Ve e RN

RN

For details about this operator see Appendix [A]
Part of the interest on those equations arises in the search of standing waves
solutions for the fractional Schrédinger equation

0
zﬁ—i} = (=AY + (V(z) +w) — f(x,0), (z,t) € RY xR, (0.2)
where w € R, V : RY — R is an external potential function, f : R¥ x R — R is a

continuous function and 0 < o < 1 is a fixed parameter. Standing waves solutions to

Equation (0.2)) are solutions of the form
w(x7 t) = U(I’) eXp(_iwt)a

where u solves elliptic Equation ((0.1]).
Equation (0.2) comes from an expansion of the Feynman path integral from
Brownian-like to Lévy-like quantum mechanical paths (see [31] and [32]). Tt is known,

but not completely trivial, that (—A)® reduces to the standard Laplacian —Aif o« — 1~

1



(see [17]). Thus, when o = 1, the Lévy dynamics becomes the Brownian dynamics,
and Equation (0.2)) reduces to the classical Schrodinger equation
0y

iy = —AY + (V(z) + W) — f(x,9), (x,t) € RY xR,

Motivated by Equation , several studies have been performed for elliptic
equations involving the fractional Laplacian operator. In the sequel, we will list some
papers related with the existence of solutions to Equation that may be found in
the literature.

Let us begin with the progress involving subcritical nonlinearities. Using the
Nehari variational principle, in [11], Cheng proved the existence of a nontrivial solution

of the fractional Schrodinger equation
(=A)*u+V(2)u = |u|"*u, v€RY, (0.3)

with 2 < ¢ < 28 if N > 2a0or 2 < ¢ < 00 if N < 2a, where 2}, := 2N/(N — 2a)
is the critical Sobolev exponent. Ground states are found by imposing a coercivity
assumption on V(x),

lim V() = +oo. (0.4)

=400

In [41], Secchi proved the existence of a nontrivial solution under less restrictive
assumptions on f(z,u). He obtained the existence of a ground state by the method
used in [24]. Tt is worthwhile to notice that in [11] and [41] the hypothesis is
assumed on V' (z) in order to overcome the problem of lack of compactness, typical of
elliptic problems defined in unbounded domains. In [18|, Dipierro et al. considered the
existence of radially symmetric solutions of in the situation where V' (z) does not
depend explicitly on the space variable x. For the first time, using rearrangement tools
and following the ideas of Berestycki and Lions [5], the authors proved the existence of

a nontrivial, radially symmetric solution to
(=A)*u+u = |u|"u, veRY,

where 2 < ¢ <2 f N >2a0r2<g<ooif N <2a.
After the pioneering works by Brezis and Nirenberg in [8], elliptic problems with

critical growth have had many progresses in several directions. For the fractional



Laplacian, we would like to mention [21}[28, 43| and the references therein. More

specifically, Shang et al. in [43] considered the existence of solutions for the problem
(=A)*u+ V(2)u = |[u)**u+ Nu|"?u, v € RY,

where A > 0 is a parameter, 2 < ¢ < 2% and N > 2a. The potential V : RY — R is

a continuous function satisfying 0 < inf,cpn V(z) = Vi < lim inf|z) 5400 V(2) = Vi,

where V,, < co. This kind of hypothesis was first introduced by Rabinowitz in [40].
J. M. do O et al. in [21] proved the existence of a solution of the fractional

Schrédinger equation
(—A)*u+ V(x)u = \u|23_2u + K(z)f(u), =€ RV,

where V, K are continuous, V, K > 0 in RY with V(z) — 0, K(x) — 0, as |z| — +o0,
and f(u) behaves like |u|?"?u at infinity, for some 2 < ¢ < 2% and N > 2a. Moreover,

f(u) satisfies the so-called Ambrosetti-Rabinowitz condition, namely,
(AR) there exists € (2,27) with0 < pF(s) < sf(s) for alls # 0, F(s) = /f(t)dt.
0

With respect to the growth of the nonlinearity in problems of the type (0.1)) in
the limiting case N = 2a, for N = 1 and a = 1/2, there exists a special situation
motivated by the Trudinger-Moser inequality. Precisely, it is known that the embed-
ding H'?(R) < L(R) is continuous for any ¢ € [2,4o0), but H'/2(R) is not conti-
nuously embedded in L*(R). However, T. Ozawa [39] and H. Kozono, T. Sato and H.
Wadade [29] proved a version of the Trudinger-Moser inequality. More precisely, they
proved that there exist positive constants w and C such that, for all u € H'/?(R) with
I(—2) i, <1,

/(eW —1)dz < C|lul)?, forall B e (0,w]. (0.5)
R
Consequently, the maximal growth which allows us to treat variationally in
H'2(R) is of the type exponential.
Inequality plays a crucial role in the study of problems that involved non-

linearities with exponential growth. For works involving this type of nonlinearities, we



would like to mention two papers, [23] and [25|. J. M. do O et al. in [23] proved the

existence of a solution for the fractional Schréodinger equation
(—2)"2u+u = K(x)g(u),

where K is a positive function which can vanish at infinity and ¢ has exponential
growth. Tannizzotto and Squassina, in [25], considered the existence of solutions for
the problem

(=2)"u= f(u) in (0,1),

u=0 in R\ (0,1),
where the nonlinearity has exponential growth.

Motivated by these studies and taking into consideration the behavior of the
potential V(x) and the types of nonlinearity f(z,s), in this work we obtain some
results of existence and multiplicity of solutions to Equation (0.1)). Precisely:

In Chapter 1, we treat the limiting case N = 1, a = 1/2, more specifically, we

study the equation
(=AY 2u+V(z)u= f(z,u)+h in R, (0.6)

where (—A)Y/2 is defined in the Section |1, V : R — R is a continuous potential, h
belongs to the dual of an appropriate functional space, see Section[I} and f : RxR — R
is a continuous function that has critical exponential growth, that is, there exists 5y > 0

such that

) 0, for all g > fy,
lim  f(x,s)e Pl = "
|s]—4o00

400, forall g < fy,
uniformly in z € R.

We consider the following hypotheses under V (z):

(V1) there exists a positive constant B such that V(z) > —B, for all z € R;

(V) the infimum

is positive;



(V3) lim V(R\ER) = +00, where

R—o0
1 _ 2
it L [ @) = uly)) dxdy+/V(x)u2dx if G+
ueXo(G) 27 |z — y|?
V(G) =< =t T
00 if G=02.

Here G is an open set in R and Xo(G) ={ue X : u=0 in R\ G}, where X
is defined in (.3).

It is important to observe that the assumptions (V;) — (V3) allow that the potentials
may change sign.

In order to use a variational approach, we consider the following assumptions
about f(z,s):
x,S . .
(f1) 0 <lim flzs) < A1, uniformly in x;

s—0 S

(f2) f is locally bounded in s, that is, for any bounded interval J C R, there exists
C' > 0 such that |f(x,s)| < C, for every (z,s) € R x J;

(f3) there exists € > 2 such that

0<0F(z,s) :z@/f(x,t)dtgsf(x,s), for all (z,s) e R xR\ {0};
0

(f1) there exist constants sg, My > 0 such that

0< F(z,s) < My|f(z,s)], forall |s|>sy and z€R;

5) there exist constants p > 2 an such that, for all s > 0 and x € K,
(fs) th i 2 and C, h that, for all s > 0 and R
flz,s) > Cps,

(0-2)/2

ith C), >
Wi e [ 2T Kwp

1/2

Sy := inf i/ (u(x) — uly))” dycdy—i-/V(x)u2 dz :

s \ 27 v =yl

and £ is given in (1.7)).
With this we obtain the main results of this chapter:

5



Theorem 0.1. Suppose that (V1) — (V3) and (f1) — (fs) hold. Then there exists 6; > 0
such that for each 0 < ||h||. < 01, problem has at least two weak solutions. One

of them with positive energy, and the other one with negative energy.

Theorem 0.2. Suppose that (Vi) — (V3) and (f1) — (fs) hold. If h = 0 (i.e., there is
no perturbation in ) then problem has a weak solution with positive energy.

In order to prove Theorems [0.1] and we need to check some conditions con-
cerning the mountain pass geometry and the compactness of the associated functional.
More specifically, we show that the functional associated with the problem satisfies
the Palais-Smale condition. Then we use minimization to find the first solution with
negative energy and the Mountain Pass Theorem to obtain the existence of the second
solution with positive energy. The main difficulties lie in the nonlocal operator involved
and in the critical exponential growth of the nonlinearity.

Our results complement the work in [25] since we considered that the domain
is all R. It also complement [11,23,41,42|, once we work with nonlinearities more
general than those treated by them and potentials that may change sign, vanish and
be unbounded.

In Chapter 2, we deal with the problem of existence of weak solutions to a class
of equations similar to those that we studied in Chapter 1, where V is a bounded
potential that belongs to a different class of those treated therein. We study two class
of problems:

The first one (a periodic problem) is the following,

(=) 2u 4+ Vo(z)u = folx,u) in R,

(Fo)
u€ HY?(R) and u > 0.

We consider that the function V5 : R — (0,400) is a continuous 1—periodic
function and fy : R x R — R is a continuous 1—periodic function in z, which has
critical exponential growth in u. Since we are interested in the existence of nonnegative
solutions, we set fo(x,s) = 0 for all (z,s) € R x (—o00,0]. We also assume that the

nonlinearity fo(x,u) satisfies the conditions

lim M = 0 uniformly in z € R;
s—0 S

(foa)



(fo2) there exists a constant § > 2 such that

0 < 0Fy(z,s) = Q/fg(x,t) dt < sfo(z,s), forall (z,s)€ R x (0,+00);
0

(fo3) for each fixed x € R, the function fy(z,s)/s is increasing with respect to s € R;

(fo.4) there are constants p > 2 and C), > 0 such that

fo(x,8) > CpsP™t, forall (x,s) € R x [0, +00),

where

SP

p

 gan] P22
Cp > (p )6040
(0 — 2)pw

and
1/2

ueH/2(R) |5E —
lullp=1

. L[ Ju(e) = u(y)P?
Sp = inf %/—ypdmdqu ||V||oo/u2dx
R2

R
Under these assumptions we have the first result of Chapter

Theorem 0.3. Assume that (fo1)—(fo4) hold. Then has a nonnegative nontrivial
weak solution.

The second problem (asymptotically periodic) that we study in this chapter is

(—=A)2u+V(z)u = f(z,u) in R, (P)
UGH1/2(R> and UZ(J’

on which we consider the following conditions on the function V'(x):

(V1) V : R — [0,+00) is a continuous function satisfying the conditions: V(z) < Vp(x)

for any z € R and Vy(x) — V(z) — 0 as |z| — oo

We assume that the nonlinearity f : R x R — R is a continuous function that
has critical exponential growth in s, f(x,s) = 0 for all (z,s) € R x (—o0,0] and also

satisfies:

(f1) f(x,s) > fo(z,s) for all (x,s) € Rx[0,400), and for all £ > 0, there exists n > 0
such that for s > 0 and |z| > 7,

2

|f(l’, S) - f0($,8)| < ee™;

7



(1) tim 71222

= 0 uniformly in z € R;
s—0 S

(f3) there exists a constant > 2 such that

0 < uF(z,s):= ,u/f(x,t) dt < sfo(z,s), forall (x,s)€ R x (0,+00);
0

(f1) for each fixed z € R, the function f(z,s)/s is increasing with respect to s € R;

(f5) at least one of the nonnegative continuous functions Vyp(z) — V(z) and f(z,s) —

fo(z, s) is positive on a set of positive measure.

The second result of Chapter [2|is the following:

Theorem 0.4. Assume that (V1) and (f1) — (fs) hold. Then has a nonnegative

nontrivial weak solution.

In order to prove our results, we show that the weak limit of an appropriate
sequence of Palais Smale is a weak solution of the problem and we use a version of the
Concentration-Compactness Priniple due to Lions to show that this limit is nontrivial.

We point out that our results complete the study presented in [22, 23], since
we work with a general class of functions which are asymptotic to a nonautonomous
periodic function at infinity. It also complements [10}/11,(18|41], once we consider the
limiting case for N = 1 and o = 1/2 when the nonlinearity has exponential growth in
the sense of the Trudinger-Moser inequality. Moreover, it also complements [14], the
study of Chapter |1, once we consider that the potential V(z) belongs to a different
class from those treated there.

In Chapter 3, our main goal is to establish, under an asymptotic periodicity

condition at infinity, the existence of a weak solution for the critical problem

(=A)*u+ V(2)u = |u]**u+ g(x,u), € RY, (0.7)

where 0 < a <1, N > 2, V:RY = R and ¢ : RY x R — R are continuous functions.
Considering F the class of functions h € C(RY) N L*(RY) such that, for every
e > 0, the set {x € RY : |h(z)| > €} has finite Lebesgue measure, we assume that V/

satisfies:



(V) there exist a constant ap > 0 and a function V5 € C(RY), 1—periodic in z;,

1 <i< N, such that V; — V € F and
Vo(z) > V(z) > ag >0, forall € RY.
Considering G(x, s) = fsg (z,t)dt, the primitive of g, we also suppose the follow-
ing hypotheses: ’
(91) g(z,s) =o(]s|), as s — 0, uniformly in RY;
(g2) there exist constants ay,as > 0 and 2 < ¢; < 2 such that

lg(z,8)| < ay + ag|s|" ™, forall (z,s) € RN x [0, +00);

(g3) there exist a constant 2 < ¢o < 2 and functions h; € L*(RY), hy € F such that

%g(x,s)s — G(x,8) > —hy(x) — hy(z)s%2, for all (z,s) € RY x [0, +00).

The asymptotic periodicity of g at infinity is given by the following condition:

(g4) there exist a constant 2 < ¢z < 2% — 1 and functions hy € F, go € C(RY

R, (0,+00)), 1-periodic in z;, 1 < i < N, such that:
(1) G(x,s) > Go(z,s) = jgo(x,t) dt, for all (z,s) € RN x [0, +00);
0
(ii) |g(z,s) — go(x, s)| < hs(z)|s|®~L, for all (z,s) € RY x [0, 4+00);
(731) the function go(z,s)/s is nondecreasing in the variable s > 0, for each
r € RV,
Finally, we also suppose that g satisfies:

(g5) there exist an open bounded set Q C RY, 2 < p < 2% and Cy > 0 such that
G(z, s)

sp
G(z,s)
sp
p <24

— 400, as § — +0oo, uniformly in Q, if N > 4q;

(4)
(i)

— +00, as s — +0o0o, uniformly in Q, if 2a < N < 4« and

N—2«

(i17) G(z,s) > CosP? almost everywhere in RV, if 20 < N < 4aand 2 < p < 2%

In Chapter [3| we prove the following result.

9



Theorem 0.5. Assume (V), (¢1) — (g5) and that one of the following statements holds:

(1) N > 4o

(2) 20 < N <4a and 2% <p <2}

4o

(3) 2a <N <4a and 2 <p < 5%

, with Cy large enough in (gs).

Then, problem (0.7) has a nonnegative nontrivial weak solution.

Moreover, in the particular case: V = V4, g = go, considering the problem
(—A)u+ Vo(@)u = |uf*~2u + go(w,u), =€ RY, (0.8)
under the hypothesis:

(Vo) the function V, € C(RY) is 1-periodic in x;, 1 < i < N, and there exists a

constant ag > 0 such that

Vo(x) > ag > 0, forall €RY;

and the function g, satisfies (¢g1) — (g3) and (gs), we state:

Theorem 0.6. Assume (Vy), (91) — (93), (g5) and that one of the following statements
holds:

(1) N > 4«

(2) 2a < N <4da and 2% <p < 2}

4
N—2«

(3) 20 < N <4a and 2 < p < 2%, with Cy large enough in (gs).

Then, problem has a nonnegative nontrivial weak solution.

Due to the loss of compactness, the study of critical problems have some addi-
tional difficulties. In order to overcome such difficulties, we follow the ideas of Brezis-
Nirenberg (see [8]). Among the difficulties found, we can mention the estimating of
the minimax level and the fact that the associated functional with problem does
not satisfy the compactness condition of Palais-Smale type. Moreover, we assume that
the subcritical pertubation g(x,u) does not satisfy the (AR) condition, this creates an
extra difficulty in the proof of the limitation of Cerami sequence. Lastly, we prove
Theorems [0.5] and by combining two versions of the Mountain Pass Theorem and

a version of the Concentration-Compactness Principle due to Lions.

10



Our results complement the study made in [10,21,43] in the sense that the non-
linearity behaves like u?~1 4 g(z,u), where the subcritical perturbation g(z,u) does
not satisfy (AR) condition. Moreover, we also complement [10,/11,/18,41] in the sense
that the potential V' (z) belongs to a different class from those treated by them.

In order to do not get resorting to Introduction, and, for the sake of indepen-
dence of the chapters, we will present again, in each chapter, the main results and the

hypotheses about the functions V(x) and f(z,u).
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Notation and terminology

In this work we will use the following symbology:
e C, Cy, C1, Cy, ... denote positive constants (possibly different);
e supp(f) denotes the support of the function f;

e Bg(x) denotes an open ball of radius R and center z; Bg denotes an open ball
of radius R and center at origin and By is the closed ball with center at origin

and radius R;
e Bf% denotes the complement of Bpg;
e — — denote weak and strong convergence, respectively, in a normed space;
e v =max{u,0} and u~ = max{—u,0};

e X denotes the characteristic function of the set (2;

| - |]1/2 denotes the norm in the space H'/2(R);

|| - ||+ denotes the norm in the topologic dual space X*;

| - ||, denotes the standard LP(R™)-norm;

| - ||loo denotes the standard L>(RY)-norm:;

12



Chapter 1

Semilinear elliptic equations for the
fractional Laplacian operator

involving critical exponential growth

This chapter is devoted to the paper [14], here we establish the existence and
multiplicity of weak solutions for a class of equations involving the fractional Laplacian
operator, potentials that may change sign and nonlinearities with critical exponential
growth. The proofs of our existence results rely on minimization methods and the

Mountain Pass Theorem.

Motivation and main results

The starting point of this chapter is to investigate the existence and multiplicity

of weak solutions for the following class of equations
(=A)Y2u + V(z)u = f(z,u) +h in R, (1.1)

where V : R — R is a continuous potential which may change sign, the nonlinearity
f(x,s) behaves like exp(aps?) when |s| — +o0o for some oy > 0, h belongs to the dual
of an appropriate functional space and (—A)/? is the fractional Laplacian operator

which, for a sufficiently regular function v : R — R, is defined by

(_A)I/ZU(:L,) _ _% / u(z +y) + U|(j2_ y) — 2u(x) dy. (1.2)

13



In order to study variationally (1.1)), we consider a suitable subspace of the frac-
tional Sobolev space H'/2(R). Recall that H'/2(R) is defined as the space
H'2(R) = {u € I*(R) : —|“(T) - “|(y>| € L*(R x R)} ;
r—y
endowed with the norm

1/2

fullje = | (s [ fuPs]
R

where
1/2

_{ i@,
[um.—[ o dy

is the so-called Gagliardo semi-norm of u. For more details see Appendix ({Al).
Some suitable conditions on the potential V' are assumed in order to apply a

variational framework considering the subspace of H'/2(R) given by

X =< ueH"?R) : /V(:z:)qux <00 . (1.3)

R

More precisely, we suppose the following assumptions on V(x):

(V1) there exists a positive constant B such that V(z) > —B, for all z € R;

(V2) the infimum

A= inf i/ (u(x) — u(y))” dz dy+/V($)u2 dz

wex | 27 |z —y|?
is positive;
(V3) P}im v(R\ Bg) = 400, where
—00

e L[ ) —u()?

2 .
inf o= — dxdy—i—/V(x)u de if G # @;
V(G) = HEU)H(S(:Ci) 27TR2 |$ y| G
00 it ¢G=0.

