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Resumo

Este trabalho desenvolve as teorias de cohomologia e homologia locais com respeito

a um conjunto arbitrário de ideais e generaliza vários dos resultados importantes das

teorias clássicas. Também, introduz a categoria dos D-módulos quase-holonômicos e

prova alguns resultados de �nitude de cohomologia local que generalizam, em algum

sentido, os resultados de G. Lyubeznik.

Palavras-chave: Cohomologia local; Família boa; Homologia local; Topologia linear;

Dualidade de Matlis; D-módulos quase-holonômicos.
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Abstract

This work develops the theories of local cohomology and local homology with respect to

an arbitrary set of ideals and generalises most of the important results from the classical

theories. It also introduces the category of quasi-holonomic D-modules and proves some

�niteness properties of local cohomology modules which generalise Lyubeznik's results

in some sense.

Keywords: Local cohomology; Good family; Local homology; Linear topology; Matlis'

duality; Quasi-holonomic D-modules.
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Introduction

The study of local cohomology has its roots in Algebraic Geometry and it serves

to general purposes in calculations of invariants in Commutative Algebra. Its starting

point can be determined in the work of J. P. Serre [Ser55] as an approach to the study

of projective varieties in terms of graded rings or complete local rings. It was then

presented in a seminar given by A. Grothendieck in the context of abelian sheaves

on an a�ne scheme, see [Har67]. Local cohomology was then thought as the right

derived functors of the assignation to sections of sheaves with support on a locally

closed subspace of said a�ne scheme. It is thus a specialisation of sheaf cohomology

de�ned by A. Grothendieck himself in [Gro57]. This theory of local cohomology de�ned

on a locally closed support would readily �nd a generalisation to an arbitrary family

of supports as it can be read in [Har66, p. 218] and it constitutes the main object of

study of this work by means of Commutative Algebra.

R. Hartshorne and R. Speiser posed in [HS77] the following question: When are

the local cohomology modules H i
I(R) Artinian or zero for large values of i? Regarding

the latter situation, A. Grothendieck proved for every d-dimensional R-module that

H i
I(M) = 0 when i > d and that Hd

m(M) 6= 0 when M is �nitely generated over

a local ring (see [Har66, Propositions 1.12 and 6.4, 4)] and [BS98, Theorem 6.1.2]).

These results are nowadays known as Grothendieck's Vanishing and Non-Vanishing

theorems. In this direction, another important result is the Lichtenbaum-Hartshorne

Vanishing Theorem which establishes a characterisation for the vanishing of Hd
I (M) in

terms of the m-adic completion.

For the former condition, Artinianness property for H i
I(M) was extensively stud-

ied by A. Grothendieck when dim(R/I) = 0 (see [Gro68]). For an arbitrary ideal I,



this property is only assured in the top dimension by studies of L. Melkersson (see

[Mel95]).

Recall that for an R-module T , a prime ideal p ∈ R is said to be an attached prime

ideal of T if p = AnnR(T/N) for a proper submodule N of T . The theory of attached

primes and secondary representations of modules has been developed by I. G. Mac-

donald in [Mac73], which is in a certain sense dual to the theory of associated prime

ideals and primary decompositions. It is well known that every Artinian module has a

secondary representation. The theory of attached primes and secondary representation

was successfully applied to the theory of local cohomology by I. G. Macdonald and

R. Y. Sharp in [MS72]. Thus there exists a secondary representation for the Artinian

module Hd
I (M) and it makes sense to study its attached primes as done by R. Y. Sharp

in [Sha81]. M. Dibaei and S. Yassemi also studied this set of prime ideals in [DY05]

and deduced that the set of attached prime ideals of the top local cohomology module

Hd
I (M) is actually a subset of the minimal prime ideals of M .

Many results on derived categories have motivated studies for the behaviour of

the local cohomology of a dualising sheaf of the n-dimensional a�ne scheme X, this is,

a sheaf ωX such that the Serre's duality Hn−i(X,F∨⊗ωX) ∼= H i(X,F )∗ holds for every

coherent sheaf F on X. Matlis' duality (−)∨ = HomR(−, ER(R/m)) gives a translation

of this to homomorphic images of Gorenstein local rings in the context of Commuta-

tive Algebra. Namely, the local duality isomorphisms H i
m(M) ∼= Extn−iR (M,R)∨ and

H i
m(M)∨ ∼= Extn−iR (M,R)∧, where (−)∧ denotes the m-adic completion, hold for ev-

ery �nitely generated module M over the n-dimensional Gorenstein local ring (R,m),

giving the Artinian R-module Hn
m(R) = ER(R/m) as a dualising module for R. Ideas

for generalising this concept of dualising module for arbitrary modules were thought

by P. Schenzel in [Sch93]. We use these ideas in order to generalise some results from

[ES12] related to endomorphism rings of top local cohomology modules with respect

to an arbitrary support.

E. Matlis investigated in [Mat58] some characterisations for Artinianness. Among

them, it is included, by one side, the antiequivalence relation between Artinian modules

and Noetherian ones. On the other hand, ExtiR(R/m,M) is always �nitely generated

for every Artinian R-module M . This situation motivated R. Hartshorne to de�ne I-

co�nite complexes in [Har70], where I is an ideal of the local ring R. Later, C. Huneke
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and J. Koh used this de�nition of co�niteness in [HK91] in order to prove the �niteness

of Bass numbers of local cohomology modules on ideals of dimension 1.

E. Matlis studied in [Mat74] the left derived functors of the I-adic completion

functor ΛI(−) = lim←−
n∈N

(−)⊗RR/In, where the ideal I was generated by a regular sequence

in a local Noetherian ring R. This functor is the Matlis dual of the local cohomology

functor. More precisely, the functor ΓI(−)∨ is isomorphic to the functor ΛI((−)∨).

On the other hand, since the local cohomology functors can be de�ned via Ext as

H i
I(−) = lim−→

n∈N
ExtiR(R/In,−), N. Cuong and T. Nam considered in [CN01] a de�nition

for local homology via Tor, this is, HI
i (−) = lim←−

n∈N
TorRi (R/In,−). In the same work it

was proved that these local homology functors are indeed the left derived functors of

the I-adic completion functor ΛI(−) in the category of Artinian R-modules.

Now consider a regular k-algebra R, where k is a �eld of characteristic zero, and

I be an ideal of R. In his seminal paper [Lyu93], G. Lyubeznik uses the theory of D-

modules over the ring of power series with coe�cients in a �eld of characteristic zero

to study some �niteness properties of local cohomology modules, more speci�cally, he

proves the following statements:

(i) inj. dimR(Hj
I (R)) ≤ dimR(Hj

I (R)).

(ii) The set of associated primes of Hj
I (R) contained in every maximal ideal is �nite.

(iii) All the Bass numbers of Hj
I (R) are �nite.

Recall that local cohomology modules with respect to I can be computed using �ech

complex ofM which is described by localisingM at generators of I. A key point in the

work of G. Lyubeznik relating the theory of D-modules to local cohomology modules

is a non-trivial result due to J.-E. Björk which establishes that holonomicity of D-

modules over the ring of di�erential operators of the ring of power series is preserved

via localisation at elements of this ring. In the same direction, Z. Mebkhout and

L. Narváez-Macarro prove in [MNM91], using the theory of Bernstein-Sato polynomials,

that localisation of holonomic modules over rings of di�erential operators of certain

more general rings are also holonomic. The rings considered in [MNM91] are those

commutative Noetherian regular algebras over a �eld k of characteristic zero having

the following properties:
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(i) R is equidimensional of dimension n, that is, the height of any maximal ideal is

equal to n.

(ii) Every residual �eld with respect to a maximal ideal is an algebraic extension of

k.

(iii) There are k-linear derivations D1, . . . , Dn ∈ Derk(R) and a1, . . . , an ∈ R such

that Di(aj) = 1 if i = j and 0 otherwise.

This class of algebras led L. Núñez-Betancourt in [NB13] to de�ne a more general class

of algebras substituting condition (iii) by the following one:

(iii)' Derk(R) is a �nitely generated projective R-module of rank n and the canonical

map Rm ⊗R Derk(R) → Derk(Rm) is an isomorphism for any maximal ideal

m ⊂ R.

For this kind of algebras, L. Núñez-Betancourt proves that localisations at an element of

R of holonomic D-modules are holonomic. Here D is the ring of di�erential operators

of R. L. Núñez-Betancourt also uses this result to prove that the set of associated

primes of a holonomic D-module is �nite.

This work presents a generalisation of local cohomology functors for an arbitrary

support and proves some of their fundamental properties, including those of vanishing

and non-vanishing theorems as well as local duality theorems. In order to develop

this theory we de�ne good families of a ring, that is, a set α of ideals which is stable

under multiplication and under inclusion, and for any R-module M , the α-torsion

module Γα(M) as the set {x ∈M : Supp(Rx) ⊆ α}. The i-th right derived functors

are denoted by H i
α(−) and called the i-th local cohomology module with respect to α.

The �rst chapter de�nes the basic notions and notations to establish the functors

and proves some basic properties, including an improved version of the fundamental

Independence Theorem. Later, it studies the vanishing and non-vanishing of the local

cohomology modules with respect to a family and gives important generalisations of

Grothendieck's Vanishing and Non-Vanishing and Lichtenbaum-Hartshorne Vanishing

Theorems. Closing this chapter, the third section describes some duality properties of

the local cohomology modules in the local case.
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The second chapter is concerned with the properties of Artinianness of the top

local cohomology functors with respect to an arbitrary support and gives a suitable

de�nition of cohomological dimension of a module. It also studies the set of at-

tached primes of the top local cohomology module and gives another generalisation

of the Lichtenbaum-Hartshorne Vanishing Theorem which covers the one observed by

K. Divaani-Aazar, R. Naghipour and M. Tousi in [DANT02].

The third chapter investigates the �rst non-vanishing local cohomology modules

with respect to a family α and suggests a de�nition of α-co�niteness. This number

is called the α-depth of a module. The notion of α-co�niteness is introduced as an

extension of the notion of I-co�niteness of [Har70], precisely, the R-module N is said

to be α-co�nite if Supp(N) ⊆ α and ExtiR(R/I,N) is �nitely generated for every I ∈ α

and every i. The main result establishes the α-co�niteness of the top local cohomology

modules. We also study the associated primes of Hc
α(M), where c is the α-depth of M .

Next, the fourth chapter deals with the modules of endomorphisms of local co-

homology modules and investigates them in two phases. The �rst one studies the

endomorphisms in the α-depth level, along with the special case when the α-depth

equals the cohomological dimension. This part basically extends some ideas from

[Mah13]. The second one takes care of the top local cohomology modules. It ex-

ploits the Lichtenbaum-Hartshorne Vanishing Theorem conditions and the Artinian

nature of said modules to obtain informations on the ring structure of their modules

of endomorphisms in an analogous way as done in [ES12].

The �fth chapter extends the notion of local homology with respect to an ideal

to a good family α as Hα
i (−) = lim←−

I∈α
TorRi (R/I,−). Since Hα

0 (−) = lim←−
I∈α

(R/I ⊗R −),

it also explores the linear topology induced by the family α which we call the α-adic

topology. The study includes dual versions of classical results from local cohomology as

the Independence Theorem, Vanishing and Non-Vanishing, acyclicity and Artinianness

criteria and Matlis' duality with local cohomology.

The last chapter introduces the class of quasi-holonomic D-modules which is

a full subcategory of D-modules stable under submodules, quotients, extensions and

direct limits. This category extends the category of holonomic D-modules. In fact,

holonomic D-modules are exactly the �nitely generated quasi-holonomic D-modules.

We also prove that quasi-holonomicity is preserved via localisation on any multiplicative
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set of R. We also prove that local cohomology modules, with respect to any family of

supports, of quasi-holonomic D-modules are quasi-holonomic.

The main result of this work extends most of G. Lyubeznik's �niteness properties

for D-modules over rings of di�erential operators of the class of rings introduced by

L. Núñez-Betancourt. Precisely, we prove the following statements:

(a) If dimR(Hj
I (M)) = 0, then Hj

I (M) is an injective R-module. In particular,

Hj
m1···ms(H

i
I(M)) is an injective R-module for every �nite family {m1, . . . ,ms}

of maximal ideals of R and every pair of integers i and j.

(b) IfM is an quasi-holonomic D-module and N is a �nitely generated D-submodule

of Hj
I (M), then the set of associated primes of N is �nite.

(c) If M is quasi-holonomic, then every �nitely generated D-submodule of Hj
I (M)

has �nite Bass numbers with respect to the maximal ideals.
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Chapter 1

Foundations on local cohomology

1.1 Basic properties of local cohomology modules

In this section we de�ne the local cohomology modules with respect to a pair

of families of ideals and prove some of their basic properties, including an improved

version of the fundamental Independence Theorem. Unless stated explicitly, all the

rings through this work are commutative with identity.

De�nition 1.1. Any set of ideals will be called a family. A family α of R will be called
good when the following three conditions are satis�ed:

(i) (Non-emptiness) R ∈ α.

(ii) (Stability under inclusion) If I ∈ α and J is an ideal of R containing I, then
J ∈ α.

(iii) (Stability under multiplication) If {I, J} ⊆ α, then IJ ∈ α.

We will say that a family α of R is trivial when α ⊆ {R}.

De�nition 1.2. For any pair of families, ϕ and ψ, of R, we de�ne the family

W̃ (ϕ, ψ) := {I E R : I + J ∈ ϕ for all J ∈ ψ} .

Example 1.3. The most important examples of families we will consider in this work
are the following: for any ideal I of R, we set

I := {J E R : J ⊇ In for some integer n ≥ 1} .



It can be seen that I is a good family. If I1, . . . , Is are ideals ofR, we de�ne W̃ (Is, . . . , I1)

inductively as follows: for s = 1, we set W̃ (I1) = I1; for s ≥ 2, set

W̃ (Is, . . . , I1) = W̃ (W̃ (Is), W̃ (Is−1, . . . , I1)).

If s = 2, the family W̃ (I2, I1) coincides with the family de�ned in [TYY09, De�ni-
tion 3.1] for a pair of ideals.

Remark 1.4. Let α be a non-empty family of R. We de�ne the family

〈α〉 := {K E R : K ⊇ I1 · · · Im for some Ii ∈ α} .

When α = ∅, 〈α〉 is de�ned as the trivial family {R}. Any family 〈α〉 de�nes a subspace
of SpecR which is stable under specialisation, more exactly,

〈α〉 ∩ SpecR =
⋃
I∈α

V (I). (1.1)

Conversely, if Z is a subspace of SpecR which is stable under specialisation, then
Z =

⋃
p∈Z

V (p) and the family Z = 〈Z〉 = {K E R : K ⊇ p1 · · · pr for some pi ∈ Z} is a

good family of R such that Z ∩ SpecR = Z.
It can also be seen that 〈α〉 is the smallest good family containing α. In fact, α

is a good family if and only if 〈α〉 = α.

If I is an ideal of R and ψ is any family of R, we denote W̃ (W̃ (I), ψ) by W̃ (I, ψ).

In the same form, we denote W̃ (ϕ, W̃ (J)) by W̃ (ϕ, J) for any ideal J of R and any

family ϕ. Next we state without proof some basic properties of the family W̃ (ϕ, ψ).

Lemma 1.5. Let I and J be ideals of R and ϕ, ϕ′, ψ and ψ′ be families of R.

(i) W̃ (ϕ, ψ)+ψ ⊆ ϕ, where α+β := {I + J : I ∈ α, J ∈ β}. Thus W̃ (ϕ, ψ)∩ψ ⊆ ϕ.

(ii) If ϕ ⊆ ϕ′, then W̃ (ϕ, ψ) ⊆ W̃ (ϕ′, ψ). In particular, W̃ (I, ψ) ⊆ W̃ (J, ψ) every

time I ⊇ J .

(iii) If ψ ⊆ ψ′, then W̃ (ϕ, ψ) ⊇ W̃ (ϕ, ψ′). In particular, W̃ (ϕ, I) ⊇ W̃ (ϕ, J) every

time I ⊇ J .

(iv) W̃ (ϕ, ψ) ∩ W̃ (ϕ′, ψ) = W̃ (ϕ ∩ ϕ′, ψ). In particular,

W̃ (I, ψ) ∩ W̃ (J, ψ) = W̃ (I + J, ψ).

(v) W̃ (ϕ, ψ) ∩ W̃ (ϕ, ψ′) = W̃ (ϕ, ψ ∪ ψ′).

(vi) ϕ = W̃ (ϕ, {(0)}).

8



(vii) If ϕ is a good family, then W̃ (ϕ, ψ) is also a good family and ϕ ⊆ W̃ (ϕ, ψ). In

particular, W̃ (I, ψ) is a good family and W̃ (I) ⊆ W̃ (I, ψ).

(viii) If ϕ is a good family, then W̃ (ϕ, ψ) = W̃ (ϕ, 〈ψ〉). In particular,

W̃ (ϕ, I) ∩ W̃ (ϕ, J) = W̃ (ϕ, IJ)

when ϕ is a good family.

We now de�ne the main object of this work.

De�nition 1.6. Let M be an R-module and ϕ and ψ be families of R. The (ϕ, ψ)-

torsion subset of M is the set Γϕ,ψ(M) =
{
x ∈M : Supp(Rx) ⊆ W̃ (〈ϕ〉, ψ)

}
.

We will also use the notations ΓI,ψ(M), Γϕ,J(M) and ΓIs,...,I1(M) for ΓW̃ (I),ψ(M),

Γϕ,W̃ (J)(M) and ΓW̃ (Is),W̃ (Is−1,...,I1)(M) respectively.

Let ϕ and ψ be families of R. For every morphism f : M → N between objects

in R-mod, we de�ne Γϕ,ψ(f) = f |Γϕ,ψ(M).

Proposition 1.7. The assignation Γϕ,ψ(−) : R-mod → R-mod is a left-exact R-linear

functor.

Proof. If ϕ and ψ are families of R and M is an R-module, then Γϕ,ψ(M) is an R-
submodule of M because W̃ (〈ϕ〉, ψ) is a good family by Lemma 1.5, (vii), and the
relations Ann(x − y) ⊇ Ann(x) Ann(y) and Ann(ax) ⊇ Ann(x) hold for every a ∈ R,
x, y ∈M . For every homomorphism of R-modules f : M → N , the application

Γϕ,ψ(f) : Γϕ,ψ(M)→ Γϕ,ψ(N)

is well de�ned as Γϕ,ψ(f)(x) = f(x) because Ann(f(x)) ⊇ Ann(x) for every x ∈ M .
More than this, every time f is injective, we have that Ann(f(x)) = Ann(x) for every
x and this equality suggests the left-exactness of Γϕ,ψ(−).

For any pair of families, ϕ and ψ, we can de�ne the right derived functors of

Γϕ,ψ(−) and we shall denote them by H i
ϕ,ψ(−) for every i ≥ 0. For any R-module M ,

the module H i
ϕ,ψ(M) will be called the i-th local cohomology module of M with respect

to (ϕ, ψ). Due to the left-exactness of Γϕ,ψ(−), we have thatH0
ϕ,ψ(−) ∼= Γϕ,ψ(−). More-

over, every short exact sequence of R-modules 0 −→ L −→ M −→ N −→ 0 induces

a long exact sequence of R-modules 0 −→ Γϕ,ψ(L) −→ Γϕ,ψ(M) −→ Γϕ,ψ(N) −→

H1
ϕ,ψ(L) −→ H1

ϕ,ψ(M) −→ H1
ϕ,ψ(N) −→ · · · .

9



Remark 1.8. It is worth to notice that whenever ϕ is a system of ideals as de�ned
in [BZ79, p. 403] and (0) ∈ 〈ψ〉, then the functor H i

ϕ,ψ(−) coincides with the functor
H i
ϕ(−) de�ned in [BZ79, p. 405] for every i in the Noetherian case. So we will use the

notation H i
α(M) instead of H i

α,{(0)}(M) for any family α and every i.

From now, the order relation considered in any family α of R will be the reverse

inclusion. Recall that W̃ (ϕ, I)∩ W̃ (ϕ, J) = W̃ (ϕ, IJ) for every pair of ideals, I and J ,

of R when ϕ is a good family by Lemma 1.5, (viii). This implies that, whenever ψ is

stable under multiplication, the projective system {Γϕ,J(M), ιJJ ′}J∈ψ is stable under

�nite intersections. Thus we have the following statement.

Lemma 1.9. Let ϕ and ψ be families of R and M be an R-module. Then

Γϕ,ψ(M) =
⋂
J∈ψ

Γϕ,J(M) ∼= lim←−
J∈〈ψ〉

Γϕ,J(M).

Proof. If x ∈ Γϕ,ψ(M), then J + p ∈ 〈ϕ〉 for every J ∈ ψ and every p ∈ Supp(Rx). Let
I be an element of W̃ (J). Then I ⊇ Jn and I + p ⊇ Jn + p ⊇ (J + p)n ∈ 〈ϕ〉. Hence
every p ∈ Supp(Rx) satis�es that p ∈ W̃ (〈ϕ〉, J) and we deduce that x ∈ Γϕ,J(M)

for every J ∈ ψ. The converse is clear because J ∈ W̃ (J) for every ideal J of R. As
W̃ (〈ϕ〉, ψ) = W̃ (〈ϕ〉, 〈ψ〉) by Lemma 1.5, (viii), we have that

Γϕ,ψ(M) = Γϕ,〈ψ〉(M) =
⋂
J∈〈ψ〉

Γϕ,J(M) ∼= lim←−
J∈〈ψ〉

Γϕ,J(M).

The last isomorphism follows because the projective system {Γϕ,J(M), ιJJ ′}J∈〈ψ〉 is
stable under �nite intersections.

We can characterise good families in the Noetherian case by the following prop-

erty.

Lemma 1.10. Let ϕ be a family satisfying the following property for every ideal I of

R:

I ∈ ϕ if and only if V (I) ⊆ ϕ.

Then ϕ is a good family. The converse holds when R is Noetherian.

Proof. Let us suppose that ϕ is a family such that I ∈ ϕ if and only if V (I) ⊆ ϕ.
Since V (IJ) = V (I) ∪ V (J) for any ideals, I and J , of R, it follows that ϕ is closed
under multiplication. Moreover, V (J) ⊆ V (I) every time J ⊇ I; thus this family is
also good.

Now let us suppose that R is Noetherian and ϕ is a good family and let I be an
ideal of R such that V (I) ⊆ ϕ. Naming p1, . . . , ps the minimal elements of V (I), we
have that I ⊇

(√
I
)r

= (p1 ∩ · · · ∩ ps)
r ⊇ pr1 · · · prs for some big enough r. Then I ∈ ϕ.

The converse is straightforward.

10



The previous lemma concludes also that if α and β are families of the Noetherian

ring R such that 〈α〉 ∩ SpecR ⊆ 〈β〉 ∩ SpecR, then 〈α〉 ⊆ 〈β〉. Thus there exists a

bijective correspondence between good families of a Noetherian ring and stable under

specialisation (abbr. s. u. s.) subspaces of its spectrum, namely,

{W ⊆ SpecR : W is s. u. s.} ↔ {α : α is a good family of R}

W 7→ 〈W 〉

α ∩ SpecR ←[ α

When α is stable under multiplication, reverse inclusion ordering de�nes an inductive

system {H i
I(M), ιiI′I}I∈α where ιiI′I : H i

I(M) → H i
I′(M) is induced by the inclusion

ΓI(E
i(M)) → ΓI′(E

i(M)) whenever I ⊇ I ′ for every non-negative integer i and any

injective resolution (Ei(M), ∂i) of M .

Theorem 1.11. For any pair of families, ϕ and ψ, of a Noetherian ring R, every

R-module M and every i ≥ 0, H i
ϕ,ψ(M) ∼= lim−→

I∈W̃ (〈ϕ〉,ψ)

H i
I(M). In particular,

H i
α(M) ∼= lim−→

I∈〈α〉
H i
I(M)

for every family α.

Proof. Allow us to call W = W̃ (〈ϕ〉, ψ). For any ring R,

lim−→
I∈W

ΓI(M) =
⋃
I∈W

ΓI(M) ⊆ Γϕ,ψ(M).

If R is Noetherian, Lemma 1.10 says that I ∈ W if and only if V (I) ⊆ W . Thus
Γϕ,ψ(M) ⊆

⋃
I∈W

ΓI(M). For i > 0 and I ∈ W , each short exact sequence of R-

modules 0 −→ L −→ M −→ N −→ 0 leads to a long exact sequence of R-modules
0 −→ H0

I (L) −→ H0
I (M) −→ H0

I (N) −→ H1
I (L) −→ · · · . Since W is a �ltered small

category, 0 −→ lim−→
I∈W

H0
I (L) −→ lim−→

I∈W
H0
I (M) −→ lim−→

I∈W
H0
I (N) −→ lim−→

I∈W
H1
I (L) −→ · · · is

an exact sequence and we conclude that

(
lim−→
I∈W

H i
I(−)

)
is a family of ∂-functors. If E

is an injective R-module, then H i
I(E) = 0 for every i > 0 and every I ∈ W ; hence

lim−→
I∈W

H i
I(E) = 0 for i > 0. By [Rot09, Theorem 6.51] we have that there exists a unique

isomorphism of functors τ :

(
lim−→
I∈W

H i
I(−)

)
−→ (H i

ϕ,ψ(−)), whence

H i
ϕ,ψ(M) ∼= lim−→

I∈W
H i
I(M)

for every R-module M .

11



Remark 1.12. We say that the family α is co�nal to a family β (or simply that α and
β are co�nal) when, for every I ∈ α, there exists J ∈ β such that I ⊇ J and, for every
J ∈ β, there exists K ∈ α such that J ⊇ K. When α ⊆ β and they are co�nal, we will
also say that α is a co�nal subfamily of β. For any two co�nal families, α and β, of
R, we have that 〈α〉 = 〈β〉 and thus H i

α,ψ(M) = H i
β,ψ(M) for every i, every R-module

M and every family ψ of R. We also must observe that any family α co�nal to a
good family ϕ (e.g., when α is stable under multiplication or α is a system of ideals as
de�ned in [BS98, De�nition 2.1.10] among other examples) is necessarily a subfamily
of this and thus H i

α(−) = H i
ϕ(−) = lim−→

I∈α
H i
I(−) for every i when R is Noetherian. It is

worth to notice that this statement is a re�nement of the particular case considered in
Theorem 1.11.

Remark 1.13. Let F : A → B be a left-exact additive functor from an abelian category
A with enough injectives to another abelian category B. Recall that an object E in
A is called right F -acyclic (shortly, F -acyclic) when (RiF )(E) = 0 for every i > 0. It
is well known that, for every object M of A, the object (RiF )(M) can be calculated
via F -acyclic resolutions of M , see [Har77, Proposition 1.2A, p. 205]. In this way,
if R is a Noetherian ring, S is a commutative Noetherian R-algebra and E is an
injective S-module, then E is a Γα-acyclic R-module for every family α of R by [BS98,
Theorem 4.1.6] and Theorem 1.11.

Let f : R→ R′ be a ring homomorphism and let us denote αR′ := {JR′ : J ∈ α}

for any family α of R. Viewing the R′-module N ′ as an R-module via f , we may

observe that, for any pair of families, ϕ and ψ, of R, the R-module Γϕ,ψ(N ′) is also

an R′-module. We can get more with some additional conditions and the outcome is a

generalisation for [TYY09, Theorem 2.7].

Theorem 1.14. Consider two Noetherian rings, R and R′, two families, ϕ and ψ, of

R, a ring homomorphism f : R→ R′ and an R′-module M ′. Suppose that f(J) = JR′

for every J ∈ ψ. Then the R′-modules H i
ϕ,ψ(M ′) and H i

ϕR′,ψR′(M
′) are isomorphic for

every i.

Proof. By Remark 1.13 it is enough to show that Γϕ,ψ(N ′) = ΓϕR′,ψR′(N
′) for every

R′-module N ′. If x ∈ N ′ is such that V (AnnR(x)) ⊆ W̃ (〈ϕ〉, ψ), consider a prime
p ∈ V (AnnR’(x)). Then f−1(p) ∈ V (AnnR(x)), whence J + f−1(p) ∈ 〈ϕ〉 for every
J ∈ ψ. It follows that JR′ + f−1(p)R′ ∈ 〈ϕ〉R′ ⊆ 〈ϕR′〉, concluding for every ideal
J ∈ ψ that JR′ + p ∈ 〈ϕR′〉 and p ∈ W̃ (〈ϕR′〉, ψR′). Now consider x ∈ N ′ such that
AnnR’(x) ∈ W̃ (〈ϕR′〉, ψR′). For each J ∈ ψ, there exist K1, . . . , Ks ∈ ϕ such that
JR′ + AnnR’(x) ⊇ K1R

′ · · ·KsR
′. Choose any (k1, . . . , ks) ∈ K1 × · · · × Ks. Then

f(k1 · · · ks) = ̂ + r′ for some ̂ ∈ JR′ and r′ ∈ AnnR’(x). Since f(J) = JR′, we
have that f(k1 · · · ks − j) = r′ for some j ∈ J . Thus k1 · · · ks − j ∈ AnnR(x), leading
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to K1 · · ·Ks ⊆ J + AnnR(x), whence AnnR(x) ∈ W̃ (〈ϕ〉, ψ) and we conclude that
Γϕ,ψ(N ′) = ΓϕR′,ψR′(N

′).

The following consequence appears in [DANT02, Remark 2.5, (ii)] for a special

kind of families.

Corollary 1.15 (Independence Theorem). Let R and R′ be Noetherian rings, α be a

family of R, f : R→ R′ be a ring homomorphism and M ′ be an R′-module. For every

i we have the isomorphism of R′-modules H i
α(M ′) ∼= H i

αR′(M
′).

Remark 1.16. For any ideal I of R and any ring homomorphism f : R → R′, we
have that 〈W̃ (I)R′〉 = {K E R′ : K ⊇ (IR′)n for some integer n ≥ 1}. The previous
result gives also the isomorphism of R′-modules H i

I,ψ(M ′) ∼= H i
IR′,ψR′(M

′) for every i.
Furthermore:

Corollary 1.17. Let R and R′ be Noetherian rings, I1, . . . , Is be ideals of R and β be

a family of R such that 〈β〉 =

〈
s−1⋃
j=2

W̃ (Ij, Ij−1)

〉
. If a ring homomorphism f : R→ R′

satis�es f(I1) = I1R
′ and f(K) = KR′ for every K ∈ β, then, for every R′-module

M ′ and every non-negative i, the R′-modules H i
Is,...,I1

(M ′) and H i
IsR′,...,I1R′

(M ′) are

isomorphic.

Proof. We will show inductively at a �rst stage that the family W̃ (Is−1, . . . , I1)R′ is
co�nal to W̃ (Is−1R

′, . . . , I1R
′). We will also assume without loss of generality that

β =
s−1⋃
j=2

W̃ (Ij, Ij−1). When s = 2, we have that the family W̃ (I1)R′ is co�nal to

W̃ (I1R
′) by Remark 1.16. Consider now s > 2 and an ideal a ∈ W̃ (Is−1, . . . , I1).

Then, for every ideal J ∈ W̃ (Is−2, . . . , I1) there exists a positive integer nJ such that
a+J ⊇ InJs−1, whence aR

′ ∈ W̃ (Is−1R
′, W̃ (Is−2, . . . , I1)R′). By induction hypothesis we

have that W̃ (Is−2, . . . , I1)R′ is co�nal to the good family W̃ (Is−2R
′, . . . , I1R

′) because
s−2⋃
j=2

W̃ (Ij, Ij−1) ⊆ β. Thus

W̃ (Is−1R
′, W̃ (Is−2, . . . , I1)R′) = W̃ (Is−1R

′, W̃ (Is−2R
′, . . . , I1R

′))

= W̃ (Is−1R
′, . . . , I1R

′)

and aR′ ∈ W̃ (Is−1R
′, . . . , I1R

′), giving us that

W̃ (Is−1, . . . , I1)R′ ⊆ W̃ (Is−1R
′, . . . , I1R

′).

Consider now b ∈ W̃ (Is−1R
′, . . . , I1R

′). By similar arguments used in order to prove
Theorem 1.14, we get that a = f−1(b) is an ideal in W̃ (Is−1, . . . , I1) such that b ⊇ aR′.
It has been stated now that 〈W̃ (Is−1, . . . , I1)R′〉 = W̃ (Is−1R

′, . . . , I1R
′).
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Finally, we can apply the Theorem 1.14 to ϕ = W̃ (Is) and ψ = W̃ (Is−1, . . . , I1)

because W̃ (Is−1, . . . , I1) ⊆ W̃ (Is−1, Is−2) ⊆ β.

It is also obtained a generalised version of the Flat Base Change Theorem (cf.

[Lyu93, Lemma 3.1]) which we shall now state.

Lemma 1.18 (Flat Base Change). Let R′ be a commutative Noetherian algebra over

a Noetherian ring R, α be a family of R and M ′ be an R′-module which is �at over R.

Then there exists an isomorphism of functors (H i
αR′(−⊗RM ′)) ∼= (H i

α(−)⊗RM ′).

Proof. At a �rst stage, allow us to recall that if F is an exact functor between two
abelian categories, A and B, and (C∗, ∂∗) is a complex in A, then the isomorphism
Hi(F (C∗)) ∼= F (Hi(C∗)) holds for every i. Indeed, for every i we obtain the iso-
morphisms F (ker ∂i) ∼= kerF (∂i) and F (im ∂i+1) ∼= imF (∂i+1). Thus the claimed
isomorphism follows.

Next, recall that Γα(N) = lim−→
I∈〈α〉

HomR (R/I,N) for every R-module N by Theo-

rem 1.11. Since M ′ is a �at R-module, we have the natural isomorphism

HomR(R/I,N)⊗RM ′ ∼= HomR(R/I,N ⊗RM ′)

for every I ∈ 〈α〉, see [AK12, Proposition 9.14]. Hence we have a natural isomorphism
of R-modules Γα(N)⊗RM ′ ∼= Γα(N ⊗RM ′) for every R-module N . Observe now that
if E is an injective R-module, then E ⊗RM ′ is Γα-acyclic: in fact, Theorem 1.11 gives
that H i

α(N) = lim−→
I∈〈α〉

ExtiR(R/I,N) for every R-module N and every i. On the other

hand, denoting by P∗(L) a projective resolution of an R-module L, we have that

ExtiR(R/I,E ⊗RM ′) = H i(HomR(P∗(R/I), E ⊗RM ′))

∼= H i(HomR(P∗(R/I), E)⊗RM ′)

∼= H i(HomR(P∗(R/I), E))⊗RM ′

= 0

for every I ∈ 〈α〉 and every i > 0. Hence H i
α(E ⊗R M ′) = 0 for every i > 0. We have

thus the following isomorphisms of R-modules for every R-module M , every family α
of R and every i:

H i
α(M)⊗RM ′ = H i(Γα(E∗(M)))⊗RM ′

∼= H i(Γα(E∗(M))⊗RM ′)

∼= H i(Γα(E∗(M)⊗RM ′))

∼= H i
α(M ⊗RM ′).

Here E∗(N) is an injective resolution of an R-module N . Finally, Corollary 1.15 says
that the R′-modules H i

α(M ⊗R M ′) and H i
αR′(M ⊗R M ′) are isomorphic. Hence the
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isomorphism of R′-modules H i
αR′(M⊗RM ′) ∼= H i

α(M)⊗RM ′ holds for every R-module
M , every family α of R and every i.

As in the usual terminology of local cohomology theory and its current extensions,

an R-module M will be called (ϕ, ψ)-torsion when Γϕ,ψ(M) = M (equivalently, when

Supp(M) ⊆ W̃ (〈ϕ〉, ψ)). From de�nition, we observe that Γϕ,ψ(M) is (ϕ, ψ)-torsion for

every R-module M and every pair of families, ϕ and ψ, of R. On the other hand, we

say that M is (ϕ, ψ)-torsion-free when Γϕ,ψ(M) = 0. If I1, . . . , Is are ideals of R, we

say that M is (I1, . . . , Is)-torsion when it is (W̃ (I1), W̃ (I2, . . . , Is))-torsion. Similarly,

M is (I1, . . . , Is)-torsion-free when it is (W̃ (I1), W̃ (I2, . . . , Is))-torsion-free.

Remark 1.19. It is straightforward to see that (0) ∈ W̃ (ϕ, ψ) if and only if ψ ⊆ ϕ. Thus
every R-module will be (ϕ, ψ)-torsion if and only if ψ ⊆ 〈ϕ〉 provided R is Noetherian.

Example 1.20. We list now two important examples for the development of the work:

(i) If p ∈ SpecR, then R/p is (ϕ, ψ)-torsion if and only if p ∈ W̃ (〈ϕ〉, ψ). On the
other hand, R/p is (ϕ, ψ)-torsion-free if and only if p /∈ W̃ (〈ϕ〉, ψ).

(ii) Let N be an essential extension of the R-moduleM . Then Γϕ,ψ(N) is an essential
extension of Γϕ,ψ(M). In particular, an R-module M is (ϕ, ψ)-torsion-free if and
only if its injective hull E(M) is (ϕ, ψ)-torsion-free.

Proposition 1.21. Let ϕ and ψ be families of R.

(i) Let 0 −→ L −→M −→ N −→ 0 be an exact sequence of R-modules. Then M is

(ϕ, ψ)-torsion if and only if L and N are (ϕ, ψ)-torsion.

(ii) Let s be a positive integer and I1, . . . , Is be ideals of R. If M is an (I1, . . . , Is)-

torsion R-module, thenM is (I1, . . . , Ij)-torsion for every even integer 2 ≤ j ≤ s.

If M is an (I1, . . . , Is)-torsion-free R-module, then M is (I1, . . . , Ij)-torsion-free

for every odd integer 1 ≤ j ≤ s.

(iii) The R-module H i
ϕ,ψ(M) is (ϕ, ψ)-torsion for every i ≥ 0.

(iv) Ass(Γϕ,ψ(M)) = Ass(M) ∩ W̃ (〈ϕ〉, ψ) for every R-module M .

Proof. Item (i) follows because Supp(M) = Supp(N) ∪ Supp(L).
Item (ii) follows from the inclusions

W̃ (I1) ⊆ W̃ (I1, I2, I3) ⊆ · · · ⊆ W̃ (I1, I2, I3, I4) ⊆ W̃ (I1, I2).

In order to prove (iii), we observe that H i
ϕ,ψ(M) is a sub-quotient of a (ϕ, ψ)-

torsion module for every i, thus we have by (i) that H i
ϕ,ψ(M) is (ϕ, ψ)-torsion for every

i.

15



We now prove (iv): consider p ∈ Ass(Γϕ,ψ(M)). Then p = Ann(x) for some
x ∈ Γϕ,ψ(M) and V (p) = Supp(Rx) ⊆ W̃ (〈ϕ〉, ψ), whence p ∈ Ass(M) ∩ W̃ (〈ϕ〉, ψ).
For the converse, consider p ∈ Ass(M) ∩ W̃ (〈ϕ〉, ψ). Then p = Ann(x) for some
x ∈ M and p ∈ W̃ (〈ϕ〉, ψ). Hence Supp(Rx) ⊆ W̃ (〈ϕ〉, ψ) and we conclude that
x ∈ Γϕ,ψ(M).

Proposition 1.22. If ϕ and ψ are families of a Noetherian ring R and M is a (ϕ, ψ)-

torsion �nitely generated R-module, then M is I-torsion for some ideal I ∈ W̃ (〈ϕ〉, ψ).

Proof. If {x1, . . . , xn} generates M , then Ann(M) = Ann(x1) ∩ · · · ∩ Ann(xn). Since
M is (ϕ, ψ)-torsion, we have that Ann(xi) = Ii ∈ W̃ (〈ϕ〉, ψ) for every i. Set

I = I1 · · · In ∈ W̃ (〈ϕ〉, ψ).

Then Ann(x) ⊇ Ann(M) ⊇ I for every x ∈M , whence x ∈ ΓI(M).

Corollary 1.23. If α is a family of the Noetherian ring R andM is a �nitely generated

R-module, then there exists I ∈ 〈α〉 such that Γα(M) = ΓI(M). If α is co�nal to a

good family, we can take I ∈ α.

Proof. Since Γα(M) is a �nitely generated α-torsion R-module, by Proposition 1.22
there exists I ∈ W̃ (〈α〉, {(0)}) = 〈α〉 such that ΓI(Γα(M)) = Γα(M). By De�nition 1.6
and by Lemma 1.5, (iv), ΓI(Γα(M)) = ΓW̃ (I)∩〈α〉(M) and, since W̃ (I) ⊆ 〈α〉, we
conclude the statement. Now if α is co�nal to 〈α〉, then there exists J ∈ α such that
J ⊆ I. Hence ΓI(M) ⊆ ΓJ(M) ⊆ Γα(M) = ΓI(M).

It is straightforward to check that torsion functors Γϕ,ψ(−) commute with for-

mation of arbitrary direct sums. Hence local cohomology functors with respect to any

pair of families commute with formation of arbitrary direct sums. Moreover, we shall

observe that local cohomology functors with respect to a pair of families commute with

inductive limits in the Noetherian case.

Proposition 1.24. If R is a Noetherian ring and {Mλ, fµλ}λ∈Λ is an inductive system

of R-modules, then H i
ϕ,ψ

(
lim−→
λ∈Λ

Mλ

)
∼= lim−→

λ∈Λ

H i
ϕ,ψ(Mλ).

16



Proof. We have the following isomorphisms:

H i
ϕ,ψ

(
lim−→
λ∈Λ

Mλ

)
∼= lim−→

I∈W̃ (〈ϕ〉,ψ)

H i
I

(
lim−→
λ∈Λ

Mλ

)
(Theorem 1.11)

∼= lim−→
I∈W̃ (〈ϕ〉,ψ)

(
lim−→
λ∈Λ

H i
I(Mλ)

)
([BS98, Theorem 3.4.10])

∼= lim−→
λ∈Λ

 lim−→
I∈W̃ (〈ϕ〉,ψ)

H i
I(Mλ)


∼= lim−→

λ∈Λ

H i
ϕ,ψ(Mλ) (Theorem 1.11).

This section ends with a discussion about torsion and torsion-free modules and

establishes the main results of local cohomology theory related to these features.

Proposition 1.25. Let ϕ and ψ be families of a Noetherian ring R and M be an

R-module. The following statements are equivalent:

(i) M is a (ϕ, ψ)-torsion R-module.

(ii) Ass(M) ⊆ W̃ (〈ϕ〉, ψ).

Proof. Since Ass(M) ⊆ Supp(M), the implication (i)⇒(ii) is clear. Now R is Noethe-
rian, whence Supp(M) =

⋃
p∈Ass(M)

V (p). On the other hand, W̃ (〈ϕ〉, ψ) is a good family.

Hence (ii)⇒(i).

As direct consequences, we have the following statements.

Corollary 1.26. Let ϕ and ψ be families of a Noetherian ring R and M be an R-

module.

(i) M is (ϕ, ψ)-torsion-free if and only if Ass(M) ∩ W̃ (〈ϕ〉, ψ) = ∅.

(ii) M is (ϕ, ψ)-torsion if and only if its injective hull E(M) is (ϕ, ψ)-torsion.

(iii) If M is (ϕ, ψ)-torsion, then every term of any minimal injective resolution of M

is (ϕ, ψ)-torsion.

(iv) The R-module ER (R/p) is (ϕ, ψ)-torsion when p ∈ W̃ (〈ϕ〉, ψ). On the other

hand, it is (ϕ, ψ)-torsion-free when p /∈ W̃ (〈ϕ〉, ψ).
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Proof. Note that (i) follows from Proposition 1.21, (iv). Item (ii) follows because
Ass(E(M)) = Ass(M) and (iv) follows because AssR (ER (R/p)) = Ass (R/p) = {p}
for every p ∈ SpecR.

We now prove (iii): if (E∗(M), d∗) is a minimal injective resolution of M , we get
that E0(M) = E(M) and Ei(M) = E(im di−1) for i ≥ 1. Since homomorphic images of
(ϕ, ψ)-torsion modules are (ϕ, ψ)-torsion by Proposition 1.21, (i), the statement follows
in an inductive way.

Corollary 1.27. Let α be a family of a Noetherian ring R andM be a �nitely generated

R-module. Then

(i) M is α-torsion-free if and only if every I ∈ α contains an M-regular element.

(ii) The R-modules R/p and ER (R/p) are α-torsion when I ⊆ p for some I ∈ α. On
the other hand, they are α-torsion-free when I * p for every I ∈ α.

From Corollary 1.26, we have the following result.

Proposition 1.28. Let ϕ and ψ be families of a Noetherian ring R and M be an

R-module.

(i) If M is a (ϕ, ψ)-torsion module, then H i
ϕ,ψ(M) = 0 for every i > 0 (i.e., every

(ϕ, ψ)-torsion R-module is Γϕ,ψ-acyclic).

(ii) The R-module M/Γϕ,ψ(M) is (ϕ, ψ)-torsion-free and

H i
ϕ,ψ(M) ∼= H i

ϕ,ψ (M/Γϕ,ψ(M))

for every i > 0.

Proof. Note that (i) can be obtained from Corollary 1.26, (iii). For (ii), consider the
short exact sequence 0 → Γϕ,ψ(M) → M → M/Γϕ,ψ(M) → 0. This leads to the long
exact sequence 0 → Γϕ,ψ(M) → Γϕ,ψ(M) → Γϕ,ψ (M/Γϕ,ψ(M)) → H1

ϕ,ψ(Γϕ,ψ(M)) →
H1
ϕ,ψ(M) → H1

ϕ,ψ (M/Γϕ,ψ(M)) → · · · , being the �rst non-trivial arrow an isomor-
phism. Also, as H i

ϕ,ψ(Γϕ,ψ(M)) = 0 for every i > 0 by the previous item, the result
follows.

We will show later that the class of �nitely generated Γα-acyclic modules actually

coincides with the class of �nitely generated α-torsion modules.

Corollary 1.29. Let ϕ and ψ be families of R and M be an R-module. If M is (ϕ, ψ)-

torsion, then M/JM is ϕ-torsion (i.e., M/JM is (ϕ, {(0)})-torsion) for every J ∈ ψ.
The converse holds when R is Noetherian and M is �nitely generated.

In particular, if M is (I1, . . . , Is)-torsion, then M/JM is I1-torsion for every

ideal J ∈ W̃ (I2, . . . , Ij), where 2 ≤ j ≤ s is any even integer or j = s. Conversely,
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if R is Noetherian, M is �nitely generated and M/JM is I1-torsion for every ideal

J ∈ W̃ (I2, . . . , Is), then M is (I1, . . . , Ij)-torsion for every even integer 2 ≤ j ≤ s and

for j = s.

Proof. If M is (ϕ, ψ)-torsion, then Supp(M) ⊆ W̃ (〈ϕ〉, ψ). For every J ∈ ψ it also
holds that V (J) ⊆ 〈ψ〉, thus

Supp (M/JM) ⊆ W̃ (〈ϕ〉, ψ) ∩ 〈ψ〉 = W̃ (〈ϕ〉, 〈ψ〉) ∩ 〈ψ〉 ⊆ 〈ϕ〉 = W̃ (〈ϕ〉, {(0)}).

Hence M/JM is ϕ-torsion for every J ∈ ψ.
For the converse, let us suppose that R is Noetherian and M is a �nitely gen-

erated R-module such that M/JM is ϕ-torsion for every J ∈ ψ. We have that
V (J + Ann(M)) ⊆ 〈ϕ〉 when J ∈ ψ and J + Ann(x) ∈ 〈ϕ〉 for every x ∈ M , whence
Ann(x) ∈ W̃ (〈ϕ〉, ψ) and M = Γϕ,ψ(M).

Proposition 1.30. Let α be a family of a Noetherian ring R and M be an R-module.

Then Ass(M) = Ass(Γα(M)) ∪ Ass(M/Γα(M)), being the right term a disjoint union.

Proof. From Corollary 1.26, (i), and Proposition 1.28, (ii), we get that

Ass(Γα(M)) ∩ Ass(M/Γα(M)) = ∅.

Consider now the exact sequence 0→ Γα(E(M))→ E(M)→ E(M)/Γα(E(M))→ 0.
By Theorem 1.11 we have that Γα(E(M)) is an injective R-module, thus the sequence
splits and Ass(E(M)) = Ass(Γα(E(M))) ∪ Ass(E(M)/Γα(E(M))). We have also a
natural monomorphism M/Γα(M)→ E(M)/Γα(E(M)) and this leads to

Ass(M/Γα(M)) ⊆ Ass(E(M)/Γα(E(M))) ⊆ Ass(E(M)) = Ass(M)

which concludes the statement.

Proposition 1.31. Let ϕ and ψ be families of R and M be an R-module which is

J-torsion for some J ∈ 〈ψ〉. Then Γϕ(M) = Γϕ,ψ(M). If in addition R is Noetherian,

then H i
ϕ(M) = H i

ϕ,ψ(M) for every i.

Proof. Note that Γϕ(M) ⊆ Γϕ,ψ(M) because W̃ (〈ϕ〉, {(0)}) = 〈ϕ〉 ⊆ W̃ (〈ϕ〉, ψ) by
Lemma 1.5, (vi) and (vii). Since M is J-torsion, we have for every x ∈ M that
V (Ann(x)) ⊆ V (J) ⊆ 〈ψ〉. Consider now an element x ∈ Γϕ,ψ(M). It follows that
V (Ann(x)) ⊆ W̃ (〈ϕ〉, ψ) ∩ 〈ψ〉 ⊆ 〈ϕ〉 and x ∈ Γϕ(M).

Suppose now that R is Noetherian. IfM is J-torsion, then Ei(M) is also J-torsion
for every injective Ei(M) in a minimal injective resolution ofM by Corollary 1.26, (iii).
We conclude that Γϕ(Ei(M)) = Γϕ,ψ(Ei(M)) and H i

ϕ(M) = H i
ϕ,ψ(M) for every i.

Corollary 1.32. Let s be a positive integer, M be an R-module and I1, . . . , Is be ideals

of R. If M is J-torsion for some J ∈ W̃ (I2, . . . , Ij), where 2 ≤ j ≤ s is an even

integer or j = s, then ΓI1,...,Is(M) = ΓI1(M). If in addition R is Noetherian, then

H i
I1,...,Is

(M) = H i
I1

(M) for every i.
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If a and b are ideals of the Noetherian ring R and E is an injective R-module,

then as seen in [BS98, p. 53], the sequence

0 −→ Γa+b(E) −→ Γa(E)⊕ Γb(E) −→ Γa∩b(E) −→ 0 (1.2)

is exact. This result can be easily extended.

Proposition 1.33 (Mayer-Vietoris Sequence). For every pair of families, α and β,

of a Noetherian ring R and every R-module M , there exists an exact sequence 0 →
Γ〈α〉∩〈β〉(M) → Γα(M) ⊕ Γβ(M) → Γα∪β(M) → H1

〈α〉∩〈β〉(M) → H1
α(M) ⊕ H1

β(M) →
H1
α∪β(M)→ H2

〈α〉∩〈β〉(M)→ · · · .

Proof. It su�ces to show that if E is an injective R-module, then the sequence of R-
modules 0 −→ Γ〈α〉∩〈β〉(E) −→ Γα(E)⊕ Γβ(E) −→ Γα∪β(E) −→ 0 is exact. Exactness
at Γ〈α〉∩〈β〉(E) and Γα(E) ⊕ Γβ(E) is clear. Now if x ∈ Γα∪β(E), then we have that
Ann(x) ⊇ I1 · · · IrJ1 · · · Js for some Ii ∈ α and Jj ∈ β. Then x ∈ ΓIJ(E) = ΓI∩J(E),
where I = I1 · · · Ir ∈ 〈α〉 and J = J1 · · · Js ∈ 〈β〉 and exist x1 ∈ ΓI(E) ⊆ Γα(E) and
x2 ∈ ΓJ(E) ⊆ Γβ(E) such that x1 − x2 = x by Equation (1.2).

1.2 Vanishing and non-vanishing

In this section we establish generalised versions of the classic vanishing and non-

vanishing theorems from usual local cohomology theory.

From now on, we will assume that R is Noetherian. Every time E =
⊕
p∈Λ

E (R/p),

where Λ is a family of prime ideals, we get that Γϕ,ψ(E) =
⊕

p∈Λ∩W̃ (〈ϕ〉,ψ)

E (R/p) for every

pair of families, ϕ and ψ, of R by Corollary 1.26, (iv).

For every R-module M , every prime ideal p and every non-negative integer i, we

recall the de�nition of the i-th Bass number µi(p,M) of M with respect to p as the

cardinality of the set {λ ∈ Λ : pλ = p} of indices of prime ideals of the decomposition

Ei(M) =
⊕
λ∈Λ

E (R/pλ) of the i-th term in a minimal injective resolution of M . It is

well known that the number µi(p,M) can be calculated also by the formula

µi(p,M) = dimκ(p) ExtiRp
(κ(p),Mp),

where κ(p) = Rp/pRp is the residue �eld of the local ring Rp.

Next we write extensions of some results of [TYY09]. The following characterises

the depth in terms of the non-vanishing of local cohomology modules.
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Proposition 1.34. If ϕ and ψ are families of R and M is a �nitely generated R-

module, then inf
{
i : H i

ϕ,ψ(M) 6= 0
}

= inf
{

depthRp
(Mp) : p ∈ W̃ (〈ϕ〉, ψ) ∩ SpecR

}
.

Proof. We set n = inf
{

depthRp
(Mp) : p ∈ W̃ (〈ϕ〉, ψ) ∩ SpecR

}
and a minimal injec-

tive resolution (E∗(M), d∗) of M . If p ∈ W̃ (〈ϕ〉, ψ) ∩ SpecR, then

n ≤ depthRp
(Mp) = inf

{
i : µi(p,M) 6= 0

}
.

Hence we have that Γϕ,ψ(Ei(M)) =
⊕

p∈W̃ (〈ϕ〉,ψ)∩SpecR

E (R/p)µ
i(p,M) = 0 for i < n and

Γϕ,ψ(En(M)) 6= 0. It follows that H i
ϕ,ψ(M) = 0 for i < n and

Hn
ϕ,ψ(M) = ker Γϕ,ψ(dn) = Γϕ,ψ(En(M)) ∩ ker dn 6= 0

because Ei(M) is an essential extension of ker di for each i.

Corollary 1.35. If α is a family of R and M is a �nitely generated R-module, then

inf
{
i : H i

α(M) 6= 0
}

= inf
I∈α

grade(I,M).

We also write a converse for Proposition 1.28, (i).

Corollary 1.36. Let M be a �nitely generated R-module, ϕ be a non-trivial family

and ψ be any family of R. Then, every time H i
ϕ,ψ(M) = 0 for every i > 0, we have

that M is a (ϕ, ψ)-torsion R-module.

Proof. Let us assume �rst that R is a local ring with maximal ideal m. Setting
N = M/Γϕ,ψ(M), we have by Proposition 1.28, (ii), that N is (ϕ, ψ)-torsion-free and
H i
ϕ,ψ(N) ∼= H i

ϕ,ψ(M) = 0 for i > 0. Since ϕ is non-trivial, we have that W̃ (〈ϕ〉, ψ) is
also non-trivial by Lemma 1.5, (vii), and m ∈ W̃ (〈ϕ〉, ψ), whence

inf
{

depthRp
(Np) : p ∈ W̃ (〈ϕ〉, ψ) ∩ SpecR

}
≤ depth(N).

If N 6= 0, then H i
ϕ,ψ(N) 6= 0 for some 0 ≤ i ≤ depth(N), which is absurd. Hence

Γϕ,ψ(M) = M .
If R is any ring, then H i

W̃ (〈ϕ〉,ψ)Rp
(Mp) = 0 for every i ≥ 1 and every p ∈ SpecR

by Lemma 1.18. Thus ΓW̃ (〈ϕ〉,ψ)Rp
(Mp) = Mp for every p ∈ SpecR by the previous

arguments and Γϕ,ψ(M) = M again by Lemma 1.18.

Hence the class of �nitely generated (ϕ, ψ)-torsion R-modules coincides with the

class of �nitely generated Γϕ,ψ-acyclic R-modules. Furthermore:

Corollary 1.37. Let M be a �nitely generated R-module, ϕ be a non-trivial family

and ψ be any family of R. The following conditions are equivalent:

(i) M is Γϕ,ψ-acyclic.
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(ii) M is (ϕ, ψ)-torsion.

(iii) M is I-torsion for some I ∈ W̃ (〈ϕ〉, ψ).

(iv) M is ΓI-acyclic for some I ∈ W̃ (〈ϕ〉, ψ).

We inherit an upper bound from the usual local cohomology for the non-vanishing

of the cohomology modules.

Lemma 1.38. Consider two families, ϕ and ψ, of R and an R-module M . Then

H i
ϕ,ψ(M) = 0 for every i > dimM . In particular, H i

α(M) = 0 and H i
Is,...,I1

(M) = 0 for

every i > dimM , every family α of R and ideals I1, . . . , Is.

Proof. For every I ∈ W̃ (〈ϕ〉, ψ), Grothendieck's Vanishing Theorem (see [BS98, The-
orem 6.1.2]) states that H i

I(M) = 0 if i > dimM . By Theorem 1.11, we have that
H i
α(M) ∼= lim−→

I∈W̃ (〈ϕ〉,ψ)

H i
I(M) = 0 if i > dimM .

It is readily observed that the class of zero-dimensional R-modules is contained

in the class of Γα-acyclic R-modules for any family α of R.

Lemma 1.39. Let n be a non-negative integer. If H i
ϕ,ψ(R) = 0 for every i > n, then

H i
ϕ,ψ(M) ∼= H i

ϕ,ψ(R)⊗RM for every i ≥ n and every R-module M .

Proof. If W̃ (〈ϕ〉, ψ) is trivial, the statement holds in an obvious way. Then we may
assume that W̃ (〈ϕ〉, ψ) is non-trivial and let us suppose initially that M is �nitely
generated. Then there exists a short exact sequence 0 −→ N −→ Rm −→ M −→ 0

where m is a positive integer and N is a �nitely generated R-module. For each i,
this sequence induces the exact sequence H i

ϕ,ψ(Rm) −→ H i
ϕ,ψ(M) −→ H i+1

ϕ,ψ (N). We
already observed that H i

ϕ,ψ(M) = 0 when i > dimM in Lemma 1.38. So, we may
assume the induction hypothesis: if H i

ϕ,ψ(R) = 0 for every i > n+1, then H i
ϕ,ψ(M) = 0

for every i > n + 1. Thus H i+1
ϕ,ψ (N) = 0 and H i

ϕ,ψ(M) = 0 if i > n. If M is any R-
module, then it is the inductive limit of its �nitely generated submodules; hence we
can conclude that H i

ϕ,ψ(M) = 0 for every i > n.
Now the functor Hn

ϕ,ψ(−) is R-linear, right-exact and preserves direct sums. Then
the R-modules Hn

ϕ,ψ(M) and Hn
ϕ,ψ(R)⊗RM are isomorphic for every R-module M by

Watts' Theorem (see [Rot09, Theorem 5.45]).

The next result is a generalised version of the fundamental Grothendieck's Van-

ishing Theorem.

Theorem 1.40. Let M be a �nitely generated module over a local ring (R,m), ϕ be

any family and ψ be a non-trivial family. Then H i
ϕ,ψ(M) = 0 for every integer number

i > sup
J∈ψ

dim(M/JM).
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Proof. Again, if ϕ is trivial, the result is obviously satis�ed. The statement will be
proved by induction on r = sup

J∈ψ
dim(M/JM). If r = −1, thenM = 0 andH i

ϕ,ψ(M) = 0

for any i ≥ 0.
Now assume r ≥ 0. Let us suppose also that M = R is an integral domain and

H l
ϕ,ψ(R) 6= 0 for some l > r. Then there exists q ∈ Ass(H l

ϕ,ψ(R)). If q 6= (0), choose a
non-zero x ∈ q. From the exact sequence

0 R R R/Rx 0// //µx // //

we get the exact sequence

H l−1
ϕ,ψ (R/Rx) H l

ϕ,ψ(R) H l
ϕ,ψ(R)// //µx

.

As dim(R/(J +Rx)) ≤ r − 1 < l − 1 for every J ∈ ψ, we have that H l−1
ϕ,ψ (R/Rx) = 0.

Thus x is H l
ϕ,ψ(R)-regular, which is absurd because x ∈ q ∈ Ass(H l

ϕ,ψ(R)). Then
Ass(H l

ϕ,ψ(R)) = {(0)}. Since H l
ϕ,ψ(R) is a (ϕ, ψ)-torsion R-module, we may conclude

that (0) ∈ W̃ (〈ϕ〉, ψ) and any R-module is (ϕ, ψ)-torsion by Remark 1.19. This implies
that H i

ϕ,ψ(R) = 0 for every i > 0 and this leads to a contradiction.
Now if R = M is not an integral domain, then the projection π : R→ R/p leads

to H i
ϕ,ψ (R/p) ∼= H i

ϕ(R/p),ψ(R/p) (R/p) for every i and every p ∈ SpecR by Theorem 1.14.
Finally, ifM is any �nitely generated R-module, then we have a �ltration of R-modules
0 = M0 ( M1 ( · · · ( Ms−1 ( Ms = M such that Mj/Mj−1

∼= R/pj for some
pj ∈ Supp(M) and j = 1, . . . , s. For every i and every j, we obtain exact sequences
0 −→ Mj−1 −→ Mj −→ R/pj −→ 0 and H i

ϕ,ψ(Mj−1) −→ H i
ϕ,ψ(Mj) −→ H i

ϕ,ψ (R/pj).
Since dim(R/(J + pj)) ≤ dim(R/(J + Ann(M))) = dim(M/JM) ≤ r for every J ∈ ψ,
we have that H i

ϕ,ψ (R/pj) = 0 for i > r and every j, making the �rst arrow surjective.
Hence we will have that H i

ϕ,ψ(Mj) = 0 for every j.

Corollary 1.41. Let (R,m) be a local ring, M be an R-module, ϕ be any family and

ψ be a non-trivial family. Then H i
ϕ,ψ(M) = 0 for every i > sup

J∈ψ
dim(R/J).

Proof. M is the inductive limit of all its �nitely generated submodules {Mλ}λ∈Λ. Since
dim(Mλ/JMλ) ≤ dim(R/J) for every λ ∈ Λ and every J ∈ ψ, we have that

H i
ϕ,ψ(M) = lim−→

λ∈Λ

H i
ϕ,ψ(Mλ) = 0

when i > sup
J∈ψ

dim(R/J).

The upper bound considered in the Lemma 1.38 is slightly improved.

Proposition 1.42. Let M be a �nitely generated R-module and ϕ and ψ be families

of R. Then H i
ϕ,ψ(M) = 0 for every i > 1 + sup

J∈ψ
dim(M/JM).
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Proof. We prove the statement by induction over r = sup
J∈ψ

dim(M/JM). Let us suppose

that r = −1. Then, for every J ∈ ψ, there exists aJ ∈ J such that (1+aJ)M = 0. Thus
Jx = Rx for every J ∈ ψ and every x ∈ M . From this, we have that J + Ann(x) ⊇ I

for every I ∈ ϕ , every J ∈ ψ and every x ∈ M , whence M is (ϕ, ψ)-torsion and
H i
ϕ,ψ(M) = 0 for i > 0 by Proposition 1.28, (i). When r ≥ 0, the arguments are the

same as those used in the proof of Theorem 1.40.