Here G is an open set in R, Xo(G) ={ue X :u=0 in R\G}.
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The hypotheses (V1) and (V3) ensure that X is a Hilbert space when endowed

with the inner product

1 [ () — () o) — o) o
_QW/ e ddy+/V() dr, wuve X,

R2 R

(u, v)

which induces the norm |Ju|| := (u,u)"/? (see Section [1]).
In this context, we assume that h € X* (dual space of X) and we say that u € X
is a weak solution for (L.1)) if for all v € X,

L[ (u(x) —uy))(v(z) —v(y)) — [ e wvdes (o
o P— dxdy+/V(x)uvdx—R/f( ,uvdz+(h,v), (1.4)

R2 R

where (-,-) denotes the duality pairing between X and X*.

We are interested in the case that the nonlinearity f(z, s) has the maximal growth
which allows us to study by using a variational framework considering the space
X. More specifically, we assume sufficient conditions such that the weak solutions of

(1.1) become critical points of the Euler functional I : X — R defined by

1

) = gl = [ Fa.wydo - (hw),

where F(x,s) = /f(a:,t)dt.
0

In order to improve the presentation of the hypotheses on f(x, s), we recall some
well known facts involving the limiting Sobolev embedding Theorem in 1-dimension.
The Sobolev embedding assures that H'/?(R) < LI(R) for any ¢ € [2,+00); but
H'Y2(R) is not continuously embedded in L>®(R) (for more details, see [17], [39]). In
this case the maximal growth of f(z,s), which allows us to study by applying
a variational framework involving the space H'/?(R), is motivated by the Trudinger-
Moser inequality that was proved by H. Kozono, T. Sato and H. Wadade [29] and T.
Ozawa [39]. More precisely, they proved that there exist positive constants w and C

such that for all u € HY/2(R) with [|(=A)Y4ull, < 1,

/(e"‘“2 —1)dz < Cllull3, for all a € (0,w]. (1.5)

R

(See also some pioneering works such as [38|, [45]).
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Motivated by (1.5) we say that f(z,s) has critical exponential growth if there

exists ag > 0 such that

, 0, for all a > «ay),
lim  f(z,s)e s =
fol=+e0 +o00, for all a < ap,

uniformly in z € R.
Now, we are able to establish our main assumptions on the nonlinearity f(z, s).
In order to find weak solutions to (1.1)), by using variational methods, we assume the

following conditions:

(f1) 0 < lim f(z9)

< A1, uniformly in x;
s—0 S

(f2) f:R xR — R is continuous, it has critical exponential growth and it is locally
bounded in s, that is, for any bounded interval J C R, there exists C' > 0 such
that |f(z,s)| < C, for every (z,s) € R x J;

(f3) there exists § > 2 such that
0<0F(z,s):= Q/f(x,t) dt < sf(x,s), forall (z,s) € RxR\{0};
0
(f1) there exist constants sg, My > 0 such that
0< F(x,s) < My|f(z,s)|, forall |s|>sy and ze€R;

(f5) there exist constants p > 2 and C,, such that, for all s > 0 and x € R,

f(z,s) > Cpspila

(p—2)/2
-2
with C), > (P =2) SP. where
2T Kpw b
1/2

: L[ (u(z) —u(y))®

Sy = H“}?’f‘ %/ P— dedy + /V(:U)u2 dz :
u p:l R

and « is given in (1.7).
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We highlight that the hypotheses (f1) — (f5) have been used in many papers to
find a solution using variational framework (see for instance [2], [19], [20], [23], [25]).
A simple example of a function that verifies our assumptions is f(z,s) = Cp|s|P™2s +

2s(e®” — 1) for (z,s) € R x R.

Under these assumptions we presents the main results of this chapter.

Theorem 1.1. Suppose that (V1) — (V3) and (f1) — (fs) hold. Then there exists 6; > 0
such that for each 0 < ||h||« < 01, problem (1.1) has at least two weak solutions. One

of them with positive enerqy, and the other one with negative energy.

Theorem 1.2. Suppose that (Vi) — (Vi) and (f1) — (fs) hold. If h = 0 (i.e., there is
no perturbation in (L.1)) then problem (L.1) has a weak solution with positive energy.

Remark 1.3. Our work was mainly motivated by lannizzotto and Squassina [25], and
also by some recently published papers that discuss by using a purely variational
approach (see, for instance, [11,23,41,42] and references therein). The goal is to extend
and to improve the results obtained in [11},25,41,42| since we work with nonlinearities
with critical exponential growth and potentials that may change sign, vanish and be
unbounded.

Remark 1.4. It is important to notice that many authors, in different ways, have
studied problems involving the standard Laplacian instead of fractional Laplacian.
One of these problems is to investigate the existence of solutions for the following class
of equations:

~Au+V(z)u = g(z,u), zecRY, (1.6)

see e.g. [2], [4] for the case where g(z, s) has subcritical growth in the Sobolev sense,
and [19,20,30,46] for the case where g(z,s) has critical growth in the Trudinger-
Moser sense. In these papers, the existence of solutions has been discussed under
different conditions on the potential V(z). The main reason of the hypotheses used
is to overcome the problem of “lack of compactness”, which usually appear in elliptic
problems in unbounded domains. More specifically, the papers [4,40] assume that
the potential is continuous and positive and, furthermore, that one of the following

assumptions holds:
(a) V(x) /' +o0o as |z| = +o0;

(b) for any A > 0, the sublevel set {x € RY : V(z) < A} has finite Lebesgue measure.
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One of this conditions implies that the space

E:=uecWhHRY): /V(az:)u2 dr < oo

RN

is compactly embedded in the Lebesgue space LY(RY) for all ¢ > 2.

We point out that (V3) generalizes these two conditions above. It is also important
to observe that the conditions (V) — (V3) were already considered by B. Sirakov [44] in
order to study by considering that g(x,u) has subcritical growth in the Sobolev

sense.

Remark 1.5. A usual example of function satisfying the assumptions (V1) — (V3) it is
a continuous function V(z) = VT (x) — V"~ (z), where V' and V'~ are the positive and
negative parts of V', with V* and V'~ satisfying:

(Hy) lim V*(x)=+o0;

|z| =400

i 1
(H) WVl <= inf | 5oyt [ Vi@t do

ullg=1
lullz 2

By (H), it is not difficult to see that vy is positive and, thus, for any v € X such that

|lu|l2 = 1, we have

1 _
Lot [Viewt = S+ [ Vi@ - V)

R R
> v — ||V_||oo > 0.

Consequently, we reach A\; > 0.

Remark 1.6. Similarly to |13[19,20,[25] we will use minimization to find the first
weak solution with negative energy, and the Mountain Pass Theorem to obtain the
existence of the second weak solution with positive energy. First of all, we need to
check some conditions concerning the mountain pass geometry and the compactness of
the associated functional. Trudinger-Moser’s inequality to the space X and a version
of a Concentration-Compactness Principle due to P. -L. Lions [34] to the space X have
a crucial role in our proof (see Section [I)). The main difficulties lie in the nonlocal

operator involved and critical exponential growth of the nonlinearity.

Remark 1.7. In the papers [29,39] Trudinger-Moser’s inequality was proved for
the fractional Sobolev space WN/PP(RY) with 1 < p < co and N > 1. However, for
the class of operators considered in this work was fundamental equality which
is valid only if p = 2. Since we are interested in the case 0 < N/p < 1, our approach

is restricted to the case N = 1.

18



Remark 1.8. If a weak solution u is sufficiently regular, then, it is possible to get
a pointwise expression of the fractional Laplacian as it is described in (1.2)) (see, for
example, [47]). In this case we may ensure that u > 0 if u # 0, (see Remark [3.4)).

The outline of this chapter is as follows: Section 1.2 contains some preliminary
results. Section 1.3 contains the variational framework and we also check the geometric
conditions of the associated functional. Section 1.4 deals with Palais-Smale condition
and Section 1.5 discusses the minimax level. Finally in Section 1.6, we complete the

proofs of our main results.

Some preliminary results

Our first lemma enables us to settle the variational setting.

Lemma 1.9. Suppose that (Vi) and (V3) are satisfied. Then there exists k > 0 satis-
fying

yl?

_ 2
% (m/ (U(T;_u(y)) dz dy +/V(x)u2dx > /<;Hu\|f/2, for any we X. (1.7)

R

Proof. Suppose, by contradiction, that ((1.7) does not hold. Then for each n € N there
exists u, € X such that

2
n( Up 1
HUnHl/Q— 1 and (R/ h ) dz dy —{—/V(:E)uidx< - (1.8)
R

va —y[? n

It follows from (1.8) and (V3) that
I3

)
un ny))2 / 2 1
N < dxd d
1 < ||un 2 (R/ oyl | Ve | < S,
R

for all n € N. The last inequality, together with A; > 0 and ||unH1/2 = 1, implies that
|tn]l2 = 0 and [uy]i2 — 1. Consequently, by using (V;), we obtain the contradiction

1 1 1
0n(1) = —B|lu,|3 < /V(x) uldr < — — %[un]fﬂ — -

n 21
R

Thus, the proof is complete. O]
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Using (1.7)), we have that

<U,U> — % / (U(ZL‘) — u(y))(v(w) B U(y)) dx dy + /V(ZE)UU dx

|z —y|?

R

defines an inner product in X which corresponds the norm

1/2

u(z
|lul| = /l ‘x_ ‘2 dwdy +/V( Ju? dz
R

Moreover, X is a Hilbert space and the embedding X < H'/?(R) is continuous. There-

fore the embedding
X <= LYR) forall q¢e (2 00),

is continuous and the constant

1/2

. 1 (u(x) — u(y))? / 2
- f 2m 1.
Sp H:}E}; 2 / ’q; _ y’2 dz dy + J V(l’)u dz ( 9)

is positive.
Next, similar to Sirakov [44], we prove the following compactness result.

Lemma 1.10. Suppose that (Vi) — (V3) hold. Then the embedding X — LI(R) is
compact for any q € [2,00).

Proof. Let (u,) C X be a bounded sequence, up to a subsequence, we may assume

that u,, — 0 in X. We must prove that, up to a subsequence,
u, — 0 in L*(R), as n — oo.

We take a function ¢ € C*(R, [0,1]) such that ¢ = 0 in Br and ¢ = 1 in R\Bg,1,
where the constant R > 0 will be chosen later. Thus,

[unllz = [[(1 = @)un + punll2
< = @)unllz + llpunlls (1.10)
= 10 = )unllr2a,0) + [ 9Unll 2B

Since H'?(Bgy1) is compactly embedded into L?(Bgy1), up to a subsequence, given
€ > 0 there exists ng € N such that

, forall n>mn,. (1.11)

DN ™

||(1 - @)un||L2(BR+1) <



By the definition of v(R \ Bg), it follows that

S =

) B il ——,  for all eN.
[pu ||L2(R\BR) ~v(R\ Bg) ~ v(R\ Bg) : '

Hence, by using (V3), there exists R = R(¢) > 0 sufficiently large, such that
5
lunll 2@z, < 3 forall n € N. (1.12)

Combining (1.10), (1.11) and (1.12)), we conclude that

|lunll2 < e, forall n > ny,
which proves the lemma. O

In the sequel we will prove a version of for the space X. This result is our
main tool to prove Theorems and [I.2] The ideas used in the proof are inspired in
[19], [20], [25] and we present here for sake of completeness. We will need the following
relation

(=AY 4ully = 27) 2 [u]y e, forall uwe HY*(R), (1.13)
which was proved in |17, Proposition 3.6].

Lemma 1.11. If 0 < a < 27mkw and u € X with ||u|]| < 1, then there exists C > 0
such that
/(ea“2 —1)dz < C. (1.14)
R

Moreover, for any o > 0 and u € X, we have

/(ea“2 —1)dz < oo. (1.15)

R

Proof. First we observe that if a function v € X satisfies ||ul] < 1, setting v =

(27k)/2u, then v € HY/2(R) and by (1.7) and (1.13)) we get

I(=2)"0]ly = 2m) "2 [)iye < K2 fullye < Jlull < 1.
Consequently, using (|1.5]),

/ (e —1)dx = / (@2 — 1) de < Cyolf3 < C.

R R

Thus, we obtain ((1.14]).
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Now we prove the second part of the lemma. Given u € X and € > 0, there exists
¢ € Cg°(R) such that ||u — ¢|| < e. Since

eauz —1< ea(2(u—<p)2+2<p2) —-1< <€4oz(u—np)2 _ 1) + % <64a<p2 . 1> ’

DN | —

it follows that
1

/(eW ~1)de < g /(64““‘“””2(5—5I>2 ~ldrt g /<€4““”2 ~de. (L16)

R R R

Choosing ¢ > 0 such that 4ae? < 2mkw, we have 4allu — ¢||> < 27kw. Then, from

(1.14) and (1.16), we obtain

c 1
e de < — + - e2® _ 1) dz < oo.
2 2
R supp()
Thus, the proof is complete. O

The next lemma will be used to guarantee the geometry of the functional .

Lemma 1.12. Ifv € X, a > 0, ¢ > 2 and ||v|| < M with aM? < 2mkw, then there
exists C' = C(a, M, q) > 0 such that

/Mw—mmwxsmww
R
Proof. Taking r > 1 close to 1 such that arM? < 2rkw. By Holder’s inequality with

" =r/(r—1), we have

1/r
/(W —1)|o)idz < /(eav2 —1)rda | o), (1.17)
R R
Notice that for r > 1, we have
(e —1)" < (%" —1), forall seR. (1.18)
Hence, from (1.17) and (L.18), we get
1/r
av2 OL'I”U2 q
Je —vpiar < { e -vac) e,
R R
1/r
< /(e“”‘ﬂ(ﬁ) —1)da o],
R

Since arM? < 2mkw, it follows by and the continuous embedding X < L"'4(R)
that

[ = pelrdz < e

R
Therefore, the proof is complete. O
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In line with the Concentration-Compactness Principle due to P. -L. Lions |34], we
will show a refinement of (1.14)). This result will be crucial to show that the functional
I satisfies the Palais-Smale condition.

Lemma 1.13. If (v,) is a sequence in X with ||v,|| =1 for alln € N and v, — v in
X, 0<||v]| <1, then for all 0 < t < 2mrw(1 — ||v]|*)™!, we have

sup/(e“’% —1)dz < 0.

n
R

Proof. Since v, = v in X and ||v,|| = 1, we conclude that

2TKRW
t

lvn = vl =1 = 2(vg,v) + [lv]|* = 1= [Jo]* <

Then, for n € N large enough, we have t||v,, —v||* < 2rsw. Thus, we may choose ¢ > 1

close to 1 and ¢ > 0 satisfying
qt(1 + &?)|Jvn, — v||? < 27mkw, (1.19)

for n € N enough large. By (1.14) and (1.19)), there exists C' > 0 such that

/ (D=0 _ 1) gy — / (eqt<1+e>2||vn_v2(ﬁﬁl)2 _ 1) dz < C. (1.20)
R

R

Moreover, since
1
t2 <t(1+e*) (v, —v)* +t (1 + 5_2) v?,
it follows by the convexity of the exponential function, with ¢~ +r~! = 1, that
etv%L -1 < l(eqt(1+s2)(vnfv)2 . 1) + l(ert(lJrl/EQ)v2 o 1)
q r

Therefore, by (1.15) and (1.20]), we get

(/wﬁ—lmxsl/ﬁﬁHﬂWﬂ*—1Mx+1/@”“””9—ndx30
q T
R R R

and the result is proved. O

The variational framework

In order to apply the variational approach, we define the functional I : X — R,

by

um:%mW—/ﬂ%mm—wmy

R
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Notice that, from (f;) and (fs), for each a > o and € > 0, there exists C. > 0 such

that
(A1 —¢)
2

which combined with the continuous embedding X < L?(R) and (1.15)) assures that
F(z,u) € L*(R) for all u € X. Consequently, I is well-defined and, by standard

|F(z,s)| < 2+ C(e*’ — 1), forall seR,

arguments, I € C'(X,R), (see details in Appendix [A]), with
Iwo = (u0) = [ fa.wpde  (h,0),
R

for all u,v € X. Hence, a critical point of I is a weak solution of (|1.1]) and reciprocally.
The geometric conditions of the Mountain Pass Theorem for the functional [ are

established by the next lemmas.

Lemma 1.14. Suppose that (V1) — (V) and (f1) — (f2) hold. Then there exists 6; > 0
such that for each h € X* with ||h||. < 1, there exists pp, > 0 such that

I(u) >0 if |ull = pn

Proof. From (f1) and (f2), given € > 0, there exists C' > 0 such that, for all o > «y
and ¢ > 2,

|F(z,s)| < %SQ +C(e* —1)|s]% forall seR. (1.21)
By using (1.21)) and (V3), we reach
1 Al —¢ o
M) > gl =2 faae—c [ = vl al. gl
R R

1 ()\1 - 6) 2
> 2 \"M =) 2 au® q _ )
> gl - A= Dy - ¢ f e~ julras = .l

R

Then, for u € X such that allul|? < 27kw, using Lemma, we obtain

I (Ai—¢) 2
> (= — — - .
102 (5= 2502 bl = lule -

Consequently,
1 Al —
1 2l |(5 - C52) lull = e = o
Since % - % > (0, we may choose p, > 0 such that

2 2\
Thus, for ||h||. sufficiently small, there exists p, such that I(u) > 0 if [|u]] = pp.

1 A1 —
(_ ( 1 6)) o Cp%*l > 0.

Therefore, the proof is complete. O
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Lemma 1.15. Assume that (V1) — (V2) and (f1) — (f3) hold. Then there exists e € X
with ||e|| > pn such that
I(e) < inf I(u).

lull=pn
Proof. Let u € Cg°(R)\ {0}, u > 0 with compact support K = supp(u). By using (f2)
and (f3), there exist positive constants C; and Cy such that

F(x,s) > Cys" —Cy, forall (z,5) € K x[0,00) and 6> 2.

Then, for ¢t > 0, we get

t2
I(tu) < 5”““2 — Clte/ue dz + C'Q/dx +t|(h,u)|.
K K
Since 6 > 2, we have I(tu) — —oo as t — 00. Setting e = tu with ¢ large enough, we

conclude the proof. O

In order to find an appropriate ball to use minimization argument, we prove the

following result.

Lemma 1.16. Suppose that (V1) — (Va) and (f1) — (f2) hold. If h # 0, there existn > 0
and v € X \ {0} such that I(tv) <0 for all 0 <t <n. In particular,

—00 < ¢p = inf I(u) <0.
llull<n

Proof. For each h € X*, by applying the Riesz Representation Theorem in the space
X, the problem
(~A)2u+V(z)u=h, =z in R,

has a unique weak solution v € X such that
(h,v) = [lv]|* > 0.

Consequently, from (f;) and (f2), there exists n > 0 such that

%I(tv) = t||v]|* - /f(%tv)vdx— (h,v) <0,
R

for all 0 < t < n. Using that 1(0) = 0, it must occur I(tv) < 0 for all 0 < ¢ < 7, this
concludes the proof. O
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Palais-Smale compactness condition

In this section we will show that the functional I satisfies the Palais-Smale con-
dition for certain energy levels. Recall that the functional I satisfies the Palais-Smale

condition at the level ¢, denoted by (PS)., if any sequence (u,) C X such that
I(u,) = c¢ and [I'(u,) — 0 as n — oo, (1.22)

has a strongly convergent subsequence in X.

Lemma 1.17. Suppose that (V1) — (V3) and (f1) — (fa) are satisfied. Let (u,) C X be
an arbitrary Palais-Smale sequence of I at level c. Then there exists a subsequence of
(un) (also denoted by (uy,)) and uw € X such that

Uy — U in X,
f@ un) = f(z,u) in Ly, (R),
F(x,u,) = F(x,u) in L'(R).

Proof. By (f3), for 6 > 2 we get

I(uy) — é]’(un)un

I
7 N\
N =
|
SR
N———
=
2
T
+
VRS
SR
—
—~
&
<
3
N—
<
|
!
—
&
<
3
N———
(oW
&

+
/‘_\
|
—
N———
—
S
<
N

(1.23)

|
/N
DN |~
|
S
"
2
3
o
+
7
Sl
|
—
"
=
[
3
SN~—

Using ([1.22), we obtain that for n sufficiently large

1
gll(un)un <C+ HunH

Combining this with (1.23), we have ||u,|| < C. Since X is a Hilbert space, up to a

subsequence, we may assume that there exists © € X such that

I(uy,) —

Uy — U in X,
Up —> U in L1(R), for all g € [2,00),

un(z) = u(z) almost everywhere in R.

From (1.22)) and since ||u,|| < C, there exists C; > 0 such that

/|f(x,un)un| < (.
R

Consequently, by [13, Lemma 2.1], we get

f(z,u,) = f(z,u) in L]

loc

(R), as n — oc. (1.24)
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Next, similar to N. Lam and G. Lu [30], we will prove the last convergence of the
lemma. Firstly, note that by using (f3) and (fy), for each R > 0, there exists Cy > 0
such that

F(z,u,) < Colf(x,un)l.

This combined with (1.24) and the Generalized Lebesgue’s Dominated Convergence
Theorem, imply

F(x,u,) — F(x,u) in L'(Bg), for all R > 0.

In order to conclude the last convergence of the lemma, it is sufficient to prove that
given 0 > 0, there exists R > 0 such that

/F(:U,un)de(Sand /F(x,u)d:vgé.

B, B,
First, we note that by using (f1), (f3) and (fy), there exist C,Cy > 0 such that
|F(z,s)| < Ci|s]* + Cs|f(x,8)], forall (z,s) € RxR.

Thus, for each A > 0, we obtain

/F(x,un)da: < 0 / fun 2 dz + C / f(,wn)| da

|z|>R |z|>R |z|>R
|un|>A |un|>A |lun|>A
C . C
3 2
< i [t | dx—i—Z |f(z, up)uy| do
|z[>R R
lun|>A
C

IA

C
el + 5 [ 1) o
R

Since |lu,|| < C and [ |f(x, u,)u,|de < Cy, given 6 > 0, we may choose A > 0 such
R

that o o
—Llual® < 6/3 and —2/|f(x,un)un\dx <4/3.
A A
R
Thus,
/ F(z,u,)dz <20/3. (1.25)
|lz|>R
|un|>A

Now, note that with such A, by (f;) and (f2), we have

F(z,s) < C(ag, A)|s|?, forall (z,s) €Rx[-A, Al

27



Then, we get

/F(m,un)d:v < Clap, A) / u, |* dz
|z|>R |z|>R

lun|<A Jun|<A

< 2C(ap, A) / [, — u|? dz + 2C (g, A) / |u|? dr.

|z|>R |z|>R
lun|<A Jun|<A

Hence, by Lemma given 6 > 0, we may choose R > 0 such that

/ F(z,u,)dz <4/3. (1.26)

|z|>R
lun|<A

From (1.25)) and (L.26]), we have that given § > 0, there exists R > 0 such that

/ F(z,u,)dz <.

lz|>R

Similarly,

/ F(z,u)dx <.
lz|>R

Combining all the above estimates and since ¢ > 0 is arbitrary, we have

/F(x,un)dx%/F(x,u)dx, as n — 0o,
R R

which completes the proof. O]

Finally, let us prove the main result of this section.

Proposition 1.18. Under the hypotheses (Vi) — (V3) and (f1) — (fa), if |||« is suffi-
ciently small then the functional I satisfies (PS). for any 0 < ¢ < mkw/ay.

Proof. Let (u,) C X be an arbitrary Palais-Smale sequence of I at the level c¢. By
Lemma [1.17, up to a subsequence, u, — u in X. We will show that, up to a subse-

quence, u,, — u in X. In order to do this, we have two cases to consider:

Case 1: w = 0. In this case, Lemma [1.17] guarantees that

/F(x,un)—>0 and (h,u,) -0 as n — 0.
R

Since .
¢+ on(1) = I(ty) = ~llunll? / F(,un) — (hy un),

T2
R
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we get

lim ||u,||* = 2c.
n—oo

Hence, we can infer that for n large there exist r; > 1 sufficiently close to 1 and o > ay
close to ag such that ra||u,||* < 2rkw. Thus, by (1.18) and (1.14),

/(eau% _ 1)r1 de < /(€r1a||un2(|52) — 1) dr < C. (1.27)

R R

Consequently,

/f(x,un)undx—>0 as n — 0o.
R

In fact, since f(x,s) satisfies (f1) and (f2), for & > ap and € > 0, there exists C; > 0
such that
1Fz,8)] < (A —e)|s| + Ci(e*” — 1), forall seR.

Letting 71 > 1 close to 1 such that ro > 2, where 1/r14+1/ry = 1, we obtain by Holder’s
inequality that

1/r1 1/r2

/f(x,un)un dz| < C’/ lu, |> dz+C /(e““i — 1) de /|un|’"2 dz — 0,
R R R R

where we have used (1.27) and Lemma [1.10[ Therefore, since I'(u,)u, = 0,(1), we

conclude that, up to a subsequence, u,, — 0 in X.

Case 2: u # 0. In this case, since (u,) is a Palais-Smale sequence of I at the level c,
we may define
Un, u
T ol
It follows that v, — v in X, ||v,|| =1 and [jv|| < 1. If ||v]| = 1, we conclude the
proof. If ||v|| < 1, we claim that there exist r; > 1 sufficiently close to 1, o > g close

to ap and 8 > 0 such that

Un,

riallua||® < 8 < 2rkw(l — |jv))*)~t (1.28)

for n € N large. In fact, since I(u,) = ¢+ 0,(1), it follows that

1
3 lim |ju,|* = c+/F(a:,u) dz + (h,u). (1.29)
n—oo
R

Setting

A= c—l—/F(:I:,u)d:L’—l—(h,U) (1= [lol?),
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from (1.29) and by the definition of v, we obtain

A=c—1(u),
which together with ([1.29)) imply
1 A c—1I(u)
= lim |ju,|* = = : (1.30)
2 n—oo L—of> 1T —={o]?

Note that ]
c—I(u) <c+§(h,u). (1.31)

Indeed, since the norm is lower semicontinuous, from (|1.29)) it follows that I(u) < c.
Moreover, for all ¢ € C§°(R),

I'(up) o = (tn, 0) — /f(x,un)%)dfc — (h, p).

Since u,, — u in X, passing to the limit in the above equality, by Lemma [I.17 we have

I'(u)p = (u, ) — / f(z,wpdz — (hg) = 0,

R

for all ¢ € C§°(R). By density, we conclude that I'(u)v = 0 for all v € X. In particular,
I'(u)u = 0. Thus, from (f3) we obtain

0 = I'(wu=|ul?*- /f(x,u)ud$ — (h,u)

< 2 %HuHQ—/F(x,u)dx—(h,u) + (h,u)
= 2[(u) + (h,u),

which implies ([1.31]).

Now, note that

(6 = DIl + /(1 = 0)[[P]2 + 26c(6 — 2).

lull < =)

(1.32)

Indeed, since I(u) < ¢ and I'(u)u = 0, we have

OI(u) — I'(uw)u = <g — 1) [|lul|® + /[f(x,u)u —0F (z,u)]dz+ (1 —0)(h,u) < fe.

R

Thus, from (f3), we have

02
(T) [ull> + (1 = O)[|All«[lu] — fc < 0.
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Consequently, (1.32) holds. Therefore, from (1.30), (1.31) and (1.32) for ||A||. suffi-

ciently small, we conclude

1. c—1I(u) TRW
— lim [ju,|* = < 1.33
2 Il = Tz < o= o) 139
Consequently, (|1.28]) holds. By (1.18)) and Lemma we get
/(e““% —1)"dx < C.
R
By Hoélder’s inequality and similar computations done above we obtain
/f(x,un)(un —u)dzr — 0 as n — oo
R
This convergence and the fact that I’ (u,)(u, — u) = 0,(1), imply that
[unll* = (un, uw) + 0n(1).
Since u, — u in X, we obtain u,, — u in X and the proof is finished. m

Proposition 1.19. Under the hypotheses (V1) — (V3) and (f1) — (fa), if |||« is suffi-
ciently small then the functional I satisfies (PS)e,.

Proof. Let (u,) C B,, be an arbitrary Palais-Smale sequence of I at the level ;. By
the Lemma [1.17] up to a subsequence, u, — u in X. We will show that, up to a

subsequence, u, — u in X. Note that

/f(@un)(un —u)dzr -0 as n — oo. (1.34)
R

Firstly, since ||u,|| < pn making py, sufficiently small, taking r; > 1 sufficiently close to
1 and « sufficiently close to oy we may infer that riallu,||* < 2rkw. Thus, by ((1.18)

and (1.14),
/(eau% _ 1)7”1 dl' S /(€T1a||U7L2(|ZZ) — ]_) dl’ S C (135)
R R

Moreover, since f(z, s) satisfies (f1) and (f3), for @ > ap and £ > 0, there exists C; > 0

such that

1f(z,8)| < (A —e)|s| + Cu(e® —1), forall seR.

Letting 71 > 1 close to 1 such that ro > 2, where 1/r14+1/ry = 1, we obtain by Holder’s
inequality that

1/2 1/2
/f(:p,un)(un —u)dz| < C / |y |* do /(un —u)?dz
R R R
1/r1 1/rs
+ C /(eo‘“i — 1) de /(un —u)"?dx — 0,
R R
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where we have used (1.35) and Lemma Therefore, this convergence and the fact
that I'(u,)(u, —u) = 0,(1), imply that

lunll® = (1, 1) + 0n(1).

Since u,, — u in X, we conclude that, up to a subsequence, u,, — v in X. O

Estimate of the minimax level

In this section we will prove an estimate for the minimax level. First, we will

need the following lemma.

Lemma 1.20. Suppose that (V1) — (V) hold. Then S, given in (1.9) is attained by a

nonnegative function u, € X.

Proof. Let (u,) be a minimizing sequence of nonnegative functions (if necessary, replace
U, by |u,|, which is possible since by using the triangle inequality we have |u,(z) —
un(y)| > [Jun(z)| — lun(y)||) for S, in X, that is,
1/2
1 n - Un 2
lunll, =1 and /(u (z) = un(y)) dxdy+/V(x)uidx — 5.

2 [z —yl?
]RQ

Then, (u,) is bounded in X. Since X is a Hilbert space and X is compactly embedded

into LP(R), up to a subsequence, we may assume

U, = up in X,
u, = u, in LP(R),

un(x) — uy(x) almost everywhere in R.

Consequently,
[upll, =1,
gl < lim i | = S,
up(x) > 0 almost everywhere in R.
Thus, S, = ||u,||. This completes the proof. O

Now we prove the main result of this section.

Lemma 1.21. Suppose that (Vi) — (V3) and (fs) are salisfied, if |h|. is sufficiently

small then

TRW
max I(tu,) < o
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Proof. Let W : [0, +00) — R, given by

\I’(t):% %/(UP(Tx):ZTQ(y» dxdy—l—/V(x)uﬁdx —/F(x,tup) dz.

By Lemma and (f5), we have

t? C t2
U(t) 5 S, t r&aﬂx [ 5 S,

%tp] B (p _ 2) Szp/(P—Q) TRW

< 1.36
p oD <y ()

To conclude, notice that ¢|(h,u,)| < t||h||«|lu,| with ¢ in a compact interval. Therefore,
taking |2« sufficiently small and using ([1.36)) the result follows. O

Proofs of Theorem [1.1] and 1.2

Initially, it follows from Lemma and Lemma that the functional I sa-
tisfies the geometric conditions of the Mountain Pass Theorem. Consequently, the
minimax level

—inf I(g(t
¢m = inf max (9(1))

is positive, where I' = {g € C([0,1], X) : g(0) = 0,¢(1) = e}.

On the other hand, by Lemma [I.21]and Proposition [I.18] the functional I satisfies
the (PS),., condition. Thus, by the Mountain Pass Theorem the functional I has a
critical point u,, at the minimax level c,,.

Moreover, when h € X* with h # 0, we may find a second solution. In order
to do this, we consider p; like in Lemma and we observe that B, is a convex
complete metric space with the metric induced by the norm of X, and the functional
I is C* and bounded below on Eph. Hence, by the Ekeland variational principle there

exists a sequence (u,) in B, such that
I(u,) = co <0 and || I'(un)]« — 0.

By the Proposition the functional [ satisfies the (PS),, condition. Consequently,
the functional I has a critical point u at the level ¢q. Therefore, the proof of the results

is complete.
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Chapter 2

On nonlinear perturbations of a
periodic fractional Schrodinger
equation with critical exponential

growth

In this chapter we present the results of the paper |15], more specifically, we study

the existence of solutions for fractional Schrodinger equations of the form
(=A)Y2u+ V(z)u = f(z,u) in R,

where V' is a bounded potential, which belongs to a different class of those treated
in Chapter 1, and the nonlinear term f(z,u) is considered with critical exponen-
tial growth. We prove the existence of a nontrivial weak solution by combining the
Mountain Pass Theorem, Trudinger-Moser’s inequality and a version of Concentration-

Compactness Principle due to Lions.

Motivation and main results

As mentioned in the introduction, some results have appeared, recently, in the

literature concerning the equation

(=A)Y2u+ V(z)u = f(z,u) in R, (2.1)
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with interesting conditions on V' (z) and f(x,u). The main purpose of this chapter is to
study considering the nonlinearity with exponential growth. As we have seen in
Chapter 1, the Sobolev embedding states that H'/2(R) < L(R) for any ¢ € [2, +00),
but H'/?(R) is not continuous embedded in L>®(R) (for details see [17,39]). Thus the
maximal growth, which allows us to treat variationally in H'/?(R), is motivated
by Trudinger-Moser’s inequality proved by T. Ozawa [39] and H. Kozono, T. Sato and
H. Wadade [29]. More precisely, they proved that there exist positive constants w and
C = C(w) such that, for all u € HY?(R) with ||(=A)Y4uly <1,

/(e“”2 —1)dx < C|lull3, forall « € (0,w]. (2.2)
R

Therefore, the maximal growth on the nonlinearity f(z,u), that allows us to treat
variationally in H'/2(R), is given by e®** when |u| — +oo for some ay > 0 (see also
the pioneers works [38,45]).

Motivated by Trudinger-Moser inequality and by the works [1,/14,23,25], we
deal with two problems. First, we investigate when V' (z) and f(z,u) are periodic
functions with respect to z, and f(z,u) behaves like e®*” when |u| — +oo for some
ag > 0. Second, with the aid of the previous case, we study a more general problem
assuming that V(x) and f(z,u) are just asymptotically periodic at infinity. Next, for

easy reference, we recall the problems and assumptions.

A periodic problem
The first problem that we will study in this chapter is the following,

(=220 4+ Vo(z)u = folx,u) in R,

(Fo)
u€ HY?(R) and u >0,
where (—A)Y/2 is defined, for a sufficiently regular function, by
1 w4+ y)+ulr —y) — 2u(z
(=AY u(z) = —%/ ( ) |(y|2 ) ( >dy. (2.3)

The assumptions on the functions Vi(z) and fo(z,u) are the following: V5 : R —
(0, +00) is a continuous 1—periodic function and f; : R x R — R is a continuous

1—periodic function in z, which has critical exponential growth in wu, that is, there
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exists ag > 0 such that

. o, 0, for all a > ay,
lim fo(z,s)e” " = (2.4)

ol o0 400, for all a < ay,
uniformly in z € R.

Recall that this notion of criticality is directed by and it has been used in
several papers involving exponential growth, see for instance [13|, [20] and [25]. Since
we are interested in the existence of nonnegative solutions, we set fo(z,s) = 0 for
all (z,s) € R x (—00,0]. We also assume that the nonlinearity fo(z,u) satisfies the

conditions

fo(zx,s)

S

(fon) }g% —= 0 uniformly in x € R;

(fo,g) there exists a constant 6 > 2 such that
0 < O0Fy(x,s) = Q/fo(x,t) dt < sfo(z,s) forall (z,s) € R x (0,+00);
0

(fo3) for each fixed x € R, the function fy(z,s)/s is increasing with respect to s € R;

(fo.4) there are constants p > 2 and C), > 0 such that

fo(x,8) > CpsP™t, forall (x,s) € R x [0, +00),

where s
(p — 2)0040 -
and L2
o L[ u(z) —u(y)l? 2
flullp=1 R2

Throughout this chapter, we say that u € HY/2(R) is a weak solution for (P if
the following equality holds:

1 () )@ e I ST
277/ |z — |2 ddy+R/V0() d /fo(, Jvdz, for all v € H/*(R).

R2 R

Under these conditions we have the first result of this chapter:
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Theorem 2.1. Assume that (fo1)—(fo4) hold. Then has a nonnegative nontrivial
weak solution.

As a consequence of this theorem we find a nonnegative nontrivial weak solution

for the following model problem:
(=A% +u=G)(u) in R,

with Go(u) = % uP ey >0, p> 2 and C, as defined in (2.5).

An asymptotically periodic problem
The second problem that we will study in this chapter is the following,

(=A)YV2u + V(z)u = f(z,u) in R,

(P)
u€ HY2(R) and u > 0.

Next we will describe the conditions on the functions V' (z) and f(z,s) in a more

precise way.

(V1) V: R — [0,400) is a continuous function satisfying the conditions: V(x) < Vj(z)

for any € R and Vy(z) — V(x) — 0 as |z| — oc;

We assume that the nonlinearity f : RxR — R is a continuous function satisfying

(2.4), f(x,s) =0 for all (z,s) € R x (=00, 0] and also the following conditions:

(f1) f(x,s) > fo(zx,s) for all (x,s) € Rx[0,400), and for all £ > 0, there exists n > 0
such that for s > 0 and |z| > 7,

|f({L‘, S) - f0($73)’ < 5€a()82;

(1) tim 722

= 0 uniformly in x € R;
—0 S

(f3) there exists a constant p > 2 such that

0 < pF(z,s):= u/f(x,t) dt < sfo(z,s), forall (x,s) € R x(0,400);
0

(f1) for each fixed € R, the function f(z,s)/s is increasing with respect to s € R;
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(fs) at least one of the nonnegative continuous functions Vyp(z) — V(z) and f(z,s) —

fo(z, s) is positive on a set of positive measure.

We say that u € H'/2(R) is a weak solution for (P) if the following equality holds:
1/ (u(@) = uly))(vlx) = v(y)) dz dy+/V(:E)uv dz = /f(m,u)v dz, for all v € H'/?(R).
R

27 |z — y|?
R2 R

The second result of this chapter is the following:
Theorem 2.2. Assume that (V1) and (f1) — (fs) hold. Then has a nonnegative

nontrivial weak solution.

As mentioned earlier, the results of this chapter were motivated by the works
[1,/14,123,125|. Particularly, J. M. do O et al. in [23] have proved the existence of a

nontrivial solution for the fractional Schrédinger equation
(=A)2u +u=K(z)g(u) in R,

where g(u) behaves like ¢®** when |u| — 400 for some ag > 0 and K : R — R is a
positive function such that K € L>*(R) N C(R). Furthermore, if {A4,} is a sequence of
Borel sets of R with |4, | < R for some R > 0,

lim / K(z)dx = 0, uniformly with respect to n € N.

T—00
A,NBe(0,R)

We were inspired by Alves et al. [1], thus we studied assuming that the
potential V() and the nonlinearity f(x,u) are asymptotically periodic at infinity. Here
we work with a general class of functions which are asymptotic to a nonautonomous
periodic function at infinity. In this sense our work completes the study presented
in [22,23|. It complements also [10}[11,/18,41] since we consider the limiting case for
N =1 and s = 1/2 when the nonlinearity has exponential growth in the sense of the
Trudinger-Moser inequality. Moreover, also complements the study of Chapter (1| since
we consider that the potential V' (x) belongs to a different class from those treated

there.

Remark 2.3. The assumptions on the nonlinearity and the potential are standard,
since we use a variational approach. Notice that our assumptions assure the mountain
pass geometry of the functionals Iy and I (which are defined in Sections [2| and .
Furthermore, by (V7) the potential V(z) may be zero on bounded sets. For more
details see Lemma 2.6
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Remark 2.4. As examples of functions that verifies our assumptions we may consider

2
Viz) =2+ ‘x;f%] sin(z)| with Vp(z) = 2 + | sin(x)|, or

0, if 2?2<1
V(e)=1< 22—1, if 1<2?<4
3, if 22>4

with Vy(z) = 3.