Next we state a generalisation of the classic Grothendieck's Non-Vanishing The-

orem. We recall the notation W̃ (m) for the good family of all the ideals containing a

power of m.

Theorem 1.43. Let M be a �nitely generated module over (R,m) and ϕ and ψ be

non-trivial families of R such that ϕ+ ψ ⊆ W̃ (m). Then

sup
{
i : H i

ϕ,ψ(M) 6= 0
}

= sup
J∈ψ

dim(M/JM).

Proof. It su�ces to show that Hr
ϕ,ψ(M) 6= 0 for r = sup

J∈ψ
dim(M/JM) by Theorem 1.40.

Since I + J ∈ W̃ (m) for every I ∈ ϕ and every J ∈ ψ, it is straightforward to see that
W̃ (〈ϕ〉, ψ) = W̃ (m, ψ) and H i

ϕ,ψ(−) = H i
m,ψ(−) for every i. Hence we may suppose

ϕ = W̃ (m). The exact sequence 0 −→ JM −→ M −→ M/JM −→ 0 induces the
exact sequence Hr

m,ψ(M) −→ Hr
m,ψ (M/JM) −→ Hr+1

m,ψ (JM) for each J ∈ ψ. If J ′ ∈ ψ,
then dim(JM/J ′JM) ≤ dim(M/J ′JM) = max {dim(M/JM), dim(M/J ′M)} ≤ r.
Thus Hr+1

m,ψ (JM) = 0 by Theorem 1.40. Since M/JM is J-torsion, we have by
Proposition 1.31 that Hr

m,ψ (M/JM) = Hr
m (M/JM). Now if dim(M/JM) = r,

then Hr
m (M/JM) 6= 0 by Grothendieck's Non-Vanishing Theorem (see [BS98, The-

orem 6.1.4]). We conclude that Hr
m,ψ(M) 6= 0, whence Hr

ϕ,ψ(M) 6= 0.

Corollary 1.44. LetM be a �nitely generated module over (R,m) and I1, . . . , Is be ide-

als of R with I1 and I2 proper and I1+p is m-primary for every prime p ∈ W̃ (I2, . . . , Is).

Then sup
{
i : H i

I1,...,Ij
(M) 6= 0

}
= sup

J∈W̃ (I2,...,Ij)

dim(M/JM) for every even 2 ≤ j ≤ s

and for j = s.

Now we present a generalisation of the classic Lichtenbaum-Hartshorne Vanishing

Theorem.

Theorem 1.45. Let (R,m) be a local ring of dimension d and ϕ and ψ be non-trivial

families of R. The following conditions are equivalent:

(i) Hd
ϕ,ψ(R) = 0.

(ii) For each prime ideal p of R̂ such that dim(R̂/p) = d and JR̂ ⊆ p for some J ∈ ψ,
we have that dim(R̂/(IR̂ + p)) > 0 for some I ∈ ϕ.
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Proof. Let us suppose that Hd
ϕ,ψ(R) = 0 and that there exists a prime ideal p of R̂

such that dim(R̂/p) = d, JR̂ ⊆ p for some J ∈ ψ and dim(R̂/(IR̂ + p)) ≤ 0 for
every I ∈ ϕ. The �rst assumption gives Hd

ϕ,ψ(R̂/p) = 0 because H i
ϕ,ψ(R) = 0 for

i > d − 1 (see Corollary 1.41 and Lemma 1.39). On the other hand, the R-module
R̂/p is J-torsion, whence Hd

ϕ,ψ(R̂/p) = Hd
ϕ(R̂/p) ∼= Hd

ϕ(R̂/p)
(R̂/p) by Theorem 1.31

and Theorem 1.14. Since (IR̂ + p)/p is an mR̂/p-primary ideal of the d-dimensional
local ring (R̂/p,mR̂/p) for every proper ideal I ∈ ϕ, it follows from Theorem 1.43 that
Hd
ϕ,ψ(R̂/p) ∼= Hd

mR̂/p
(R̂/p) 6= 0 and this is a contradiction.

For the converse, let us suppose that Hd
ϕ,ψ(R) 6= 0 and the second condition.

From Lemma 1.39 and Corollary 1.41 we have that Hd
ϕ,ψ(R̂) ∼= Hd

ϕ,ψ(R) ⊗R R̂, hence
Hd
ϕ,ψ(R̂) 6= 0 because R̂ is a faithfully �at R-module. Consider a �ltration

0 = K0 ( K1 ( · · · ( Ks−1 ( Ks = R̂

of ideals of R̂ such that Kj/Kj−1
∼= R̂/pj for some prime ideals pj of R̂. Thus we have

exact sequences Hd
ϕ,ψ(Kj−1) −→ Hd

ϕ,ψ(Kj) −→ Hd
ϕ,ψ(R̂/pj). If every pj is such that

Hd
ϕ,ψ(R̂/pj) = 0, then Hd

ϕ,ψ(R̂) = 0; hence there must be a prime ideal p of R̂ such that
Hd
ϕ,ψ(R̂/p) 6= 0. Now we shall consider two possibilities:

(i) There exists J ∈ ψ such that JR̂ ⊆ p: as R̂/p is a J-torsion R-module, we
have that Hd

ϕ,ψ(R̂/p) = Hd
ϕ(R̂/p) ∼= Hd

ϕ(R̂/p)
(R̂/p) by Theorem 1.31 and Theo-

rem 1.14. If dim(R̂/p) < d, then Hd
ϕ(R̂/p)

(R̂/p) = 0, which is a contradiction.

So dim(R̂/p) = d and dim(R̂/(IR̂ + p)) > 0 for some I ∈ ϕ by our assumption.
Consider the family ϕ′ = {IsJ1 · · · Js for some Ji ∈ ϕ, s ≥ 1}. Observe that ϕ′ is
stable under multiplication, whence ϕ′(R̂/p) is also stable under multiplication.
By Lichtenbaum-Hartshorne Vanishing Theorem (see [BS98, Theorem 8.2.1]), we
get that Hd

a(R̂/p)
(R̂/p) = 0 for every a ∈ ϕ′ because dim(R̂/(aR̂ + p)) > 0. Now

〈ϕ′〉 = 〈ϕ〉, whence H i
ϕ,β(−) = H i

ϕ′,β(−) for every family β and every i. Thus we
get from Theorem 1.14 and Remark 1.12 that

Hd
ϕ(R̂/p)

(R̂/p) ∼= Hd
ϕ′(R̂/p)

(R̂/p) ∼= lim−→
a∈ϕ′

Hd
a(R̂/p)

(R̂/p) = 0

and this is a contradiction.

(ii) For all J ∈ ψ, we have that JR̂ * p: setting R̄ = R/(p ∩ R), we have that R̂/p
is an R̄-module and that Hd

ϕ,ψ(R̂/p) ∼= Hd
ϕR̄,ψR̄

(R̂/p) by Theorem 1.14. If J ∈ ψ,
we have that J * p ∩ R and thus dim(R̄/JR̄) < dim R̄ ≤ d. We conclude from
Corollary 1.41 that Hd

ϕR̄,ψR̄
(R̂/p) = 0 and this is another contradiction.

Corollary 1.46. Let α be a non-trivial family of the d-dimensional local ring (R,m).

The following statements are equivalent:
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(i) Hd
α(R) = 0.

(ii) For each prime ideal p of R̂ such that dim(R̂/p) = dim R̂, there exists I ∈ α such

that dim(R̂/(IR̂ + p)) > 0.

(iii) Hd
I (R) = 0 for some proper I ∈ α.

Proof. Since 〈α〉 = W̃ (〈α〉, {(0)}) for any family α by Lemma 1.5, (vi), we apply the
previous theorem to the families ϕ = α and ψ = {(0)} in order to obtain the equiv-
alence (i)⇔(ii). The equivalence (ii)⇔(iii) is just the classic Lichtenbaum-Hartshorne
Vanishing Theorem.

Corollary 1.47. Let (R,m) be a local ring of dimension d and α and β be non-trivial

families of R such that α ⊆ 〈β〉. Then Hd
α(R) = 0 implies Hd

β(R) = 0.

Corollary 1.48. Let (R,m) be a local ring of dimension d and I1, . . . , Is be ideals of

R with I1 and I2 proper. The following conditions are equivalent:

(i) Hd
I1,...,Is

(R) = 0.

(ii) For each prime ideal p of R̂ such that dim(R̂/p) = dim R̂ and JR̂ ⊆ p for some

J ∈ W̃ (I2, . . . , Ij), being 2 ≤ j ≤ s an even integer or j = s, we have that

dim(R̂/(I1R̂ + p)) > 0.

Corollary 1.49. Let (R,m) be a local ring of dimension d and I1, . . . , Is be ideals of

R with I1 and I2 proper. Consider the following statements:

(i) Hd
I1,...,Ij

(R) = 0 for some odd integer 1 ≤ j ≤ s.

(ii) Hd
I1,...,Is

(R) = 0.

(iii) Hd
I1,...,Ij

(R) = 0 for every even integer 2 ≤ j ≤ s.

Then (i)⇒(ii)⇒(iii).

1.3 Local duality

In this section we prove some results related to local duality for the local coho-

mology modules with respect to a pair of families.

Lemma 1.50. Let (R,m) be a Cohen-Macaulay local ring of dimension d and ψ be a

family of R. If there exists J ∈ ψ contained in a perfect ideal I of grade t (this is,

gr(I, R) = proj. dim(R/I) = t), then ht p ≥ d− t for every prime ideal p ∈ W̃ (m, ψ).
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Proof. Since W̃ (m, ψ) = W̃ (m, 〈ψ〉), we may assume that J is a perfect ideal of grade
t. Observe also that W̃ (m, ψ) =

⋂
K∈〈ψ〉

W̃ (m, K) ⊆ W̃ (m, J) by Lemma 1.9. Thus

ht p ≥ d− t for every prime ideal p ∈ W̃ (m, ψ) by [TYY09, Lemma 5.2].

For any module M over a local ring (R,m), the Matlis dual of M , denoted by

M∨, is the module HomR (M,ER (R/m)). It can be seen that (−)∨ : R-mod→ R-mod

is a contravariant exact R-linear functor.

We recall the de�nition of canonical module of a ring which is an important object

in classical local duality theory.

De�nition 1.51. Let (R,m) be a local ring of dimension n. A �nitely generated
R-module KR is said to be a canonical module of R when KR

∼= Hn
m(R)∨.

The following result gives a characterisation of the associated prime ideals of the

top local cohomology module of the canonical module.

Proposition 1.52. Let (R,m) be a Cohen-Macaulay local ring of dimension d with

canonical module KR and ψ be a family of R. Let us suppose that there exists J ∈ ψ
contained in a perfect ideal of grade t. Then

Ass(Hd−t
m,ψ (KR)) =

{
p ∈ W̃ (m, ψ) ∩ SpecR : ht p = d− t

}
.

Proof. As W̃ (m, ψ) = W̃ (m, 〈ψ〉) by Lemma 1.5, (viii), we may suppose that J is
a perfect ideal of grade t. Let (E∗(KR), ∂∗) be a minimal injective resolution of
KR. Then for each i, Ei(KR) =

⊕
p∈SpecR
ht p=i

E (R/p) by [BH98, Theorem 3.3.10], whence

Γm,ψ(Ei(KR)) =
⊕

p∈W̃ (m,ψ)∩SpecR
ht p=i

E (R/p). Since ht p ≥ d − t for every p ∈ W̃ (m, ψ) by

Lemma 1.50, we have that Hd−t
m,ψ (KR) = ker ∂d−t∩Γm,ψ(Ed−t(KR)) and there is an exact

sequence 0 −→ Hd−t
m,ψ (KR) −→

⊕
p∈W̃ (m,ψ)∩SpecR

ht p=d−t

E (R/p) −→
⊕

p∈W̃ (m,ψ)∩SpecR
ht p=d−t+1

E (R/p). This

implies that Ass(Hd−t
m,ψ (KR)) ⊆

{
p ∈ W̃ (m, ψ) ∩ SpecR : ht p = d− t

}
.

Conversely, if p ∈ W̃ (m, ψ) is a prime ideal such that ht p = d− t, then we have
that (Hd−t

m,ψ (KR))p = ERp(κ(p)) ⊇ κ(p). Hence p ∈ Min(Hd−t
m,ψ (KR)) ⊆ Ass(Hd−t

m,ψ (KR))

and the statement is proved.

Now we prove the main result of this section.

Theorem 1.53. Let (R,m) be a Cohen-Macaulay complete local ring of dimension d

and ψ be a family of R. Consider t = d− sup
J∈ψ

dim(R/J) and assume that there exists
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a perfect ideal J ∈ ψ such that dim(R/J) = d − t. Then for any �nitely generated

R-module M , there is a functorial isomorphism Hd−i
m,ψ(M)∨ ∼= Exti−tR (M,K) where

K = Hd−t
m,ψ (R)∨.

Proof. Setting T j(−) = Hd−t−j
m,ψ (−)∨, we shall show the isomorphism of functors

T j(−) ∼= ExtjR(−, K).

There exists a perfect ideal J ∈ ψ such that dim(R/J) = d − t. We have an iso-
morphism Hd−t

m,ψ (M) ∼= Hd−t
m,ψ (R) ⊗R M for any R-module M by Corollary 1.41 and

Lemma 1.39, hence T 0(M) ∼= (M ⊗R Hd−t
m,ψ (R))∨ ∼= Hom(M,K). Every time we

have an exact sequence 0 −→ L −→ M −→ N −→ 0, we obtain the long exact
sequences · · · −→ Hd−t−1

m,ψ (N) −→ Hd−t
m,ψ (L) −→ Hd−t

m,ψ (M) −→ Hd−t
m,ψ (N) −→ 0 and

0 −→ T 0(N) −→ T 0(M) −→ T 0(L) −→ T 1(N) −→ · · · . For any free R-module Rn

we have that Hd−t−j
m,ψ (Rn)∨ ∼= (Hd−t−j

m,ψ (R)∨)n for j > 0 by Theorem 1.24 and [Rot09,
Theorem 2.31]. Thus Hd−t−j

m,ψ (Rn)∨ = 0 because depthRp
(Rp) = ht p ≥ d − t for ev-

ery prime ideal p ∈ W̃ (m, ψ), see Proposition 1.34 and Lemma 1.50. Then there
exists a unique isomorphism T j(−) ∼= ExtjR(−, K) for each j and the isomorphism
Hd−i

m,ψ(M)∨ ∼= Exti−tR (M,Hd−t
m,ψ (R)∨) holds for every �nitely generated R-module M .

For any ring R, any ideal J of R and any R-moduleM , we denote the completion

for M with respect to the J-adic topology as M∧
J .

Theorem 1.54. Let (R,m) be a Cohen-Macaulay local ring of dimension d with canon-

ical module KR and ψ be a family of R. For every J ∈ ψ, there is a natural isomorphism

Hd−t
m,ψ (R)∧J

∼= H t
J(KR)∨, where t = d− sup

J∈ψ
dim(R/J).

Proof. For every J ∈ ψ and every n ∈ N, we have the isomorphisms

Hd−t
m,ψ (R)/JnHd−t

m,ψ (R) ∼= Hd−t
m,ψ (R)⊗R/Jn

∼= Hd−t
m,ψ (R/Jn) (by Lemma 1.39)

∼= Hd−t
m (R/Jn) (by Proposition 1.31)

∼= ExttR (R/Jn, KR)∨ (by [BS98, Theorem 12.1.20, (ii)]).

Thus

Hd−t
m,ψ (R)∧J

∼= lim←−
n∈N

ExttR (R/Jn, KR)
∨

∼=

(
lim−→
n∈N

ExttR (R/Jn, KR)

)∨
(by [Rot09, Proposition 5.26])

∼= H t
J(KR)∨ (by [BS98, Theorem 1.3.8]).
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For any pair of R-modules, M and N , and any family α of R, we can de�ne the

generalised local cohomology as

H i
α(M,N) := lim−→

I∈〈α〉
H i
I(M,N) = lim−→

n∈N
I∈〈α〉

ExtiR (M/InM,N) = lim−→
I∈〈α〉

ExtiR (M/IM,N) .

We generalise a result of [TYY09].

Proposition 1.55. Let (R,m) be a Gorenstein local ring of dimension d and ψ be a

family such that R is J-adically complete for some J ∈ ψ. Then there is an isomor-

phism Γm,ψ(M) ∼= Hd
ψ(M,R)∨ for every �nitely generated R-module M .

Proof. The family ψ′ = {JsI1 · · · Is for some Ii ∈ ψ, s ≥ 1} is co�nal to 〈ψ〉 and every
I ∈ ψ′ is such that R is I-adically complete. Thus Γm,I(M) = Hd

I (M,R)∨ for every
I ∈ ψ′ by [TYY09, Theorem 5.7] and

Γm,ψ(M) ∼= lim←−
I∈〈ψ〉

Γm,I(M) (Lemma 1.9)

∼= lim←−
I∈ψ′

Γm,I(M)

∼= lim←−
I∈ψ′

Hd
I (M,R)∨

∼=

(
lim−→
I∈ψ′

Hd
I (M,R)

)∨
([Rot09, Proposition 5.26])

∼=

(
lim−→
I∈〈ψ〉

Hd
I (M,R)

)∨
∼= Hd

ψ(M,R)∨.

If the d-dimensional ring R admits DR as a dualising complex, we denote by KM

the canonical module of the r-dimensional R-module M , which is de�ned as

KM = Hd−r(RHomR(M,DR)).

We generalise another result of [TYY09].

Proposition 1.56. Let (R,m) be a complete local ring, α be a family of R and M be

a �nitely generated R-module of dimension r. Then we have an isomorphism

Hr
α(M)∨ ∼= Γm,α(KM).
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Proof.

Hr
α(M)∨ ∼=

(
lim−→
I∈〈α〉

Hr
I (M)

)∨
∼= lim←−

I∈〈α〉
Hr
I (M)∨

∼= lim←−
I∈〈α〉

Γm,I(KM)

∼= Γm,α(KM).
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Chapter 2

Top local cohomology modules

2.1 Artinianness and cohomological dimension

As seen in [BS98, Chapter 7], it is well known that Hn
I (M) is an Artinian R-

module for any n-dimensional R-module M and any ideal I of R. The purpose of

this section is exactly to show the same property for any family of R. Unless stated

explicitly, all the rings in the following sections are local Noetherian.

Lemma 2.1. Let M be a �nitely generated R-module, ϕ and ψ be families of R and

set l = sup
J∈ψ

dim(M/JM). Then H i
ϕ,ψ(M) ∼= H i

ϕ,ψ (R/Ann(M))⊗RM for every i ≥ l.

Proof. Set R̄ = R/Ann(M). Thus H i
ϕR̄,ψR̄

(R̄) = 0 for i > sup
J∈ψ

dim(R̄/JR̄) = l

by Theorem 1.40 and both sides of the claimed isomorphism are equal to zero, so
it su�ces to prove it for i = l. By Lemma 1.39 we have the isomorphism of R̄-
modules H l

ϕR̄,ψR̄
(M) ∼= H l

ϕR̄,ψR̄
(R̄) ⊗R̄ M and since M = M ⊗R R̄, we have that

H l
ϕR̄,ψR̄

(R̄)⊗R̄ M ∼= H l
ϕR̄,ψR̄

(R̄)⊗R M . From Theorem 1.14 we get the isomorphisms
of R̄-modules H l

ϕR̄,ψR̄
(M) ∼= H l

ϕ,ψ(M) and H l
ϕR̄,ψR̄

(R̄) ∼= H l
ϕ,ψ(R̄). We conclude that

the R̄-modules H l
ϕ,ψ(M) and H l

ϕ,ψ(R̄) ⊗R M are isomorphic. By reducing scalars we
obtain the statement.

If W̃ (〈ϕ〉, ψ) ⊆ W̃ (〈ϕ′〉, ψ′), then we have natural maps H i
ϕ,ψ(−)→ H i

ϕ′,ψ′(−) for

all i. Moreover, the top cohomology functor Hd
ϕ,ψ(−) displays a dual behaviour with

respect to H0
ϕ,ψ(−) in the following sense.

Theorem 2.2. Let M be a �nitely generated R-module of dimension d and let α and β

be families of R such that {R} ( 〈α〉 ⊆ 〈β〉. Then the natural map Hd
α(M)→ Hd

β(M) is

surjective. In particular Hd
α(M) is Artinian, more precisely, it is a quotient of Hd

m(M).



Proof. The proof will be done in several steps.
Step 1: Suppose that R is complete Gorenstein of dimension d and M = R.

Then every element of a minimal injective resolution (Ei, ∂i) of R is of the form
Ei =

⊕
ht p=i

E (R/p), where E(R/p) is the injective hull of the R-module R/p. Since

Γα(Ed) = Ed when α is a non-trivial family and Γα(Ed−1) ⊆ Γβ(Ed−1), we have that
im Γα(∂d−1) ⊆ im Γβ(∂d−1) and the homomorphism

Hd
α(R) = Ed/ im Γα(∂d−1)→ Ed/ im Γβ(∂d−1) = Hd

β(R)

is surjective.
Step 2: Suppose now that R is complete of dimension d and M = R. By Cohen

Structure Theorem there exists a complete regular (hence Gorenstein) local ring (S, n)

of dimension d and a surjective ring homomorphism φ : S → R. Then Theorem 1.14
says that Hd

α(R) ∼= Hd
φ−1(α)(R), where φ−1(γ) is the family {φ−1(I) : I ∈ γ} of ideals

of S. Observe that Hd
φ−1(α)(S) → Hd

φ−1(β)(S) is surjective by the previous step. Thus
Hd
φ−1(α)(S) ⊗S S/K → Hd

φ−1(β)(S) ⊗S S/K is also surjective, where K = kerφ. Now
Hd
φ−1(α)(R) ∼= Hd

φ−1(α)(S)⊗SS/K and Hd
φ−1(β)(R) ∼= Hd

φ−1(β)(S)⊗SS/K by Lemma 1.39.
Hence Hd

α(R)→ Hd
β(R) is surjective.

Step 3: Suppose that R is any ring of dimension d and M = R. Lemma 1.18
gives that Hd

αR̂
(R̂) ∼= Hd

α(R) ⊗R R̂, where R̂ is the m-adic completion of R, and the
surjectivity of Hd

α(R) → Hd
β(R) comes from the surjectivity of the natural map of

R̂-modules Hd
αR̂

(R̂)→ Hd
βR̂

(R̂) by step 2.
Step 4: Suppose that dimM = dimR = d. Then, by step 3, the natural map

Hd
α(R) → Hd

β(R) is surjective. It follows that Hd
α(R) ⊗ M → Hd

β(R) ⊗ M is also
surjective. Thus Hd

α(M)→ Hd
β(M) is surjective by Lemma 1.14.

Step 5: In general, we have that Hd
α(M) ∼= Hd

αR̄
(M) for R̄ = R/Ann(M) and

every family α of ideals of R by Theorem 1.14. Hence we obtain that the natural map
Hd
α(M)→ Hd

β(M) is also surjective by step 4.
Finally, since α is a non-trivial family, we have that W̃ (m) ⊆ 〈α〉. Then the

natural map Hd
m(M)→ Hd

α(M) is surjective and we conclude that Hd
α(M) is Artinian

because Hd
m(M) is Artinian by [BS98, Theorem 7.1.3].

We shall observe that the Artinianness of the top local cohomology Hd
α(M) was

proved in [DANT02, Theorem 2.6].

Corollary 2.3. Let M be a �nitely generated R-module of dimension d and let ϕ, ϕ′,

ψ and ψ′ be families of R such that {R} ( W̃ (〈ϕ〉, ψ) ⊆ W̃ (〈ϕ′〉, ψ′). Then the natural

map Hd
ϕ,ψ(M) → Hd

ϕ′,ψ′(M) is surjective. In particular Hd
ϕ,ψ(M) is Artinian, more

precisely, it is a quotient of Hd
m(M).
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The inclusion W̃ (〈ϕ〉, ψ) ⊆ W̃ (〈ϕ′〉, ψ′) holds whenever ϕ ⊆ 〈ϕ′〉 and 〈ψ〉 ⊇ ψ′.

Thus we can state the following.

Corollary 2.4. Let M be a �nitely generated R-module of dimension d, s ≤ t be

positive integers and {I1, . . . , Is} and {J1, . . . , Jt} be two sets of ideals such that I1 and

J1 are proper.

• If s is odd,
√
Ii ⊇

√
Ji for every odd 1 ≤ i ≤ s and

√
Ij ⊆

√
Jj for every even

2 ≤ j ≤ s− 1, then there exists a natural map Hd
I1,...,Is

(M)→ Hd
J1,...,Jt

(M) which

is surjective and Hd
I1,...,Is

(M) is a quotient of Hd
m(M), hence Artinian.

• If s is even,
√
Jj ⊆

√
Ij for every even 2 ≤ j ≤ s and

√
Ji ⊇

√
Ii for every odd

1 ≤ i ≤ s− 1, then there exists a natural map Hd
J1,...,Jt

(M)→ Hd
I1,...,Is

(M) which

is surjective and Hd
J1,...,Jt

(M) is a quotient of Hd
m(M), hence Artinian.

Proof. The �rst situation gives that W̃ (m) ⊆ W̃ (I1, . . . , Is) ⊆ W̃ (J1, . . . , Jt), while the
second one gives that W̃ (m) ⊆ W̃ (J1, . . . , Jt) ⊆ W̃ (I1, . . . , Is).

For any R-module M , set l = sup
J∈ψ

dim(M/JM). The R-module H l
ϕ,ψ(M) is not

always Artinian (see for example Proposition 1.52), but the following property holds.

Theorem 2.5. Let M be a �nitely generated R-module, ϕ and ψ be families of R and

consider l = sup
J∈ψ

dim(M/JM). Then H l
ϕ,ψ(M)/JH l

ϕ,ψ(M) is Artinian for every J ∈ ψ.

Proof. We shall prove the statement by induction on d = dimM . If d = 0, then l ≤ 0

and H l
ϕ,ψ(M) is Artinian, whence H l

ϕ,ψ(M)/JH l
ϕ,ψ(M) is Artinian for every J ∈ ψ.

Suppose now that d > 0. Let us suppose �rst that M is ψ-torsion-free, this is,
Γψ(M) = 0. Then, for every J ∈ ψ there exists an M -regular element x ∈ J by
Corollary 1.27, (i). The exact sequence

0 M M M/xM 0// //µx // //

leads to the exact sequence

H l
ϕ,ψ (M) H l

ϕ,ψ(M) H l
ϕ,ψ (M/xM) 0//µx // //

by Theorem 1.40. Set N = M/xM and r = sup
K∈ψ

dim(N/KN). Then r ≤ l and

H i
ϕ,ψ(N)/KH i

ϕ,ψ(N) is Artinian for every i ≥ r and every K ∈ ψ by inductive hypoth-
esis. We also obtain the exact sequence

H l
ϕ,ψ(M)

JH l
ϕ,ψ(M)

H l
ϕ,ψ(M)

JH l
ϕ,ψ(M)

H l
ϕ,ψ(N)

JH l
ϕ,ψ(N)

0//µx // //

and since x ∈ J we conclude that H l
ϕ,ψ(M)/JH l

ϕ,ψ(M) ∼= H l
ϕ,ψ(N)/JH l

ϕ,ψ(N).
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Now if M is not ψ-torsion-free, consider the following short exact sequence of
R-modules 0 −→ Γψ(M) −→M −→M/Γψ(M) −→ 0. Consider also the integer num-
bers r = sup

K∈ψ
dim((M/Γψ(M))/K(M/Γψ(M))) and k = sup

K∈ψ
dim(Γψ(M)/KΓψ(M)).

We observe that max {r, k} ≤ l, thus we obtain the exact sequence of R-modules
H l
ϕ,ψ(Γψ(M)) −→ H l

ϕ,ψ(M) −→ H l
ϕ,ψ(M/Γψ(M)) −→ 0 which induces the exact se-

quence
H l
ϕ,ψ(Γψ(M))

JH l
ϕ,ψ(Γψ(M))

−→
H l
ϕ,ψ(M)

JH l
ϕ,ψ(M)

−→
H l
ϕ,ψ(M/Γψ(M))

JH l
ϕ,ψ(M/Γψ(M))

−→ 0 (2.1)

for every J ∈ ψ. We also observe that dim Γψ(M) ≤ l by Proposition 1.21, (iv),
whence H l

ϕ,ψ(Γψ(M)) is Artinian by Theorem 2.2. Furthermore, the right-hand side of
equation (2.1) is Artinian by the previous case. Then the statement follows.

Corollary 2.6. Let M be a �nitely generated R-module and I1, . . . , Is be ideals of

R. Then H l
Is,...,I1

(M)/JH l
Is,...,I1

(M) is Artinian for every J ∈ W̃ (Is−1, . . . , I1), where

l = sup
{

dim(M/JM) : J ∈ W̃ (Is−1, . . . , I1)
}
.

When s = 2, the above corollary was stated in [CW09, Theorem 2.3].

Theorem 2.7. Let M be a �nitely generated R-module and α be a non-trivial family

of R. Then

inf
{
i : H i

α(M) is not Artinian
}

= inf
{

depthRp
(Mp) : p ∈ 〈α〉 ∩ SpecR− {m}

}
.

Proof. We set n = inf
{

depthRp
(Mp) : p ∈ 〈α〉 ∩ SpecR− {m}

}
and a minimal in-

jective resolution (E∗(M), d∗) of M . Thus Γα(Ei(M)) = E (R/m)µ
i(m,M) for every

i < n by Corollary 1.26, (iv). Since E (R/m) is Artinian and µi(m,M) is �nite, we
have that Γα(Ei(M)) is Artinian too for i < n and so is H i

α(M). This implies that
inf {i : H i

α(M) is not Artinian} ≥ n.
For the other inequality we observe that there exists a prime ideal q 6= m in 〈α〉

such that µn(q,M) > 0. Thus q ∈ AssR(Γα(En(M))) by Corollary 1.26, (iv). Then
Γα(En(M)) is not Artinian. Now Γα(En(M)) is an essential extension of ker Γα(dn),
leading to ker Γα(dn) not being Artinian. On the other hand, im Γα(dn−1) is Artinian.
Thus the exact sequence 0 −→ im Γα(dn−1) −→ ker Γα(dn) −→ Hn

α(M) −→ 0 implies
that Hn

α(M) is not Artinian.

Corollary 2.8. Let M be a �nitely generated R-module and ϕ and ψ be families of R.
Then

inf
{
i : H i

ϕ,ψ(M) is not Artinian
}
= inf

{
depthRp

(Mp) : p ∈ W̃ (〈ϕ〉, ψ) ∩ SpecR− {m}
}
.

Corollary 2.9. Let M be a �nitely generated R-module and α and β be families of R

such that α ⊆ 〈β〉. Then

inf
{
i : H i

β(M) is not Artinian
}
≤ inf

{
i : H i

α(M) is not Artinian
}
.
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In particular,

inf
{
i : H i

I1,...,Ij
(M) is not Artinian

}
≤ inf

{
i : H i

I1,...,Is
(M) is not Artinian

}
for every even integer 2 ≤ j ≤ s and

inf
{
i : H i

I1,...,Is
(M) is not Artinian

}
≤ inf

{
i : H i

I1,...,Ii
(M) is not Artinian

}
for every odd integer 1 ≤ i ≤ s.

Corollary 2.10. Let M be a �nitely generated R-module and α be a non-trivial family

of R. Then

inf
{
i : H i

α(M) is not Artinian
}

= inf
{
i : H i

α(M) � H i
m(M)

}
.

Proof. Set n = inf {i : H i
α(M) is not Artinian}. Then Γα(Ei(M)) = Γm(Ei(M)) for

every i < n by Theorem 2.7 and Corollary 1.26, (iv). Conversely, Hn
α(M) is not

Artinian while Hn
m(M) is and we conclude that Hn

α(M) � Hn
m(M).

The next result generalises [CW09, Theorem 2.4 and Proposition 2.5].

Corollary 2.11. Let M be a �nitely generated R-module and I1, . . . , Is be ideals of R.

Then

inf
{
i : H i

Is,...,I1
(M) is not Artinian

}
= inf

{
depthRp

(Mp) : p ∈ W (Is, . . . , I1)− {m}
}

= inf
{
i : H i

Is,...,I1
(M) � H i

m(M)
}

where W (Is, . . . , I1) = W̃ (Is, . . . , I1) ∩ SpecR.

In the same fashion of local cohomology theory and its current extensions, we

de�ne, for each R-module M and every family α of R, the cohomological dimension of

M with respect to α as cd(α,M) = sup {r : Hr
α(M) 6= 0}.

When 〈α〉 = W̃ (〈ϕ〉, ψ) for some families, ϕ and ψ, of R, we denote cd(α,M) as

cd(ϕ, ψ,M) and we call it the cohomological dimension of M with respect to the pair

(ϕ, ψ). Also, when W̃ (〈ϕ〉, ψ) = W̃ (Is, . . . , I1) for some ideals I1, . . . , Is of R, we shall

write cd(ϕ, ψ,M) as cd(Is, . . . , I1,M) and call it the cohomological dimension of M

with respect to the s-tuple (Is, . . . , I1).

Let M be a �nitely generated R-module. If 〈ψ〉 ⊇ ψ′, Theorem 1.43 states that

cd(m, ψ,M) ≥ cd(m, ψ′,M). Thus cd(m, I2, . . . , Is,M) ≤ cd(m, J2, . . . , Jt,M) every

time s is even, s ≤ t,
√
Ij ⊇

√
Jj for every even integer 2 ≤ j ≤ s and

√
Ii ⊆

√
Ji for

every odd integer 3 ≤ i ≤ s− 1. Similarly, cd(m, I2, . . . , Is,M) ≥ cd(m, J2, . . . , Jt,M)
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every time s is odd, s ≤ t,
√
Jj ⊇

√
Ij for every even integer 2 ≤ j ≤ s − 1 and

√
Ji ⊆

√
Ii for every odd integer 3 ≤ i ≤ s (compare with Corollary 2.4).

We now establish some properties of this invariant by seeing �rst that the coho-

mological dimension of a �nitely generated module only depends on its support.

Theorem 2.12. Let α be a family of R, M and N be �nitely generated R-modules with

Supp(N) ⊆ Supp(M) and r be a non-negative integer number such that Hr
α (R/p) = 0

for every prime ideal p ∈ Supp(M). Then

(i) Hr
α(N) = 0.

(ii) cd (α,R/p) < r for all p ∈ Supp(M).

Proof. We now prove (i). If Hr
α (R/p) = 0 for every p ∈ Supp(M), then, for any

�nitely generated R-module N such that Supp(N) ⊆ Supp(M) and any �ltration
0 = N0 ( N1 ( · · · ( Nt−1 ( Nt = N of submodules of N such that the isomorphism
Nj/Nj−1

∼= R/pj holds for some pj ∈ Supp(N) and every j = 1, . . . , t, we obtain, from
the exact sequence Hr

α(Nj−1) −→ Hr
α(Nj) −→ Hr

α (R/pj), that Hr
α(Nj) = 0 for every

j = 1, . . . , t.
In order to prove (ii), it su�ces to show that Hr+1

α (R/p) = 0 for every prime
ideal p ∈ Supp(M). Otherwise there would exist a prime q ∈ AssR (Hr+1

α (R/p0)) for
some p0 ∈ Supp(M). If q 6= p0, we can choose x ∈ q− p0 in order to obtain the exact
sequence

0 R/p0 R/p0 R/(p0 +Rx) 0// //µx // // .

This leads to the exact sequence

Hr
α (R/(p0 +Rx)) Hr+1

α (R/p0) Hr+1
α (R/p0)// //µx

and, since Supp (R/(p0 +Rx)) ⊆ Supp (R/p0) ⊆ Supp(M), we conclude by (i) that
Hr
α (R/(p0 +Rx)) = 0 and x is Hr+1

α (R/p0)-regular, which is absurd. Thus q = p0.
Now, AssR (Hr+1

α (R/p0)) ⊆ 〈α〉 and p0 ∈ 〈α〉. Then R/p0, being a p0-torsion
module, is also α-torsion. Thus H i

α (R/p0) = 0 for every i > 0, which is a contradiction
and Hr+1

α (R/p) = 0 for every p ∈ Supp(M).

Proposition 2.13. Let α be a non-trivial family of R and M and N be �nitely gen-

erated R-modules such that Ann(M) ⊆ Ann(N). Then cd(α,N) ≤ cd(α,M) and

cd(Is, . . . , I1, N) ≤ cd(Is, . . . , I1,M) for every s-tuple of ideals (I1, . . . , Is).

Proof. We will show that every time H i
α(M) = 0 we get that H i

α(N) = 0. Since
dimN ≤ dimM , we will prove the statement only for cd(α,M) < i ≤ dimM . Since
N is an (R/Ann(M))-module, there exists a �ltration of R-modules

0 = N0 ⊆ N1 ⊆ · · · ⊆ Nt−1 ⊆ Nt = N
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such that each Nj/Nj−1 is an homomorphic image of a direct sum of �nitely many
copies of M (see [Vas74, Theorem 4.1]). Let us suppose that t = 1. Then there exists
an exact sequence 0 −→ L −→ Mm −→ N −→ 0 where L is a �nitely generated
R-module. This leads to the long exact sequence

· · · −→ H i
α(L) −→ H i

α(Mm) −→ H i
α(N) −→ H i+1

α (L) −→ · · · .

Since Ann(M) ⊆ Ann(L), we have that H i+1
α (L) = 0 by descending induction. If

H i
α(M) = 0, then H i

α(N) = 0. Now H i
α (Nt/Nt−1) = 0 and H i

α(Nt−1) = 0, provided
H i
α(M) = 0 and t > 1. We conclude that H i

α(Nt) = 0 and cd(α,N) ≤ cd(α,M).

Corollary 2.14. If M is a �nitely generated R-module, then there exists a prime

ideal p ∈ Min(M) such that cd(α,M) = cd (α,R/p). In particular, for every s-

tuple (I1, . . . , Is) of ideals of R, there exists a prime ideal p ∈ Min(M) such that

cd(Is, . . . , I1,M) = cd (Is, . . . , I1, R/p).

Proof. Again, Theorem 2.12 gives us the inequality cd(α,M) ≤ cd (α,R/p′) for some
p′ ∈ Supp(M). Since Ann(M) ⊆ q for every q ∈ Supp(M), we also have that
cd(α,M) ≥ cd (α,R/q) for every q ∈ Supp(M) by Proposition 2.13. Now there exists
p ∈ Min(M) such that p ⊆ p′, whence

cd(α,M) ≤ cd (α,R/p′) ≤ cd (α,R/p) ≤ cd(α,M)

and we conclude the statement.

The following result generalises [CW09, Corollary 3.3].

Corollary 2.15. For any �nitely generated R-module M and any family α of R,

cd(α,M) = inf
{
i ∈ N : H i

α (R/p) = 0 for all p ∈ Supp(M)
}
− 1.

In particular, if I1, . . . , Is are ideals of R, then

cd(Is, . . . , I1,M) = inf
{
i ∈ N : H i

Is,...,I1
(R/p) = 0 for all p ∈ Supp(M)

}
− 1.

Proof. Theorem 2.12 gives that

cd(α,M) ≤ inf
{
i ∈ N : H i

α(R/p) = 0 for all p ∈ Supp(M)
}
− 1.

For the converse, we will show that H i
α (R/p) = 0 for every p ∈ Supp(M) and every

integer i > cd(α,M). So consider p ∈ Supp(M) and i > cd(α,M). It follows from
Proposition 2.13 that cd(α,R/p) ≤ cd(α,M) < i, whence H i

α(R/p) = 0.

Corollary 2.16. For any family α of R and any exact sequence of �nitely generated

R-modules 0 −→ L −→ M −→ N −→ 0, cd(α,M) = max {cd(α,L), cd(α,N)}.
In particular, cd(Is, . . . , I1,M) = max {cd(Is, . . . , I1, L), cd(Is, . . . , I1, N)} for every s-
tuple (I1, . . . , Is) of ideals of R.
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Proof. Since Ann(M) ⊆ Ann(L) ∩ Ann(N), Proposition 2.13 gives that

max {cd(α,L), cd(α,N)} ≤ cd(α,M).

For the converse, there exists an exact sequence H i
α(L) −→ H i

α(M) −→ H i
α(N). Then

H i
α(L) = 0 and H i

α(N) = 0 imply H i
α(M) = 0.

Corollary 2.17. Suppose that M and N are �nitely generated R-modules such that

Supp(N) ⊆ Supp(M) and consider a non-trivial family α of R. Then

cd(α,N) ≤ cd(α,M)

and cd(Is, . . . , I1, N) ≤ cd(Is, . . . , I1,M) for every s-tuple of ideals (I1, . . . , Is).

Proof. Let 0 = N0 ( N1 ( · · · ( Nt−1 ( Nt = N be a �ltration of submodules of N
such that Ni/Ni−1

∼= R/pi for some pi ∈ Supp(N) and for every i = 1, . . . , t. If t = 1,
the statement follows directly from Proposition 2.13. If t > 1, the exact sequence
0 −→ Nt−1 −→ Nt −→ Nt/Nt−1 −→ 0 leads to

cd(α,Nt) = max {cd(α,Nt−1), cd(α,Nt/Nt−1)} ≤ cd(α,M)

and the statement is proved.

2.2 Attached primes of top local cohomology modules

Let M be an R-module. A prime ideal p is said to be an attached prime of M

when p = Ann(M/T ) for some submodule T of M . The concept of attached prime

ideal is closely related to a secondary representation of M (see [Mac73]).

There is a well-known property in usual local cohomology which says that the

attached primes of the n-th cohomology module of the n-dimensional �nitely generated

R-module M is a subset of the minimal primes of M (see [DY05, Theorem A]). This

is also valid in a more general context as we can see in the following results.

Theorem 2.18. Let M be a �nitely generated R-module of dimension d and α be a

non-trivial family of R. Then

Att(Hd
α(M)) = {p ∈ Supp(M) : cd (α,R/p) = d} .

Proof. If d = 0, then M has �nite length and

Att(H0
α(M)) = Att(M) = {m} = Supp(M).
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Let us suppose that d > 0. By Corollary 2.15, we obtain that Hd
α(M) = 0 if and

only if Hd
α (R/p) = 0 for every p ∈ Supp(M). Thus Att(Hd

α(M)) = ∅ if and only if
{p ∈ Supp(M) : cd (α,R/p) = d} = ∅. Hence we may assume that Hd

α(M) 6= 0.
Assume �rst that every non-trivial submodule ofM has cohomological dimension

with respect to α equal to d. We claim that Ass(M) = {p ∈ Supp(M) : cd(α,R/p) = d}.
Indeed, if p ∈ Ass(M), then R/p is isomorphic to a non-trivial submodule of M ,
thus cd(α,R/p) = d. For the converse, observe that if p ∈ Supp(M) is such that
cd(α,R/p) = d, then d ≤ dim(R/p) ≤ dim(M) = d, whence p ∈ Ass(M) and the claim
is proved. Thus we shall prove that Att(Hd

α(M)) = Ass(M).
Let r ∈ R be an M -regular element. Then the exact sequence

0 M M M/rM 0// //µr // //

induces the exact sequence

Hd
α(M) Hd

α(M) Hd
α (M/rM)//µr // .

Now Hd
α (M/rM) = 0 by Lemma 1.38, thus µr : Hd

α(M) → Hd
α(M) is surjective,

hence r /∈
⋃

p∈Att(Hd
α(M))

p. Therefore,
⋃

p∈Att(Hd
α(M))

p ⊆
⋃

p∈Ass(M)

p and, for every prime

ideal p ∈ Att(Hd
α(M)), there exists q ∈ Ass(M) such that p ⊆ q. We also have

that Ann(M) ⊆ Ann(Hd
α(M)) ⊆ p for every p ∈ Att(Hd

α(M)). Then we get the
inequalities d = cd (α,R/q) ≤ dim(R/q) ≤ dim(R/p) ≤ d and p = q, implying the
relation Att(Hd

α(M)) ⊆ Ass(M). For the converse consider a prime ideal p ∈ Ass(M).
Then there exists a p-primary submodule T of M such that Ass (M/T ) = {p}. Hence
Corollary 2.14 implies that cd (α,M/T ) = cd (α,R/p) = d. Since Ass (L/T ) = {p}
for every submodule L of M such that L ) T , we have that cd (α,L/T ) = d. Thus
every non-trivial submodule of M/T has also cohomological dimension with respect to
α equal to d. Hence, we obtain as before that Att

(
Hd
α (M/T )

)
⊆ Ass (M/T ) and this

implies that Att
(
Hd
α (M/T )

)
= Ass (M/T ). Finally the exact sequence of R-modules

Hd
α(M) −→ Hd

α (M/T ) −→ 0 leads to Att
(
Hd
α (M/T )

)
⊆ Att(Hd

α(M)). By varying T
over all the primary submodules of M we get that

Ass(M) =
⋃
T

Ass (M/T ) =
⋃
T

Att
(
Hd
α (M/T )

)
⊆ Att(Hd

α(M)) ⊆ Ass(M).

Suppose now that M has a non-trivial submodule with cohomological dimen-
sion with respect to α lower than d. We claim that there is a unique maximal sub-
module N of M , with respect to inclusion, such that cd(α,N) ≤ d − 1. In fact,
existence of maximal submodules with this property is assured since M is �nitely gen-
erated. Now uniqueness follows because if M1 and M2 are submodules of M such
that max {cd(α,M1), cd(α,M2)} ≤ d− 1, then the short exact sequence of R-modules
0 −→ M1 −→ M1 + M2 −→ (M1 + M2)/M1 −→ 0 and Corollary 2.16 give that
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cd(α,M1 +M2) = max {cd(α,M1), cd (α,M2/(M1 ∩M2))} ≤ d− 1. Hence the claim is
stated.

From the exact sequence 0 −→ N −→ M −→ M/N −→ 0 we get by Corol-
lary 2.16 that cd(α,M) = cd (α,M/N). The exact sequence

Hd
α(N) −→ Hd

α(M) −→ Hd
α (M/N) −→ Hd+1

α (N)

gives the isomorphism Hd
α(M) ∼= Hd

α (M/N). Observe now that the R-module M/N

has no non-trivial submodules with cohomological dimension with respect to α lower
than d. Hence the result follows from the previous case.

We can get a re�nement of the previous result when 〈α〉 = W̃ (〈ϕ〉, ψ).

Theorem 2.19. Let M be a �nitely generated R-module of dimension d and ϕ and ψ

be non-trivial families of R. Then

Att(Hd
ϕ,ψ(M)) = {p ∈ Supp(M) ∩ 〈ψ〉 : cd (ϕ,R/p) = d} .

Proof. Consider R̄ = R/Ann(M). By Theorem 1.14 we get thatH i
ϕ,ψ(M) ∼= H i

ϕR̄,ψR̄
(M)

and H i
ϕ,ψ (R/p) ∼= H i

ϕR̄,ψR̄
(R/p) for every i and every p ∈ SuppR(M). Thus we may

assume that M is faithful, so that dimR = dimM = d.
Recall that 〈α〉 ∩ SpecR =

⋃
I∈α

V (I) for any family α of R (see equation (1.1)).

Thus the prime ideal p /∈ 〈ψ〉 if and only if J * p for every J ∈ ψ. In this case
dim(R/(p + J)) ≤ d − 1 for every J ∈ ψ and Hd

ϕ,ψ (R/p) = 0 for every prime
ideal p /∈ 〈ψ〉 by Lemma 1.38. If p ∈ 〈ψ〉, we conclude from Proposition 1.31
that H i

ϕ,ψ (R/p) = H i
ϕ (R/p) for every i. We also have from Corollary 2.15 that

cd(ϕ, ψ,M) = inf
{
i ∈ N : H i

ϕ,ψ (R/p) = 0 for all p ∈ Supp(M)
}
− 1. In this way we

obtain that Hd
ϕ,ψ(M) = 0 if and only if {p ∈ Supp(M) ∩ 〈ψ〉 : cd (ϕ,R/p) = d} = ∅.

Let us consider p ∈ Att(Hd
ϕ,ψ(M)). Then Hd

ϕ,ψ (M/pM) ∼= Hd
ϕ,ψ(M)/pHd

ϕ,ψ(M) 6= 0 by
Lemma 1.39. By Theorem 1.40, there exists J ∈ ψ such that

d ≤ dim((M/pM)/J(M/pM)) = dim(R/(p + J)) ≤ d,

whence J ⊆ p and dim(R/p) = d. From this we have that M/pM is J-torsion and
Hd
ϕ,ψ (M/pM) = Hd

ϕ (M/pM) by Proposition 1.31. SinceM is faithful, we also conclude
that

√
Ann(M/pM) = p and

d ≤ cd (ϕ,R/p)

≤ cd (ϕ,M/pM) (by Proposition 2.13)

≤ dim(M/pM) (by Lemma 1.38)

= dim(R/p)

= d.
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In sum, we have that p ∈ Supp(M) ∩ 〈ψ〉 and cd (ϕ,R/p) = d. Conversely let
us consider a prime ideal p ∈ Supp(M) ∩ 〈ψ〉 such that cd (ϕ,R/p) = d. Then
Proposition 1.31 states that H i

ϕ,ψ (M/pM) = H i
ϕ (M/pM) for every i. Observe that

AttR
(
Hd
ϕ (M/pM)

)
= {q ∈ SuppR (M/pM) : cd (ϕ,R/q) = d} by Theorem 2.18. Then

p ∈ AttR
(
Hd
ϕ (M/pM)

)
= AttR

(
Hd
ϕ,ψ (M/pM)

)
. Since the isomorphism of R-modules

Hd
ϕ,ψ (M/pM) ∼= Hd

ϕ,ψ(M)/pHd
ϕ,ψ(M) holds by Lemma 1.39, we get that

AttR
(
Hd
ϕ,ψ (M/pM)

)
⊆ Att(Hd

ϕ,ψ(M)).

Therefore, p ∈ Att(Hd
ϕ,ψ(M)).

Corollary 2.20. Let M be a d-dimensional �nitely generated R-module and ϕ and ψ

be non-trivial families of R such that ϕ+ ψ ⊆ W̃ (m). Then

Att(Hd
ϕ,ψ(M)) = {p ∈ Supp(M) ∩ 〈ψ〉 : dim(R/p) = d} .

Proof. It was proved in Theorem 1.43 that cd(ϕ, ψ,N) = sup
J∈ψ

dim(N/JN) for any

�nitely generated R-module N . Now the prime ideal p ∈ 〈ψ〉 if and only if there exists
J ∈ ψ such that J ⊆ p by equation (1.1). Thus

sup
J∈ψ

dim((R/p)/J(R/p)) = sup
J∈ψ

dim(R/(J + p)) = dim(R/p).

By the previous theorem we get the statement.

The next result generalises [Chu11, Theorem 2.2].

Corollary 2.21. Let M be a d-dimensional �nitely generated R-module and I1, . . . , Is

be ideals of R. Suppose that I1 + p is m-primary for every prime p ∈ W̃ (I2, . . . , Is).

Then Att(Hd
I1,...,Ij

(M)) =
{
p ∈ Supp(M) ∩ W̃ (I2, . . . , Ij) : dim(R/p) = d

}
for every

even integer 2 ≤ j ≤ s and for j = s.

Theorem 2.22. Let M be a �nitely generated R-module of dimension d and ϕ and ψ

be families of R. Suppose that Hd
ϕ,ψ(M) 6= 0. Then there exists a quotient M/N such

that Supp (M/N) ⊆ 〈ψ〉, dim(M/N) = d and Hd
ϕ,ψ(M) ∼= Hd

ϕ (M/N).

Proof. If p ∈ Supp(M) is such that cd (ϕ,R/p) = d, then dim(R/p) = d. Then
Att(Hd

ϕ,ψ(M)) ⊆ Min(M) by Theorem 2.19. There exists a submodule N of M such
that Ass(N) = Ass(M) − Att(Hd

ϕ,ψ(M)) and Ass (M/N) = Att(Hd
ϕ,ψ(M)) by [Bou89,

Proposition 4, p. 263], see also Lemma A.3. Consider now the short exact sequence
Hd
ϕ,ψ(N) −→ Hd

ϕ,ψ(M) −→ Hd
ϕ,ψ (M/N) −→ 0. If Hd

ϕ,ψ(N) 6= 0, then there exists
p ∈ Supp(N) ∩ 〈ψ〉 such that cd (ϕ,R/p) = d. Therefore p ∈ Att(Hd

ϕ,ψ(M)) by
Theorem 2.19 and p ∈ Ass(N) ∩ Ass (M/N) = ∅. We conclude that Hd

ϕ,ψ(N) = 0 and
hence Hd

ϕ,ψ(M) ∼= Hd
ϕ,ψ (M/N). Notice that Ass (M/N) ⊆ 〈ψ〉 by Theorem 2.19. Then

M/N is ψ-torsion and Supp(M/N) ⊆ 〈ψ〉, whence M/N is J-torsion for some J ∈ 〈ψ〉
by Proposition 1.22. Thus we get that Hd

ϕ,ψ (M/N) = Hd
ϕ (M/N) by Proposition 1.31.

Since Hd
ϕ,ψ(M) 6= 0, we conclude that Hd

ϕ (M/N) 6= 0, whence dim(M/N) = d.
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The next result generalises [Chu11, Theorem 2.3].

Corollary 2.23. Let M be a �nitely generated R-module of dimension d and I1, . . . , Is

be ideals of R. Suppose that Hd
Is,...,I1

(M) 6= 0. Then there exists an (Is−1, . . . , I1)-torsion

quotient M/N such that dim(M/N) = d and Hd
Is,...,I1

(M) ∼= Hd
Is

(M/N).

Proposition 2.24. Let M be a d-dimensional �nitely generated R-module and ϕ and

ψ be families of R. Then there exists J ∈ 〈ψ〉 such that

Att(Hd
ϕ,ψ(M)) = AttR

(
Hd
ϕ (M/JM)

)
.

Proof. We have that Att(Hd
ϕ,ψ(M)) = {p ∈ Supp(M) ∩ 〈ψ〉 : cd (ϕ,R/p) = d} by The-

orem 2.19 and AttR
(
Hd
ϕ (M/KM)

)
= {p ∈ Supp(M) ∩ V (K) : cd (ϕ,R/p) = d} for

every ideal K such that dim(M/KM) = d by Theorem 2.18. If dim(M/KM) < d,
then AttR

(
Hd
ϕ (M/KM)

)
= ∅. From equation (1.1), we get that

Att(Hd
ϕ,ψ(M)) =

⋃
K∈ψ

AttR
(
Hd
ϕ (M/KM)

)
(2.2)

and this union actually runs on the ideals K ∈ ψ such that dim(M/KM) = d.
Since Att(Hd

ϕ,ψ(M)) is a �nite subset {p1, . . . , ps} of 〈ψ〉, there exists a subfamily
{J1, . . . , Js} of ψ such that pi ∈ V (Ji) for each i by equation (1.1). Consider now
the ideal J = J1 · · · Js ∈ 〈ψ〉. Then dim(M/JM) = d by equation (2.2). By

Theorem 2.18, we have that AttR
(
Hd
ϕ (M/JM)

)
=

s⋃
i=1

AttR
(
Hd
ϕ (M/JiM)

)
. Hence

AttR
(
Hd
ϕ (M/JM)

)
⊆ Att(Hd

ϕ,ψ(M)) by equation (2.2). Conversely, for every i we
have that pi ∈ AttR

(
Hd
ϕ (M/JiM)

)
. Then

Att(Hd
ϕ,ψ(M)) = {p1, . . . , ps} ⊆ AttR

(
Hd
ϕ (M/JM)

)
and the proof is complete.

We state now another generalisation of Lichtenbaum-Hartshorne Vanishing The-

orem. For this goal, we shall �rst translate a result of [DANT02] to the present terms.

Proposition 2.25. Let M be a �nitely generated R-module of dimension d and let α

be a non-trivial family of R. The following statements are equivalent:

(i) Hd
α(M) = 0.

(ii) For each prime ideal p ∈ R̂ such that dim(R̂/p) = d and p ∈ SuppR̂(M̂), there

exists I ∈ α such that dim(R̂/(IR̂ + p)) > 0.
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Proof. If (ii) is satis�ed, then condition (iii) of [DANT02, Theorem 2.8] is satis�ed for
Φ = 〈α〉. Hence Hd

α(M) = Hd
〈α〉(M) = 0.

Now, if Hd
α(M) = 0, then, for each prime ideal p ∈ R̂ such that dim(R̂/p) = d

and p ∈ SuppR̂(M̂), there exists I ∈ 〈α〉 such that dim(R̂/(IR̂ + p)) > 0 again by
[DANT02, Theorem 2.8]. Thus there exist I1, . . . , Is ∈ α such that I ⊇ I1 · · · Is. It
follows that 0 < dim(R̂/(IR̂ + p)) ≤ max

{
dim(R̂/(I1R̂ + p)), . . . , dim(R̂/(IsR̂ + p))

}
and condition (ii) of this statement is true.

Theorem 2.26. Let M be a �nitely generated R-module of dimension d and let ϕ and

ψ be non-trivial families of R. The following statements are equivalent:

(i) Hd
ϕ,ψ(M) = 0.

(ii) For each prime ideal p ∈ R̂ such that dim(R̂/p) = d and p ∈ SuppR̂(M̂/JM̂) for

some J ∈ ψ, we have that dim(R̂/(IR̂ + p)) > 0 for some I ∈ ϕ.

Proof. If Hd
ϕ,ψ(M) = 0, then Hd

ϕ (M/JM) = 0 for every J ∈ ψ by equation (2.2). If
p ∈ Spec R̂ is such that dim(R̂/p) = d and p ∈ SuppR̂(M̂/JM̂) for some J ∈ ψ, then
dim(R̂/(IR̂ + p)) > 0 for some I ∈ ϕ by Proposition 2.25.

For the converse, by Theorem 2.12, it is enough to prove that Hd
ϕ,ψ (R/q) = 0 for

every q ∈ Supp(M). If q /∈ 〈ψ〉, then Hd
ϕ,ψ (R/q) = 0 because dim(R/(q + J)) ≤ d− 1

for every J ∈ ψ. So let us assume that q ∈ Supp(M) ∩ 〈ψ〉. If Hd
ϕ,ψ (R/q) 6= 0,

then q ∈ Att(Hd
ϕ,ψ(M)) by Theorem 2.19, whence q ∈ Att

(
Hd
ϕ (M/JM)

)
for some

J ∈ ψ by equation (2.2). We also have that dim(R/q) = d, whence dim(R̂/qR̂) = d.
Consider p ∈ SuppR̂(R̂/qR̂) such that dim(R̂/p) = d. Since J ⊆ q ∈ Supp(M),
we have that p ∈ SuppR̂(M̂/JM̂). By assumption, there exists I ∈ ϕ such that
dim(R̂/(IR̂ + p)) > 0. By Proposition 1.31 and Proposition 2.25 we conclude that
Hd
ϕ,ψ (R/q) = Hd

ϕ (R/q) = 0.

Corollary 2.27. Let M be a �nitely generated R-module of dimension d and α be a

non-trivial family of R. Then Hd
α(M) = 0 if and only if Hd

I (M) = 0 for some proper

I ∈ α.
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Chapter 3

The α-depth

3.1 Co�niteness and local cohomology modules

Here we present a proposal to de�ne α-co�niteness. We recall the assumption

that R is a Noetherian ring.

De�nition 3.1. Let α be a family of R. The R-module N is said to be α-co�nite if
Supp(N) ⊆ 〈α〉 and ExtiR(R/I,N) is �nitely generated for every I ∈ α and every i.

For the sake of completeness, here we show some statements from [DM97].

Proposition 3.2. LetM be a �nitely generated R-module, N be an arbitrary R-module

and p be a non-negative integer. Suppose that ExtiR(M,N) is �nitely generated for

every i ≤ p. Then, for any �nitely generated R-module L with Ann(M) ⊆ Ann(L),

ExtiR(L,N) is �nitely generated for every i ≤ p.

Proof. Using induction on p, we may suppose that ExtiR(L,N) is �nitely generated for
every i < p and every �nitely generated R-module L such that Ann(M) ⊆ Ann(L).
Since L is an (R/Ann(M))-module, we have by Gruson's Theorem that there exists
a �nite �ltration 0 = L0 ⊆ L1 ⊆ · · · ⊆ Ln−1 ⊆ Ln = L of submodules of L such
that Lj/Lj−1 is an homomorphic image of a direct sum of �nitely many copies of
M for every j. Let us assume �rst that n = 1. Then we have an exact sequence
0 → K → Mk → L → 0 for some non-negative integer k and some �nitely generated
module K. Thus we have an exact sequence

· · · → Extp−1
R (K,N)→ ExtpR(L,N)→ ExtpR(Mk, N)→ · · · .

Now ExtpR(Mk, N) ∼= ExtpR(M,N)k is �nitely generated and Ann(M) ⊆ Ann(K),
whence Extp−1

R (K,N) is also �nitely generated. Hence ExtpR(L,N) is �nitely gener-
ated.



Finally, for n > 1, the exact sequence 0 → Ln−1 → Ln → Ln/Ln−1 → 0 induces
the exact sequence · · · → ExtpR(Ln/Ln−1, N)→ ExtpR(Ln, N)→ ExtpR(Ln−1, N)→ · · · .
Hence, the �niteness of Extp(Ln−1, N) and ExtpR(Ln/Ln−1, N) implies the �niteness of
ExtpR(Ln, N).

Corollary 3.3. Let M be a �nitely generated R-module, N be an arbitrary R-module

and p be a non-negative integer. Suppose that ExtiR(M,N) is �nitely generated for every

i ≤ p. Then, for any �nitely generated R-module L such that Supp(L) ⊆ Supp(M),

ExtiR(L,N) is �nitely generated for every i ≤ p.

Proof. As in the �rst part of the proof of the previous statement, consider a �nite
�ltration 0 = L0 ⊆ L1 ⊆ · · · ⊆ Ln−1 ⊆ Ln = L of submodules of L such that
Lj/Lj−1 is isomorphic to R/pj for some pj ∈ Supp(L) ⊆ Supp(M) and every j. Now
Ann(Lj/Lj−1) ⊇ Ann(M), whence ExtiR(Lj/Lj−1, N) is �nitely generated for every
i ≤ p and every j. Thus ExtiR(L,N) is �nitely generated for every i ≤ p.

Corollary 3.4. Let I be an ideal of R and N be an R-module. The following conditions

are equivalent:

(i) ExtiR(R/I,N) is �nitely generated for every i ≤ p.

(ii) ExtiR(R/J,N) is �nitely generated for every i ≤ p and every ideal J ⊇ I.

(iii) ExtiR(R/p, N) is �nitely generated for every i ≤ p and every prime p ∈ Min(R/I).

Proof. It is enough to show that statement (iii) implies statement (i). Consider the set
{p1, . . . , pn} of minimal primes of R/I. Hence, Supp(R/I) = Supp(R/p1⊕ · · · ⊕R/pn)

and ExtiR(R/I,N) is �nitely generated for every i ≤ p by Corollary 3.3.

We obtain in these lines that the concept of α-co�niteness only depends on the

good family 〈α〉 and not on a particular set of generators.

Lemma 3.5. Let N be an R-module and p be a non-negative integer. Then the collec-

tion of all the ideals of R such that ExtiR(R/I,N) is �nitely generated for every i ≤ p is

a good family. Furthermore, the collection of all the ideals of R such that ExtiR(R/I,N)

is �nitely generated for every i is a good family.