Remark 2.5. We highlight that when u has sufficient regularity, it is possible to have a
pointwise expression of the fractional Laplacian as (2.3) (see [47], for example). Again
in this case we have u > 0 if u # 0, (see Remark [3.4)).

To prove our main theorems we have used variational methods. An important
point is a version of a Concentration-Compactness Principle. This one is crucial to show
that S, is attained and that the weak limit of an appropriate Palais-Smale sequence is

nontrivial.

The outline of this chapter is as follows: Section 2.2 contains some preliminary
results. Section 2.3 and Section 2.4 deal with the proof of Theorems and

respectively.

Some preliminary results

In this section, we prove some technical results and we establish the appropriate
setting to prove Theorems [2.1] and
The functional setting

In order to study variationally we consider a suitable subspace of the frac-
tional Sobolev space H'/2(R), which is defined by
H'(R) = {u € I*(R) : —‘“@'ﬁ) — “|(y>’ € I2(R x ]R)} ,
r—y

endowed with the natural norm

lullaye = ([ulifp + lull3)?,

e (/R lute) =), dy> )

|z —y|?

where the term
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is the so-called Gagliardo semi-norm of function wu.

Recall that H'/2(R) is a Hilbert space and by |17, Proposition 3.6]
(=AY *ully = 27) 2]y, forall uwe HY*(R). (2.6)

The next lemma provides an inequality that we will use in some proofs.

Lemma 2.6. Suppose that (V1) holds. Then there exists a constant k > 0 satisfying

o /|u dxdy—l—/V(:v)qux > k|ul|? for all uwe HY*R). (2.7)
T
R

Proof. Suppose that (2.7) does not hold. Then for each n € N there exists u,, € H'/?(R)
such that

2
1
|un|l2 =1 and (‘R/ tn(7) = tn(y)) dz dy +/V(x)uidx < —. (2.8)
R

| —yP n

Since V(x) > 0, we get that [u,]},, — 0, (u,) is bounded in H'/*(R) and, up to a

subsequence,

U, —ug in HY*R), as n — oo. (2.9)
We also have that
/V(x)ufl dz — 0, as n — oc. (2.10)
R

Now, we use the following inequality, proved in [39, p.261|, given by
lunllr < CI=2) unll5™[[unl13,

where r > 2, C' > 0 and 6 € (0,1). This inequality together with (2.6) implies

(1—-6
lunllr < Cluals” [lunll3,

from which it follows that ||u,||, — 0. On the other hand, by (2.9) u, — ug in L] (R).
Consequently, uy = 0.
From (2.8)), for each R > 0 we can write

1—/uidx—/uidx+/uidx. (2.11)
R

Br BS,

Next, in order to reach a contradiction we will use (V7). More precisely, given € > 0,
there exists R > 0, such that

Vo(z) = V(x) <e forall z € Bj.
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Thus, for all € Bf, and € > 0 sufficiently small,

V(z) > Vo(x) —e > Cy—e=1by > 0. (2.12)

Combining (2.11)), (2.12)), (2.10) and the fact that w, — 0 in L*(Bg), we obtain the

contradiction

1
1< /qux+— V(z)u2 dz — 0.

Therefore, (2.7) holds and the lemma is proved. O

We will use the following notations: Xj will denote H'/2(R) endowed with the

equivalent norm

1/2
1 ju(x) — u(y)|® 2
o = 5= | [ dedy | + [ Vil as
2 R
and X, will denote H'/2(R) endowed with the norm
1/2

u(x
|lullx, = /’ \x—yP dwdy +/V(az)u2dx
R

As consequence of inequality (2.7) we have that || - ||x, is a norm and also that
the embedding X; — L%(R) is continuous for all 2 < ¢ < oc.
Trudinger-Moser type inequalities

In this subsection we prove a version of (2.2) to the space H'/?(R) with the norms
|- |l x, and || - ||x,. This will be our principal tool to prove our main results. The ideas
used in the proof are inspired in [19,[20,[25] and we present them here for completeness

of our work.

Lemma 2.7. If 0 < a < w, then there exists a constant C' = C(w) > 0, such that

sup /(eo‘“2 —1)de<C for i=0,1. (2.13)

{ueH/2(R): Jull x, <1} 4

Moreover, for any a > 0 and u € H'/%(R) we have

/(eo‘“2 —1)dz < 0. (2.14)
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Proof. First, we observe that if a function v € H'/?(R) satisfies ||ul/x, < 1, then by
using (2.6)), we get

I(=2)"ullz = 2m) "2 [u)1j2 < Jlullx, < 1.

Consequently,

[ -na<agup<c
R

where we have used (2.2)) and (2.7). Thus, we obtain (2.13).

Now we prove the second part of the lemma. Given u € HY/?(R) and & > 0 there
exists ¢ € C§°(R) such that ||u — ¢l|x, < e. Since

I e % <e4a(u_¢)2 - 1) + % <€4W2 - 1) )

it follows that

1 allu— 2 _u-p 1
/(eo‘“2 —1)dz < 5 /(64 ” SDHXZ'(”“”’”X ) 1)dx + —/ (et dz.  (2.15)

2
R R R

Choosing ¢ > 0 such that 4ae? < w, we have 4afju — ¢||%, < w. Then, from (2.13) and

[2.15), it follows that
1
/(eau2 —1)dzr < §+§ / (64W2 —1)dz < co.

R supp(¢)

This completes the proof of the lemma. n

Lemma 2.8. Ifa >0, ¢ > 2, v € X; and ||v]|x, < M with aM? < w, then there exists
C =C(a,M,q) >0, such that

/(eW _Dltde < Clloll. for i=0,1.
R

Proof. Consider r > 1 close to 1 such that arM? < w. Using Holder’s inequality with

r'=r/(r—1), we have

1/r
/<eav2  )fofida < /(M —uyrde | ol (2.16)
R R
Notice that given r > 1 for all s € R,
(e — 1) < (7" = 1). (2.17)



Hence, from (2.16) and (2.17) we get

1/r

Jee =l < /<em2—1>dx ol
R
1/r

cw]\/[2 ——
S  nar) e,

R

Thus, since arM? < w, it follows from (2.13) and the continuous embedding X; <
L"(R) that

e = Dleftaz < ol
R
which proves the lemma. O

A Concentration-Compactness Principle

The next lemma is a version of a Lions’s result (see P. L. Lions [35]).

Lemma 2.9. If (u;) is bounded in H'/?*(R) and

hm sup / lug(z)|* do = 0, (2.18)

k—o00 yER

for some R > 0, then u;, — 0 in LY(R) for 2 < ¢ < oc.

Proof. For each r > ¢, by standard interpolation, we obtain

el Lasre) < Nwwll 12w 12 (Baw)-
where (1 —X)/2+ \/r = 1/q with 0 < A < 1. Covering R by balls of radius R, in such
way that each point of R is contained in at most 2 balls, we find C' > 0 such that

(1-Ngq/2

O I AL I

q
L (R)"
Br(Y)

By the continuous embedding H'/?(R) = L"(R) and ||ug|1/2 < C4, we get

(1=A)gq/2
/\uk\qdm < C'sup / |lug|? dov
yeR
R Br(y)
and so by (12.18) we conclude the proof. O

Using the previous lemma, we obtain the following result.
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Lemma 2.10. The constant S, is attained by a nonnegative function u, € Hl/Q(R).

Proof. Let () be a minimizing sequence of nonnegative functions for S, in H'/?(R)
(if necessary, replace 94 by |[J|, which is possible since by using the triangle inequality
we have [k (2) — Ux(y)| = |[0k(2)] — [Ir(y)]]), that is,

1/2

_ 2
/’ﬁk|pd$ —1 and i/ (Vr(x) — Ii(y)) do dy + HV”OO/Q%%dLL' — 5.
R

27 |z — y|?
R? R

Here, we consider H'/?(R) endowed with the norm

1/2
1 . 2
|lul] = _/—|u(x) u(y)| dzdy + ||V\|Oo/u2dx
2r yl
R2 R

ERETE

It is clear that ||Jx|| < C for some C' > 0. Then, up to a subsequence, we may assume
that 9, — o in H/2(R) and

e g
1]l < lim inf [[94| = 5,

Then ¢ is a minimizer provided that |||, = 1. But we know only that ||, < 1.
Notice that, since ||J|, = 1, Lemma [2.9] implies

k—o0 y€eR

d = lim sup / |U%(z)|?dz > 0.
Bi(y)

Thus, up to a subsequence, we may assume the existence of (y,) C R such that

/ 10 () [*dz > §/2.

Bi1(yx)
Let us define uy(z) := 9 (x + yx). Hence, |ui|l, = [|9kll, = 1, |lukll = [|9k]] — S, and
/ g ()P > 5/2. (2.19)
B1(0)
Since (uy) is bounded in H'/2(R), we may assume, up to a subsequence,

up — u, in HY/2(R),
ur — u, in L7 (R),

up — u, almost everywhere in R.

By the Brézis-Lieb Lemma (see [7]), we have that
. . . 2 2 . 2
=yl 4l g — w7 and T g = [+ Jim g — .
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Thus, we have

2 1 2 _ 2 i 2
Sp = Im Jug]|” = {lup|[” + lm [lu, — | (2.20)
> S2[([lupl2)>? + (1 — [|uy||2)>/7]
= 2, [ Upllp Upllp ’

By (2.19), we have u, # 0. If we suppose by contradiction that ||u,||, < 1, by using
(2.20) follows that

Sy > Splluplly + 1= lluylI})*,

what is a contradiction. Therefore, ||u,|, = 1 and u, is a minimizer for S,, and this

completes the proof. O

Existence of a solution for the periodic problem

In order to apply the Mountain Pass Theorem without the Palais-Smale condition
(see [37, Theorem 4.3]) to find a nontrivial solution for the problem (P, we will

consider the functional I : Xy — R given by

1
Ip(u) = §Hu||§(0 — /Fo(x,u) dz.
R

Notice that Iy is well defined. Indeed, combining the condition (fy;) and the fact
that fo(x,s) has critical exponential growth, for each a > ag and € > 0 there exists a

positive constant C. such that
Fo(z,s) < 232 +C(e™ —1) forall (z,s) € RxR.

Combining this estimate together with the continuous embedding X, < L?*(R) and
(2.14), we obtain that Fy(z,u) € L*(R) for all u € Xy. Hence, I is well defined.

By using standard arguments we can see that Iy € C*(X,,R), see Appendix
with

o = - [ )= uD(O() - o)

o |z —yl?

dedy + [ Vo(x)ugdz — [ folz,u)pda,
[t |

R2
for all ¢ € X,. Therefore, a critical point of I; is a weak solution of and recipro-

cally.

Now we prove some facts about the geometric structure of Iy required by the

minimax procedure.
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Lemma 2.11. Suppose that (fo1) is satisfied. Then there exist p,o > 0 such that

I(u) z o if lullx, = p-

Proof. Combining (fo1) and the fact that fy(z, s) has critical exponential growth, for
each a > ap, ¢ > 2 and € > 0 there exists C. > 0 such that

Fo(x,s) < 282 +Csl?(e®” —1) forall (z,s) € R xR. (2.21)
From (2.21)) and the continuous embedding X, < L?(R), we obtain

1 g o
hiw = lulf, - Sl - C. [ - luprds
R

1 801 2 au q
(55 ) bl - ¢ [ = s
R

Then, for each u € X, with a||u||_2><0 < w, by applying Lemma, , we get

v

1 601
nw = (5-5) bk, - Gallul,

1 eC _
= ol | (5 - 55 ) - Callul]

Since ¢ > 2, we may choose € > 0 and p > 0 sufficiently small such that

1 601 q—2

Thus, there exist p,o > 0 such that Iy(u) > o if ||lul]lx, = p, which is the desired
conclusion. O

Lemma 2.12. Suppose that (fo2) is satisfied. Then there exists e € Xy with ||e]|x, > p
such that
In(e) < inf  Iy(u).

lullxo=p

Proof. Let u € C§°(R)\{0} with support K. By (fo2) there exist C,Cy > 0 such that
Fy(x,u) > Cijul® = Cy forall =€ K.

Consequently, we have the following estimate for ¢ > 0,

t2
Ip(tu) < EHU\@(O—Clt9/|u|9dm+02/d:p.
K

K
Since 0 > 2, we obtain [y(tu) — —oo as t — oo. Setting e = tu with ¢ large enough,

we conclude the proof. O
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Minimax level
As a consequence of Lemmas and [2.12] the minimax level

— inf Io(g(t
co = Inf max o(g(t))

is positive, where I' = {g € C([0, 1], Xo) : g(0) = 0 and ¢(1) = e}.
Next, we provide an estimate to the minimax level.

Lemma 2.13. Suppose that (fo4) holds. Then
(0 —2)w
290[0 .

Proof. Applying Lemma we have that ¢y > 0. In order to get an upper estimate,
we consider the function u, given in Lemma Thus, it follows that

o< ¢ <

Co < rg%ox [0 (tuq)

2 C
< rnax{—-HuqHZ-—-zftqHuquz]

t>0 | 2
t2 2 Cq q
-—%%b%—zt

(q o 2) SSQ/(Q_Q)
2¢ 2@

6 —2
_ (6=
290(0
where we have used (fp4). This completes the proof of the lemma. O

On Palais-Smale sequences

By the Mountain Pass Theorem without the (PS) condition (see [37, Theorem

4.3]), there exists a sequence (uy) in Xy satisfying

Io(ug) = co and  Ig(uy) — 0. (2.22)

Lemma 2.14. Suppose that (fo,1) and (foz2) hold. Then the sequence (uy) is bounded
m Xo and its weak limit denoted by ug is a weak solution of .

Proof. Using well-known arguments it is not difficult to check that (uy) is a bounded

sequence in Xy. Indeed, by (fo2) we have

1 11 1
town) = sty = (5 = 3 ) Nl + [ [t = Foov)| do
R

1 1
> (5-5) Il

47

(2.23)



By (2.22), there exists ky € N such that for all k¥ € N with k > ko, it holds

1
To(ug) — élé(uk)uk < O+ ug x,-

This together with (2.23]) imply that ||ug||x, < Ci.
Since X is a Hilbert space, up to a subsequence, we can assume that there exists
ug € Xg such that

up — Ug in Xo,

ur — ug in L] (R) for all ¢ > 1,

loc

ug(x) — up(z) almost everywhere in R.

In order to complete the proof of the lemma, it is sufficient to prove that

/fo(x,uk)v de — /fo(x,uo)v dz, as k — oo, for all v € C§°(R). (2.24)
R R

Note that combining (2.22)) and (2.23]), we reach

lim sup [lug | %,.

C =Z
2 k—4o0

Thus, by Lemma we obtain

2000 w

lim sup ||ugl|% <
k%JroopH kHXO - 6—2 Qg

This implies agl|uxll%, < w for k sufficiently large. Hence, we can choose ¢ > 1
sufficiently close to 1 and ¢ > 0 sufficiently small such that g(og + 6)[Jug|%, < w for k
sufficiently large. Consequently, by (2.13) there exists C' > 0 such that

6 u 2 k)2
/<6q( 0+(5)|| k”XO(H“k‘I‘QXO) . 1) d]; S C (225)
R
Since fy(z, s) has critical exponential growth, combining condition (fp ;) and Holder’s

inequality for ¢ = q¢/(¢ — 1) > 2, we get

o(z,up)upde < e [ w2 dx+ C. elaotoyi _ 1 uy dx
k
R R R

—1)dx

Uk )2

[e7 u 2 T
< eC + Celluny / R e

R

Hence, by ([2.25]) we have
/fo(a:,uk)uk dr < C.
R

Consequently, thanks to Lemma 2.1 in [13], we reach

fo(x,ux) = folz,up) in L}OC(R), as k — 00,

which implies (2.24). This completes the proof of the lemma. ]
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Proof of Theorem

Using Lemma [2.14] we have that u is a weak solution of (). Thus if wu, is
nontrivial the theorem is proved. If ug = 0, we have the following claim: there exist
(yx) C R and R,a > 0 such that

lim inf sup / lug|? dz > a. (2.27)
k—oo i eR
Br(yr)
Indeed, let us assume that does not hold. Then for all sequences (y;) C R and
R > 0, we have
lim inf sup / |ug|? dz = 0. (2.28)

k—o00 yLER
Br(yx)

By combining (2.28) and Lemma we obtain that u, — 0 in LY(R) for 2 < ¢ < oo.
Thus, by applying (2.25)) and (2.26)) we reach

/fo(w,uk)uk dz — 0, as k — oo.
R

This estimate and (2.22]) imply that |lug||x, — 0. Furthermore, in view of assumption
(fo.2) we conclude that

/Fo(x,uk) dz — 0, as k — oo. (2.29)

R

By combining the convergence |lug|x, — 0, (2.29) and (2.22), we get that ¢; = 0,
which is contradiction. Thus, (2.27) holds.

We may assume, without loss of generality, that (yx) C Z. Letting wy(x) = ug(x—
yk), since Vo(+), fo(-,s) and Fy(-, s) are 1-periodic functions, by a careful calculation

we obtain
lukllxo = llwrllxo, Lo(ur) = Io(wi) = co and  Ig(wy) — 0.

Consequently, by similar arguments done in the previous sections, we obtain that (wy)
is bounded in X, and there exists wy € X such that w, — wg in Xy and wq is a
weak solution of the problem (Fy)). Moreover, by (2.27), taking a subsequence and R

sufficiently large, we get

a'’? < |will 2Ry < 1wk — wollz2(8r0)) + 1ol L2(Bro))- (2.30)
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Thus, from the Rellich-Kondrachov Embedding Theorem, we conclude that wy is non-
trivial.

To finalize, notice that if u is a weak solution of (R, since fy(z,s) = 0 for all
s < 0 and Ij(u)v = 0 for all v € X, choosing the test function v = —u~, by using
the following inequality |u™(z) — u™ (y)]* < (u(x) — u(y))(u(y) — u~(x)) we get that
|lu=]|x, < 0. Thus, u is a nonnegative function. This completes the proof of Theorem

2.1

Existence of a solution for the asymptotically periodic

problem

In order to find a nontrivial solution for (P)), we will consider the functional

I : X; — R given by
1
Ia) = glull, ~ [ Fau)do.

R
Similarly to Section [2| we can see that [ is well defined and by using standard

arguments I € C*(X},R), see Appendix , with
1 / (u(z) — u(y))(¢(z) — ¢(y))

o [ — y]?

I'(u)o dedy+ [ V(z)updr — | f(z,u)pdz,
[

RQ
for all » € X,. Thus, a critical point of I is a weak solution of and reciprocally.

Moreover, the functional I has the geometry of the Mountain Pass Theorem, that is,
Lemma 2.15. If (f2) — (f3) hold, then
(1) there exist o1, p1 > 0 such that I (u) > oy if |[ullx, = p1;

(ii) there exists e; € Xy, with ||e1]lx, > p1, such that I(e;) < 0.

As a consequence of Lemma [2.15] the minimax level

¢ := inf mmax I (v(t))

is positive, where I' = {y € C([0,1], X7) : 7(0) = 0 and (1) = e, }.
Moreover, by applying the Mountain Pass Theorem without the (PS) condition
(see |37, Theorem 4.3]), there exists a sequence (vy) C X; such that I(vx) — ¢; and

I'(vg) — 0. Using the arguments as in Section [2 we get the following result:
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Lemma 2.16. If (f3) — (f3) hold, then

(1) (vx) is a bounded sequence in Xi;

(ii) /(eaoﬁv% —1)dz < C for B > 1 sufficiently close to 1;
R
(iii) vp — vo in Xy and vy is a critical point of functional I.