Proof. By Corollary 3.4, this collection is closed under inclusion. If I and J are ideals
of R such that ExtiR(R/I,N) and ExtiR(R/J,N) are �nitely generated for every i ≤ p,
then ExtiR(R/I ⊕ R/J,N) ∼= ExtiR(R/I,N) ⊕ ExtiR(R/J,N) is �nitely generated for
every i ≤ p. On the other hand,

Supp(R/IJ) = Supp(R/I) ∪ Supp(R/J) = Supp(R/I ⊕R/J),
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hence ExtiR(R/IJ,N) is �nitely generated for every i ≤ p and the family is also closed
under multiplication.

Calling ψ(p) =
{
I E R : ExtiR(R/I,N) is �nitely generated for every i ≤ p

}
and

ψ =
{
I E R : ExtiR(R/I,N) is �nitely generated for every i

}
, we get that ψ =

⋂
p∈N

ψ(p).

Thus the collection of all the ideals of R such that ExtiR(R/I,N) is �nitely generated
for every i is a good family.

Remark 3.6. If M is a �nitely generated α-torsion R-module and N is any α-torsion-
free R-module, then Ass(HomR(M,N)) = Supp(M) ∩ Ass(N) = ∅. In general, for
every α-torsion R-module M we have that M = lim−→Mλ where each Mλ is a �nitely
generated submodule of M . Since Mλ is α-torsion, we get that HomR(Mλ, N) = 0 for
every λ. Hence HomR(M,N) = lim←−HomR(Mλ, N) = 0. For every R-module N the
exact sequence 0→ Γα(N)→ N → N/Γα(N)→ 0 implies that

HomR(M,N) ∼= HomR(M,Γα(N)) (3.1)

for every α-torsion R-module M .
Consider now an R-module M and a family α of R. Setting the R-modules

E = E(M/Γα(M)) and L = E/(M/Γα(M)), we have that E is α-torsion-free and
HomR(R/I,E) = 0 for every I ∈ α. Furthermore, the exact sequence of R-modules
0 −→ M/Γα(M) −→ E −→ L −→ 0 leads to the isomorphisms of R-modules
ExtiR(R/I, L) ∼= Exti+1

R (R/I,M/Γα(M)) and H i
α(L) ∼= H i+1

α (M) for every i because E
is injective.

The number t = inf {i : H i
α(M) 6= 0} is called the α-depth of the R-moduleM and

it is denoted as depth(α,M). When H i
α(M) = 0 for every i, de�ne depth(α,M) =∞.

Observe that depth(α,M) = inf
I∈α

grade(I,M) when M is �nitely generated as seen in

Corollary 1.35.

Proposition 3.7. Let α be a family of R, M be an R-module and set t = depth(α,M).

Then HomR(R/I,H t
α(M)) ∼= ExttR(R/I,M) for every I ∈ α.

Proof. For every ideal I ∈ α and every R-module N there is an isomorphism of R-
modules HomR(R/I,N) ∼= HomR(R/I,Γα(N)). Since Γα(E) is injective for every
injective R-module E, it is true by [Rot09, Theorem 10.47] that

ExtpR(R/I,Hq
α(N))⇒ Extp+qR (R/I,N). (3.2)

Now Hj
α(M) = 0 for every j < t. Hence HomR(R/I,H t

α(M)) ∼= ExttR(R/I,M) for
every I ∈ α.

Recall that a canonical module of the d-dimensional local ring (R,m) is a �nitely

generated R-module KR such that K∨R = HomR(KR, ER(R/m)) = Hd
m(R).
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Corollary 3.8. Let R be a Gorenstein local ring of dimension d and α be a family of

R. Consider t = depth(α,R) and I ∈ α such that ht I = t. Then HomR(R/I,H t
α(R))

is isomorphic to the canonical module KR/I of R/I.

Proof. Since R̄ = R/I is the image of a Gorenstein local ring and dim R̄ = d − t, we
get the isomorphisms

KR/I = HomR̄(Hd−t
mR̄

(R/I), ER̄(R̄/mR̄))

∼= HomR(Hd−t
m (R/I), ER(R/m))

∼= ExttR(R/I,R)

and the statement follows.

Proposition 3.9. Let R be a Gorenstein local ring of dimension d and α be a family

of R. Consider an ideal I ∈ α such that ht I = t = depth(α,R) and R/I is Cohen-

Macaulay. If Hj
α(R) = 0 for every j /∈ {t, t+ 1}, then Ext1

R(R/I,H t
α(R)) = 0 and

ExtiR(R/I,H t+1
α (R)) ∼= Exti+2

R (R/I,H t
α(R)) for every i.

Proof. Observe that ExtiR(R/I,R) = 0 for every integer i 6= t: since grade(I, R) = t,
we have that ExtiR(R/I,R) = 0 for every i < t. On the other hand, since R/I
is a Cohen-Macaulay ring of dimension d − t, Hd−t−i

m/I (R/I) = 0 for i > 0. Thus
Extt+iR (R/I,R) = 0 for every i > 0 by Matlis' duality. Now Hj

α(R) = 0 for every
integer j /∈ {t, t+ 1} and we get from [Rot09, Proposition 10.28] the long exact se-
quence · · · → Extj−tR (R/I,H t

α(R)) → ExtjR(R/I,R) → Extj−t−1
R (R/I,H t+1

α (R)) →
Extj−t+1

R (R/I,H t
α(R))→ · · · . Then the statement follows.

Theorem 3.10. Consider a non-negative integer t, a family α of R and an ideal I ∈ α.
Let M be an R-module such that ExttR(R/I,M) is �nitely generated and H i

α(M) is α-

co�nite for every i < t. If N ⊆ H t
α(M) is such that Ext1

R(R/I,N) is �nitely generated,

then HomR(R/I,H t
α(M)/N) is �nitely generated.

Proof. Observe that the exact sequence 0 −→ N −→ H t
α(M) −→ H t

α(M)/N −→ 0

leads to an exact sequence

HomR(R/I,H t
α(M)) −→ HomR(R/I,H t

α(M)/N) −→ Ext1
R(R/I,N). (3.3)

So if we proved the statement for N = 0, it also holds for the general case. Assume
then that N = 0.

Consider �rst t = 0. Then HomR(R/I,Γα(M)) = HomR(R/I,M) by equa-
tion (3.1), thus the left member of sequence (3.3) will be �nitely generated.

Suppose now that t > 0. Then Γα(M) = H0
α(M) is α-co�nite, whence the R-

module ExtiR(R/I,Γα(M)) is �nitely generated for every i. The exact sequence of R-
modules 0 −→ Γα(M) −→ M −→ M/Γα(M) −→ 0 gives that ExttR(R/I,M/Γα(M))
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is also �nitely generated. Setting E = E(M/Γα(M)) and L = E/(M/Γα(M)) as
in Remark 3.6, we also observe that ExtiR(R/I, L) ∼= Exti+1

R (R/I,M/Γα(M)) and
H i
α(L) ∼= H i+1

α (M) for every i. Thus Extt−1
R (R/I, L) is also �nitely generated and

H i
α(L) is α-co�nite for every i < t− 1. Thus HomR(R/I,H t−1

α (L)) is �nitely generated
which implies that HomR(R/I,H t

α(M)) is also �nitely generated.

Theorem 3.11. Let α be a family of R, t be a non-negative integer and M be an

R-module such that H i
α(M) is α-co�nite for every i < t. Then

(i) if Extt+1
R (R/I,M) is �nitely generated for some I ∈ α, then Ext1

R(R/I,H t
α(M))

is �nitely generated.

(ii) if ExtiR(R/I,M) is �nitely generated for some I ∈ α and every i, then the R-

module HomR(R/I,H t+1
α (M)) is �nitely generated if and only if the R-module

Ext2
R(R/I,H t

α(M)) is �nitely generated.

Proof. We prove (1) by induction on t. When t = 0, the exact sequence of R-modules
0 −→ Γα(M) −→ M −→ M/Γα(M) −→ 0 gives that Ext1

R(R/I,Γα(M)) is �nitely
generated.

Suppose now that t > 0. Since Γα(M) = H0
α(M) is α-co�nite, we have that

ExtiR(R/I,Γα(M)) is �nitely generated for every I ∈ α and every i. Thus the former ex-
act sequence implies that Extt+1

R (R/I,M/Γα(M)) is �nitely generated. Taking E and L
as in Remark 3.6 we obtain thatH i

α(L) is α-co�nite for every i < t−1 and ExttR(R/I, L)

is also �nitely generated when Extt+1
R (R/I,M) is. Hence Ext1

R(R/I,H t−1
α (L)) is �nitely

generated and this implies that Ext1
R(R/I,H t

α(M)) is also �nitely generated.
In order to prove (2), consider an ideal I ∈ α such that ExtiR(R/I,M) is �nitely

generated for every i and HomR(R/I,H t+1
α (M)) is �nitely generated. Assume �rst that

t = 0. We have thus an exact sequence

Ext1
R(R/I,M/Γα(M)) −→ Ext2

R(R/I,Γα(M)) −→ Ext2
R(R/I,M).

Taking L = E(M/Γα(M))/(M/Γα(M)) as in Remark 3.6 we get the isomorphisms

Ext1
R(R/I,M/Γα(M)) ∼= HomR(R/I, L)

∼= HomR(R/I,Γα(L))

∼= HomR(R/I,H1
α(M))

and this implies that Ext2
R(R/I,Γα(M)) is �nitely generated.

When t > 0 we have that Γα(M) = H0
α(M) is α-co�nite, hence the R-module

ExtiR(R/I,Γα(M)) is �nitely generated for every i. Thus ExtiR(R/I,M/Γα(M)) is
�nitely generated for every i. Hence ExtiR(R/I, L) is also �nitely generated for ev-
ery i, as well as HomR(R/I,H t

α(L)) ∼= HomR(R/I,H t+1
α (M)). Then the R-module
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Ext2
R(R/I,H t−1

α (L)) is �nitely generated, implying that Ext2
R(R/I,H t

α(M)) is also
�nitely generated.

Conversely, suppose that the R-module Ext2
R(R/I,H t

α(M)) is �nitely generated
and assume again that t = 0. Then we have an exact sequence of R-modules

Ext1
R(R/I,M) −→ Ext1

R(R/I,M/Γα(M)) −→ Ext2
R(R/I,Γα(M))

and this immediately implies that Ext1
R(R/I,M/Γα(M)) is �nitely generated. Hence

HomR(R/I, L) ∼= HomR(R/I,Γα(L)) ∼= HomR(R/I,H1
α(M)) is �nitely generated.

When t > 0 we have that Ext2
R(R/I,H t−1

α (L)) and ExtiR(R/I, L) are �nitely
generated for each i. Thus HomR(R/I,H t

α(L)) ∼= HomR(R/I,H t+1
α (M)) is also �nitely

generated.

Corollary 3.12. Let M be a �nitely generated R-module, α be a family of R and

consider t = depth(α,M). Then

(i) the R-module Ext1
R(R/I,H t

α(M)) is �nitely generated for every I ∈ α.

(ii) for every I ∈ α the R-module Ext2
R(R/I,H t

α(M)) is �nitely generated if and only

if HomR(R/I,H t+1
α (M)) is �nitely generated.

Let us recall some basic facts.

Proposition 3.13. Let α be a family of R and M be a �nitely generated R-module

such that depth(α,M) = t = cd(α,M). If (Ei(M), di) is a minimal injective resolution

of M , then (Γα(Et+i(M)),Γα(dt+i)) is a minimal injective resolution of H t
α(M). If

inj. dim(M) = d, then inj. dim(H t
α(M)) ≤ d− t. In particular, if R is local Gorenstein

of dimension d, then inj. dim(H t
α(R)) = d− t.

Proof. Since t = inf {i : µi(p,M) 6= 0 for some p ∈ 〈α〉 ∩ SpecR} by Proposition 1.34,
we have for every j < t that Γα(Ej(M)) = 0. Thus H t

α(M) = ker Γα(dt) ⊆ Γα(Et(M)).
Now Hj

α(M) = 0 for every j 6= t. Thus we obtain an exact sequence of R-modules
0 −→ H t

α(M) −→ Γα(Et(M)) −→ Γα(Et+1(M)) −→ · · · which happens to be a
minimal injective resolution of H t

α(M) because Γα(Ej(M)) is the injective hull of
Γα(ker dj) = ker Γα(dj) for every j. The second statement is a direct consequence
of the �rst one. The third statement follows because Ei(R) =

⊕
p∈SpecR
ht p=i

ER(R/p) for

every i, hence Γα(Ej(R)) 6= 0 exactly when t ≤ j ≤ d.

Proposition 3.14. Let R be a Gorenstein local ring of dimension d and α be a non-

trivial family of R. If Hj
α(R) = 0 for every j 6= d − 1, then, for every I ∈ α,

Ext1
R(R/I,Hd−1

α (R)) = Γm(R/I)∨ and ExtiR(R/I,Hd−1
α (R)) = 0 for every i > 1.
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Proof. Observe that Hd−1
α (R) 6= 0. We get that inj. dim(Hd−1

α (R)) = 1 from Proposi-
tion 3.13. Thus ExtiR(N,Hd−1

α (R)) = 0 for every R-module N and every i > 1. Since
Hq
α(R) 6= 0 only when q = d− 1, we obtain the isomorphisms

Ext1
R(R/I,Hd−1

α (R)) ∼= ExtdR(R/I,R) ∼= H0
m(R/I)∨

for every I ∈ α by [Rot09, Proposition 10.21] and Matlis' duality.

Lemma 3.15. Let (R,m) be a Gorenstein local ring of dimension d, α be a family

of R such that sup
I∈α

dim(R/I) = 1 and Hd
α(R) = 0. If N is a submodule of a �nitely

generated free R-module F , then HomR(N,Hd−1
α (R)) is α-co�nite.

Proof. By Lemma 3.5, it is enough to show that ExtiR(R/p,HomR(N,Hd−1
α (R))) is

�nitely generated for every prime ideal p ∈ 〈α〉 and every i. By Proposition 3.14 we
get that ExtiR(R/I,Hd−1

α (R)) = 0 for every I ∈ 〈α〉 and every i > 1. If in addi-
tion I is a prime ideal such that dim(R/I) = 1, we get that Γm(R/I) = 0, whence
ExtiR(R/I,Hd−1

α (R)) = 0 for every i > 0 by Proposition 3.14. For such I, the con-
travariant functor HomR(−, Hd−1

α (R)) sends projective R-modules to HomR(R/I,−)-
acyclic modules: in fact, if P is a projective R-module and P∗ is a projective resolution
of R/I, then

ExtiR(R/I,HomR(P,Hd−1
α (R))) = H i(HomR(P∗,HomR(P,Hd−1

α (R))))

∼= H i(HomR(P,HomR(P∗, H
d−1
α (R))))

∼= HomR(P,H i(HomR(P∗, H
d−1
α (R))))

∼= HomR(P,ExtiR(R/I,Hd−1
α (R)))

for every i. Noting F (−) = HomR(R/I,HomR(−, Hd−1
α (R))), we obtain the spec-

tral sequence ExtpR(R/I,ExtqR(N,Hd−1
α (R))) ⇒ (Rp+qF )(N). We also have exact se-

quences ExtqR(F,Hd−1
α (R)) −→ ExtqR(N,Hd−1

α (R)) −→ Extq+1
R (F/N,Hd−1

α (R)). Con-
sider q > 0. Since F is free, we have that ExtqR(F,Hd−1

α (R)) = 0. Now Proposi-
tion 3.13 gives that inj. dim(Hd−1

α (R)) = 1, whence Extq+1
R (F/N,Hd−1

α (R)) = 0. So
ExtqR(N,Hd−1

α (R)) = 0 for every q > 0 and the spectral sequence collapses to produce
isomorphisms ExtpR(R/I,HomR(N,Hd−1

α (R))) ∼= (RpF )(N) for every p.
We a�rm that (RpF )(N) is �nitely generated for every p. In fact, consider a

projective resolution F∗ of N . Then

(RpF )(N) ∼= Hp(HomR(F∗,HomR(R/I,Hd−1
α (R)))).

By Corollary 3.8 we get that HomR(R/I,Hd−1
α (R)) ∼= KR/I , thus the isomorphism

(RpF )(N) ∼= ExtpR(N,KR/I) holds. Hence the a�rmation is true and the R-module
ExtiR(R/I,HomR(N,Hd−1

α (R))) is �nitely generated for every i and every prime ideal
I ∈ 〈α〉 such that dim(R/I) = 1.

Finally, Lemma 3.5 guarantees that ExtiR(R/m,HomR(N,Hd−1
α (R))) is �nitely

generated for every i. Thus HomR(N,Hd−1
α (R)) is α-co�nite.
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We regard now some properties of change of rings.

Proposition 3.16. Let f : R → S be a surjective homomorphism of rings, α be a

family of R and M be an S-module. Then M is α-co�nite if and only if M is αS-

co�nite.

Proof. First, observe that SuppR(M) ⊆ 〈α〉 if and only if SuppS(M) ⊆ 〈αS〉. For
every I ∈ α, [Rot09, Theorem 10.62] gives a spectral sequence

Epq
2 = ExtpS(TorRq (S,R/I),M)⇒ Extp+qR (R/I,M).

If M is αS-co�nite, then Ep0
2 = ExtpS(S/IS,M) is �nitely generated for every p. Now

Supp(TorRq (S,R/I)) ⊆ Supp(S/IS) for every q. Hence Epq
2 is �nitely generated for ev-

ery p and every q. Since the spectral sequence is bounded, we obtain that ExtpR(R/I,M)

is �nitely generated for every p. Thus M is α-co�nite.
For the converse, observe that E00

2 = HomS(S/IS,M) = HomR(R/I,M) is
�nitely generated. Suppose now that n > 0 and that Ep0

2 is �nitely generated for
every p < n. Hence Epq

2 is �nitely generated for every q and every p < n. Since
Hn = ExtnR(R/I,M) is �nitely generated, we get that En0

2 is �nitely generated by
[DM97, Lemma 1]. Thus ExtnS(I/IS,M) is �nitely generated for every n and every
I ∈ α, whence M is αS-co�nite.

Lemma 3.17. Let α be a family of a local ring (R,m), M be an R-module and denote

by R̂ the m-adic completion of R. Then H i
α(M) is α-co�nite if and only if H i

αR̂
(M⊗R̂)

is αR̂-co�nite.

Proof. Recall that there exists a natural homomorphism

HomR(L,M)⊗N → HomR(L,M ⊗N)

which is an isomorphism if N is �at and L is �nitely presented. Then, for every j,
Extj

R̂
(R̂/IR̂,H i

αR̂
(M ⊗ R̂)) ∼= Extj

R̂
(R/I ⊗ R̂,H i

α(M) ⊗ R̂) ∼= ExtjR(R/I,H i
α(M)) ⊗ R̂

and we conclude the statement.

Let (R,m) be a local ring andM be an R-module. Recall that a prime p is called

a coassociated prime ideal of M when p is an associated prime ideal of its Matlis dual

M∨ = HomR(M,ER(R/m)). Observe that Coass(M⊗RN) = Supp(M)∩Coass(N) for

every �nitely generated R-module M and every R-module N , see [DM97, Remark 1].

In particular Coass(Hn
α(M)) = Supp(M) ∩ Coass(Hn

α(R)) when n ≥ cd(α,R).

Proposition 3.18. Let (R,m) be a complete local ring, α be a non-trivial family of R
and M be a �nitely generated R-module of dimension n ≥ 0. Then

Coass(Hn
α(M)) =

{
p ∈ Supp(M) : dim(R/p) = n and I + p ∈ W̃ (m) for every I ∈ α

}
=

⋂
I∈α−{R}

Coass(Hn
I (M)).
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Proof. Set R̄ = R/Ann(M) and E = ER(R/m). Then ER̄(R̄/mR̄) = HomR(R̄, E) and

HomR̄(Hn
αR̄(M),HomR(R̄, E)) ∼= HomR(Hn

αR̄(M)⊗R̄ R̄, E) ∼= HomR(Hn
α(M), E).

Hence we can assume that M is faithful and n = dim(R). In this case, we also have
that Coass(Hn

α(M)) = Coass(Hn
α(R)), so it is enough to suppose M = R. Suppose

that Hn
α(R) 6= 0 for both sets of the statement are empty when Hn

α(R) = 0. Consider
q ∈ Coass(Hn

α(R)). Then Hn
α(R/q) 6= 0. Hence dim(R/q) = n and I + q ∈ W̃ (m)

for every I ∈ α by Corollary 1.46. The converse also holds: if dim(R/q) = n and
I + q is m-primary for every proper I ∈ α, then Hn

α(R) ⊗R R/q = Hn
α(R/q) 6= 0. If

p ∈ Coass(Hn
α(R/q)), then p ⊇ q and p ∈ Coass(Hn

α(R)). But dim(R/p) = n. Hence
q ∈ Coass(Hn

α(R)) when dim(R/q) = n and I + q ∈ W̃ (m) for every I ∈ α.

When 〈α〉 = W̃ (〈ϕ〉, ψ), we get a re�nement of the previous result.

Corollary 3.19. Let (R,m) be a complete local ring, ϕ and ψ be non-trivial families
of R and M be a �nitely generated R-module of dimension n ≥ 0. Then

Coass(Hn
ϕ,ψ(M)) =

{
p ∈ Supp(M) ∩ 〈ψ〉 : dim(R/p) = n and I + p ∈ W̃ (m) for every I ∈ ϕ

}
.

Proof. We will show that the right-hand term of the statement is equal to the right-hand
term of Proposition 3.18. Indeed, if p ∈ Supp(M)∩ 〈ψ〉 is such that I + p ∈ W̃ (m) for
every I ∈ ϕ, consider K ∈ W̃ (〈ϕ〉, ψ). Thus K + p ∈ 〈ϕ〉 and there exist I1, . . . , Is ∈ ϕ
such that K+p ⊇ I1 · · · Is. Since Ii+p ∈ W̃ (m) for every i, we get that K+p ∈ W̃ (m)

and thus p ∈ Coass(Hn
ϕ,ψ(M)).

For the converse, consider a prime ideal p ∈ Supp(M) such that I + p ∈ W̃ (m)

for every ideal I ∈ W̃ (〈ϕ〉, ψ). If p /∈ 〈ψ〉, then J * p for every J ∈ ψ. Hence
dim(R/(J + p)) < dim(R/p) ≤ n for every J ∈ ψ and Hn

ϕ,ψ(R/p) = 0. Thus we obtain
that V (p) ∩ Coass(Hn

ϕ,ψ(R)) = Coass(Hn
ϕ,ψ(R/p)) = ∅ and p /∈ Coass(Hn

ϕ,ψ(R)). So
p ∈ 〈ψ〉. If I ∈ ϕ, then I + p ∈ W̃ (m) because ϕ ⊆ W̃ (〈ϕ〉, ψ) and the statement is
proved.

Theorem 3.20. Let R be a local ring, α be a family of R and M be a �nitely generated

R-module of dimension n. Then Hn
α(M) is α-co�nite. Moreover, ExtiR(R/I,Hn

α(M))

has �nite length for every I ∈ α and every i.

Proof. By Lemma 3.17, we can suppose that R is complete. The R-module Hn
α(M)

is Artinian, whence the R-module Hn
α(M)∨ is �nitely generated. Consider the �nite

set Coass(Hn
α(M)) = {p1, . . . , ps}. Then Supp(Hn

α(M)∨) = V (p1 ∩ · · · ∩ ps). Now,
for each I ∈ α and every i, the R-module TorRi (R/I,Hn

α(M)∨) is �nitely generated.
Furthermore,

SuppR(TorRi (R/I,Hn
α(M)∨)) ⊆ V (I) ∩ Supp(Hn

α(M)∨)

= V (I) ∩ V (p1 ∩ · · · ∩ ps)

⊆ {m} .
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Thus TorRi (R/I,Hn
α(M)∨) has �nite length. Also,

TorRi (R/I,Hn
α(M)∨)∨ ∼= ExtiR(R/I,Hn

α(M))

for every i (see [HK91, Remark 2.1]). Hence ExtiR(R/I,Hn
α(M)) has �nite length for

every I ∈ α and every i by Matlis' duality.

3.2 Associated primes of local cohomology modules

In this section we investigate the associated prime ideals of the �rst non-zero local

cohomology modules. We improve some results appearing in [TT10].

Observe that Ass(H i
α(M)) ⊆

⋃
I∈〈α〉

Ass(H i
I(M)) for every family α of R, every

R-module M and every i. In fact, if p ∈ Ass(H i
α(M)), then pRp ∈ Ass(H i

α(M)p)

and HomRp(Rp/pRp, H
i
α(M)p) 6= 0. Hence lim−→

I∈〈α〉
HomRp(Rp/pRp, H

i
I(M)p) 6= 0 and this

implies that p ∈ Ass(H i
I(M)) for some I ∈ 〈α〉.

Moreover, Ass(H t
α(M)) ⊆

⋃
I∈〈α〉

grade(I,M)=t

Ass(H t
I(M)) when M is �nitely generated

and t = depth(α,M). This follows because t ≤ grade(I,M) for every I ∈ 〈α〉, hence

H t
I(M) = 0 when grade(I,M) > t. We have thus a relation between families.

Lemma 3.21. Let M be a �nitely generated R-module, α and β be families of R

such that β ⊆ 〈α〉 and set t = depth(α,M). Then Ass(H t
β(M)) ⊆ Ass(H t

α(M)). In

particular, Ass(H t
α(M)) =

⋃
I∈〈α〉

grade(I,M)=t

Ass(H t
I(M)).

Proof. Observe that depth(β,M) ≥ t. First statement follows for if (Ei(M), ∂i) is a
minimal injective resolution of M , then

H t
β(M) = ker Γβ(∂t) ⊆ ker Γα(∂t) = H t

α(M).

Second statement follows because grade(I,M) = depth(I,M) ≥ depth(α,M) for every
I ∈ 〈α〉.

We can improve the second statement of the previous result.

Proposition 3.22. Let M be a �nitely generated R-module and α be a family of R.

Consider t = depth(α,M). Then

Ass(H t
α(M)) =

⋃
p∈〈α〉∩SpecR
grade(p,M)=t

Ass(H t
p(M)) =

⋃
I∈α

grade(I,M)=t

Ass(H t
I(M)).
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Proof. In order to prove that Ass(H t
α(M)) ⊆

⋃
p∈〈α〉∩SpecR
grade(p,M)=t

Ass(H t
p(M)) it is enough to

show that Ass(H t
α(M)) ⊆

⋃
p∈〈α〉∩SpecR

Ass(H t
p(M)). Consider a minimal injective res-

olution (E∗(M), ∂∗) of M . Then H t
α(M) = Γα(ker ∂t). If p ∈ Ass(H t

α(M)), then
p = Ann(x) for some element x ∈ Γα(ker ∂t). Thus p ∈ 〈α〉 and x ∈ H t

p(M). Now if
p ∈ Ass(H t

q(M)) for some prime ideal q ∈ 〈α〉, then grade(q,M) = t and there exists an
ideal I ∈ α such that I ⊆ q. Hence t ≤ grade(I,M) ≤ grade(q,M) = t. All of this im-
ply that H t

q(M) = Γq(ker ∂t) ⊆ ΓI(ker ∂t) = H t
I(M) and p ∈ Ass(H t

I(M)). Finally, the
relation

⋃
I∈α

grade(I,M)=t

Ass(H t
I(M)) ⊆ Ass(H t

α(M)) follows readily from Lemma 3.21.

We remark an additional fact that was proved in the previous result.

Corollary 3.23. Let M be a �nitely generated R-module and α be a family of R.

Consider t = depth(α,M). Then Ass(H t
α(M)) ⊆ {p ∈ 〈α〉 : grade(p,M) = t}.

Corollary 3.24. Let α be a family of R, M be a �nitely generated R-module and

consider t = depth(α,M). If I ∈ 〈α〉 is such that HomR(R/I,H t
α(M)) 6= 0, then

grade(I,M) = t.

Proof. If I ∈ 〈α〉, then grade(I,M) = depth(I,M) ≥ depth(α,M) = t. On the other
hand, if the prime p ∈ Ass(HomR(R/I,H t

α(M))), then I ⊆ p and

grade(I,M) ≤ grade(p,M) = t.

Hence grade(I,M) = t.

In general, the �rst non-zero local cohomology module is not Artinian as we shall

see next.

Corollary 3.25. Let (R,m) be a local ring and M be a Cohen-Macaulay R-module.

Consider a family α of R such that dim(M/IM) > 0 for some ideal I ∈ 〈α〉 and set

t = depth(α,M). Then m /∈ Ass(H t
α(M)).

Proof. If m ∈ Ass(H t
α(M)), then grade(m,M) = t. On the other hand, there exists

I ∈ 〈α〉 such that grade(I,M) = dim(M) − dim(M/IM) < depth(M) and this is a
contradiction.
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Chapter 4

Endomorphism modules

Unless stated otherwise, all the rings in this chapter are Noetherian. Rings are

also assumed local where the Matlis dual functor (−)∨ = HomR(−, E) is used (here E

always denotes the injective hull of the residual �eld of the local ring R).

In this chapter, we are concerned with the modules of endomorphisms of local

cohomology modules and we investigate them in two phases. The �rst section studies

the endomorphisms of �rst local cohomology modules, along with the special case

when the cohomological depth equals the cohomological dimension. This part basically

extends some ideas from [Mah13].

The second one takes care of the top local cohomology modules. It exploits the

Lichtenbaum-Hartshorne Vanishing Theorem conditions and the Artinian nature of

said modules to obtain informations on the ring structure of their modules of endo-

morphisms in an analogous way as done in [ES12].

4.1 On α-depth level

Recall that there exists a natural transformation

HomR(N,P )⊗RM → HomR(HomR(M,N), P ) (4.1)

which is an isomorphism when M is �nitely generated and P is injective (see [Rot09,

Lemma 9.71]). HenceM⊗RN∨ ∼= HomR(M,N)∨ for every �nitely generated R-module



M . Furthermore, if M is α-torsion, then

M ⊗R Γα(N)∨ = M ⊗R N∨ (4.2)

for every R-module N by equation (3.1). Observe that the natural isomorphism (4.1)

suggests that HomR(I, J) is a �at R-module for every pair of injective R-modules I

and J . In particular, the Matlis dual of any injective R-module is �at.

Notice that the composite functor G = Γα(−)∨ is right exact contravariant.

Hence, it makes sense to talk about its left derived functors (LiG) by taking injec-

tive resolutions of R-modules. Since Γα(−) is left exact and (−)∨ is contravariant

exact, it is readily seen that (LiG)(M) = H i
α(M)∨ for every R-module M and every i.

Similar to right derived functors, we say that an R-module M is left G-acyclic exactly

when (LiG)(M) = 0 for every i ≥ 1. In order to put in clearer evidence the dual rela-

tion between Tor and Ext, we use a modi�cation of Grothendieck's spectral sequences

(Theorem A.1) in order to prove the following statement.

Proposition 4.1. Let α be a family of R, M be a �nitely generated R-module and set

c = depth(α,M). Suppose that N is an α-torsion R-module. Then

(i) There is an isomorphism ExtcR(N,M) ∼= HomR(N,Hc
α(M)) and ExtiR(N,M) = 0

for every i < c.

(ii) There is an isomorphism TorRc (N,M∨) ∼= N ⊗R Hc
α(M)∨ and TorRi (N,M∨) = 0

for every i < c.

Proof. The proof of the �rst part of (i) is similar to that of Proposition 3.7. For
the second part, just observe that if (E∗(M)) = (Ei(M))i≥0 is a minimal injective
resolution of a �nitely generated R-module M , then Ei(M) is α-torsion-free for i < c,
see Proposition 1.34 or Proposition 3.13. Thus HomR(N,Ei(M)) = 0 for i < c by
equation (3.1).