Proof of Theorem

We will work in order to prove that vy is nontrivial. Assume, by contradiction,

that vg is trivial. Then, we have the following convergence result:

Lemma 2.17. If (V}), (fo1) — (fo2) and (f1) — (fs) hold, then as k — oo

(i) /[fo(x, vg) — f(z,vp)|vp dz — 0;
(ii) / Fo(z, v0) — F(z, v)] dz — 0

(iii) / Vo(x) — V(x)]vi dz — 0.
R
Proof. By condition (f;), given € > 0 there exists 7 > 0 such that

/\f(x,vk)—fo($,vk)|!vk|dx35/(ea‘w’%—l)lvk!dm

|z|>n [z|>n

Hence, from (2.17) and Holder’s inequality with 1/7 + 1/7" = 1 such that 7 > 1 and
7' > 2, we get

1/ 1/’
/ (2, 00) — fola, )| [ug] da < & /(eaovi 1) da /|Uk|f/ dz
j2i> R R
1/7 1/T/
<e /(e%”’i —1)dz /|Uk|7—/ dz
R R
By Lemma [2.16] (i),(ii), we obtain
/ (2, 00) — fol, ve)||ow] der < Ce. (2.31)

[z|>n

ol



On the other hand, using conditions (fy1), (f2) and Hélder’s inequality we reach

1/’

1/
/ (s 0)— fola, )| |ve] dz < 2¢][ul2+2C- /(ewi 1) da /mr/ dz

|z|<n R z|<n

From the Rellich-Kondrachov Embedding Theorem we have that, up to a subsequence,

lvell 2~ (5,) — 0. Moreover, since [[vg|2 < C', we obtain

/ |f(x,vp) — folx,vg)||vg| dz — 0, as k — oc.

|z|<n

Combining this with (2.31]), we obtain

/Hfo(-iﬁ,vk) — f(z,v)]vg|dx — 0, as k — oc.
R

Using the assumptions (f;) — (f3), we have that

/]Fo(x,vk) — F(z,vg)|dz < C'/ [[fo(x,ve) — f(z,vk)]||vk| dx — 0.

For last convergence, note that
0< /[Vo(x) _V@)lde < C / 2 dr+ / Vo(z) — V(2)]o? da.
R z|<R |z|>R

By (V1), given € > 0, there exists R > 0 sufficiently large such that [Vo(z) — V(z)] < e
for |x| > R, then

/m(x)—wx)]v,zdxgc / W2dz 4 e / o2 dz.

R lz|<R |z|>R

From the Rellich-Kondrachov Embedding Theorem we have that, up to a subsequence,

vkl L2(Br) — 0. Moreover, since [jvg|l2 < C, we conclude that

/[Vo(x) —V(z)|vidr =0, as k — oo.

R

This completes the proof of the lemma. n

As a consequence of Lemma [2.17] it follows that

[Io(v) — I(vg)| = 0 and || I(vx) — I'(vg)||« = 0, as k — oc.
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Hence,

Io(vi) = ¢ and  I)(vx) — 0, as k — oo.

Similar to the proof of Theorem there exist (y,) C Z and R,a > 0 such that

lim inf sup |vg|? dz > a.
Br(yr)

Consider wy(z) = vg(x —ys), since Vo (), fo(z,s) and Fy(z, s) are 1—periodic functions
in z, we get

lvllxo = llwkllxo, Lo(vk) = Io(wy) and Ij(wy) — 0.

Then, there exists wy € Xy such that wy, — wy in Xy and I)(wy) = 0. Moreover,

Iy(wo) < ¢, indeed using Fatou’s lemma we have

Io(wo) = [O(wo)—%l(’)(wo)wo

1
- 5/[f0(x,w0)wo — 2Fy(, wo)] dz

IN

1
lim inf 5 /[fo(a:, w)wy, — 2Fy(x, wy,)] da

k—+o0
R

_ 1
= lim [fo(wy) — §]é(wk)wk] = 1.

Arguing as in (2.30) we conclude that wy is nontrivial. Now, by (fo3), we have that

max{Io(twg) : t > 0} is unique and then
co < r?;aoxlo(two) = Io(wy) < 1. (2.32)

On the other hand, considering ug the solution obtained in Theorem [2.1] from (V;),
(f1), (fs), (fs) and (fo3), we have

c < I?g)xf(tuo) = I(tyuo) < In(t1up) < I?%X]O(tuo) = Iy(up) = co,

that is, ¢; < ¢, which contradicts . Therefore, vy is nontrivial.

To finalize, notice that if u is a weak solution of (P), since f(z,s) = 0 for all
s < 0and I'(u)v = 0 for all v € Xy, choosing the test function v = —u~ and by using
the following inequality |u~(z) — u™(y)|* < (u(z) — u(y)) (v (y) — u~(x)) we get that
|lu=|lx, <0. Thus, u is a nonnegative function. This completes the proof of Theorem

2.2
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Chapter 3

A class of asymptotically periodic
fractional Schrodinger equations with

Sobolev critical growth

In this chapter we present the results of the paper [16], here we study a class of

fractional Schrodinger equation of the form
(=A)u+V(2)u = [u*Pu+g(x,u), in R

where 0 < a < 1, 20 < N, 2% = 2N/(N — 2a) is the critical Sobolev exponent,
V : RY — R is a positive potential bounded away from zero, and the nonlinearity
g : RY x R — R behaves like |u[?"! at infinity for some 2 < ¢ < 27, and does not
satisfy the usual Ambrosetti-Rabinowitz condition. We also assume that the potential
V(z) and the nonlinearity g(x,u) are asymptotically periodic at infinity. We prove
the existence of at least one nonnegative weak solution u € H®(R") by combining a

version of the Mountain Pass Theorem and a version of Concentration-Compactness

Principle due to Lions.

Motivation and main results

Our main goal is to establish, under an asymptotic periodicity condition at infi-

nity, the existence of a weak solution for the critical problem
(=A)*u+V(2)u = |u)*?u+ g(z,u), € RY, (3.1)
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where 0 < a <1, N > 2, V:RY - R and ¢ : RY x R — R are continuous functions.
Considering F := {h € C(RY) N L>®(RY);Ve > 0, [{z € RY : |h(z)| > e}| < oo},

we assume that V satisfies

(V) there exist a constant ay > 0 and a function V5 € C(RY), 1—periodic in z;,

1 <i< N, such that V; — V € F and

Vo(x) > V(z) > ag >0, forall x € RY.

Considering G(z, s) = [ g(z,t) dt, the primitive of g, we also suppose the follow-
0
ing hypotheses:

(91) g(z,s) =o(]s|), as s — 0, uniformly in RY;
(g2) there exist constants aq,as > 0 and 2 < ¢; < 2% such that

lg(z,8)| < ay + ag|s|"™t, forall (z,s) € RN x [0, +00);

(g3) there exist a constant 2 < ¢o < 2% and functions hy € L*(RY), hy € F such that

1
59(96, s)s — G(x,8) > —hy(x) — hy(x)s®, for all (x,s) € RY x [0, 4+00).

We observe that the conditions (g;) and (g2) allow us to employ variational me-
thods to study problem and to verify that the associated functional has a local
minimum at the origin. Moreover, note that the condition (g2) imposes a subcritical
growth on g. Under the above hypotheses, the associated functional does not satisfy a
compactness condition of Palais-Smale type since the term |u|?¢ =2y is critical and the
domain is all RV,

The asymptotic periodicity of g at infinity is given by the following condition:

(g4) there exist a constant 2 < g3 < 2 — 1 and functions hs € F, go € C(RN x

R, [0,400)), 1-periodic in z;, 1 <1 < N, such that:

(1) G(z,s) > Go(z,s) = [ go(z,t)dt, for all (z,s) € RY x [0, +00);
0

(ii) |g(z,s) — go(x,s)| < hz(z)]s|#7, for all (z,s) € RY x [0, +00);
(73i) the function go(z,s)/s is nondecreasing in the variable s > 0, for each

r € RV,
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Finally, we also suppose that ¢ satisfies:

(g5) there exist an open bounded set Q C RY, 2 < p < 2% and Cj > 0 such that

G
(4) (xp’s)—>+oo, as s — +00, uniformly in €, if N > 4a;
s
. G(z,9) . . _ ,
1) —— 00, as s 0o, uniformly in Q, if 2« a and =
(44) o = F00, as s = + forml Q,if 2a < N < 4da and % <
5

p < 2%;

(iii) G(x,s) > CysP almost everywhere in RY | if 2a < N < daand 2 < p < N4_“2a.

Now, we may state our main result.
Theorem 3.1. Assume (V), (91) — (g5) and that one of the following statements holds:

(1) N>4da and 2 < p < 2}

(2) 2a < N <4a and % <p < 2,

(3) 2a < N <4da and 2 <p < %

~ 52, Wwith Cy large enough.

Then, problem (3.1)) has a nonnegative nontrivial weak solution.

We observe that in the particular case: V = V4, g = go, Theorem [3.1] clearly,
gives us a solution for the periodic problem. Actually, the condition (g4)(éi7) is not
necessary when we look for the existence of a solution for the periodic problem. More

specifically, considering the problem
(—A)*u + Vo(o)u = |ul**2u + go(z,u), © € RY, (3.2)
under the hypothesis:

(Vo) the function V, € C(RY) is 1-periodic in x;, 1 < i < N, and there exists a

constant ag > 0 such that

Vo(z) > ag >0, for all € RY;

and the function gq satisfies (¢1) — (g3) and (g5), we may state:

Theorem 3.2. Assume (Vy), (91) — (93), (g5) and that one of the following statements
holds:

(1) N>4da and2 < p < 2}
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(2) 2a < N <4a and % <p < 2,

3) 2a < N < 4a and 2 < p < 22 with Cy large enough.
N—2«

Then, problem (3.2)) has a nonnegative nontrivial weak solution.

The (AR) condition has appeared in most of the studies for superlinear problems
and plays an important role in studying the existence of nontrivial solutions of many
nonlinear elliptic problems. Since Ambrosetti and Rabinowitz proposed the Mountain
Pass Theorem in their celebrated paper [2|, the critical point theory has become one
of the main tools for finding solutions to elliptic equations of variational type. In
the subcritical case, the (AR) condition ensures that the Euler-Lagrange functional
associated with a — type problem has a mountain pass geometry and also guarantees
the boundedness of the Palais-Smale sequence, so we can get the nontrivial solution
by using suitable versions of the Mountain Pass Theorem.

On the other hand, there are many cases where the nonlinear term does not
satisfy the (AR) condition (see Remark [3.3). Thus it becomes interesting to know if
a nontrivial solution exists in such situations. When a = 1, conditions weaker than
(AR) were used first in [12,27,/36]. In the case 0 < o < 1, we would like to mention
two works, one by Chang and Wang [10] and a paper by J. M. do O et al. [21].

Motivated by the above mentioned papers and by Lins and Silva [33], we study the
existence of a nontrivial solution to problem (3.1) where the subcritical perturbation
g(x,u) does not satisfy the (AR) condition. Moreover, we assume that the potential
V(z) and g(z,u) are asymptotically periodic at infinity in z. In this sense our results
complement the study made in [10,21,[43]. Moreover, we also complement [10,[11,/18,41|
in the sense that the potential V(x) belongs to a different class from those treated by
them.

Remark 3.3. An example of potential V' (x) satisfying the hypothesis (V') is given by

V(z) = e Ve where ag = e and Vo = 1, and if @ = 1/2 and N = 2, an example

of nonlinearity g(z, s), satisfying the hypotheses (g1) — (gs), is given by

1+ x,s), ifs>0,
o= | (1 ) e
0, if s <0,
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where go : R? x R — [0, +00) is defined by

o1(x)sln (s + 1) + oo(x)s*, if (z,s) € R? x [0, +00),

g()(i[},S) =
0, if (z,s) € R? x (—00,0),

where g; : R? — [0,2] is a continuous function, g; # 0, 1-periodic in x;, with i € {1,2}.
Moreover, we consider that supp(o;) Nsupp(g2) = @ and that B; C supp(gs). Note
that g does not satisfy the (AR) condition (see details in Appendix [A).

The outline of this chapter is as follows: In Section 2, we present some notations
and definitions about the fractional Laplacian operator, and we introduce the varia-
tional framework associated to Problems and . In Section 3, we present some
auxiliary results which are used in the proofs of our results, we verify the geometric
conditions of the Mountain Pass Theorem and we present some results concerning the
behavior of the Cerami sequences. In Section 4 we study the minimax level. In Section

5 we prove some convergence results and, finally, in Section 6 and Section 7, we prove

Theorems 3.2l and B.11

Notations, definitions and variational setting

As seen in the introduction the operator (—A)® can be represented |17, Lemma

3.2 as

(—A)u(z) = —%C(N, a) / u(z + 2) + u(x — 2) — 2u(x) d. (3.3)

‘Z’N+2a

where

-1
(@/ : |_C|(]:\?J§2§1 d¢ , C= (G G2y O

However, there is another way to define this operator. In fact, when o = 1/2
there is an explicit form of calculating the half-Laplacian acting on a function w in the
whole space RY, as the normal derivative on the boundary of its harmonic extension
to the upper half-space RY™ = {(z,y) € RV . y > 0}, the so-called Dirichlet to
Neumann operator. The « derivative (—A)® can be characterized in a similar way,
defining the a—harmonic extension to the upper half-space, see [9] and — for

details. This extension is commonly used in the recent literature since it allows to write
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nonlocal problems in a local way and this permits to use the variational techniques for
these kind of problems. In particular, for nonlocal case in bounded domain, we would
like to mention two works, one by Barrios et al. [3], and a paper by Brandle et al. [6].

In order to prove our results, we consider the spaces HY(RY) and X2*(RY*!)

defined as the completion of C3°(RY) and Cg°(RY ), respectively, under the norms

Julfye = [ lemePla©Pds = [ I~y upda,
RN RN
|w||5ea == / Ko Y2 Vw*dzdy,
RYT!
where r, = 2'72°T(1 — a)/T(«).
The extension operator Ep, : HY(RY) — X2*(RIY*!) is well defined (see [6
Lemmas 2.2 and 2.3|). For ¢ € X2*(RY™), let us denote its trace on RY x {y = 0} as

¢(z,0). This trace operator is also well defined and it was proved in [6, Lemmas 2.2

and 2.3] that
160, 0) [l ey < g 210l xza sy, (3.4)

For u € H*(RY), we say that w = Fy,(u) is the a—harmonic extension of u to

the upper half-space, Rf“, if w is a solution to the problem

—div(y'2*Vw) =0 in RY

(3.5)
w=u in RN x {0}.
In [9] it is proved that
lim y' 2w, (z,y) = —i(—A)au(x). (3.6)
y—0+t v Ra

As we pointed out at the beginning of this section, identity (3.6) allows to formu-
late nonlocal problems involving the fractional powers of the Laplacian in RV as local
problems in divergence form in the half-space RY*!. Motivated by (3.5) and (3.6)), we

will consider the problem

—div(y*~2*Vw) =0 in R
Jw (3.7)

_KQG_ = -V(z)u+ [u*2u+g(x,u) in RN x {0},
v
where

ow _ —9g

o y1i>r(l)1+ y wy(, ).



In order to find a solution to problem (3.7)), by using variational methods, we will

consider the Hilbert space X,

X =S we X*™RY) : /V(w)w(az,O)de <00y,
RN
endowed with the inner product given by
(w,v) = / Koy 2*VwVo dxdy+/V(az)w(az 0)v(x,0)dx
RfJFl RN
and the induced norm
1/2.

[w]| = (w, w)
By condition (V), X is continuously embedded in X2*(RY ™). Consequently,
from (3.4), we find C' > 0 such that
|w(z,0)|l, < Cllw]||, forall 2 <q<2%. (3.8)
Throughout this chapter, we say that w € X is a weak solution to problem (3.7,
if

(w, o) — / lw|* 2w (z, 0)p(z, 0)dr + /g(m,w(x,O))<p(x,0)da: =0, forall p € X,
RN
to which a weak solution v = w(z,0) € H*(RY) to problem (3.1)) corresponds.
The Euler-Lagrange functional associated to problem (3.7)) is given by

J(w) = = |lw|* - 1 / lw(z,0)[>*dx — / G(z,w(z,0))dx, (3.9)

which under the hypotheses (V'), (g1) and (go) is well defined in X and belongs to
CH(X,R), with Gateaux derivative given by

J (w)v = (w,v) — / lw|* 2w (z, 0)v(x, 0)dr — /g(x,w(:c,O))v(a:,O)dx.

RN RN

Thus, a critical point of J is a weak solution to problem (3.7 and reciprocally.
By a similar approach, associated with the periodic problem, we have that the

functional Jy defined by

1

Jo(w) = 2|| |0——/|w z,0)*dz — /Go(x w(z,0))dz,

RN
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belongs to C'(Xp, R), where

Xo = we X**RYH /Vo(x)w(x,O)de < 00

RN
Since we are interested in nonnegative solutions, we consider

5|25 + g(x,5) if s> 0,

0 if s <0,

f(a:,s) =

throughout the remainder of this chapter.

Remark 3.4. Let w be a nonnegative weak solution to problem , to which a weak
solution v € H*(RY) to problem corresponds. Then w = E,(u) and w(z,0) = wu.
If w # 0, we have u # 0. Moreover, if u is sufficiently regular, we may ensure that
uw > 0. In fact, if u(xg) = 0 for some zy € RY, then (—A)*u(xg) = 0 and by the
representation formula , one obtains, at x(, that

/u(xo—i—z) + u(xy — 2) d

‘Z|N+2a

z =0,

RN

yielding u = 0, a contradiction.

Preliminary results

In this section, we present two versions of the Mountain Pass Theorem which are
used in the proofs of Theorems [3.2] and Furthermore, we verify the geometric con-
ditions of the Mountain Pass Theorem and we also present some results concerning the
behavior of the Cerami sequences of the associated functional: we show the bounded-
ness for the Cerami sequences and a proposition which will be essential to guarantee

that the solutions that we provide in our proofs of Theorems [3.2] and [3.1] are not trivial.

Versions of the Mountain Pass Theorem

As we observed in the introduction, the functional associated to problem ([3.7])
does not satisfy the condition Palais-Smale. To overcome this difficulty, we will use
two versions of the Mountain Pass Theorem which we will present below.

Let E be a real Banach space and I € C*(E,R). We recall that I satisfies the

Cerami condition on level ¢, denoted by (Ce)., if any sequence (u,) C E for which
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(1) I(un) — c and (it) ||I'(un)| g (|unl|z +1) = 0, as n — oo, possesses a convergent

subsequence. We say that (u,) C E is a (Ce),. sequence if it satisfies (i) — (i7).

Theorem 3.5. Let E be a real Banach space. Suppose that I € C'(E,R), I(0) = 0

and
(I1) there exist B3, p > 0 such that I |yp,0)> B > 0,
(Iy) there exists e € E with |le|| > p such that I(e) < 0.

Then I possesses a (Ce). sequence with ¢ > > 0 given by

= inf max I(y(t
¢ = Inf max (v(t)),

where

I'={yeC(0,1],X) :v(0) =0 and (1) = e}. (3.10)

We will also need to establish a local version of Theorem which has been
proved in [33] (or |26, Theorem 7.10]). For this, we consider K the set of critical points
of I and given b € R, we define K ={u e X : v e K and I(u) = b}.

Theorem 3.6. Let E be a real Banach space. Suppose that I € C'(E,R) satisfies
I(0) =0, (1) and (I). If there exists o € I', T' defined by (3.10), such that

= I t)) >0
¢= max (70(t)) >0,

then I possesses a nontrivial critical point u € K. N ([0, 1]).

Mountain pass geometry

The next lemma shows that the functional associated to problem ([3.7)) satisfies

the geometric properties of the Mountain Pass Theorem.

Lemma 3.7. Suppose that (V'), (¢1) and (g2) are satisfied. Then the functional J,
defined by (3.9), satisfies the conditions of Theorem .