Now we prove (ii): regarding N as an inductive limit of its �nitely generated
submodules, we obtain that N ⊗R Γα(M)∨ ∼= N ⊗RM∨ for any R-module M by equa-
tion (4.2). Since the Matlis dual of every injective module is �at, we obtain a spectral
sequence TorRp (N,Hq

α(M)∨)⇒ TorRp+q(N,M
∨) by Theorem A.1. Now Hq

α(M)∨ = 0 for
every q < c. Thus N ⊗R Hc

α(M)∨ ∼= TorRc (N,M∨). On the other hand,

N ⊗R Ei(M)∨ ∼= N ⊗R Γα(Ei(M))∨ = 0

for every i < c when (Ei(M)) is a minimal injective resolution of a �nitely generated
R-module M . Thus TorRi (N,M∨) = 0 for every i < c because (Ei(M)∨)i≥0 is a �at
resolution of M∨.
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In this way, we obtain a dual characterisation for depth in terms of Tor functors.

Corollary 4.2. For every �nitely generated module M over a local ring R,

depth(α,M) = inf
{
i : TorRi (R/I,M∨) 6= 0 for some I ∈ α

}
.

Proof. Set c = depth(α,M) = inf
I∈α

grade(I,M) by Corollary 1.35. We already know

that TorRi (R/I,M∨) = 0 for every I ∈ α and every i < c by the previous proposition.
Now TorRc (R/I,M∨) ∼= R/I ⊗R Hc

α(M)∨ for every I ∈ α. Lemma A.2, (ii), gives that
R/I ⊗R Hc

α(M)∨ ∼= HomR(R/I,Hc
α(M))∨. Thus TorRc (R/I,M∨) ∼= ExtcR(R/I,M)∨

for every I ∈ α. In this way, if TorRc (R/I,M∨) = 0 for every I ∈ α, we have that
lim←−
I∈〈α〉

Extcα(R/I,M)∨ = 0, but this means that Hc
α(M)∨ = 0, which is an absurd.

Hence c ≥ inf
{
i : TorRi (R/I,M∨) 6= 0 for some I ∈ α

}
. Conversely, apply the previous

arguments to each family {I} ⊆ α in order to obtain

grade(I,M) = inf
{
i : TorRi (R/I,M∨) 6= 0

}
,

as seen in [MZ14]. Hence c ≤ inf
{
i : TorRi (R/I,M∨) 6= 0 for some I ∈ α

}
.

We state now an extension of the Local Duality Theorem which serves as a gen-

eralisation to [Mah13].

Theorem 4.3. Let α be a family of a local ring R. Assume that α is cohomologically
complete intersection (this is, depth(α,R) = n = cd(α,R)). Then, for every R-module

M and every integer i,

(i) TorRn−i(M,Hn
α(R)) ∼= H i

α(M).

(ii) H i
α(M)∨ ∼= Extn−iR (M,Hn

α(R)∨).

Proof. It is enough to prove (i) because of Lemma A.2. Noting Tj(−) = Hn−j
α (−),

we shall show the isomorphism of ∂-functors TorRi (−, Hn
α(R)) ∼= Ti(−) for i ≥ 0.

Since n = cd(α,R), we have that Hn
α(M) = M ⊗R Hn

α(R) for every R-module M
by Lemma 1.39. Thus TorR0 (−, Hn

α(R)) ∼= T0(−). Suppose now that M is free and
i > 0. Hence TorRi (M,Hn

α(R)) = 0 = Ti(M). Thus the desired isomorphism follows by
[Rot09, Theorem 6.36].

Lemma 4.4. Let R be a complete local ring of dimension n and α be a family of R.

Consider a �nitely generated R-module M and set c = depth(α,M). Then

(i) There is an isomorphism HomR(Hc
α(M), Hc

α(M)) ∼= HomR(Hc
α(M)∨, Hc

α(M)∨).

(ii) The natural homomorphism R → HomR(Hc
α(M), Hc

α(M)) is an isomorphism if

and only if the natural homomorphism R → HomR(Hc
α(M)∨, Hc

α(M)∨) is an

isomorphism if and only if the natural homomorphism Hc
α(M)⊗R Hc

α(M)∨ → E

is an isomorphism.
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Proof. There is an isomorphism HomR(Hc
α(M)∨, Hc

α(M)∨) ∼= (Hc
α(M)∨ ⊗R Hc

α(M))∨

by Lemma A.2 and the module on the right side is isomorphic to TorRc (Hc
α(M),M∨)∨

by Proposition 4.1 which, in turn, is isomorphic to ExtcR(Hc
α(M),M∨∨) again by

Lemma A.2. Since R is complete, we have that M∨∨ = M and statement (i) follows.
We now prove the equivalences in (ii): observe that the natural homomorphism

R → HomR(Hc
α(M), Hc

α(M)) is an isomorphism if and only if the natural homomor-
phism R → HomR(Hc

α(M)∨, Hc
α(M)∨) is an isomorphism by (i). By Matlis' duality, a

homomorphism is an isomorphism if and only if its induced homomorphism in the duals
is an isomorphism. Hence the natural homomorphism Hc

α(M)⊗R Hc
α(M)∨ → E is an

isomorphism if and only if the natural homomorphism E∨ → HomR(Hc
α(M), Hc

α(M))

is an isomorphism. Thus the statement follows by completeness of R.

Lemma 4.5. Let α be a family of ideals of a complete local ring R. Consider a �nitely

generated R-module M such that depth(α,M) = c = cd(α,M). Then, for every integer

i 6= c, the following statements hold:

(i) There exist isomorphisms:

1. Exti−cR (Hc
α(M), Hc

α(M)) ∼= ExtiR(Hc
α(M),M).

2. TorRi−c(H
c
α(M), Hc

α(M)∨) ∼= TorRi (Hc
α(M),M∨).

(ii) These statements are equivalent:

1. Exti−cR (Hc
α(M), Hc

α(M)) = 0.

2. Exti−cR (Hc
α(M)∨, Hc

α(M)∨) = 0.

3. TorRi−c(H
c
α(M), Hc

α(M)∨) = 0.

Proof. Consider a minimal injective resolution (E∗(M)) = (Ei(M))i≥0 of M . By
Proposition 3.13, (Γα(Ei+c(M)))i≥0 is a minimal injective resolution of Hc

α(M). Since
Hc
α(M) is α-torsion, we get an isomorphism

Exti−cR (Hc
α(M), Hc

α(M)) ∼= ExtiR(Hc
α(M),M)

as follows: for every integer j there are isomorphisms

ExtjR(Hc
α(M), Hc

α(M)) = Hj(HomR(Hc
α(M),Γα(E∗+c(M))))

= Hj(HomR(Hc
α(M), E∗+c(M)))

= Extj+cR (Hc
α(M),M).

So we obtained the �rst isomorphism of (i). By applying the Matlis dual to the minimal
injective resolutions of M and Hc

α(M) we obtain �at resolutions of M∨ and Hc
α(M)∨.

Now we have natural isomorphisms Hc
α(M) ⊗R Γα(Ei(M)) ∼= Hc

α(M) ⊗R Ei(M) for
every i. Hence TorRi−c(H

c
α(M), Hc

α(M)∨) ∼= TorRi (Hc
α(M),M∨).
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We now prove the equivalences in (ii): there exists an isomorphism

Exti−cR (Hc
α(M)∨, Hc

α(M)∨) ∼= TorRi−c(H
c
α(M)∨, Hc

α(M))∨

by Lemma A.2. Together with Matlis' duality, we also get the isomorphism

TorRi−c(H
c
α(M),M)∨ ∼= Exti−cR (Hc

α(M),M).

Then the equivalences follow from these isomorphisms and those of (i).

Proposition 4.6. Let R be a local ring of dimension n and α ⊆ 〈β〉 be two families of

R. Set c = depth(β,M), where M is a �nitely generated R-module. Then

(i) There exists a natural homomorphism

HomR(Hc
β(M), Hc

β(M))→ HomR(Hc
α(M), Hc

α(M)).

(ii) Suppose in addition that 〈αRp〉 = 〈βRp〉 for every p ∈ 〈β〉 ∩ Supp(M) such that

depthRp
(Mp) = c. Then the homomorphism in (i) is an isomorphism.

(iii) Suppose now that R is complete. Then there exists a natural homomorphism

HomR(Hc
β(M)∨, Hc

β(M)∨)→ HomR(Hc
α(M)∨, Hc

α(M)∨) which turns out to be an

isomorphism when the additional condition of (ii) is satis�ed.

Proof. Notice that Hc
α(M) = 0 when depth(α,M) 6= c. Similar to Lemma 3.21, we

obtain a natural injectionHc
α(M)→ Hc

β(M), for instance, by taking a minimal injective
resolution of M . Hence we have a natural homomorphism

HomR(Hc
β(M),M)→ HomR(Hc

α(M),M).

By Proposition 4.1, (i), the natural homomorphism of the �rst part of the present
statement follows.

In order to prove (ii), recall that Γγ(E
i(M)) =

⊕
p∈〈γ〉∩SpecR

E(R/p)µ
i(p,M) for every

family γ of R and every term Ei(M) of a minimal injective resolution of M and
that if µi(p,M) 6= 0, then p ∈ Supp(M) and depthRp

(Mp) ≤ i. We shall show that
Γα(Ec(M)) = Γβ(Ec(M)) for a minimal injective resolution (Ei(M)) of M . This
situation will imply that the natural injection Hc

α(M) → Hc
β(M) is an isomorphism.

So consider x ∈ Γβ(Ec(M)). Then x ∈ E(R/p) for some p ∈ 〈β〉 ∩ Supp(M) such that
µc(p,M) 6= 0. Thus this p also satis�es that c ≤ grade(p,M) ≤ depthRp

(Mp) ≤ c. Now
x ∈ E(R/p) ⊆ ΓβRp(E

c(Mp)) = ΓαRp(E
c(Mp)) by hypothesis. We conclude in this way

that x ∈ Γα(Ec(M)) and the statement follows.
Finally, statement (iii) follows by Lemma 4.4.

Observe that locality in the �rst two items can be dropped.
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4.2 On top local cohomology modules

In this section R always denotes a local ring and R̂ is its completion with respect

to the linear topology induced by its maximal ideal, as usual.

De�nition 4.7. Let α be a family of ideals of R and M be a d-dimensional �nitely
generated R-module. Consider the disjoint sets

Uα(M) = {p ∈ Ass(M) : dim(R/p) = d and dim(R/(I + p)) ≤ 0 for every I ∈ α}

and Vα(M) = Ass(M)−Uα(M). Explicitly, Vα(M) is the set of associated primes p of
M such that dim(R/p) < d or dim(R/p) = d and dim(R/(I + p)) > 0 for some I ∈ α.
Of course, if 〈α〉 = 〈β〉, then Uα(M) = Uβ(M) and Vα(M) = Vβ(M), so we shall denote
these sets shortly by U and V respectively if no confusion arise. For a minimal primary

decomposition of 0 =
n⋂
i=1

Qi(M) in M , denote Qα(M) =
⋂
pi∈U

Qi(M). If U = ∅, put

Qα(M) = M .

Lemma 4.8. Ass(Qα(M)) = V and Ass(M/Qα(M)) = U .

Proof. It is a straightforward consequence of [Sch07, Lemma 2.7], see Lemma A.3.

Theorem 4.9. Let α be a non-trivial family of (R,m). Consider a �nitely generated

R-module M and set d = dim(M). Then there exists a natural isomorphism

Hd
α(M) ∼= Hd

mR̂
(M̂/QαR̂(M̂)).

Proof. Since Hd
α(M) is Artinian by Theorem 2.2, the natural homomorphism of R̂-

modules Hd
αR̂

(M̂) ∼= Hd
α(M) ⊗R R̂ → Hd

α(M) is an isomorphism. So we shall assume
that R is complete. The exact sequence 0 → Qα(M) → M → M/Qα(M) → 0

induces an isomorphism of R-modules Hd
α(M) ∼= Hd

α(M/Qα(M)) by Proposition 2.25.
If we denote R̄ = R/AnnR(M/Qα(M)), we obtain another isomorphism of R̄-modules
Hd
α(M/Qα(M)) ∼= Hd

αR̄
(M/Qα(M)). Finally, if I ∈ α− {R}, then

V (I + AnnR(M/Qα(M)) = V (I) ∩
⋃
p∈U

V (p) = {m}

by Lemma 4.8. Thus 〈αR̄〉 = 〈mR̄〉 and Hd
α(M/Qα(M)) ∼= Hd

m(M/Qα(M)). So the
desired isomorphism follows.

De�nition 4.10. Let M be a �nitely generated R-module and α be a family of R.
Set Pα(M) as the intersection of all the primary components p of Ann(M) such that
dim(R/p) = dim(M) and dim(R/(I + p)) ≤ 0 for every ideal I ∈ α. Observe that
Pα(M) = π−1(QαR̄(R̄)) where π : R→ R̄ = R/Ann(M) is the natural projection.
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Lemma 4.11. Let M be a �nitely generated R-module, α be a non-trivial family of R

and set d = dim(M). Then Hd
α(M) ∼= Hd

mR̂
(M̂/Pα(M̂)M̂).

Proof. Again, we may assume that R is complete. Set R̄ = R/Ann(M). Then there is
an isomorphism Hd

α(M) ∼= Hd
αR̄

(R̄) ⊗R M . By Theorem 4.9, there is an isomorphism
Hd
αR̄

(R̄) ∼= Hd
m(R/Pα(M)). ThusHd

αR̄
(R̄)⊗RM ∼= Hd

m(M/Pα(M)M) and the statement
follows.

For a �nitely generated R-module M of dimension d we recall the notation

K(M) = Hd
m(M)∨ used by M. Eghbali and P. Schenzel in [ES12]. Observe that K(M)

is isomorphic to the R̂-module KM̂ = Extn−d
Ŝ

(M̂, Ŝ) when (R,m) is the image of an

n-dimensional Gorenstein ring (S, n). Indeed, by Local Duality (see [Har67, Theo-

rem 6.3]), we have a natural equivalence Extn−iS (−, S)∧ → HomS(H i
n(−), ES). Here

ES denotes the injective hull of the residual �eld of S. Left side of this equivalence

gives Extn−dS (M,S)∧ ∼= Extn−dS (M,S) ⊗S Ŝ ∼= Extn−d
Ŝ

(M ⊗S Ŝ, Ŝ) and right side gives

HomS(Hd
n (M), ES) ∼= HomS(Hd

n (M)⊗RR,ES) ∼= HomR(Hd
m(M),HomS(R,ES)), prov-

ing the claim. We also point out that AnnR̂(K(M)) equals the intersection of the

primary components of dimension d of AnnR̂(M̂) for every d-dimensional �nitely gen-

erated R-module M as seen in [Har67, Proposition 6.6, 7)].

Lemma 4.12. Let α be a non-trivial family of (R,m) and M be a �nitely generated

R-module of dimension d.

(i) Hd
α(M)∨ is a �nitely generated R̂-module.

(ii) AssR̂(Hd
α(M)∨) = UαR̂(M̂).

(iii) KR̂(M̂/QαR̂(M̂)) ∼= Hd
α(M)∨.

Proof. In order to prove (i), we notice that the Matlis dual of an Artinian R-module
is the same as its Matlis dual when regarded as an R̂-module: in fact, if A is such
R-module, then A ∼= A⊗R R̂, ER̂(R/m) = E and we obtain natural isomorphisms

HomR̂(A,E) ∼= HomR̂(A⊗R R̂, E)

∼= HomR(A,HomR̂(R̂, E))

∼= HomR(A,E).

For (ii), we get that AssR̂(Hd
α(M)∨) = CoassR̂(Hd

αR̂
(M̂)) = UαR̂(M̂), the last equality

follows from Proposition 3.18.
Finally, KR̂(M̂/QαR̂(M̂))∨ = Hd

mR̂
(M̂/QαR̂(M̂)) = Hd

α(M) and the statement
remains proved.
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Recall that a �nitely generated R-module M satis�es Serre's condition Sr, for an

integer r, when depthRp
(Mp) ≥ min

{
r, dimRp(Mp)

}
for every p ∈ SpecR.

Theorem 4.13. Let α be a family of (R,m) and consider a �nitely generated R-module

M of dimension d. Consider the natural homomorphism

ΦM : R̂→ HomR̂(Hd
α(M), Hd

α(M)).

(i) ker ΦM = PαR̂(M̂).

(ii) HomR̂(Hd
α(M), Hd

α(M)) is a �nitely generated R̂-module.

(iii) ΦR is surjective if and only if R̂/QαR̂(R̂) satis�es S2.

(iv) HomR̂(Hd
α(R), Hd

α(R)) is a commutative semilocal Noetherian ring.

Proof. As usual, we may assume that R is complete. Lemma 4.11 gives an isomorphism
Hd
α(M) ∼= Hd

m(M/Pα(M)M). Hence K(M/Pα(M)M) ∼= Hd
α(M)∨. In this way we

obtain another isomorphism

HomR(Hd
α(M), Hd

α(M)) ∼= HomR(K(M/Pα(M)M), K(M/Pα(M)M)). (4.3)

Thus ker ΦM = Ann(K(M/Pα(M)M)) = Pα(M), the last equality follows from [Har67,
Proposition 6.6, 7)] and (i) remains proved. Item (ii) follows also by equation (4.3)
because K(M) is a �nitely generated R̂-module for every �nitely generated R-module
M . Items (iii) and (iv) follow for M = R because in this case K(M/Pα(M)M) is
isomorphic to the canonical module of the ring R̂/QαR̂(R̂). Hence, results of Y. Aoyama
and S. Goto (see [AG85, Proposition 1.2]) and Y. Aoyama (see [Aoy83, Theorem 3.2])
apply.
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Chapter 5

Linear topologies and local homology

Throughout this chapter, all the rings are assumed to be commutative Noetherian.

We shall introduce linear topologies induced by a family α of a ring R. The local

case serves as a motivation for this since the composite functor Γα(−)∨ is naturally

isomorphic to the composite functor lim←−
I∈〈α〉

(−)∨ ⊗R R/I.

5.1 The α-adic topology

Consider a family α of R and an R-module M . For each m ∈ M we de�ne its

fundamental open neighbourhoods as the cosets of the form m+ IM for some I ∈ 〈α〉.

By these means, M is a topological module and this topology is called the α-adic

topology on M . Notice that M is Hausdor� if and only if
⋂
I∈〈α〉

IM = 0. When M = R,

we also have that 〈α〉 is exactly the set of open ideals of R. Furthermore, if β is another

family, then the β-adic topology on R coincides with the α-adic topology on R if and

only if 〈β〉 = 〈α〉. If M = R/J for some J ∈ 〈α〉, we see that the α-adic topology on

M is just the discrete topology and the projective system {R/I, πIJ}I∈〈α〉, with natural

projections πIJ : R/J → R/I, is a system of topological rings. Therefore it is de�ned

the α-adic completion of R as the topological ring

Λα(R) := lim←−
I∈〈α〉

R/I



in such a way that the canonical homomorphism of rings ϕR : R→ Λα(R) is continuous.

Namely, the topology considered in Λα(R) is the coarsest topology such that every

projection πI : Λα(R)→ R/I is continuous. As before, ϕR is injective if and only if R

is Hausdor� in the α-adic topology.

De�nition 5.1. The ring R is called α-adically complete if ϕR is an isomorphism.

Now consider an R-module M . It is seen as before that the α-adic topology on

M/IM is just the discrete topology for every I ∈ 〈α〉 and it is de�ned the α-completion

of M as the Λα(R)-module Λα(M) = lim←−
I∈〈α〉

M/IM . Recall that this structure is given

component-wise by the structure of the R/I-moduleM/IM . IfN is an open submodule

of M , there exists a monomorphism of Λα(R)-modules Λα(N) → Λα(M) which sends

(nI + IN)I∈〈α〉 to (nI + IM)I∈〈α〉: in fact, if N is an open submodule of M , then

JM ⊆ N for some J ∈ 〈α〉. Assuming that nI ∈ IM for every I ∈ 〈α〉, we obtain that

nIJ ∈ IJM ⊆ IN . But nI − nIJ ∈ IN . Hence nI ∈ IN and the injection is now clear.

We have even more.

Lemma 5.2. Suppose that N is an open submodule of M with respect to the α-adic

topology. Then there exists an exact sequence of Λα(R)-modules

0→ Λα(N)→ Λα(M)→ Λα(M/N)→ 0.

Proof. Since JM ⊆ N for some J ∈ 〈α〉, we have that the α-adic topology on M/N

is just the discrete topology. Thus Λα(M/N) = M/N and the surjectivity of the
homomorphism Λα(M)→ Λα(M/N) follows. Consider now (mI + IM)I∈〈α〉 ∈ Λα(M)

such that (mI + IM + N)I∈〈α〉 = (IM + N)I∈〈α〉 in Λα(M/N). So, for every mI there
exists nI ∈ N such that mI + IM = nI + IM . Hence the statement follows.

It follows that Λα(N) = π−1
J (N/JM) is an open submodule of Λα(M) such that

ϕR(N) ⊆ Λα(N). Moreover, the submodules Λα(IM), with I ∈ 〈α〉, form a funda-

mental system of open neighbourhoods of the zero element 0 ∈ Λα(M). As before,

there exists a continuous homomorphism of R-modules ϕM : M → Λα(M) and M is

Hausdor� if and only if ϕM is injective.

Proposition 5.3. The following statements are true:

(i) For every open submodule N of M , we have that Λα(N) = ϕM(N).
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(ii) There exists a bijective correspondence

{open submodules in M} ↔ {open submodules in Λα(M)}
N 7→ Λα(N)

ϕ−1
M (n) ←[ n

Proof. Since Λα(N) is an open submodule in a linear topology, it is also closed and
therefore ϕM(N) ⊆ Λα(N). If JM ⊆ N for some J ∈ 〈α〉 and (nI +IM)I∈〈α〉 ∈ Λα(N),
then nI + JM + IM = nJ + JM + IM for every I ∈ 〈α〉. Hence nJ ∈ nI + JM + IM

for every I ∈ 〈α〉. This implies �nally that ϕM(nJ) ∈ (nI + IM)I∈〈α〉 + Λα(JM) and
thus (i) holds. For (iii), consider an open submodule n of Λα(M). By the continuity
of ϕM it follows that N := ϕ−1

N (n) is an open submodule of M . Since n is also closed,
it follows from (i) that Λα(N) ⊆ n. In the natural diagram

M/N
∼= //

%%

Λα(M)/Λα(N)

vv
Λα(M)/n

the left oblique arrow is injective and the right oblique arrow is surjective. According
to Lemma 5.2, the horizontal arrow is bijective. This means Λα(N) = n and (iii)
follows.

The assignation Λα(−) : R-mod → Λα(R)-mod is functorial (furthermore, ad-

ditive): indeed, every homomorphism of R-modules f : M → N is continuous with

respect to any linear topology α. Hence it induces a continuous homomorphism of

Λα(R)-modules Λα(f) : Λα(M)→ Λα(N) in a natural way.

De�nition 5.4. The module M is called α-adically complete if ϕM is bijective.

The α-torsion modules have coe�cients in the α-adic completion of the base ring

as we shall see next.

Theorem 5.5. Consider an α-torsion R-moduleM . ThenM has a natural structure of

Λα(R)-module and the canonical homomorphism of Λα(R)-modules M ⊗R Λα(R)→M

is an isomorphism.

Proof. If x ∈ M , then there exists J ∈ 〈α〉 such that Jx = 0 by Lemma 1.10. In this
way, for every element (rI + I)I∈〈α〉 ∈ Λα(R), the �lter (rIx)I∈〈α〉 acquires a constant
value rJx: indeed, ifK is another ideal in 〈α〉 such thatKx = 0, then rJx = rKx. So let
us de�ne the Λα(R)-module structure forM according to this: (rI+x)I∈〈α〉 := rJx. This
structure is compatible with the usual R-module structure of M and the natural map
M⊗RΛα(R)→M which sends x⊗(rI+I) to rJx has natural inverse x 7→ x⊗(1+I).
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Now that α-adic topologies are de�ned, it is time to translate to this language a

partial result from Section 1.3.

Theorem 5.6. Let (R,m) be a Cohen-Macaulay local ring of dimension d with canon-

ical module KR and ψ be a family of R. There is a natural isomorphism

Λψ(Hd−t
m,ψ (R)) ∼= H t

ψ(KR)∨,

where t = d− sup
J∈ψ

dim(R/J).

Proof. Exactly as in Theorem 1.54, we obtain a natural isomorphism

Hd−t
m,ψ (R)/JHd−t

m,ψ (R) ∼= ExttR(R/J,KR)∨

for every J ∈ 〈α〉. Thus

Λψ(Hd−t
m,ψ (R)) ∼= lim←−

J∈〈ψ〉
ExttR(R/J,KR)∨ ∼=

(
lim−→
J∈〈ψ〉

ExttR(R/J,KR)

)∨
∼= H t

ψ(KR)∨

and we obtain the statement.

5.2 Local homology modules

Recall that Theorem 1.11 gives a functorial isomorphism

H i
α(M) ∼= lim−→

I∈〈α〉
ExtiR(R/I,M) (5.1)

which reproduces the classic one for the closed support case

H i
I(M) ∼= lim−→

n∈N
ExtiR(R/In,M) (5.2)

Equation (5.2) was used by N. T. Cuong and T. T. Nam in [CN01] to de�ne the i-th

local homology module HI
i (M) of M with respect to an ideal I of R as the projective

limit

HI
i (M) = lim←−

n∈N
TorRi (R/In,M).

This situation, together with equation (5.1) suggest the following de�nition.

De�nition 5.7. Let α be a family and M an R-module. The i-th local homology
module Hα

i (M) of M with respect to α is de�ned by

Hα
i (M) := lim←−

I∈〈α〉
TorRi (R/I,M).
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Remark 5.8. Clearly, Hα
0 (M) ∼= Λα(M). It is also clear that, when α is the fam-

ily {In : n ∈ N}, this de�nition agrees with N. T. Cuong and T. T. Nam (loc. cit.)
de�nition of local homology modules.

Next we show a useful relation between the local homology modules Hα
i (M) and

HI
i (M).

Proposition 5.9. Let M be an R-module and α be a family of R. Then

Hα
i (M) ∼= lim←−

I∈〈α〉
HI
i (M)

for every i.

Proof. The claimed isomorphism follows since

lim←−
I∈〈α〉

HI
i (M) = lim←−

I∈〈α〉
lim←−
n∈N

TorRi (R/In,M) ∼= lim←−
n∈N

lim←−
I∈〈α〉

TorRi (R/In,M).

Now we observe that, for every �xed n ∈ N, the set {In : I ∈ 〈α〉} is co�nal with 〈α〉.
Therefore,

lim←−
I∈〈α〉

TorRi (R/In,M) = lim←−
I∈〈α〉

TorRi (R/I,M).

Thus
lim←−
I∈〈α〉

HI
i (M) ∼= lim←−

n∈N
lim←−
I∈〈α〉

TorRi (R/I,M) = lim←−
n∈N

Hα
i (M) = Hα

i (M).

This proves the statement.

Proposition 5.10. Let M be an R-module and α be a family of R. Then Hα
i (M) is

α-separated, i.e.,
⋂
I∈〈α〉

IHα
i (M) = 0.

Proof. Note that⋂
I∈〈α〉

IHα
i (M) ∼= lim←−

I∈〈α〉
IHα

i (M) = lim←−
I∈〈α〉

I lim←−
J∈〈α〉

TorRi (R/J,M).

But

lim←−
I∈〈α〉

I lim←−
J∈〈α〉

TorRi (R/I,M) ∼= lim←−
I∈〈α〉

lim←−
J∈〈α〉

I TorRi (R/J,M) ∼= lim←−
J∈〈α〉

lim←−
I∈〈α〉

I TorRi (R/J,M).

Since for each J ∈ 〈α〉 we have that

lim←−
I∈〈α〉

I TorRi (R/J,M) = lim←−
I≥J

I TorRi (R/J,M)

and I TorRi (R/J,M) = 0 for every I ≥ J , we conclude that⋂
I∈〈α〉

IHα
i (M) = 0

and the statement is proved.
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A. Ooishi introduced in [Ooi76] a generalised Matlis dual functor in the following

way: let R be a semi-local Noetherian ring with maximal ideals m1, . . . ,mn and set

ER :=
n⊕
i=1

ER(R/mi). For an R-module M it is de�ned the Matlis dual of M by

D(M) := HomR(M,ER). With this notion we get a duality relation between local

homology and local cohomology for modules over semi-local Noetherian rings as follows.

Proposition 5.11. Suppose that R is a semi-local ring and let α be a family. Then

Hα
i (D(M)) ∼= D(H i

α(M)) for every i ≥ 0.

Proof. By [Ooi76, Corollary 1.5],

Hα
i (D(M)) = lim←−

I∈〈α〉
TorRi (R/I,D(M)) ∼= lim←−

I∈〈α〉
D(ExtiR(R/I,M)).

But

lim←−
I∈〈α〉

D(ExtiR(R/I,M)) ∼= D

(
lim−→
I∈〈α〉

ExtiR(R/I,M)

)
= D(H i

α(M)).

Hence the statement follows.

Next we state dual versions of some classic results from local cohomology theory

which serve as generalisations of some results from [CN01]. For this purpose, we now

recall the notion of Noetherian dimension of an Artinian R-module M denoted by

Ndim(M). This concept was introduced by R. N. Roberts in [Rob75] by the name

Krull dimension. Later, D. Kirby changed in [Kir90] this terminology of R. N. Roberts

and referred to Noetherian dimension to avoid confusion with the well-known Krull

dimension of �nitely generated modules. Let M be an Artinian R-module. When

M = 0, set Ndim(M) = −1. By induction, for any ordinal α, set Ndim(M) = α, when

Ndim(M) < α is false and for every ascending chain M0 ⊆ M1 ⊆ · · · of submodules

of M there exists a positive integer m0 such that Ndim(Mm+1/Mm) < α for every

m ≥ m0. Thus an Artinian module M is non-zero and �nitely generated if and only if

Ndim(M) = 0.

If 0→M ′′ →M →M ′ → 0 is a short exact sequence of R-modules, then

Ndim(M) = max {Ndim(M ′′),Ndim(M ′)} . (5.3)

Proposition 5.12. Let M be an Artinian R-module with Ndim(M) = d. Then

Hα
i (M) = 0

for every i > d.
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Proof. Since Hα
i (M) ∼= lim←−

I∈〈α〉
HI
i (M) by Proposition 5.9, the result follows from [CN01,

Proposition 4.8].

Proposition 5.13 (Independence Theorem). Let f : R → S be a homomorphism of

Noetherian rings and M be an S-module. Then we get an isomorphism of Λα(R)-

modules Hα
i (M) ∼= HαS

i (M) for every i ≥ 0.

Proof. By [CN01, Corollary 3.7], for each I ∈ 〈α〉, we have an isomorphism of ΛI(R)-
modules HI

i (M) ∼= HIS
i (M) for each i ≥ 0. Now, by taking projective limits, we get

the desired isomorphism.

Proposition 5.14. Let R be a semi-local ring and let M be an Artinian R-module.

Then the following conditions are equivalent:

(i) D(M) is α-torsion R-module.

(ii) Hα
i (M) = 0 for every i > 0.

Proof. (i)⇒(ii): Since D(M) is α-torsion, it follows by Proposition 1.28, (i), that
H i
α(D(M)) = 0 for every i > 0. Therefore, sinceM is Artinian, we have by [Ooi76, The-

orem 1.6, (5)] and Proposition 5.11, thatHα
i (M) ∼= Hα

i (DD(M)) ∼= D(H i
α(D(M))) = 0

for every i > 0.
(ii)⇒(i): By the Independence Theorem (Proposition 5.13) we can assume that

R is J-adically complete, where J is the Jacobson radical of R. If Hα
i (M) = 0 for

every i > 0, then by [Ooi76, Theorem 1.6 (5)] and Proposition 5.11 we get that
D(H i

α(D(M))) = 0. Therefore H i
α(D(M)) = 0 by [Ooi76, Theorem 1.6 (8)]. On

the other hand, since M is Artinian, D(M) is �nitely generated by [Ooi76, Theo-
rem 1.6, (3)]. Hence Corollary 1.37 gives that D(M) is α-torsion.