Proof. Since G(x,0) = 0 for all z € R”, it follows that J(0) = 0. Thus we must show
that J satisfies the conditions (I;) and (I3). To verify (I;), note that by (g1) and (g2),
given any € > 0, there exists C. > 0 such that

lg(z,8)| < els| + Ccls|t for all (z,s) € RY xR, (3.11)
€2, Ce N
|G(z,s)| < §|s| + —1s|™ for all (z,s) € RY x R. (3.12)
il
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From (12),

/|G(:E,w(x,0))|dx§§/ (x, )d$+—/|wx 0)|"dx, forall we X. (3.13)

RN RN

By using the condition (V') in (3.13]), we obtain

/G z,w(z,0))dr < 2— V(z)w(x,0)*ds + = / lw(z,0)]"dx. (3.14)
41

Combining (3.8) and (3.14]), we can find two positive constants, C and Cy, such that

1 €

Jw) > (5 _ z_ao) 7O ot il = p

Since q1, 2 > 2, choosing 0 < € < ag, we conclude, for p sufficiently small, that

£ := inf J>0.

l[wl|=p

Hence (I;) holds. In order to verify the condition (I5), consider ¢ € CP(RY T R,)
with ¢(z,0) # 0. From (g4)(i), G(z,tp) > 0 for every ¢t > 0. Thus,

2 t%a .
It) < Sl =5 [l 0P » —oc, as 1o oo,

Setting eg = tu with ¢ large enough, the condition (I3) is satisfied. This completes the
proof. O

By Lemma [3.7 and Theorem [3.5] we have

Corollary 3.8. Suppose that (V'), (g91) and (g2) are satisfied. Then

= >
ey = ggg%%J((D__ﬁ>0,

where I' = {v € C([0,1], X) : v(0) = 0 and v(1) = ey}, and the functional J possesses

a (Ce)e,, sequence.

Behaviour of the Cerami sequences

Here we verify the boundedness of the (Ce). sequences associated with the func-
tional J. Before stating the next lemma, we establish a simple result that will be
employed several times throughout this chapter. In the following lemma, given h € F,

we set D, = {z € RN : |h(z)| > ¢} and D.(R) = {z € RY : |h(x)| > € and |z| > R}.
Lemma 3.9. Suppose that h € F. Then |D.(R)| — 0 as R — 0.
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Proof. Since h € F, |D.| < oo for all € > 0. Consequently, this Lemma is equivalent
to the following claim:

lim |D. N (RY\ Bg,)| =0,

n—oo

for every sequence (R,,) C R such that R, — co. Consider the real function £ : RY — R

£(2) 1 for =z € D,,
xT) =
0 for zeRY\D..

given by

Note that ||¢]|; = |D.|, then ¢ € L'(RY). Defining the sequence of functions &, : RY —
R by

£ () 1 for ze€D.NRN\ Bg,),
n\l) =
0 for .’L’GRN\DEQ(RN\BPW))

it follows that |£,(z)| < |£(z)] and &,(x) — 0 almost everywhere in RY as n — oo.
Consequently, by the dominated convergence theorem,

|D- 0V (RY\ Bg,)| = [[€allh = 0 as n— +o0.
This completes the proof of Lemma O

Lemma 3.10. Suppose that (V'), (91) — (g3) are satisfied and let (v,) C X be an

arbitrary Cerami sequence of J on level c, that is,
J(vn) =c+on(1) and [|J"(va)]ls(1 + [Jvnl]) = 0n(1). (3.15)
Then (vy,) is bounded in X.

Proof. We must show that there exists M > 0 such that

loall? = / oy 2 Vo 2dady + / V(@)on(z, 0)%da < M.
Rf+1 RN

By the first condition in (3.15]), (3.12]) and (V'), we have

1 1 x Ce
ZJlonl? < /|vn(x70)2ﬂdx+€/V(az)|vn(m,0)2dm+/\vn(x,0)|q1dm+c+0n(1).
2 2% 2a9 qQ

N

Given 0 < § < 1 to be chosen later, there exists 0 < §; < 1 such that |s|? < §|s|? for
all |s| < d;. Then, by using (V'), it follows that

1 1—2a 1 e 2
5 / KoY |V, |2dady + <2 Sag )/V(x)wn(x,()) dz
RN

RN+1

<5 /|v,, sOfidot = [ p@olrdet [ w0+ et o,(1)
1

{\vn(w,o)\ﬁél} {lvn (2,0)[>01}
C.0 <
< 2* /|vn (2,0)%odex + —— aa V(x)|vn(z,0)2ds + 3— / [vun (2,0)| 2 dx 4+ ¢ + o, (1),
1
]RN {lvn(z,0)[>61}
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which yields

1 1—-2 ) 1 g CECS / 9
- . *Vo,|*dzd —— — — 174 w(x, 0)2d
5 [ Py (5= o5 - S0 [ v @0
Ri\_”rl RN
1 .
< 2—*/|Un(:lt,0)|2adx+— / v (2,0)|"*d2 + ¢ + 0, (1).
a q1
RN {|vn (2,0)|>61}

Note that if |s| > d;, there exists C; > 0 such that |s|? < C}|s|?». Thus,

1 19 9 1 € C.o / 9
= a *Vo,|*dxed - — — — 1% n(z,0)]°d
5 [ Py (5= o5 - S0 [ v 0pa
Re™ ) (3.16)
1 C.C .
< (——l— 1) /|vn(x,0)]2ada:—|—c—|—on(1).
2z q1
RN
Taking ¢ and e sufficiently small such that % — ﬁ — 5%0 > 0. Hence, in order to

conclude the proof of the lemma, it suffices to show that the right hand side in (3.16|)

is bounded. Note that without loss of generality we may assume that

[ e

2= is bounded, we begin with the estimate

2adz > c. (3.17)

To prove that ||v,(z,0)

J(vp) — %J’(vn)vn = <; - 21?;) / o (2, 0) 2 dz + / Bg(w,vn(x,O))un(x,O) — G(z,v,(z,0)| da,
RN

RN

which by (g3), implies

J@@-%J’@n)vn > %/yvn(x,())\%dx—/m(g;)dx—/hg(x)\vn(x,onqzdx. (3.18)
RN RN RN
Combining (3.15)), and the fact that h; € L'(RY), we can find a constant C' > 0
such that
% / [vn (2, 0)2da < /hz(x)|vn(x,0)|‘”dx +C. (3.19)
RN RN
Given € > 0, we set D.(R) = {x € RN : |hy(x)| > € and |z| > R} for all R > 0. Then,
since hy € F, applying Lemma [3.9] there exists R = R. > 0 such that |D.(R)| < e. By
Hélder’s inequality,

2*
a_92 92
24 24

2% .
/hg(a:)]vn(:c,O)Vpda:gth”oo /123—‘12d:1: /\vn(a:,O)]Qﬂdx
)

De(R) e(R) (R

ag
24

(3.20)

Lo 2*
< Ihalloce 7 / o, 0) % da
«(R)
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On the other hand,

* q2

wNRN 2(12;:12 " &
[ o < e (255) © [ [l ops
RN\D.(R) RN (3.21)
+€/|vn(x,0)|Q2dx.

RN

Furthermore, considering 0 < r < 1 such that ¢ = 2r + (1 — )25, we apply Holder’s
inequality, condition (V'), (3.16]) and (3.17)) to find Cy > 0 such that

r 1—7r
/|vn(x, 0)|”da < /|Un(x, 0)dz /|Un(x, 0) % da
RN RN RN
r 1—7r
]. *
< (= [ V@)t 0P / o (2, 0) % da
0
RN

1—r

RN
< (O /|vn(x, O)|2‘§dx /|vn(x,0)|23dx
N ]RN

Consequently,
/\vn<x,0)|q2dx < 02/\Un<x,0)|2édx. (3.22)
RN RN

Thus, from (3.20)-(3.22), considering € > 0 sufficiently small we obtain C3 > 0 such
that

q2
2%

/hg(x)|vn(x,0)|‘”dx§ng/|vn(x,0)|2;dx—l—C'3 /|vn(x,0)|23dx . (3.23)

RN RN RN

Combining (3.19) and (3.23]), we get

a2
25,

(%-mg) /|vn<x,0)|22dxg Cy /|vn(g;,0)|22dx i)
RN ]RN

Since g2 < 27, taking € > 0 sufficiently small such that % —e(Cy > 0, we obtain the
desired result. O

In order to show the next result, we recall the following Sobolev inequality proved
in [6, Theorem 2.1],
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where

~ T(@rEE)r )
Sla, N) = (2m)oDT(1 — a)T(AE22) (T (5))2e/N
From (3.24)), 1
[w(z,0)3, < muww, for all w € X. (3.25)

Proposition 3.11. Suppose that (V), (91) and (g2) are satisfied. Let (v,) C X be a
(Ce). sequence with 0 < ¢ < 2(S(a, N)kqo)V?* and v, — 0 in X. Then there exist a
sequence (y,) C RN and R,n > 0 such that |y,| — oo and

lim sup / v, (z,0)*dx > 7 > 0. (3.26)

n—00
Br(yn)

Proof. Supposing that the result does not hold. Then, arguing similarly as in [48,
Lemma 1.21], we can assume that

lim [ |v,(z,0)]dz =0, for every o € (2,2).

n—oo
RN

Since g is subcritical and (v,) is bounded in X, by using (3.11) and (3.12)), we obtain

lim [ g(z,v,(z,0))v,(z,0)dz = lim [ G(z,v,(z,0))dz = 0. (3.27)

n—00 n—00
RN RN

Moreover,

¢+ on(1) = J(v) — %J’(vn)vn

:%/\vn(x,())]2zd$+/ Bg(x,vn(x,()))vn(x, 0) — G(z,v,(x,0))| de.

RN

Taking the limit in the above equality and using (3.27), we obtain

* N
lim /|vn(:c,0)\2adx _ AN (3.28)
(8%

n—0o0
RN

Combining
on(1) = J (v,)v, = ||vn||2 — / |vn(w,0)|23dx — /g(x,vn(x,O))vn(x,O)dx
RN RN

with (3.27) and (3.28), we reach

N
lim o, ||? = <. (3.29)
n—o00 0%
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By (3.25)), it follows that

V)
BN

X 1
tin [l 0Ps | st o
RN

The last inequality, together with (3.28) and (3.29), implies
c> %(HQS(&,N))N/QQ,

which is a contradiction and this completes the proof of Proposition [3.11] O

Estimate of the minimax level

In this section we will verify that the minimax level associated with the Mountain
Pass Theorem is in the interval where Proposition may be applied. To show this
result, we use appropriate test functions as the ones employed by Brézis and Nirenberg

9].

Test functions

Theorem 2.1 of [6] states that S(«, N) is achieved on the family of functions

we = Fao(u:), where
N—-2a
us(z) = £ e>0
R (R
This family of functions will be crucial to estimate the minimax level. First, we define
¢ RYT — R by ¢(x,y) = ¢o (|(7,y)]), where ¢y € C*°([0,+00)) is a non-increasing
cut-off such that ¢o(t) = 1if 0 < ¢t < 1/2 and ¢o(t) = 0 if ¢ > 1. It is obvious that

pw. € X?*(RYT!) and by Lemma 3.8 of [3] and Lemma 2.4 of [21] we have the following

result:

Lemma 3.12. The family {¢w.} and its trace on {y = 0}, namely, du., satisfy

lpwe||3za < [|we|[f + O 72), (3.30)
O(e2), if N > 4a,

lpucll; = § O(e**log(1/e)), if N = 4a, (3.31)
O(eN729), if N <4a,
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for e > 0 sufficiently small. Define

e = 0
) ||¢)u5 2?;’
then
171520 < KaS(a, N) + O(N72), (3.32)
O(e%), if N > 4o,
(2, 0)[l3 = § O(e**log(1/e)), if N = 4a, (3.33)
O(eN29), if N <4a,
and O( 2N—(N7204)q) f > N
€ 2 v W4 Z N oo
7e (2, 0) 1 = { (N-20)0 , N2 (3.34)
O =), ifq< 5y

As a first consequence of Lemma we obtain the following result.

Lemma 3.13. Suppose that (V'), (g1), (92) and (g4)(i) are satisfied. Consider t. > 0
such that

J(t-n.) = max{J(tn.) : t > 0}.
Then, there exist g > 0 and positive constants T and T such that T < t. < T for
every 0 < € < gp.

Proof. In view of Lemma [3.7 (g4)(¢) and the definition 7., there exists a positive
constant 3 such that

st = S =5 [ 00 = S -
- — 2 2% < 2 2%
RN
which implies that
2 e 2
B< Sl and - < =n|® — 5. (3.35)

2 = 2

From (3.32)) and (3.33)), we obtain a positive constant C' such that ||7.|| < C for ¢ > 0
sufficiently small. By using (3.35]), there exist positive constants 7" and T such that
T < t. <T. This completes the proof. 0

Now we are ready to prove the main result of this section.

Proposition 3.14. Suppose that (V'), (g1), (92), (94) are satisfied. Furthermore, we

assume one of the following conditions

(95)(3) if N = 4a.

<p<2.

[0}

4
(g5)(i1) if 2a < N < 4o and N @
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11) if 2 N <4 d?2
(g5)(idi) if 2a < N <4da and 2 < p < N9
Then there exists v € X \ {0} such that

o N/2a
max J(tv) < —N(S(Q,N)H,a) : (3.36)

Proof. Consider t. as defined by Lemma | it is clear that

t€ te”
J(tsne) = 5”778”2 /G z tf—:ns z, O )d

Considering the function A, : [0,00) — R given by h.(t) = %||n.[[** — 5-t*, we have

that t.o = [|7.]|*®? is a maximum point of h. and h.(t.o) = N||775||N/a. This,
together with (3.32), implies

T(ten) < (el - / G, oo, 0))d

RN

« _9% N/2a
< 2 (raS(0, )+ O ) + Wl 8)* = [ Gt (.00

N
RN
Consequently, by using we reach
% (koS (e, N)N2 4 0 (£2) —R[V G(x, ton.(z,0))dz, if N> da,
J(teme) < % (,%QS(a,]\f))N/%l +0 (52"‘ log(l/s)) _]R‘[V G(x,ten(x,0))dz, if N =4a, (3.37)
% (KaS(a, NN/ 4 O(eN—20) —R[V G(z, ten.(z,0))dz, if N < 4a.

Indeed, if N > 4a,

Tt < 5 koSl N) + O )+ 0E) "™ — [ G, tona,0))da

RN
«

= (kaS(a, N) + O(ém))N/za — /G(a:,tgne(x, 0))dz.

RN

Applying the inequality
(b+¢)” <b +a(b+c)” e, with be>0,0>1, (3.38)

we get

T(tn) < % (s, )YV 1.0 () - / Gla, ton(,0))dz.

This proves the first estimate of (3.37). For N = 4a, note that

J(tene) < % (/{aS(a, N)+OEN )+ 0 (520‘ log(l/e)))N/2a — /G(x, tene(z,0))dz

=¥ (kaS(a, N) 4+ O (> log(l/e)))N/2a - /G(x, tene(z,0))dz.

RN
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Again by using (3.38), we get

(0%

(kaS(a, N)V2 1 O (2 10g(1/¢)) — / Gla, ton(x,0))dx.

RN

This proves the second estimate of (3.37). For N < 4a, combining (3.33]) and (3.38)),

it is immediate that

T(t:12) < (oS, M) 4 O(N ) - / G 1. (, 0))de.
RN
This completes the proof of (3.37).
Now consider
= i N > da,
y(e) =1 e**log(1/e), if N = 4a,
g2 if N < 4a.

By using (3.37) we find a positive constant © such that

J(ten.) < — (KaS(o, NN 4 ~(e) o_ - / Gz, ten.(x,0))dz| . (3.39)

7(8)RN

In order to prove Proposition [3.14] we just need to verify that

=] 2

) 1
allgﬁr%/G(x,tgna(x,O))dx > 0. (3.40)
RN

Initially, observe that without loss of generality we may assume that B; C 2. On the
other hand, by (gs), given A > 0 there exists R4 > 0 such that

G(z,s) > AsP, for all (z,s) € Q x [Ra,+00). (3.41)

Moreover, by using Lemma it is easy to see that there exists positive constant v
such that

tene(z,0) > t.Chruc(z) > TCy(2e)"NV200/2 > e~ (N=200/2 g || < ¢, (3.42)
with € > 0 sufficiently small. It is clear that we may choose £; > 0 such that
ve W22 > R, for 0<e <ey. (3.43)
Combining (3.41)), and ([3.43)), we have
G(x,tn:(x,0)) > AveN=20P/2 for |z| < e.

Furthermore, by (g4)

/ Gz, tene(z,0))dz > / AveN20p2qg — / (tene(x,0))?da,

RN B:(0) Q\Bc(0)
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which, together with Lemma |3.13| gives
/ Gz, ton.(z,0)de > Avwye V22N Ty |3 (3.44)
RN

Now, in order to verify (3.40)), we should consider the following cases:

Case 1: N > 4a.

From ({3.44) and (3.33)), we obtain

1

) / G(z,tn.(x,0))ds > Avwye” N20P/24N=20) _ 0 (1),
~

RN

Since —(N — 2a)p/2 + (N — 2«a) < 0, we have that for ¢ > 0 sufficiently small (3.40)
is satisfied.

Case 2: N = 4q.

From (3.44) and ([3.33), we have

1 o q A 5—(N—2a)p/2+]\/ o
—— tene(x, 0 > — - —O().
5 Gt N> v - 0)
RN
But,
6—(N—2a)p/2+N
= +00.

lim ————
oo+ 2 log(1/¢)

Consequently, we get that (3.40]) holds, for € > 0 sufficiently small.

Case 3: 2 < N < 4« and

% *
oo <P <2

Combining (3.44)) and (3.33]), we obtain
1
— / Gz, tn.)de > Avwye™ N 7200/2420 _ (1),
(€)
RN
Since —(N — 2a)p/2 + 2a < 0, we get that (3.40) holds, for € > 0 sufficiently small.

Case 4: 2a < N <4aand 2 <p<

N —2a’

By (gs)(iti),
G(x,8) > Cys?, for all (z,s) € RY x [0, +00), (3.45)
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where Cy ~ €7 with 7 to be chosen later. Here, we need to consider two cases:

If 2 <p < N/(N —2a). By applying Lemma [3.13] (3.45) and (3.34)), we get
1 /
— | Gz, tn.)da > O(eW—20)p/2=(N=2a)+7)
() ( ) ( )

which implies that (3.40) holds, since 7 < (N — 2a)(2 — p)/2.

If N/(N —2a) < p < 4a/(N — 2a). By applying Lemma [3.13] (3.45)) and (3.34)), we

get

: /
G(x,t.n.)dx > O(eN~N=200p/2=(N=2e)47y
(€) ( (
RN
which implies that (3.40) holds, since 7 < (N — 2a)p/2 — 2a. This concludes the
proof. -

Convergence results

In this section, we prove two lemmas which are required in later sections.

Lemma 3.15. Suppose that (V') and (g4) are satisfied. Let (v,) C X be a bounded
sequence in X and wy,(x,0) = w(z —y,,0), where w € X and (y,) C RY. If |y,| — oo,
then

Vo(z) — V(x)]v,(z, 0)w,(z,0) — 0,

[90(; vn(,0)) = g(, vn(, 0))]vn(, 0)wn(z,0) = 0,

in LYRY), as n — oo.

Proof. Given § > 0, since w(x,0) € LY(RY) for all 2 < ¢ < 2, we find 0 < & < § such
that, for each measurable set A C RY satisfying |A| < ¢,

2
/|w(m, 0)|*dr < § and /|w(x, 0)|2%-sdr < 6. (3.46)
A A

The condition (V) implies V; — V € F and by Lemma [3.9] there exists R; > 0 such
that |D.(Ry)| < &, where D.(R;) = {z € RN : |Vy(x) — V(x)| > ¢ and |z| > R;}.
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Thus, applying Holder’s inequality and (V'), we obtain

/ Vo() = V(2)][on(, 0)[[wn(z, 0)]dz

RN\Bg,

< Vollw / o (2, 0) [ (, 0)] i + & / o (2, 0) | [wn (x, 0)]
DE(Rl) Fa

2

NI

<Ml | [ 0P| | [ e 0P
Ds(Rl) DE(Rl)
%

3
te /|vn(x,0)|2dx /|wn(x,0)|2dx ,

where F. := R" \ (Bg, U D.(R;)). Consequently,
/ Vo(a) = V(@)[[on (2, 0)[[wn(z, 0)|dz
RN\Bpg,

< [Vollsolon (, 0)l2llwn (z, 0)[[ L2 (p. (Rr)y + Ollva(2; 0)|[2]w(z, 0)l2.
Using and the fact that (v,) is bounded in X, we obtain a constant C; > 0 such
that

/ Vo(z) — V(@)]|vn(, 0)]|w, (2, 0)|dz < Cy (62 + 6). (3.47)

RN\Bp,

On the other hand, by Hélder’s inequality, (V') and the boundedness of (v,) in X, we
find C3 > 0 such that

/ Vo() = V(@) [on(, 0)[[wn (2, 0)|dz

[N
[N

<Walle | [ loate.0Pds || [ (e 0)Pds
BRl

Br;

3 (3.48)
< Volloellon (. 02 / w(z,0)dx

BR1 (*yn)

2

< (% / |w(z,0)*dz
Br, (=yn)
Then, since w(z,0) € L*(RY) and |y,| — oo, there exists ny € N such that

/ Vo(z) — V(2)||vn(z, 0)||w,(x,0)|de < Cyd, for all n > ny. (3.49)

Bg,
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The inequalities (3.47), (3.49) and the fact that § > 0 can be chosen arbitrarily small
imply that

[Vo(z) — V(2)]on(z,0)w,(2,0) = 0 in LY(RY), as n — oo.
This proves the first convergence of the lemma. In order to verify the second limit, given

Ry > 0, we define A, = (RY \ Bp,)N{x € RY : |v,(2)] <1}, B, =RY \ (A, U Bg,),
D.(Ry) = {zx € RY : |h3(z)| > € and |z| > Ry} and we split

/ |90($,Un($; O)) - g(I, Un(xa 0))||Un($a O)||wn(x, O)|d$ = Il,n + IQ,n + IS,na
RN

where

Lip = /\go(fc,vn(%o))—9(1?,vn(fm0))|Ivn(ﬂf,0)!!wn(%O)Id%

A'!L

Iyn = /Igo(fﬂ,vn(w,())) = 9(2, vn(2,0))||vn(z, 0)]|wn(z, 0)]dz,
B
Iy = / |90(x, v (2,0)) = g(, va (2, 0))[vn(z, 0)||wn (2, 0)|da.
B,
We will estimate each one of these integrals. For I;,, note that by the condition
(94) (i),

I, < /yh3<x)||vn(x,O)yqsywn(x,())ydx T

An

By Lemma and the fact that hy € F, we can find Ry > 0 such that |D.(Ry)| < e.
Then, by Holder’s inequality

Tlm S ||h3||oo

25 —a3
B
25
[ 0P [ o
AnNDe(R2) AnND<(Rgz)
a3 26-43
24 24
24
+¢ v, (2, 0)%*da |wy, (x,0)|% -9 dx
An\De(R2) An\De(R2)
Consequently,
I < lhsllollva(@, 0) 132 lwa (2, 0)] 2 + 0 [[on (2, 0)[3: [lw(z, 0)]| 2 .
L(25-93) (D.(R2)) 25—

a—43
Again using (3.46) and the fact that (v,) is bounded in X, we obtain a constant C3 > 0
such that

I < O3(63a—9)/2% 1 5), (3.50)
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On the other hand, again using the condition (g4) (i) and Hélder’s inequality we have

a3 25—a3
25 2%

I, < 173 || oo /]vn(x,())\23dx /|wn(x,0)\2?§fq3dx

Ds(RQ) DE(RQ)

Q
¥

*
20—43
3

V)

Q
V)

Q

25
+e / v, (2, 0)]2da / |wy, (z,0)]%-9 dx

Br\De (R2) Bn\D:(R2)

Thus, by the boundedness of (v,) in X and (3.46|), there exists Cy > 0 such that
L, <C 7 (3.51)

Similarly to (3.48)), we obtain that
25—43

*

IS,n < C5 / |U)([L‘,O)|233q3dx ’
BRg(fyn)
for some constant Cs > 0. Therefore, since w(x,0) € L?/(2a=a)(RY) and |y,| — +oo,

it follows that there exists ng € N such that

I3, < Cs6, forall n > ng. (3.52)

Finally, the inequalities (3.50) — (3.52)) and the fact that § > 0 can be chosen arbitrarily
small imply that

[g0(z,v,(2,0)) — g(2, v, (z,0))]vn (2, 0)w,(2,0) — 0 in L*(RY), as n — oc.
This concludes the proof. O

Lemma 3.16. Suppose that 2 < q < 2 and h € F. Let (v,) C X be a sequence such
that v, — v i X. Then

h(x)|vn(z,0)|? — h(z)|v(z,0)| in L*(RY), as n — oco.

Proof. Arguing by contradiction, we suppose that there is a subsequence, still denoted
by (v,,) and € > 0 such that

/ |h(2)] | |on(x,0)|? — |v(x,0)]|?|dz > ¢ for all n € N. (3.53)
RN

Now we define Ds(R) = {z € RN : |h(x)| > § and |z| > R}. Since h € F, by Lemma
there exists R = Rs > 0 such that |Ds(R)| < 6. Consequently, since the sequence
(v,) is bounded in X, by using Holder’s inequality and (3.8]), we get

*
2049 q

25 2

22 * * *
/ |vn(2,0)]dx < / 1%-adx / v (, 0)] % da < 050/
Ds(R) Ds (R) Ds(R)
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for some constant C' > 0, which implies that

/ [h(@)| | |vn(z,0)|7 = |v(z,0)||dz < [|h][o / (lvn (2, 0)[ + [o(2, 0)[))dz < C16C«~D/2 - (3.54)
Ds(R) Ds(R)

for some constant C; > 0. Still by the definition of Ds(R) and boundedness of (v,,) in
X, there exists C'y > 0 such that

|h(2)] | |vn(x,0)]| — |v(z,0)|?dx < § /(|vn(x,0)|q + |v(z,0)]|9)dz < Cod. (3.55)

RN\(BrUDs(R)) RN

Using that v, = v in X, (3.4) and (V'), up to a subsequence, we have v,(z,0) — v(x,0)
in Lj |

vn(x,0) — v(z,0) almost everywhere in Br and also that there exists w, € L?(Bg)

(RY) for all 1 < g < 2%. Consequently, up to a subsequence, we obtain that
such that |v,(z,0)| < w,. Thus, it follows by the Dominated Convergence Theorem

that
/ on(2, 0)|7 — [o(z, 0)[7]dz — 0, as 1 — oo,
Br

Since h € L>°(RY) there exists ng € N such that

/ |h(z)|||vn(z,0)]7 — |v(x,0)]?|dz < 6, for all n > ny. (3.56)
Br

Combining (3.54)) — (3.56)), for n sufficiently large, we get

/ (@)l o2, 0)[7 — [o(x, 0)[7]dx < C16E0/% 4 Cyb + 6.
RN

But 0 can be chosen arbitrarily small and so the inequality above contradicts (3.53)),
which completes the proof. O]

Proof of Theorem [3.1]

With the aid of the results of the previous sections the goal of this section is
to find a nontrivial critical point of J. First, recall that by Corollary [3.§] there exists
(v,) C X such that

J(vp) = ey and [T (vp)|[«(1+ Jon]) = 0, as n — oo. (3.57)

By Lemma we may assume that v, — v in X. Note that v is a critical point of
J. Indeed, since v, — v in X, from (3.4) and (V'), up to a subsequence, we have that
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vn(z,0) = v(z,0) in L]

loc

combining the Dominated Convergence Theorem and (3.11)), we obtain

(RM) for all 1 < ¢ < 2%. Consequently, up to a subsequence,

/g(ac,vn(x,O))go(x,O)dx% /g(x,v(x,O))cp(x,O)dx, as n — +00

RN RN
and

/|Un(x,0)|23_1<p(a:,0)da:—>/|v(x, 0)[% " p(z,0)dz, as n — +oo,
RN

RN
for each p € Cg°(RY ™). These convergences, together with the fact that v, — v in X

and (3.57), imply

J'()p= lim J'(v,)p=0, forall ¢ CRY).

n—-4o00

By density this holds for every ¢ € X. This concludes the assertion.

If v # 0, Theorem is proved. Assuming that v = 0, the existence of a
nontrivial point critical of J is more delicate and it will involve several steps. Initially,
when v = 0 in view of Propositionwe have cir < 2(kqS(a, N))V/?e. Furthermore,
by Proposition there are a sequence (y,) C RY and R,n > 0 such that |y,| — oo,
as n — oo, and

lim sup / U (2,0)[2dz > n > 0. (3.58)
n—oo
Br(yn)

Without loss of generality we may assume that (y,) C Z". Then, defining u,(z,y) =
vn (T + yn,y), by the periodicity of Vy we have that |[u,(-,)|lo = [|vn(: + ¥n, *)||o. Since
(v,) is also bounded in Xy, it follows that (u,) is bounded in Xjy. Thus, passing to a

subsequence if necessary, there is © € X such that u, — u in Xj.

Step 1. u is nonzero.

Indeed, by (3.58)), up to a subsequence,
1'% < lun (-, 0) [l 228y < [[(n — @) (-, 0) || p2mg) + (-, 0) | 2By -

Thus, from the Rellich-Kondrachov Embedding Theorem, we conclude that u is nonzero.
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Step 2. Jj(un)p — Jh(u)p, as n — oo, for all ¢ € C°(RYH).

By the Dominated Convergence Theorem, it is easy to see that for ¢ € C’g"(RfH), up

to a subsequence,

/|un(:z;,O)|23_2un(x,0)<p(x,0)dx — / lu(x, 0)**2u(z, 0)p(x,0)dx, as n — +oo.
RN

]RN

(3.59)

We also claim that

/go(x,un(x,O))go(x,O)dx — /go(as,u(x,O))gp(as,O)daj, as n — +00. (3.60)

RN RN
In order to prove (3.60)), observe that

[90(z, u(,0)) = go(, un(x,0))] o(2,0) = [go(x, u(z,0)) = g(x, un(z,0))]e(z,0)

(3.61)

+ [9(x, un(2,0)) — go(x, un(z,0))]p(z, 0).
Now, using that u, — uin Xy, (3.4)) and (V'), up to a subsequence, we have w,(z,0) —
u(z,0) in L (RY) for all 1 < ¢ < 2%. Consequently, from (g;), (g2) and the Dominated

Convergence Theorem, up to a subsequence,

/g(m,un(x,O))go(x,O)dx — /g(m,u(z,O))gp(w,O)dx, as n — 400, (3.62)

RN RN

and by (g4)(77) and the Dominated Convergence Theorem, up to a subsequence,

/[g(x, Un(xa O)) - go(fﬂ, un(xa 0))]90(17 O)d(E - /[g(xv ’U,(IE, 0)) - gO<m7 ’LL(.’E, 0))](,0(.%, O)dxa (363)
RN RN

as n — +00. Thus, combining (3.61))-(3.63), we obtain (3.60)).
Since u, — u in Xy, from (3.59) and (3.60)) we conclude Step 2.

Step 3. Given ¢ € CP(RYHY), we have that J)(u,)¢ = Ji(vn)pn, Where o, (z,y) =
o(x — yn,y) and n € N.
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First, observe that

Jb(un)p = / Koy 2OV (2 + Yn, y) Veo(x, y)dady

N+1
Ry

+ / Vo()vn (2 + Y, 0)p(z,0)dz — /go(as, Un (T + Yn, 0))p(z,0)dx

RN

RN
- / ”Un(x+ynaO)PZ_lvn('x+yn70)90($70)d$
RN

By applying the definition of ¢, (x,y) and the periodicity of V and gy, we obtain

Jh(un)p = / ooy 2 V0 (2, ) Vo (2, y)ddy

Rf“
4 [ ez 0oz, 0)dz = [ o2, 0)p0 (2.0
RN RN
_ / o (2, 0) P (2, 0)eom (2, 0)d2
RN
= J(/)(Un)‘:pn-

This concludes Step 3.
Step 4. u is a critical point of Jj.

Initially, note that

[Jo(vn)on = J'(vn)on| < / Vo(2) = V(2)[[on(z,0)@n(2, 0)|dz

+ [ 96, 0ul2.0)p(2.0) = gz, 02,0

RN

Then, applying Lemma we get that
|15 () on — J (V) on| = 0, as n — oo. (3.64)

By (3.57) and using that ||pnllo = ||¢llo, for all n € N, we have J'(v,)e, — 0 as
n — +o00. Hence, by (3.64), we obtain

Joy(vn)pn — 0, as n — oo.
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From Step 2 and Step 3, we obtain that wu is a critical point of J; as claimed.

Step 5. We claim that

lim inf / Bg(x,vn(x,()))vn(x,(]) —G(:L‘,vn(a:,O))] da

n—o00
RN

> / Bgo(:c,u(x,()))u(:c,O)—Go(x,u(x,O))} dz. (3.65)

RN

Since v, — 0 in X, in view of Lemma [3.16]

[ m@lentz.0

RN

%ider — 0, as n— oo, (3.66)

for i € {1,2,3}, h; € F and 2 < ¢; < 2. Recall that by (g4)(i7)
|g<$, S)S - go(.fli, S)S| < h3<l’)’8|q3.
This together with (3.66)) imply

/ [9(x, v, (x,0))v,(2,0) — go(x, vp(x,0))v,(2,0)]dz — 0, as n — oo. (3.67)

RN

Similarly,

/ [G(z,v,(2,0)) — Go(z,v,(x,0))]dz — 0, as n — co. (3.68)

RN

From (3.67) and (3.68)), we reach
1
lim inf/ [ég(x,vn(x,()))vn(x,()) - G(ZE,UR(I,O)):| dz

n—o0
RN

~ liminf / Bgo(x,vn(x,O))vn(:c,O) —Go(x,vn(a:,O))} du.

n—oo
RN

Consequently, by the periodicity of go and the definition of (v,), we obtain

lim inf / Bg(:)&,vn(x,()))vn(x, 0) —G(x,vn(m,O))l do

n—o00
RN

~ liminf / Bgo(x,un(x,O))un(x, 0) —Gg(x,un(x,O))} de.  (3.69)

n—o0
RN
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Now, from (g3) and (g4), we have that for s > 0,

S00(e,5)s = Golw, ) = 3lon(a,s) — gl 9)ls + 590w, 8)s — G, ) + Gz, ) ~ Gl )
> —hu(e) ~ ho(a)s® — hs(a)s®.

Hence, since go(x,s) = 0 if s < 0, by Fatou’s Lemma, it follows that

liminf Bgo(x,un(x, 0))un(z,0) — Go(z,un(z,0)) + hi(x) + ho(z)|uny(z,0)|% + ;hg(x)un(%())qg}dm

n—oo
RN

> / Bgo(m,u(x,()))U(x,O) — Go(z,u(z,0)) + hi(z) + ha(z)|u(z,0)|* + h3( )|U(1'70)|q3} de.

RN

By using (3.66) and (3.69)), we obtain (3.65)).

Step 6. Jo(u) < ¢y

In order to show this fact, note that

J(Un) -

%J/(Un)vn:%/|vn(g;,0)|23dx+/ Eg(az,vn(x,O))vn(x,O)—G(a:,vn(a:,O)) dz. (3.70)

By using the definition of (u,) and the Fatou’s Lemma we have

n—o0

hmmf/ o (2, 0)[>>dz > /|u z,0)|*dx. (3.71)

Combining (3.57)), (3.65), (3.70), (3.71) and Step 3, we reach

ey > %/\u(m,O)]Qde—i-/ Bgo(x,u(x,()))u(a:,O)—Go(x,u(x,O)) dz

RN

— o) — %J{)(u)u — Jo(u), (3.72)

where we have used the fact that u is a critical point of Jy (see Step 4). This completes

Step 6.

Step 7. There exists 7y € ' such that

ey = max J(y0()). (3.73)

te[0,1]
Note that max{Jy(tu);t > 0} is unique. Indeed, we suppose that exist ¢; and ¢, such
that t;u and tyu are maximum points of Jy with 5 > ¢1, without loss of generality. By
using the fact that tou is a critical point of Jy, we have

t§||u||g:/go(x,tgu)tgudxﬂg?/

RN RN
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By using (g4)(i7i), we have that

0= ful2 - / ol tou)ty Mud — £ ul

RN

2S
25

< t% Hqu - /go(x,tlu)tlludx _ tf:dHu

RN
Multiplying the above inequality by ¢? and using the fact that t,u is also a critical

point of Jy we obtain

25

u|52
S

0< t% tfHuH% — /go(x,tlu)tludx — tfg
RN

2
— tl

= t% <t?s|\u U

25\
2’;) - 07

but this is a contradiction, thus the max{Jy(tu);t > 0} is unique.

2;
2%

Using this fact combined with (V'), (g4)(¢) and Step 6, we have
e < max J(tu) < max Jo(tu) = Jo(u) < ey

This implies that there exists 7o € I' such that (3.73) holds.
In view of Theorem [3.6] J possesses a nontrivial critical point T on level ¢js. This

concludes the proof of Theorem O

Proof of Theorem

The proof of Theorem [3.2] follows the same arguments of Theorem [3.1] In fact,
since go satisfies (g1) — (g3), applying Corollary we find a sequence (v,) C Xg such
that

Jo(vn) = ey and || J5(0n) ||« (1 + [|onllo) = 0, as n — oc.

By Lemma [3.10, we may suppose, without loss of generality, that v, — vg in Xy. From
for go, by using the same arguments as in the proof of Theorem [3.1 we have
that vy is a critical point of Jy. Hence, in order to prove Theorem it suffices to
assume that vg = 0.

In view of Proposition , it follows that car < 2(k,S(c, N))/?*. Furthermore,
by Proposition there are a sequence (y,,) C RY and R,n > 0 such that |y,| — oo,
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as n — 0o, and

lim sup / v, (,0)2dz > n > 0. (3.74)
B Br(yn)

As in the proof of Theorem we may assume that (y,) C Z". Then, defining

Un (-, %) = vu(- + Yn, %), n € N, by the periodicity of Vy we have that [|u,(-,*)||o =

|vn (- 4+ Yn, *)||o for all n € N. Consequently, passing to a subsequence, if necessary,

there exists ug € Xy such that u,, — ug in Xy. Similar to Step 4 we have that ug is a

critical point of Jy. Furthermore, (3.74]) implies that ug #Z 0. This completes the proof
of Theorem O
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Appendix A

Auxiliary results

Fractional Sobolev spaces and the fractional Laplacian

operator

In this section we present the suitable environment for the study of the nonlocal
equations: Fractional Sobolev spaces.
Considering 0 < a < 1 we may define the fractional Sobolev space W*P(RY) for

any p € [1, +00) as follows

Wer(RY) = {u € LP(RY); —“"< “) ’ﬁj&lf’ e IP[RY x ]RN)} ,
x—y|»

endowed with the natural norm

1/p

|u(z
il = / pas+ [ [ O )

RN RN

where the term
1/p

TG RO
[u]a,p T / |I—y|N+ap d dy

N RN
is the so-called Gagliardo (semi)norm of u, see details in [17].
As in the classic case when « is an integer, any function in the fractional Sobolev
space WeP(RY) can be approximated by a sequence of smooth functions with compact

support, it is what guarantees us the following result:
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Theorem A.1. |17, Theorem 2.4| For any a > 0, the space C°(RY) of smooth func-

tions with compact support is dense in W*P(RN).

When p = 2 we have an important case since W*?(RY) turn out to be Hilbert
space usually denoted by H*(RY), which is strictly related to the fractional Laplacian
operator (—A)®.