Proposition 5.15. Let R be a semi-local ring and let M be a non-zero Artinian R-

module with Ndim(M) = d. Then HJ
d (M) 6= 0, where J is the Jacobson radical of

R.

Proof. By [Sha92, Lemma 2.2] M has a natural structure as a module over ΛJ(R)

in such a way that a subset of M is an R-submodule if and only if it is a ΛJ(R)-
module. Thus, NdimR(M) = NdimΛJ (R)(M). Therefore, since HJ

i (M) ∼= H
JΛJ (R)
i (M)

as ΛJ(R)-module for every i by the Independence Theorem (Proposition 5.13), we
may assume that R is J-adically complete. Then the Matlis dual D(M) is a non-
zero �nitely generated R-module (see [Ooi76, Theorem 1.6, (3)]). It follows by [Ooi76,
Theorema 1.6, (8)] that dimR(D(M)) = dimR(R/AnnR(M)). On the other hand,
by [Sha89, Proposition 1.4], we can write M = Γm1(M) ⊕ · · · ⊕ Γmk(M) for some
maximal ideals m1, . . . ,mk of R. Set Mi = Γmi(M). Then, by [Sha89, Remark 1.7],
each Mi has a natural structure as an Rmi-module in such a way that a subset of
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M is an R-submodule if and only if it is a Rmi-module. Moreover, Mi
∼= (Mi)mi

as Rmi-modules. By equation (5.3), Ndim(M) = max {Ndim(M1), . . . ,Ndim(Mk)}.
Hence NdimRmi

(Mi) = NdimRmi
((Mi)mi) = dimRmi

(Rmi/AnnRmi
((Mi)mi)) for every

i = 1, . . . , k, the second equality following from [Rob75, Theorem 6]. Therefore we
get d = NdimRM = dimR(R/Ann(M)) = dimR(D(M)). Then Hd

J(D(M)) 6= 0 by
Grothendieck's Non-Vanishing Theorem and Flat Base Change. Therefore, by Propo-
sition 5.11, HJ

d (M) ∼= HJ
d (DD(M)) ∼= D(Hd

J(D(M))) 6= 0 and the statement is now
proved.

Remark 5.16. Observe that if M is an R-module and α is a family of R, then Hα
i (M)

has a natural structure of Λα(R)-modules.

The next result generalises [CN01, Proposition 4.6].

Proposition 5.17. Let R be a semi-local ring and M be an Artinian R-module. Then

HJ
i (M) is a Noetherian ΛJ(R)-module for every i, where J is the Jacobson radical of

R and ΛJ(R) is the J-adic completion of R.

Proof. By Proposition 5.13, we can assume that R is J-adically complete. By [Ooi76,
Theorem 1.6, (3)], D(M) is a Noetherian R-module. We shall prove �rst that the mod-
ule H i

J(D(M)) is Artinian. In fact, since R is semi-local, it is enough to prove that the
localisation of H i

J(D(M)) at every maximal ideal is Artinian, but this follows by [BS98,
Theorem 4.3.2 and Theorem 7.1.3]. Moreover, DD(M) is isomorphic to M , by [Ooi76,
Theorem 1.6, (5)]. Finally, by using Proposition 5.11 and [Ooi76, Theorem 1.6, (3)] we
get that HJ

i (M) ∼= HJ
i (DD(M)) ∼= D(H i

J(D(M))) is a Noetherian module.

Proposition 5.18. Let R be an Artinian ring and let M be a �nitely generated R-

module. Then Hα
i (M) has �nite length. In particular, Hα

i (M) is an Artinian R-module.

Proof. There exists an ideal J in 〈α〉 such that J = I for every I ≥ J in 〈α〉. Then
Hα
i (M) = lim←−

I≥J
TorRi (R/I,M) = TorRi (R/J,M) for every i ≥ 0.

On the other hand, since M is a �nitely generated R-module, there is a free
resolution F� of M in which the free R-modules Fi are �nitely generated. Therefore,
TorRi (R/J,M) ∼= Hi(R/J ⊗R F�) has �nite length for every i ≥ 0.

Proposition 5.19. Let M be an Artinian R-module. Then,

Hα
i

 ⋂
I∈〈α〉

IM

 =

{
0 if i = 0

Hα
i (M) if i > 0

Proof. Since M is an Artinian R-module, the family {IM : I ∈ 〈α〉} of submodules of
M has an minimal element JM for some J ∈ 〈α〉. On the other hand, we can write⋂

I∈〈α〉

IM = lim←−
I∈〈α〉

IM = lim←−
I≥J

IM = JM,
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because for any I ≥ J , we have that IM = JM by the minimality of JM .
Therefore, by Proposition 5.9,

Hα
i

 ⋂
I∈〈α〉

IM

 = Hα
i (JM) = lim←−

I∈〈α〉
HI
i (JM) = lim←−

I≥J
HI
i (JM).

Furthermore, if I ≥ J and n ≥ 1, we get InM = JM . Thus
⋂
n≥1 I

nM = JM .
By [CN01, Corollary 4.5], we have that

HI
i

(⋂
n≥1

InM

)
=

{
0 if i = 0

HI
i (M) if i > 0

Therefore the result follows from Proposition 5.9.

The following theorem provides a characterisation for α-adically complete Ar-

tinian modules.

Theorem 5.20. Let M be an Artinian R-module. The following statements are equiv-

alent:

(i) M is Hausdor� with respect to the α-adic topology.

(ii) M is α-adically complete.

(iii) Hα
0 (M) ∼= M and Hα

i (M) = 0 for all i > 0.

Proof. We consider the following short exact sequence of projective systems of Artinian
R-modules

0→ {IM}I∈〈α〉 → {M}I∈〈α〉 → {M/IM}I∈〈α〉 → 0

By [Jen72, Corollary 7.2], the sequence of projective limits

0→
⋂
I∈〈α〉

IM →M → Λα(M)→ 0

is exact.
The equivalence between (i) and (ii) follows from the exact sequence above.
Now let us suppose condition (ii). We have that Hα

0 (M) ∼= Λα(M) ∼= M . On the
other hand, by Proposition 5.19 and condition (i) we get that

Hα
i (M) = Hα

i

 ⋂
I∈〈α〉

IM

 = 0

for every i > 0.
Finally, condition (iii) trivially implies condition (ii).
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Corollary 5.21. Let R be an Artinian ring and letM be a �nitely generated R-module.

Then Hα
i (M) is α-adically complete.

Proof. This is a direct consequence of the Proposition 5.18 and Theorem 5.20.

Proposition 5.22. Let 0 → M ′ → M → M ′′ → 0 be a short exact sequence of

Artinian modules. Then we have a long exact sequence

· · · → Hα
1 (M ′)→ Hα

1 (M)→ Hα
1 (M ′′)→ Hα

0 (M ′)→ Hα
0 (M)→ Hα

0 (M ′′)→ 0.

Proof. For each I ∈ 〈α〉, the short exact sequence 0 → M ′ → M → M ′′ → 0 induces
a long exact sequence · · · → TorR1 (R/I,M ′) → TorR1 (R/I,M) → TorR1 (R/I,M ′′) →
R/I ⊗M ′ → R/I ⊗M → R/I ⊗M ′′ → 0. Since M ′, M and M ′′ are Artinian, the
modules in the latter long exact sequence are Artinian. By [Jen72, Corollary 7.2] the
projective limit is exact on the category of Artinian R-modules. Thus we have a long
exact sequence of local homology modules with respect to α.

Remark 5.23. Let ϕ : M → N be a homomorphism between Artinian modules and
consider a family F of submodules ofM such that, for every pair F andG of elements of

F , there exists an element H ∈ F contained in F ∩G. Then ϕ

( ⋂
F∈F

F

)
=
⋂
F∈F

ϕ(F ).

Proposition 5.24. Let M be an Artinian R-module and N a submodule of M . Then

M is α-adically complete if and only if N and M/N are α-adically complete.

Proof. Suppose that M is α-adically complete. By Theorem 5.20 it is su�cient to
prove that N and M/N are Hausdor� with respect to the α-adic topology. It is clear
that

⋂
I∈〈α〉

IN ⊆
⋂
I∈〈α〉

IM = 0. On the other hand,

⋂
I∈〈α〉

I(M/N) =
⋂
I∈〈α〉

(IM +N)/N =

 ⋂
I∈〈α〉

IM

+N

 /N = 0

by Remark 5.23. Conversely, assume that N and M/N are α-adically complete. We
have a commutative diagram

0 // N

ϕN
��

//M

ϕM
��

//M/N

ϕM/N

��

// 0

0 // Λα(N) // Λα(M) // Λα(M/N) // 0

The �rst row is obviously exact. The exactness of the second row is a consequence of
Proposition 5.22 and Theorem 5.20, (iii). Since ϕN and ϕM/N are isomorphisms, the
homomorphism ϕM is an isomorphism.
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Proposition 5.25. Let M be an Artinian R-module and t a positive integer. The

following assertions are equivalent:

(i) Hα
i (M) is Artinian for every i < t.

(ii) There exists an ideal J ∈ 〈α〉 such that J ⊆
√

AnnR(Hα
i (M)) for every i < t.

Proof. (i)⇒(ii): Consider i < t. Since Hα
i (M) is Artinian, there exists an ideal J ∈ 〈α〉

such that JHα
i (M) = IHα

i (M) for all I ≥ J . By Proposition 5.10 we have that

0 =
⋂
I∈〈α〉

IHα
i (M) = JHα

i (M).

Therefore, J ⊆ AnnR(Hα
i (M)).

(ii)⇒(i): The argument goes by induction on t. For t = 1, since M is Artinian,
there exists an ideal I0 ∈ 〈α〉 such that I0M = IM for all I ≥ I0. Therefore

Hα
0 (M) = lim←−

I≥I0
M/IM = M/I0M

is Artinian.
Let t > 1 and set K = I0M . By Proposition 5.19 we can replaceM by K because⋂

I∈〈α〉 IM = I0M = K. On the other hand, note that JK = JI0M = I0M = K

because JI0 ≥ I0. Since K is Artinian, there exists x ∈ J such that xK = K. Thus,
by hypothesis, xHα

i (K) = xHα
i (M) = 0 for all i < t. Then the short exact sequence of

Artinian modules
0 // (0 :K x) // K x // K // 0

gives rise by Proposition 5.22 to an exact sequence

0 // Hα
i+1(K) // Hα

i ((0 :K x)) // Hα
i (K) // 0

for every i < t − 1. It follows that J ⊆
√

AnnR(Hα
i ((0 :K x))) and, by inductive

hypothesis, that Hα
i ((0 :K x)) is Artinian for every i < t− 1. Consequently, Hα

i (K) is
Artinian for any i < t and the statement is proved.

5.3 Co-localisation and co-support

Let S be a multiplicative set of R. L. Melkersson and P. Schenzel introduced in

[MS95] the co-localisation of an R-module M with respect to S as the S−1R-module

SM = HomR(S−1R,M). This is a functor from the category of R-modules to the

category of S−1R-modules. Such functor is exact in the category of Artinian R-modules
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(see [MS95, Proposition 2.4]). If p is a prime ideal of R and S = R − p, then instead

of SM , we write pM . For an R-module M , the co-support of M to be the set

CosR(M) := {p ∈ SpecR : pM 6= 0} .

Proposition 5.26. Let S be a multiplicative set of R. Suppose that S ∩ I 6= ∅ for

every I ∈ α. If M is an α-separated module, then SM = 0.

Proof. Set f ∈ SM and consider r
s
∈ S−1R. For each I ∈ α, there exists t ∈ S ∩ I.

Therefore f
(
r
s

)
= f

(
tr
ts

)
= tf

(
r
ts

)
∈ IM . Since

⋂
I∈〈α〉

IM = 0, we have the desired

result.

Corollary 5.27. Let S be a multiplicative set of R and let M be an R-module. Suppose

that S ∩ I 6= ∅ for every I ∈ α. Then SH
α
i (M) = 0 for all i ≥ 0.

Proof. This follows from Proposition 5.10 and Proposition 5.26.

Lemma 5.28. Let N be a �nitely generated R-module and M an Artinian R-module.

Then

S TorRi (N,M) ∼= TorS
−1R

i (S−1N, SM).

Proof. Consider a resolution F∗ = (Fi)i≥0 of �nitely generated free R-modules for N .
Then S−1F∗ = (S−1Fi)i≥0 is a resolution of �nitely generated �at S−1R-modules for
S−1N . On the other hand F∗⊗M = (Fi⊗M)i≥0 is a complex of Artinian R-modules.
Since co-localisation is an additive functor and exact on the category of Artinian R-
modules ([MS95, Proposition 2.4]), it commutes with homology functors. Moreover,
by [MS95, Lemma 5.1], we get that

S TorRi (N,M)) = SHi(F∗ ⊗M)

∼= Hi(S(F∗ ⊗M))

∼= Hi(S
−1F∗ ⊗ SM)

= TorS
−1R

i (S−1N, SM)

as required.

Proposition 5.29. Let M be an Artinian R-module. Then

SH
α
i (M) ∼= HαS−1R

i (SM)

for every i ≥ 0.

Proof. By [Rot09, Proposition 5.21], the co-localisation functor preserves projective
limits. Therefore

SH
α
i (M) = S lim←−

I∈〈α〉
TorRi (R/I,M) ∼= lim←−

I∈〈α〉
S TorRi (R/I,M).
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Using Lemma 5.28 we get that

SH
α
i (M) ∼= lim←−

I∈〈α〉
TorS

−1R
i (S−1R/IS−1R, SM) = HαS−1R

i (SM)

as desired.

Corollary 5.30. Let M be an Artinian R-module. Then

CosR(Hα
i (M)) ⊆ CosR(M) ∩ 〈α〉

for every i ≥ 0.

Proof. Let p ∈ CosR(Hα
i (M)). By Proposition 5.29 we have an isomorphism

pH
α
i (M) ∼= H

αRp

i (pM)

for every i ≥ 0. Since pH
α
i (M) 6= 0, it follows that pM 6= 0. Thus p ∈ CosR(M). On

the other hand, by Corollary 5.27, there exists an ideal I ∈ α such that I ⊆ p. Thus
p ∈ 〈α〉 and the statement is now proved.
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Chapter 6

Local cohomology and D-modules

6.1 Rings of di�erential operators over di�erentiable

admissible algebras

In this section k denotes a �eld of characteristic zero and R is a commutative

k-algebra. We begin recalling the de�nition of the ring of k-linear di�erential operators

on R denoted by DR/k. First we de�ne D i
R/k ⊆ Endk(R) for every i ≥ 0 in an inductive

way: set D0
R/k = R and de�ne D i

R/k for i > 0 as

D i
R/k =

{
P ∈ Endk(R) : [P, r] = Pr − rP ∈ D i−1

R/k for each r ∈ R
}
.

We note that each D i
R/k is a sub-(R-R)-bimodule of Endk(R). Moreover, we have that

D1
R/k = R⊕Derk(R), where Derk(R) denotes the R-module of all k-derivations of R,

and D i
R/kD

j
R/k ⊂ D i+j

R/k. Furthermore, if P ∈ D i
R/k and Q ∈ D j

R/k, then [P,Q] ∈ D i+j−1
R/k .

The ring of k-linear di�erential operators on R is the ring DR/k :=
⋃
i≥0

D i
R/k. Now

recall that an associative ring A with identity is �ltered if there exists an ascending

�ltration of additive subgroups Γ = {Γi, i ∈ Z} such that Γi = 0 for every i < 0, 1 ∈ Γ0,⋃
i∈Z

Γi = A and ΓiΓj ⊂ Γi+j for every i, j ≥ 0. It is clear from de�nition that Γ0 is a

subring of A.

We denote by grΓ(A) the associated graded ring grΓ(A) :=
⊕
i∈Z

Γi/Γi−1. Now

Γi = D i
R/k de�nes naturally a �ltration of DR/k. Notice that the associated graded ring

grΓ(DR/k) is commutative because [D i
R/k,D

j
R/k] ⊂ D i+j−1

R/k , for all i, j ≥ 0.



In [NB13], L. Núñez-Betancourt introduced an important class of algebras that

are essential in our work. The rings of di�erential operators of this kind of algebras

behave like those of polynomials or power series rings.

De�nition 6.1. A commutative k-algebra R is called di�erentiable admissible if it is
Noetherian and regular and satis�es the following properties:

(A-1) R is equidimensional of dimension n, that is, the height of any maximal ideal is
equal to n.

(A-2) Every residual �eld with respect to a maximal ideal is an algebraic extension of
k.

(A-3) Derk(R) is a �nitely generated projective R-module of rank n and the canonical
map Rm ⊗R Derk(R) → Derk(Rm) is an isomorphism for any maximal ideal
m ⊂ R.

Consider now the condition:

(A-3)' There are k-linear derivations D1, . . . , Dn ∈ Derk(R) and a1, . . . , an ∈ R such

that Di(aj) = 1 if i = j and 0 otherwise.

The properties (A-1), (A-2) and (A-3)' appear in [MNM91] as conditions (i), (ii) and

(iii) and any commutative Noetherian regular k-algebra satisfying these conditions

will be called strong di�erentiable admissible. These conditions inspired L. Núñez-

Betancourt to consider the properties (A-1), (A-2) and (A-3) in [NB13, Hypothesis 2.3].

In both works, R is a commutative Noetherian regular ring that contains a �eld of

characteristic zero. It is worth noting that the conditions (A-2) and (A-3)' imply that

the ring R is excellent, see [Mat80, Theorem 102].

In [NB13, Proposition 2.6], it was proved that any strong di�erentiable admissible

k-algebra is di�erentiable admissible (see also [NM14]). Although the latter class of

k-algebras is greater in general than the former as seen in [NB13, Remark 2.8], these

classes coincide in the local case as a consequence of a theorem due to M. Nomura

([Mat86, Theorem 30.6]) which we now state.

Theorem 6.2. Let (R,m, K) be a Noetherian regular k-algebra of dimension n. Sup-

pose that K is an algebraic extension of k. Let R̂ denote the completion of R with respect

to m. Let x1, . . . , xn be a regular system of parameters of R. Then R̂ = K[[x1, . . . , xn]]
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is the power series ring with coe�cients in K and if we write ∂/∂xi for the partial

derivatives in this representation, then Derk(R̂) = DerK(R̂) is the free R̂-module with

basis ∂/∂x1, . . . , ∂/∂xn. Moreover, the following conditions are equivalent:

(i) ∂/∂xi maps R into R for 1 ≤ i ≤ n, so that every ∂/∂xi can be considered as an

element of Derk(R);

(ii) there exist derivations D1, . . . , Dn ∈ Derk(R) and elements a1, . . . , an ∈ R such

that Diaj = δij;

(iii) there exist derivations D1, . . . , Dn ∈ Derk(R) and elements a1, . . . , an ∈ R such

that det(Diaj) /∈ m;

(iv) Derk(R) is a free R-module of rank n;

(v) rank(Derk(R)) = n.

Remark 6.3. Observe that localisations on maximal ideals of di�erentiable admissible
k-algebras are also di�erentiable admissible. Completions of local di�erentiable ad-
missible k-algebras are also di�erentiable admissible. When a di�erentiable admissible
k-algebra is a domain, then any quotient over principal ideals is also di�erentiable ad-
missible. Interesting examples of di�erentiable admissible k-algebras can be found in
[NM14]. Remarkable examples of strong di�erentiable admissible k-algebras are the
polynomial rings, the power series rings and the rings of convergent power series.

When R is a strong di�erentiable admissible k-algebra, it is easy to describe the

ring of k-linear di�erential operators over R. In this case, Theorem 6.2 guarantees that

the R-module of k-derivations Derk(R) of R is free of rank n and D1, . . . , Dn is a basis.

Moreover, the left R-module D i
R/k is free with basis

{Dα := Dα1
1 · · ·Dαn

n , |α| = α1 + · · ·+ αn ≤ i} .

Therefore, every element P ∈ DR/k can be written in a unique form as a �nite sum

P =
∑
α

rαD
α, where rα ∈ R. Thus DR/k coincides with the k-subalgebra of Endk(R)

generated by R and Derk(R), that is, DR/k = R〈D1, . . . , Dn〉. In particular, DR/k

has no zero-divisors when R is a domain. On the other hand, if R[y1, . . . , yn] is the

polynomial ring with coe�cients in R and variables y1, . . . , yn, the R-algebra map

ψ : R[y1, . . . , yn]→ grΓ(DR/k) de�ned by ψ(yi) = σ1(Di), where σ1 is the quotient map

D1
R/k → D1

R/k/D
0
R/k, is an isomorphism of graded rings.

Suppose now that R is a di�erentiable admissible k-algebra of dimension n. Then

DR/k is left and right Noetherian (see [NB13, Corollary 2.14]). Moreover, the global
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dimension or homological dimension of DR/k coincides with the Krull dimension of R,

that is,

gl. dim(DR/k) = dim(R) = n. (6.1)

See [NB13, Proposition 2.15].

Now let A be a �ltered ring with �ltration Γ and let M be a left A-module.

A �ltration Σ of M consists of an ascending sequence Σ = {Σi, i ∈ Z} of additive

subgroups of M such that Σi = 0 for i � 0,
⋃
i∈Z

Σi = M and ΓiΣj ⊂ Σi+j for all

i, j ∈ Z. In particular, each Σi is an Γ0-module.

Suppose that A is a �ltered ring such that grΓ(A) is a commutative Noetherian

ring. A �ltration Σ of a left A-module M is a good �ltration if the associated graded

module grΣ(M) :=
⊕

i∈Z Σi/Σi−1 is �nitely generated over grΓ(A).

Under the former conditions, J.-E. Björk proved in [Bjö79, Chapter 2, Proposi-

tion 6.1] that A is both left and right Noetherian ring. Moreover, a left A-module M

has a good �ltration if and only if M is �nitely generated. If Σ and Σ′ are two good

�ltrations of M , then there are non-negative integers j and k such that Σi ⊂ Σ′i+k

and Σ′i ⊂ Σi+j for every i. Thus the Krull dimension of the grΓ(A)-module grΣ(M)

does not depend on the choice of the good �ltration Σ of M . We call this number the

dimension of M and we denote it by d(M).

The next invariant plays an important role in this work.

De�nition 6.4. Let A be an associative ring with identity. The grade jA(M) of a left
A-module M is de�ned by jA(M) := min

{
j ≥ 0 : ExtjA(M,A) 6= 0

}
.

Remark 6.5. Every short exact sequence of A-modules 0 −→ L −→ M −→ N −→ 0

leads to an exact sequence 0 −→ HomA(N,A) −→ HomA(M,A) −→ HomA(L,A) −→
Ext1

A(N,A) −→ · · · −→ ExtnA(L,A) −→ Extn+1
A (N,A) −→ Extn+1

A (M,A) −→ · · · .
Hence jA(M) ≥ min {jA(L), jA(N)} and jA(N) ≥ min {jA(L), jA(M)}.

According to [MNM91], a �ltered ring A is a ring of di�erentiable type if its

associated graded ring is a commutative Noetherian regular ring and all its maximal

graded ideals have the same height. For example, if R is a di�erentiable admissible

k-algebra, then DR/k is a ring of di�erentiable type (see [NB13, Theorem 2.12]).

Let A be a ring of di�erentiable type and M be a non-zero �nitely generated

left or right A-module. Z. Mebkhout and L. Narváez-Macarro proved in [MNM91,
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Théorème 1.2.2] that

d(M) + jA(M) = dim(grΓ(A)). (6.2)

In particular,

d(M) ≥ dim(grΓ(A))− gl. dim(A). (6.3)

Recall that a �nitely generated left or right A-module M is said to be holonomic or to

be in the left or right Bernstein class when the equality holds in equation (6.3), this

is, d(M) = dim(grΓ(A))− gl. dim(A).

In the special case when R is a di�erentiable admissible k-algebra, we already

observed that grΓ(DR/k) ∼= R[y1, . . . , yn]. Also gl. dim(DR/k) = dim(R) = n by equa-

tion (6.1). Thus a �nitely generated left or right DR/k-module is holonomic if and only

if d(M) = dim(R[y1, . . . , yn])− dim(R) = 2n− n = n.

6.2 Quasi-holonomic D-modules

For the remainder of this work, R is considered a di�erentiable admissible k-

algebra over a �eld k of characteristic zero and Krull dimension n and we denote by D

the ring DR/k of k-linear di�erential operators on R.

For any D-module M , we set τ(M) = inf {jD(N) : N is a D-submodule of M}.

If proj. dim(M) is the projective dimension ofM , then proj. dim(M) ≤ gl. dim(D) = n.

We recall the following property appearing in [CE56, Chapter VI, exercise 9]. It

allows us to conclude that τ(M) ≤ n.

Lemma 6.6. Let A be an associative ring and M be a non-zero �nitely generated

left A-module. Suppose that A is Noetherian and M has �nite projective dimension

proj. dimA(M) = r. Then ExtrA(M,A) 6= 0. In particular, jA(M) ≤ r.

Proof. Since proj. dimA(M) = r, Extr+1
A (M,G) = 0 for every left A-module G. More-

over, there exists a left A-module N such that ExtrA(M,N) 6= 0. For this module there
are left A-modules F and L such that F is free and the sequence 0→ L→ F → N → 0

is exact. This sequence induces a long exact sequence

· · · → ExtrA(M,F )→ ExtrA(M,N)→ Extr+1
A (M,L)→ Extr+1

A (M,F )→ · · ·

As Extr+1
A (M,L) = 0 and ExtrA(M,N) 6= 0, we have that ExtrA(M,F ) 6= 0.
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Now we write F =
⊕
λ∈Λ

A and since A is Noetherian and M is �nitely gener-

ated, we have that ExtrA(M,F ) = ExtrA(M,
⊕
λ∈Λ

A) ∼=
⊕
λ∈Λ

ExtrA(M,A). Therefore,

ExtrA(M,A) 6= 0 and jA(M) ≤ r.

The D-modules M such that τ(M) is maximal are of special importance in our

work.

De�nition 6.7. A left D-module M is quasi-holonomic if τ(M) = n.

Remark 6.8. Note that a D-module M is holonomic if and only it is �nitely generated
and quasi-holonomic. In fact, if M is holonomic, then every non-zero submodule N of
M is holonomic. Thus d(N) = n and hence jD(N) = n by equation (6.2). Therefore
τ(M) = n. Conversely, if τ(M) = n, then jD(M) ≥ n. On the other hand, Lemma 6.6
implies that jD(M) ≤ n. Therefore, jD(M) = n. By equation (6.2) we have that
d(M) = n.

Remark 6.9. Every holonomic D-module is Artinian. Furthermore, every holonomic
D-module has �nite length by [MNM91, Proposition 1.2.5]. On the other hand, if D is
a simple ring (e.g., if D = R〈∂1, . . . , ∂n〉, where R = k[x1, . . . , xn] or R = k[[x1, . . . , xn]]

or R = C{x1, . . . , xn} and ∂1, . . . , ∂n are the usual derivations over R), every holonomic
D-module is cyclic. This is a consequence of the following result due to J. T. Sta�ord:
if A is a simple ring of in�nite length as a left A-module, then every left A-module with
a �nite length is cyclic (see [Bjö79, Chapter 1, Theorem 8.18]). Consequently, if M is
a quasi-holonomic D-module, then M is locally Artinian, i.e., every �nitely generated
submodule of M is Artinian. Moreover, if D is a simple ring, M is locally cyclic, that
is, every �nitely generated submodule of M is cyclic.

We readily get the following consequence from Remark 6.5.

Lemma 6.10. The class T of quasi-holonomic D-modules is a full subcategory of

the category of D-modules closed under the following operations: taking submodules,

quotients and extensions.

The class T is also closed for inductive limits. More precisely,

Theorem 6.11. Suppose that {Mλ, λ ∈ Λ} is an inductive system of quasi-holonomic

D-modules and consider M := lim−→
λ∈Λ

Mλ. Then M is quasi-holonomic.

Proof. Set M ′ :=
⊕
λ∈Λ

Mλ. Since M is a quotient of M ′, it is enough to prove that

M ′ is quasi-holonomic by Lemma 6.10. For this, consider λ0 ∈ Λ and the canonical
injection ı0 : Mλ0 →M ′. We set M0 := im ı0, then M0 is a quasi-holonomic D-module.
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In particular, jD(M0) ≥ n. Let us prove at �rst instance that jD(N) ≥ n for every
submodule N of M ′ such that M0 ⊂ N . Then N/M0

∼=
⊕
λ∈Λ′

Mλ, where Λ′ = Λ− {λ0}.

On the other hand, jD(Mλ) ≥ n for each λ ∈ Λ′. This implies that ExtiD(Mλ,D) = 0

for all 0 ≤ i < n and for each λ ∈ Λ′. Since ExtiD(
⊕
λ∈Λ′

Mλ,D) ∼=
∏
λ∈Λ′

ExtiD(Mλ,D) by

[Rot09, Theorem 7.13], we have that ExtiD(N/M0,D) = 0 for all 0 ≤ i < n and thus
jD(N/M0) ≥ n. By Remark 6.5, jD(N) ≥ n.

Now consider any submodule N of M ′. As proved before, jD((N +M0)/M0) ≥ n.
Hence jD(N/(N ∩ M0)) ≥ n. Since N ∩ M0 is quasi-holonomic, jD(N ∩ M0) ≥ n.
Therefore, we have that jD(N) ≥ n for every submodule N of M ′ by Remark 6.5.
Thus τ(M ′) ≥ n and consequently M ′ is quasi-holonomic.

Corollary 6.12. There is a quasi-holonomic D-module M such that for every quasi-

holonomic D-module N there is a submodule L of M (|N |) such that N ↪→M (|N |)/L.

Proof. We select any set {Mλ, λ ∈ Λ} of representatives of isomorphy classes of cyclic
submodules of quasi-holonomic D-modules. Hence, for a quasi-holonomic module N
and m ∈ N , there is λ ∈ Λ such that Dm ∼= Mλ. We set M :=

⊕
λ∈Λ

Mλ. Since each Mλ

is quasi-holonomic (even more, holonomic), M is quasi-holonomic by Theorem 6.11.
If φ is the sum map

⊕
x∈N

Dx → N =
∑
x∈N

Dx and V = kerφ, then N ∼=
⊕
x∈N

Dx/V .

Since Dx ↪→ M for each x ∈ N , we have that N ↪→ M (|N |)/L for some submodule L
of M .

Let M be a left D-module and consider an element m ∈ M . Recall that m is a

torsion element if AnnD(m) := {r ∈ D : rm = 0} is a non-zero left ideal of D . If every

element of M is torsion, then M is called a torsion module.

Proposition 6.13. Every quasi-holonomic D-module is a torsion module. Conversely,

if D has no zero-divisors and n = 1, then every torsion D-module is quasi-holonomic.

Proof. Let M be a quasi-holonomic D-module and m be a non-zero element of M .
Consider the map ϕ : D → M de�ned by ϕ(r) = rm. If AnnD(m) = kerϕ = 0, then
0 = jD(D) = jD(imϕ) ≥ n, which is a contradiction. Therefore, AnnD(m) 6= 0.