This nonlocal operator (—A)® in R is defined on the Schwartz class through the

Fourier transform,
((—=A)u)(€) = [2mE*u(€),
where © denotes the Fourier Transform of u, that is,
u(é) = /e’Q’Tix’Eu(x) dz.
RN

The operator (—A)® can be equivalently represented as

(=A)u(z) = C(N, ) lim Mdy, (A1)

e—0+ |z — y|N+2e
B ()

~1
1—
Q/ |§](Jj\?j2§l , C= (G, G, C)-

E. Di Nezza et al. in [17] proved that we may write the singular integral in (A.1]

where

as a weighted second order differential quotient.

Lemma A.2. |17, Lemma 3.2] Let 0 < a < 1 for any u on the Schwartz class,

(—A)u(z) = —%C(N, o) / uz+y) ﬂ;“(]f;ay) —2u®) 4 v e RV,

RN

Moreover in [17] it has proved a relation between the fractional Laplacian operator

(—A)® and the fractional Sobolev space H*(RY) given by following result:
Lemma A.3. |17, Proposition 3.6] Let 0 < a < 1 and let u € H*(RY). Then,
[ul?, = 2C(N, @) H|(=A) % ul)3.
Among some properties of these spaces we may mention the fractional Sobolev

inequalities. In this sense it is also important note that for N > ap the space W*P(RY)

is continuously embedded in L4(RY) for any ¢ € [p, p’] and in the limiting case N = ap
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we have that WP(RY) is continuously embedded in L4(RY) for any ¢ € [p,00). For a
proof of these results see |17, Theorems 6.5 and 6.9].

We conclude this section presenting an other approach for the fractional Laplacian
operator proposed by Caffarelli and Silvestre in [9] which reduces the nonlocal operator
(—A)® on functions defined in RY to a local operator on functions sitting in the higher
dimensional half-space ]Rf“, thus we have that

(—A)u(x) = Rq yli}lr(r)l+ (yl_Qawy(x,y)) ,

where the function w : RY ™ — R solves

—div(y'~2*Vw) =0 in RYT
w=u in RN x {0}.

For more details see [9].

Variational formulation

In this section we present the variational formulation for the class of the problems

studied in Chapters [[] and 2l In order to do this, we consider the following class of

problems:

(=AY 2u+ V(z)u = f(r,u) in R, (P

u€ HY2(R) and u >0,
and we denote X, the space H'/2(R) endowed with the norm

1/2
lu(x
lul|x, = 5 / P y|2 dm dy | + [ V(z)u*dx
R
Recall that v € H'/2(R) is a weak solution to problem if
(1, v) — / (e, wyodz = 0, for all v € HY2(R). (A.2)

The purpose of this section is to prove that if u € C*°(R) is sufficiently regular such that
(—A)2u 4+ V(z)u = f(z,u) in R, then u satisfies (A.2) for every function v € C$°(R)
such that [ V(z)uvdz < oo and [ f(x,u)vdr < co. Indeed, since
R R
(=A)Y2u(z) 4+ V(z)u(z) = f(z,u) in R
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Multiplying both members of this equality by v and integrating, we obtain

/(—A)l/QU(iU)U(iﬁ)dx—i— /V(:U)u(x)v(x)dx — /f(x,u)v(x)dac =0.

R R

Now note that to obtain (A.2)) it is sufficient to show that

/(—A)1/2u(x)v(x)dx + /V(x)u(a:)v(x)dx = (u,v). (A.3)

R R

First, remember that

1 [ ulz+y)+ulr—y) —2u(z)

(=A)V2u(z) = “or /. e dy, for allz € R.
Thus,
Then,
/(_ A ruaae = [ v<x><u<x>|y—|2u<x D)
r L[ e,
By the change of variables formula we obtain
1 v —ul )y g L[ eOWO) )
2 R2 |y|2 Y 2T R2 |§ — 0|2 ’ ’
and
1 [ o) (u(r) — u(z —y)) _ L[ u(@)(u(é) —u(0))
o | e dydz = 27 s € 0P dod¢. (A.5)

Combining (A.4) and (A.5)), we get

12 1 w(§) —u(0)(v(§) —v(d)
/(—A) Pu(z)v(x)ds = o /R2 T dod¢.

R

Thus, the equality (A.3) is valid and, therefore, (A.2)) holds.
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Differentiability of the functional [

In this section we will study the properties of the functional I : X; — R defined

by

1
1) = ¢l — /F(:c,u) dz,

R

where F(z,s) = /f(m,t)dt. In order to show that the functional I € C'(X;,R), we
0
need the following result.

Proposition A.4. Let (u,) a sequence that converges strongly in H'/?(R). Then there

are a subsequence (u,,) of (uy) and v in HY/?(R) satisfying
U, (2)] < v(z), almost everywhere inR.

Proof. Let (u,) be a strongly convergent sequence in H'?(R), let us say, u, — u in
H'Y?(R). Hence (u,) is Cauchy in H*/2(R). Thus, there is a subsequence (u,, ) of (u,),
which, for simplicity, we denote by (uy) satisfying

1
g1 — gl < L for allk € N. (A.6)

We define

By the triangle inequality and by (A.G)), it follows that

n n n
1
lgallye < D Mk = unlllyjo = D ks = willyp < D 5p <1
k=1 k=1 k=1

Therefore, ||gnll,, < 1. In particular,
[gn]l/z <land [gafl, <1 (A.7)

Note that (g,) is a sequence of measurable functions that converges, let us say, to a
function g(z) = > 77, |wkt1(x) — ux(x)|, almost everywhere in R. Then g is a measu-
rable function. From this we have that (¢g2(z)) converges for g(x) almost everywhere
in R. Moreover, we have that (g,) is a sequence of increasing functions and nonnega-
tive, then (g2) is also increasing and nonnegative. Thus, by the monotone convergence

theorem
lim gi(m)dx:/gQ(x)dx. (A.8)
R

n—00
R
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Let us show that g € H'/2(R). First, note that g € L?(R). Indeed, by (A.7) and (A.8)

we have that

n—oo

/g2(x)dx = lim [ ¢*(x)dx < 1.
R R
Now, for x # y, we denote

(9n(2) = 92(y))*

hn(a:ay) = |l’—y|2

Note that (h,) is a nonnegative functions sequence such that
(9(z) — g(y))?
|z —y|”

then, using Fatou’s lemma and (A.7),

/(9(%) —IW) 4, = /liminf (9 (7) = 9 W) 4,

ho(z,y) — , almost everywhere in R?,

jz —y/? nvoo g —y|?
RQ
_ 2
< liminf (gn(2) gnQ(y)) daedy < 1.
no0 |z =yl

RQ

Therefore, g € L*(R) and [g], , < 1, this is, g € H'/*(R). Now, notice that for every

k € N, we may write

g(x) = Z w1 (z) — wi(2)] + Z i () — ()] + Z |uia () — ui(2)]
= Ge1(z) + Z i1 (2) — wi(x)| + Z i1 (2) — wi()],

then,

[upgj(z) —u(z)] < |U@+j($) — Uppj1(T)| + o+ |upga () — up(2)]
= > Juin(@) - wi@)] < g(z) — gea(z) < glo).

i=k

Since up — u in HY2(R), it follows that u, — u in L?(R), then, up to a subsequence,
uk(x) — u(x) almost everywhere in R. Making j — oo in the previous estimate, we

obtain that almost everywhere in R
|u(z) — ug(z)] < g(x), for all k € N.
Thus,
lug(2)| = Jug(x) —u(z) + u(z)| < g(z) + |u(z)| almost everywhere in R.
In order to conclude the proof, it is sufficient to choose v = g + |u| € H?(R). O
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Proposition A.5. The functional I € C'(X,R) and the Fréchel derivative of I is
given by

I'(u)v = (u,v) — /f(a:,u)vdx
R
Proof. We denote the two terms of the functional I, by

I(u) = [lull%. and Iy(u) :/F(x,u)dx.

Since I; is coming from an inner product, is immediate that I, € C*(X;,R) with
Fréchet derivative given by I;(u)v = (u,v) . Let us see now that I, : X; — R is Fréchet

differentiable and its derivative is given by
L(u)v = /f(x, u)vdz.
R
Let u € X, be a fixed function. For every v € X3, we denote

r(v) = L(u+v) — L(v) — /f(x,u)vdx. (A.9)

We claim that
r(v)
im ——— =0,
Ivllx, =0 [|v]]
or equivalently, that
r(vn)
lonll, =0 [[Unl x,
Indeed, we define h : [0,1] — R, given by h(t) = F(z,u + tv,). Note that h is
differentiable and

= 0.

B (t) = f(x,u+ tv,)v,.
By the Fundamental Theorem of Calculus, it follows that

1 1

Fla,u+vy) — F(z,u) = h(1) — h(0) = /h’(t)dt - /f(x, U+ o) undt,

0 0

Thus,
1

r(0,)] = / / F s+ tvn) — f(z, )] vndtdal (A.10)

R

Now for each n € N, we define g, : R x [0, 1] — R given by

gn(x, 1) = [f (2, u(z) + tva(z)) = f(z, u(@))]oa(2),
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and, for convenience, it will be denoted by

gn = [f(x,u + tvn) - f(Q?,U,)]Un
Let us see that g, € L'(R x [0,1]). Indeed, by Young’s inequality

(@ ut ton) = flw)f* foal®

90l = 17w+ to0) = f(,0)] o] < g L
Note that,
[ u+ to,) = [z, w)]* < (|f (2,0 4 to,)| + | £, 0)])?, (A.12)
and since (a + b)? < 2(a? + %), for all a,b > 0, we have that
(1 (w4 twa)| + | f (2, w))® < 2 (| f (@, u+to) P + [ £z, u0)] (A.13)
From and we obtain
(2w tv,) — f,w)? < 2 (1F (2, u+ tv,)[? + | f(z,0)]?) . (A.14)

Moreover, by , we can find positive constants C7, Cs > 0 such that for all a > ayg
|f(x,u+tu,)| < Cy (ea(‘“‘+t‘”"|)2 - 1) and |f(z,u)] < Cy (eo‘“2 — 1> :
By using that for all ¢ € [0, 1] we have (Ju| + t|v,])? < (Ju| + |va])?. Tt follows that
|, u+ o) < C (eaﬂ“HW - 1) and | f(z,u)| < Cy (eW - 1) . (A15)
Thus, from and we obtain
|f (@, u+tv,) — f(z,u)]> <2 [C’{ (ego‘(‘“|+|”"|)2 - 1) + C, (620‘“2 - 1)} : (A.16)

and, consequently, from (A.11)) and (A.16]) we get

’Un’2

‘gn| < Ci (€2a(\u|+|vn\)2 _ 1) + Cé (€2au2 o 1) + 5

From (2.14) we have that (e2*(u+nD* _1) (e20v* 1) ¢ L'(R), and since v, € L*(R),

we obtain that
/ |gn (2, t)| dtdz < o0,

Rx[0,1]
then, for each n € N, g, is integrable. Thus we can use Fubini’s Theorem in (A.10) to

obtain
r(vn)| = [f(z,u+ tv,) — f(x,u)]v,dedt| .
O/]R/
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By applying Hélder’s inequality, we obtain

|7 (vn)] S/Ilf(qun) = f(W)lly [lonlly dt.

Since the embedding X; < L*(R) is continuous, there exists C' > 0 such that

1
[r(vn)] < Clonlly, / 1f (2, u+ton) — f(, u),dt. (A.17)
0
On the other hand, since (v,) converges strongly in X;, by Proposition [A.4] up to a
subsequence, there exists w € H'/?(R), satisfying
lv ()] < w(x), almost everywhere in R,
this, combined with (A.16), implies that
|f (@, u+tv,) — f(z,u)]> <2 [C{ (620‘(‘“|+|“’|)2 - 1) + C} <62a“2 — 1)] =:l(x),(A.18)

almost everywhere in R. By (2.14), we have that [ € L'(R). Thus, since the embedding

X1 < L*(R) is continuous and [|v, ||y, — 0, we have that for some constant C' > 0
[[u+ ton = ully < lonlly < Clonlly, =0,

that is, u+tv, — uin L*(R). Then, up to a subsequence, u(z)+ tv,(r) — u(z) almost
everywhere in R. By using the continuity of f, it follows that

f(z,u(x) + tv,(x)) = f(z,u(z)), almost everywhere in R,
this implies that,
|f(x, u(z) + tv,(z)) — f(z,u(x))|* — 0, almost everywhere inR. (A.19)

Since (A.18) and (A.19) hold, by using the dominated convergence theorem, we con-
clude that
| f(z,u+tv,) — f(z,u)], = 0, as n = oo. (A.20)

From (A.17) we have

r(vn)

lonll x,

then, by (A.20), we obtain

§C’/O | f(z,u+ tv,) — f(z,u)|,dt,

T(Un)

lonllx, =0 [|vnll x,

=0.
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The linearity of I,(u) : X; — R follows by the integral properties. Let us show its

boundedness. By Hélder’s inequality, we have

I;(u)v

N /f(x,u)vdx < [f (@, u)llz vy,
R

From (2.4) and the fact that the embedding X; < L?*(R) is continuous, there exists
constant C' > 0 such that

1/2

Bwe|=c | [ =1ds) ol

R

Again, by inequality (2.14), we have that (¢**** —1) € L*(R). Then we find a positive
constant C', which depends on u such that

‘I;(u)v‘ < C v, for all v e Xy;

then, I,(u) is a bounded functional. Therefore, I, is Fréchet differentiable and its

derivative is given by I5(u)v = [ f(x,u)vdz. It remains to show that I} is continuous.

R
In order to prove this, we consider (u,) C X; such that u, — u in X;. Note that,

By Hélder’s inequality and of the fact that the embedding X; < L?(R) is continuous,

Biw) = B, < s [ 15 w) - fe) ol de
lollx, =1 R

we have that for some constant C' > 0,

Since u, — w in X;, similarly to (A.20]), we conclude that

/ /

L) = Lw)| < swp [f@ ) = fwl, ol < C 1) = fwll,.
loll, =1

||f(x7un) - f(xvu)HZ — 07 as n — oo,

which shows the continuity of I,. This implies that I, € C'(X;,R). Finally, joining all
these statements, we obtain that the functional I € C1(X, R). O

Remark A.6. Note that the functionals associated with problems (1.1]) and are
also of class C*(-,R). This fact follows by the proof presented herein similarly.

A example without the (AR) condition

We will present an example of nonlinearity g(x, s) satisfying the hypotheses (g;)—
(g5)(7) but that does not satisfy the (AR) condition. In order to prove this, we consider
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a=1/2 and N =2 with 2% =4. Let g(z,s) : R? x R — [0, +00) given by

@9 <1 + T 1) go(z,s), if (x,5) € R? x [0, +00),
g(z,s) =

0, if (x,5) € R? X (—00,0),
where gy : R? x R — [0, +00) is defined by

o1(x)sln (s + 1) + oo(x)s*, if (z,s) € R? x [0, +00),
go(l‘,S) =
0, if (x,5) € R? X (—00,0),

where g; : R? — [0, 2] is a continuous function, g; # 0, 1-periodic in z;, with i € {1,2}.
Moreover, we consider that supp(e;) N supp(o2) = @ and that By C supp(o2).

It is clear that gy € C(R* x R, R, ) and g, is also 1-periodic in x;, with ¢ € {1,2}.
Moreover, it is easy to see that go(z,s) > 0 since In(s + 1) is an increasing function
and then In(s+1) > In1 =0.

By the continuity of the function (1+ 1/(|z|+ 1)) and of the go(x,s) it follows
that g(z, s) is a continuous function. Note that g is asymptotically periodic at infinity
since as |x| — +oo we have that g(x,s) — go(x, s) which is periodic.

Let us show that g satisfies (g1) — (g5)(¢), note that for (z,s) € R?*\ [supp(o;) U
supp(o2)] x [0, +00) we have clearly that all the hypotheses are satisfied since g(z, s) =
0.

(91) Note that uniformly in x, we have the following limit

TG I (1+ mil) [Ql(x)sln(erl)Jrgg(:p)s?

s—0t S s—0t S

1 .
= (1 + P 1) hm+[g1(x) In(s+ 1)+ 02(x)s] = 0.

s—0

(92) We must show that there exist aj,as > 0 and 2 < ¢; < 4 such that

lg(z, 5)| < ay + ag|s|” Hor all (z,s) € R? x [0, +00).

For (z,s) € supp(o1) x [0,4+00) note that

1
14+ —- 1 1
| ( —|—,$|+1>91(m)s n(s+1)
lim

s—00 sti—1

1

1
= (1 + —) 01(z) lim = 0.
o+ 1 T (- 2)sm (1 " é)
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Then, we have that there exist a;, as > 0 and 2 < ¢; < 4 such that

1
1+ 2)sln(s+1) < ay + ars !
(1 ) e ey <o

In this case, we have that (gs) is satisfied. On the other hand, for (z,s) € supp(o2) X

[0, 4+00), we obtain

1
lg(x,s)] = (1 + m) 02(2) 8% < aps® < ap + ass®.

Taking ¢; = 3, we have that (go) is also satisfied in this case. Therefore, we conclude

that (g) is satisfied for all (x,s) € R? x [0, +00).

(g93) We must show that there exist 2 < g, < 4 and fuctions h; € L'(R?), hy € F such
that

%g(m, s)s — G(x,8) > —hy(z) — hy(z) 52 for all (x,s) € R? x [0, 00).

For (z,s) € supp(p1) x [0,4+00), we have that

Gla,s) = <1+ )Ql(x) /Ostln(t+1)dt

|z| + 1
We consider the change of variable w = ¢ + 1, with dw = dt, then we use integration

by parts and obtain

Gz, s) = (1 4 IxI%) or(x) [S—Qm(s +1) - %m (s4+1) + %s - 232] |

Note that by standard calculus,

ot = Gleos) = (14 ) (o) [JnGo 4 ) + 37— 3]

1 1 1
Thus, considering h(s) = §ln(s +1) 4+ =s? — 58 We have

1

1 11
W(s) = Ss—=>0
=5 T2° 32"

which implies that h is not decreasing, then h(s) > h(0) = 0. Therefore, g(z,s)s —
G(z,s) > 0, this implies that the hypothesis is satisfied in this case.

On the other hand, for (z,s) € supp(g2) X [0, +00), we have that

S

G(z,8) = (1 + !x\%) Ql(x)g.
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Then

%g(m, s)s — Gz, s) = (é -~ %) (1 + m%) 02()s* > 0.

This concludes the proof and assures that hypothesis (g3) is satisfied for (z,s) € R? x
[0, +00).

(g4) (i) Since (1 + e 1) > 1 it follows that g > go. Thus, G > G.
T

(17) We must show that there exist 2 < g3 < 3 and function hs € F such that

l9(z,5) — go(, 8)| < hs(z)s®™* for all (x,s) € R? x [0, +00).

Note that for (z,s) € supp(o1) X [0, +00) and (z, s) € supp(g2) X [0,+00), we obtain

! ) 0i()s%,

lg(x,8) — go(w, s)] < (m

with ¢ € {1,2}. Taking g3 = 3 and observing that(
that (g4)(i7) holds.

1
m) oi(x) € F, we conclude
T

(7i1) Let us now see that go(x,s)/s is not decreasing in s > 0.

Note that for (z,s) € supp(o1) % [0, +00). By considering

- — o1(a)In (s + 1),

we have that

> (),
s+1
which implies that h is not decreasing in s. Analogously, for (z, s) € supp(2) % [0, +00),

we have that

Then h'(s) = p2(x) > 0, which implies that & is not decreasing in s. Therefore, (g4)(7i7)
is satisfied for all (x,s) € R? x [0, +00).

(g5) (i) Consider €2 := By C supp(o2) and note that

5—00 sp s—o0 3

3—p
lim Gz,s) = (1 + ) 02() lim _ +00,

|z| + 1
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uniformly in €, for 2 < p < 3. This implies that (g5) (¢) is satisfied.
Let us now that g(x, s) does not satisfy the (AR) condition for (x, s) € supp(o1) X
[R,+00). In fact,

G(x,s) 1 1 1 1

sg(z,s) 2 2s2 An(s+1) * 2sln(s + 1)
Therefore,

. G(x,s) 1
lim ——~ = —.
s—o+o0 sg(x,8) 2
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