Conversely, suppose that D has no zero-divisors and n = 1. Let a be a non-zero
element of D . Then HomD(D/Da,D) = 0. Therefore jD(D/Da) ≥ 1 and consequently
d(D/Da) = 1, i.e., D/Da is holonomic. Now letM be a torsion D-module and let N be
a �nitely generated submodule ofM . Suppose thatN is generated bym1, . . . ,mr. Since
M is torsion, for each j = 1, . . . , r there exists 0 6= aj ∈ D such that ajmj = 0. Hence
Dmj is a quotient of D/Daj. Thus each Dmj is holonomic. Since N is the sum of all
the Dmj, it is holonomic. Finally, since every module is the inductive limit of its �nitely
generated submodules, we have that M is quasi-holonomic by Theorem 6.11.
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The ring R has a natural structure of D-module. The action of each element of R

is by straightforward multiplication, whilst the action of each derivation δ ∈ Derk(R)

over an element f of R is δ · f = δ(f). It is not hard to show that R is a holonomic

D-module, whence torsion.

Proposition 6.14. If R is strong di�erentiable admissible and D is a simple ring,

then R is an irreducible D-module. In this case,

R ∼= D/
n∑
i=1

DDi

Proof. If I is a non-zero submodule of R, then the two-sided ideal a of D generated by
I coincides with D . But I = a ∩R. Then I = D ∩R = R.

The element 1 ∈ R is annihilated by D1, . . . , Dn. Hence the left ideal J of D

generated by D1, . . . , Dn is contained in AnnD(1). Conversely, consider P ∈ AnnD(1).
Then P may be written in the form f +Q, where Q ∈ J and f ∈ R. Thus

0 = P · 1 = f · 1 = f.

Therefore P = Q ∈ J . Consequently, J = AnnD(1). Consider now the map of D-
modules φ : D → R de�ned by φ(1) = 1. Since 0 6= 1 ∈ R and R is irreducible, φ is
surjective. On the other hand, kerφ = AnnD(1) = J . Therefore, D/J ∼= R.

Proposition 6.15. Let M be a quasi-holonomic D-module. Then the �at dimension

fd(M) of M is at most n. Furthermore, if fd(M) = n, then proj. dim(M) = n.

Proof. Let us assume �rst that M is �nitely generated (hence holonomic by Re-
mark 6.8). If proj. dim(M) ≤ n − 1, then ExtnD(M,D) = 0. This contradicts the fact
that jD(M) = n. Therefore, proj. dim(M) ≥ n. Since proj. dim(M) ≤ gl. dim(D) = n,
we have that proj. dim(M) = n. Since D is Noetherian and M is �nitely generated,
fd(M) = proj. dim(M) = n.

In general, M is the inductive limit of its �nitely generated submodules, i.e.,
M = lim−→

λ∈Λ

Mλ. On the other hand, if 0→ (Fn)λ → · · · → (F1)λ → (F0)λ →Mλ is a �at

resolution of each Mλ, then 0 → lim−→
λ∈Λ

(Fn)λ → · · · → lim−→
λ∈Λ

(F1)λ → lim−→
λ∈Λ

(F0)λ → lim−→
λ∈Λ

Mλ is

a �at resolution of M . Therefore fd(M) ≤ n.
The last statement follows from fd(M) ≤ proj. dim(M) ≤ gl. dim(D) = n.

Quasi-holonomic D-modules which are direct sums of holonomic D-modules have

projective and �at dimension equal to n, because proj. dim(⊕Mλ) = sup {proj. dim(Mλ)}

and fd(⊕Mλ) = sup {fd(Mλ)}.
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Now let S be a multiplicative subset of R. For any D-module M , the R-module

S−1M has structure of D-module in such a way that the natural map M → S−1M is a

homomorphism of D-modules. In order to extend the action of δ ∈ Derk(R) to S−1M ,

we de�ne it by the usual quotient rule for di�erentiation, i.e.,

δ ·
(
m

f

)
=
f · δm− δ(f) ·m

f 2
.

Remark 6.16. J.-E. Björk proved in [Bjö79, Chapter 3, Theorem 4.1] the non-trivial
result that the localisation by an element of a power series ring A = k[[x1, . . . , xn]] of
a holonomic DA/k-module is also a holonomic DA/k-module. Later, Z. Mebkhout and
L. Narváez-Macarro extended this result for strong di�erentiable admissible k-algebras
in [MNM91, Théorème 3.2.1] and L. Núñez-Betancourt did the proper for di�erentiable
admissible k-algebras in [NB13, Corollary 3.12].

Now, let M be an R-module and let S be a multiplicative subset of R. In S we

de�ne the following relation: given s, t ∈ S, s ≤ t if there is r ∈ R such that t = rs. It

is not hard see that ≤ is a partial order over S. With this order, S becomes a directed

set. For s ≤ t, we consider the map ϕs,t : Ms → Mt de�ned by ϕs,t(ms ) = rm
t
, where

t = rs. Then, {Ms, ϕs,t : Ms →Mt} is an inductive system of R-modules such that

lim−→
s∈S

Ms = S−1M in the category of R-modules with the natural R-homomorphisms

is : Ms → S−1M as insertion morphisms.

The next result follows immediately from the constructions above.

Proposition 6.17. Suppose thatM is a D-module and that S is a multiplicative subset

of R. Then

(i) Ms is a D-module for each s ∈ S and for s ≤ t, the map ϕs,t : Ms → Mt is a

homomorphism of D-modules. Moreover, {Ms, ϕs,t : Ms →Mt} is an inductive

system of D-modules.

(ii) For each s ∈ S, the natural map is : Ms → S−1M is a homomorphism of D-

modules such that lim−→
s∈S

Ms = S−1M is the inductive limit of the system above in

the category of D-modules.

Corollary 6.18. Let S be a multiplicative subset of R. If M is a quasi-holonomic

D-module, then S−1M is a quasi-holonomic D-module.

Proof. We shall see that Mf is quasi-holonomic for all f ∈ R. In fact, M ∼= lim−→Mλ

where Mλ is a �nitely generated D-module for every λ. Since localisation at f com-
mutes with inductive limits, we have that the R-modules Mf and lim−→Mλ

f are isomor-
phic. Therefore, using Proposition 6.17 they are also isomorphic as D-modules. Thus
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Mf is a quasi-holonomic D-module for every f ∈ R by Theorem 6.11. The statement
follows by Proposition 6.17, (2) and Theorem 6.11.

6.3 Local cohomology and Bass numbers

Consider two families β ⊆ α of R and an R-moduleM . The cohomology modules

H i
α/β(M) are de�ned by the right derived functors arising from the exact sequence of

R-modules

0 Γβ(M) Γα(M) Γα(M)/Γβ(M) 0.// //ι //π //

See [Har66, pp. 219�221]. A functor T (−) is called a Lyubeznik functor (cf. [Lyu93,

1] and [NB13, De�nition 4.1]) if it is a composition of cohomology functors or kernels

of the induced long exact sequence

· · · H i
α(−) H i

α/β(−) H i+1
β (−) · · · .//ιi //πi //∂i //ιi+1

(6.4)

Theorem 6.19. Let M be a D-module and let α be a family of supports on SpecR.

Then the local cohomology modules H i
α(M) all have the structure of D-modules. More-

over, if M is quasi-holonomic, then H i
α(M) is quasi-holonomic.

Proof. The i-th cohomology functor H i
α(−) is an additive functor for every i. Hence, by

[Lyu93, Example 2.1, (iii)], H i
α(M) is a D-module for every i. By Theorem 1.11 we have

that H i
α(M) ∼= lim−→

I∈〈α〉
H i
I(M) as R-modules. We claim that this is also an isomorphism

of D-modules. In fact, we have that H i
I(M) ∼= H i(C•f (M)) as D-modules, where f

is a set of generators of I and C•f (M) is the �ech complex of M . The direct system
{H i

I(M), ιJI}I∈〈α〉 of R-modules is also a direct system of D-modules because if I ⊇ J ,
then we can choose generators g of J and complete it to a set of generators g, f of I,
in which case the morphisms from C•g,f (M) to C•g(M) are given by projections. Hence
they are D-homomorphisms. Thus ιJI is also a D-homomorphism and this proves the
claim. From Theorem 6.11 we have the statement.

Corollary 6.20. Let M be a D-module. Then T (M) has a structure of D-module.

Moreover, if M is quasi-holonomic, then T (M) is quasi-holonomic.

Proof. It su�ces to show the second statement for H i
α/β(M), but this follows from the

exact sequence 0 −→ H i
α(M)/ kerπi −→ H i

α/β(M) −→ im ∂i −→ 0 which is induced
by equation (6.4).
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Corollary 6.21. For every i, the local cohomology module H i
α(M) is a locally Artinian,

torsion D-module. Moreover, if D is a simple ring, then H i
α(M) is a locally cyclic D-

module.

Proof. This follows from Theorem 6.19, Remark 6.9 and Corollary 6.13.

Before presenting our next results, we need the following statement.

Proposition 6.22. Let (R,m, K) be a local di�erentiable admissible k-algebra. If M

is a D-module, then R̂ ⊗R M is a D̂-module, where D̂ = DR̂/K. Moreover, if M is a

holonomic D-module, then R̂⊗RM is a holonomic D̂-module.

Proof. By Theorem 6.2, we have that R̂ = K[[x1, . . . , xn]]. Therefore, if ∂1, . . . , ∂n

are the usual derivations over K[[x1, . . . , xn]], then D̂ = K[[x1, . . . , xn]]〈∂1, . . . , ∂n〉 and
∂i ∈ Derk(R). Now we de�ne the actions of the elements f ∈ R̂ and the derivations ∂i,
i = 1, . . . , n over the elements g⊗m of the R-module R̂⊗RM by f · (g⊗m) := fg⊗m
and ∂i · (g ⊗m) := ∂i(g)⊗m+ g ⊗ ∂i ·m.

Since ∂i ∈ Derk(R) and [∂i, f ] · (g ⊗ m) = ∂i(f) · (g ⊗ m) for all i = 1, . . . , n

and for all f, g ∈ R̂ and m ∈ M , the action can be extended to all elements of D̂ .
Consequently, R̂⊗RM is a D̂-module.

On the other hand, by Theorem 6.2, Derk(R̂) = DerK(R̂). Thus DR̂/k = D̂ .
Consider now the map R̂ ⊗R M → DR̂/k ⊗D M de�ned by f ⊗m 7→ f ⊗m. It is not
hard to prove that this is an injective map of DR̂/k-modules. Since DR̂/k ⊗D M is a
holonomic DR̂/k-module (see [MNM91, Remarque 2.2.5]), it follows that R̂ ⊗R M is a
holonomic DR̂/k-module and the statement follows.

Corollary 6.23. Let (R,m, K) be a local di�erentiable admissible k-algebra and M be

a D-module. Then inj. dimR̂(R̂⊗RM) ≤ dimR̂(R̂⊗RM). If M is holonomic, then the

set of associated primes of the R-module M is �nite.

Proof. We have that R̂⊗RM is a D̂-module by Proposition 6.22. Since the completion
R̂ is the power series ringK[[x1, . . . , xn]], we obtain from [Lyu93, Theorem 2.4, (b)] that
inj. dimR̂(R̂ ⊗R M) ≤ dimR̂(R̂ ⊗R M). If M is holonomic, then R̂ ⊗R M is holonomic
by Proposition 6.22. Hence the set of associated primes of R̂ ⊗R M as R̂-module is
�nite by [Lyu93, Theorem 2.4, (c)]. Since every associated prime of the R-module M
is restriction of an associated prime of the R̂-module R̂⊗RM , we have that the set of
associated primes of M as R-module is �nite.

Theorem 6.24. Let R be a di�erentiable admissible k-algebra and let M be a left

D-module.

(a) For any maximal ideal m of R, Hj
m(M) is an injective R-module.

(b) If dimR(M) = 0, then M is an injective R-module.
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(c) Suppose that M is a quasi-holonomic D-module. If N is a �nitely generated

D-submodule of M , then the set of associated primes of N is �nite.

(d) Suppose that M is a holonomic D-module. Then µi(m,M) is �nite for every

maximal ideal m and every i.

Proof. (a) Note that Hj
m(M) is an injective R-module if and only if (Hj

m(M))n is an
injective Rn-module for every maximal ideal n of R. Since (Hj

m(M))n = Hj
mRn

(Mn)

by Lemma 1.18, we can assume that R is local with maximal ideal m. Let R̂
be the completion of R with respect to m. Again, by Lemma 1.18, we have
that R̂ ⊗R Hj

m(M) ∼= Hj

mR̂
(R̂ ⊗R M). Since Hj

m(M) is supported only at m,
R̂ ⊗R Hj

m(M) = Hj
m(M). Therefore, Hj

mR̂
(R̂ ⊗R M) ∼= Hj

m(M). In view of
Proposition 6.22, R̂ ⊗R M is a DR̂/K-module, where K = R/m and DR̂/K is the
ring of di�erential operators K[[x1, . . . , xn]]〈∂1, . . . , ∂n〉. Since the dimension of
Hj

mR̂
(R̂ ⊗R M) is zero, we have that Hj

mR̂
(R̂ ⊗R M) is a direct sum of copies

of ER̂(R̂/mR̂) = ER(R/m) by [Lyu93, Proposition 2.3 and Theorem 2.4]. Hence
Hj

mR̂
(R̂⊗RM) is an injective R-module and Hj

m(M) is also an injective R-module.

(b) It su�ces to show that Mm is Rm-injective for every maximal ideal m of R. For
each maximal ideal m of R, we have that SuppRm

(Mm) ⊆ {mRm}. Therefore,
H0

mRm
(Mm) = ΓmRm(Mm) = Mm and this implies that Mm is an injective Rm-

module by (a). Thus the statement follows.

(c) Let N be a �nitely generated submodule of M . Since M is quasi-holonomic, we
have that N is holonomic by Remark 6.8. Now, the result follows from [NB13,
Lemma 4.3].

(d) Let m be a maximal ideal of R. Then µi(m,M) = µi(mRm,Mm). Therefore,
we can assume that R is local and m is the maximal ideal of R. By part (a)
and [Lyu93, Lemma 1.4] we have that µi(m,M) = µ0(m, H i

m(M)). Therefore
it is su�cient to prove that µ0(m, H i

m(M)) is �nite. Let R̂ be the completion
of R with respect to the maximal ideal m. Then R̂ = K[[x1, ..., xn]], where
K = R/m. By Lemma 1.18 we obtain that H i

mR̂
(R̂⊗RM) = R̂⊗R H i

m(M). But
R̂ ⊗R H i

m(M) = H i
m(M) because dimR(H i

m(M)) = 0. We conclude in this way
that H i

mR̂
(R̂⊗RM) = H i

m(M) and µ0(m, H i
m(M)) = µ0(mR̂,H i

mR̂
(R̂⊗RM)).

By Proposition 6.22, R̂ ⊗R M is a holonomic D̂-module. Hence H i
mR̂

(R̂ ⊗R M)

is holonomic. Therefore, µ0(mR̂,H i
mR̂

(R̂ ⊗R M)) is �nite by [Lyu93, Theo-
rem 2.4, (d)] and the statement follows.

Corollary 6.25. Let R be a di�erentiable admissible k-algebra and M be a D-module.
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(a) If dimR(T (M)) = 0, then T (M) is an injective R-module. In particular,

Hj
α(T (M)) is an injective R-module for every j and every good family 〈α〉 of

R generated by maximal ideals.

(b) Suppose that M is a quasi-holonomic D-module. If N is a �nitely generated

D-submodule of T (M), then the set of associated primes of N is �nite.

(c) IfM is quasi-holonomic, then every �nitely generated D-submodule of T (M) has

�nite Bass numbers with respect to the maximal ideals.

Proof. Since T (M) is a D-module, the �rst part of (a) follows from Theorem 6.24, (b).
The second statement follows from the �rst one by taking the Lyubeznik functor
T̃ (−) = Hj

α ◦T (−) because dim(R/I) = 0 for every I ∈ 〈α〉.
Since T (M) is quasi-holonomic by Corollary 6.20, item (b) follows directly from

Theorem 6.24, (c).
For (c), note that T (M) is quasi-holonomic because M is, hence every �nitely

generated submodule of T (M) is holonomic.
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Appendix



Appendix A

Complementary results

We show here a particular version of Grothendieck's spectral sequences. This

proof is a suitable modi�cation of the proof of [Rot09, Theorem 10.47].

Theorem A.1. Let A, B and C be three abelian categories, F : B → C and G : A → B
two additive functors. Suppose that A has enough injectives, B has enough projectives,

F is right exact, G is contravariant and G(E) is left F -acyclic for every injective object

E of A. Then, for every object A of A, there exists a �rst quadrant spectral sequence

E2
p,q = (LpF )(LqG)(A)⇒ (Ln(FG))(A).

Proof. We shall construct a double complex such that its iterated homology gives the
desired spectral sequence. Consider an injective resolution (E∗(A), d∗) = (Ei, di)i≥0 of
A and apply the contravariant functor G in order to obtain the complex (G(Ei), δi)i≥0

where δi = G(di−1) : G(Ei)→ G(Ei−1). Next we construct a Cartan-Eilenberg projec-

tive resolution for this complex: for every non-negative integer p, there are two exact
sequences 0→ Bp → Zp → Hp(G(E∗))→ 0 and 0→ Zp → G(Ep)→ Bp−1 → 0 where
Zp = ker δp and Bp = im δp+1. Take a projective resolution Bp,∗ of Bp and another
projective resolution Hp,∗ of Hp(G(E∗)). Then we obtain projective resolutions, Zp,∗ of
Zp and Mp,∗ of G(Ep), and exact sequences of complexes 0→ Bp,∗ → Zp,∗ → Hp,∗ → 0

e 0→ Zp,∗ →Mp,∗ → Bp−1,∗ → 0. De�ne chain maps dp,q : Mp,q →Mp−1,q as composi-



tions Mp,q → Bp−1,q → Zp−1,q →Mp−1,q. In this way, the commutative diagram

...
...

...

· · · M22 M12 M02 0

· · · M21 M11 M01 0

· · · M20 M10 M00 0

0 0 0

�� �� ��
// //d22

��

//d12

��

//

��
// //d21

��

//d11

��

//

��
// //d20

��

//d10

��

//

��

is a projective resolution of the complex (G(Ei), δi)i≥0. Denote the associated double
complex by M . By calculating F (M) we obtain the diagram

...
...

...

· · · F (M22) F (M12) F (M02) 0

· · · F (M21) F (M11) F (M01) 0

· · · F (M20) F (M10) F (M00) 0

0 0 0

�� �� ��
// //

F (d22)

��

//
F (d12)

��

//

��
// //

F (d21)

��

//
F (d11)

��

//

��
// //

F (d20)

��

//
F (d10)

��

//

��
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Since Mp,∗ is a projective resolution of G(Ep), we have that F (Mp,∗) is a complex such
that its q-th homology equals (LqF )(G(Ep)). As G(Ep) is left F -acyclic, we have that
(LqF )(G(Ep)) = 0 for q ≥ 1. Now F is right exact. Then (L0F )(G(Ep)) = FG(Ep)

for each p. Thus the horizontal �ltration of M generated a spectral sequence whose
second page has terms IE2

p,0 = (Lp(FG))(A) and IE2
p,q = 0 when q 6= 0. Hence this

spectral sequence collapses at q = 0 and Hn(Tot(F (M))) ∼= (Ln(FG))(A).
It is time to calculate the second iterated homology: notice that

Hq(F (M∗,p)) =
kerF (dq,p)

imF (dq+1,p)
.

We have thus a commutative diagram, being the row a complex,

0 F (Zq,p) F (Mq,p) F (Bq−1,p) 0

F (Mq−1,p)

// //
F (ι)

//
F (π)

$$
F (d)

//

��

F (ι)F (j)

Since Bq−1,p is projective, the row is a split exact sequence. Now jq,p : Bq,p → Zq,p is
an inclusion and Bq,p is injective. Thus F (j) is injective. We also have that d = ιjπ,
whence F (d) = F (ι)F (j)F (π). Since F (ι) and F (j) are monomorphisms, we have that
kerF (d) = kerF (π) = imF (ι) = F (ι)(F (Z)). Now

imF (d) = F (d)(F (M)) = F (ι)F (j)F (π)(F (M)) = F (ι)F (j)(F (B)).

Again by the injectivity of F (ι) : F (Z) → F (M) and F (j) : F (B) → F (Z) we obtain
an isomorphism F (Z)

F (j)(F (B))
∼= F (ι)(F (Z))

F (ι)F (j)(F (B))
. Thus

kerF (d)

imF (d)
=

F (ι)(F (Z))

F (ι)F (j)(F (B))
∼=

F (Z)

F (j)(F (B))
.

But F (Z)
F (j)(F (B))

∼= cokerF (j) ∼= F (H) because the sequence

0 F (B) F (Z) F (H) 0// //
F (j)

// //

is exact as B is injective. Hence Hq(F (M∗,p)) = F (Hq,p), this is, F commutes with Hq.
Now · · · → Hq,1 → Hq,0 → 0 is a projective resolution of Hq(G(E∗)) = (LqG)(A) by the
construction of the Cartan-Eilenberg projective resolution and by the same reason we
have that Hq(M∗,p) = Hq,p. Hence (Hq(M∗,p)) is a projective resolution of (LqG)(A)

and the generic term of the second page of the spectral sequence generated by the
vertical �ltration of F (M) is

IIE2
p,q = HpHq(F (M)) = Hp(F (Hq(M))) = (LpF )(LqG)(A).

Since both �ltrations converge to the homology of the total complex of F (M), it follows
that (LpF )(LqG)(A)⇒ Ln(FG)(A).
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Among other results envolving duality, C. Huneke proved in [Hun07] the next

statement. We write it just as it appears in [MZ14].

Lemma A.2. Let R be a Noetherian local ring and M , N be R-modules. The following

statements hold for every integer i:

(i) ExtiR(N,M∨) ∼= TorRi (N,M)∨.

(ii) If N is �nitely generated, then ExtiR(N,M)∨ ∼= TorRi (N,M∨).

Proof. The �rst isomorphism follows from the adjoint isomorphism

HomR(P ⊗RM,E) ∼= HomR(P,HomR(M,E))

while the second one follows from the natural transformation (4.1).

The next result appears in [Sch07] and it displays a constructive proof of [Bou89,

Proposition 4, p. 263].

Lemma A.3. Let R be a commutative Noetherian ring and M be a �nitely generated

R-module. Consider a subset S = {p1, . . . , ps} of Ass(M) = {p1, . . . , pt} and a minimal

primary decomposition 0 =
t⋂
i=1

Qpi for the zero submodule of M . If N =
⋂
p∈S

Qp, then

Ass(M/N) = S and Ass(N) = Ass(M)− S.

Proof. Since N =
⋂
p∈S

Qp is a minimal primary decomposition, we have that

Ass(M/N) = S.

Consider N ′ =
⋂

p∈Ass(M)−S

Qp. Since N ∩N ′ = 0, we have that N ∼= (N +N ′)/N ′. Thus

Ass(N) ⊆ Ass(M/N ′) = Ass(M)− S. If p ∈ Ass(M)− S, then

0 6= N/(N ∩Qp) ∼= (N +Qp)/Qp

and Ass(N/(N ∩Qp)) = {p}. On the other hand, N ∩Qp is part of a minimal primary
decomposition of the zero submodule of N . Hence p ∈ Ass(N) as desired.

93



Bibliography

[AG85] Y. Aoyama and S. Goto. On the endomorphism ring of the canonical mod-

ule. J. Math. Kyoto Univ., 25(1):21�30, 1985.

[AK12] A. Altman and S. Kleiman. A Term of Commutative Algebra. Worldwide

Center of Mathematics, 2012.

[Aoy83] Y. Aoyama. Some basic results on canonical modules. J. Math. Kyoto

Univ., 23(1):85�94, 1983.

[BH98] W. Bruns and J. Herzog. Cohen-Macaulay Rings. Cambridge University

Press, second edition, 1998.

[Bjö79] J.-E. Björk. Rings of Di�erential Operators, volume 21. North-Holland

Publishing Company, 1979.

[Bou89] N. Bourbaki. Elements of Mathematics: Commutative Algebra - Chapters

1�7. Springer, 1989.

[BS98] M. P. Brodmann and R. Y. Sharp. Local Cohomology: An Algebraic Intro-

duction with Geometric Applications. Cambridge University Press, second

edition, 1998.

[BZ79] M. Bijan-Zadeh. Torsion theories and local cohomology over commutative

Noetherian rings. J. London Math. Soc., 19(2):402�410, 1979.

[CE56] H. Cartan and S. Eilenberg. Homological Algebra. Princeton University

Press, 1956.



[Chu11] L. Chu. Top local cohomology modules with respect to a pair of ideals.

Proceedings of the American Mathematical Society, 139(3):777�782, 2011.

[CN01] N. T. Cuong and T. T. Nam. The I-adic completion and local homology

for Artinian modules. Math. Proc. Camb. Phil. Soc., 131(61):61�72, 2001.

[CW09] L. Chu and Q. Wang. Some results on local cohomology modules de�ned

by a pair of ideals. J. Math. Kyoto Univ., 49(1):193�200, 2009.

[DANT02] K. Divaani-Aazar, R. Naghipour, and M. Tousi. The Lichtenbaum-

Hartshorne theorem for generalized local cohomology and connectedness.

Comm. in Algebra, 30(8):3687�3702, 2002.

[DM97] D. Del�no and T. Marley. Co�nite modules and local cohomology. J. Pure

Appl. Algebra, 121(1):45�52, 1997.

[DY05] M. T. Dibaei and S. Yassemi. Attached primes of the top local cohomology

modules with respect to an ideal. Arch. Math., 84:292�297, 2005.

[ES12] M. Eghbali and P. Schenzel. On an endomorphism ring of local cohomology.

Comm. in Algebra, 40(11):4295�4305, 2012.

[Gro57] A. Grothendieck. Sur quelques points d'algèbre homologique. T	ohoku Math.

J., 9:119�221, 1957.

[Gro68] A. Grothendieck. Cohomologie Locale des Faisceaux Cohérents et

Théorèmes de Lefschetz Locaux et Globaux. North-Holland, 1968.

[Har66] R. Hartshorne. Residues and Duality, volume 20 of Lecture Notes in Math-

ematics. Springer, 1966.

[Har67] R. Hartshorne. Local Cohomology (A seminar given by A. Grothendieck),

volume 41 of Lecture Notes in Mathematics. Springer, 1967.

[Har70] R. Hartshorne. A�ne duality and co�niteness. Inventiones mathematicae,

9:145�164, 1970.

[Har77] R. Hartshorne. Algebraic Geometry, volume 52 of Graduate Texts in Math-

ematics. Springer, 1977.

95



[HK91] C. Huneke and J. Koh. Co�niteness and vanishing of local cohomology

modules. Math. Proc. Cambridge Philos. Soc., 110(3):421�429, 1991.

[Hoc74] M. Hochster. The equicharacteristic case of some homological conjectures

on local rings. Bull. Amer. Math. Soc., 80:683�686, 1974.

[HS77] R. Hartshorne and R. Speiser. Local cohomological dimension in charac-

teristic p. Ann. Math., 105:45�79, 1977.

[Hun07] C. Huneke. Lectures on local cohomology (with an appendix by Amelia Tay-

lor). In L. Avramov, J. Christensen, W. Dwyer, M. Mandell, and B. Shipley,

editors, Interactions between Homotopy Theory and Algebra, volume 436 of

Contemporary Mathematics, pages 51�100. American Mathematical Soci-

ety, 2007.

[Jen72] C. U. Jensen. Les Foncteurs Dérivés de lim←− et Leurs Applications en Théorie

des Modules, volume 254 of Lecture Notes in Mathematics. Springer, 1972.

[Kir90] D. Kirby. Dimension and length for Artinian modules. Quart. J. Math.

Oxford Ser. (2), 41(164):419�429, 1990.

[Lyu93] G. Lyubeznik. Finiteness properties of local cohomology modules (an appli-

cation of D-modules to commutative algebra). Inventiones mathematicae,

113:41�55, 1993.

[Mac73] I. G. Macdonald. Secondary representation of modules over a commutative

ring. Symposia Mathematica, 9:23�43, 1973.

[Mah13] W. Mahmood. On endomorphism rings of local cohomology modules.

arXiv:1308.2584v1 [math.AC], August 2013.

[Mat58] E. Matlis. Injective modules over Noetherian rings. Paci�c Journal of

Mathematics, 8(3):511�528, 1958.

[Mat74] E. Matlis. The Koszul complex and duality. Comm. Algebra, 1(2):87�144,

1974.

96



[Mat78] E. Matlis. The higher properties of R-sequences. J. Algebra, 50:77�112,

1978.

[Mat80] H. Matsumura. Commutative Algebra. The Benjamin/Cummings Publish-

ing Company, second edition, 1980.

[Mat86] H. Matsumura. Commutative Ring Theory. Cambridge University Press,

1986.

[Mel95] L. Melkersson. Some applications of a criterion for Artinianness of a module.

J. Pure and Applied Algebra, 101:291�303, 1995.

[MNM91] Z. Mebkhout and L. Narváez-Macarro. La théorie du polynôme de

Bernstein-Sato pour les algèbres de Tate et de Dwork-Monsky-Washnitzer.

Annales Scienti�ques de l'É.N.S., 24(2):227�256, 1991.

[MS72] I. G. Macdonald and R. Y. Sharp. An elementary proof of the non-vanishing

of certain local cohomology modules. Quart. J. Math. Oxford, 23:197�204,

1972.

[MS95] L. Melkersson and P. Schenzel. The co-localization of an Artinian module.

Proceedings of the Edinburgh Mathematical Society, 38(2):121�131, 1995.

[MZ14] W. Mahmood and Z. Zahid. A note on endomorphisms of local cohomology

modules. arXiv:1405.1249v2 [math.AC], May 2014.

[NB13] L. Núñez-Betancourt. On certain rings of di�erentiable type and �niteness

properties of local cohomology. Journal of Algebra, 379:1�10, 2013.

[NM14] L. Narváez-Macarro. Di�erential structures in commutative algebra. Mini-

course at the XXIII Brazilian Algebra Meeting, July 2014.

[Ooi76] A. Ooishi. Matlis duality and the width of a module. Hiroshima Math. J.,

6(3):573�587, 1976.

[Rob75] R. N. Roberts. Krull dimension for Artinian modules over quasi local com-

mutative rings. Quart. J. Math. Oxford Ser. (2), 26(103):269�273, 1975.

97



[Rot09] J. J. Rotman. An Introduction to Homological Algebra. Springer, second

edition, 2009.

[Sch93] P. Schenzel. Explicit computations around the Lichtenbaum-Hartshorne

vanishing theorem. Manuscripta Math., 78(1):57�68, 1993.

[Sch07] P. Schenzel. On formal local cohomology and connectedness. J. Algebra,

315:894�923, 2007.

[Ser55] J. P. Serre. Faisceaux algébriques cohérents. Annals of Mathematics,

61(2):197�278, 1955.

[Sha81] R. Y. Sharp. On the attached prime ideals of certain Artinian local coho-

mology modules. Proc. Edinburgh Math. Soc., 24(2):9�14, 1981.

[Sha89] R. Y. Sharp. A method for the study of Artinian modules with an appli-

cation to asymptotic behavior. In Commutative Algebra, volume 15, pages

443�465. Math. Science Inst. Pub., Springer-Verlag, 1989.

[Sha92] R. Y. Sharp. Artinian modules over commutative rings. Math. Proc. Camb.

Phil. Soc., 111(1):25�33, 1992.

[TT10] A. Tehranian and A. Pour Eshmanan Talemi. Co�niteness of local coho-

mology based on a non-closed support de�ned by a pair of ideals. Bull.

Iranian Math. Soc., 36(2):145�155, 2010.

[TYY09] R. Takahashi, Y. Yoshino, and T. Yoshizawa. Local cohomology based on

a nonclosed support de�ned by a pair of ideals. J. Pure Appl. Algebra,

213(4):582�600, 2009.

[Vas74] W. V. Vasconcelos. Divisor Theory in Module Categories. North-Holland

Publishing Company, 1974.

98


	Introduction
	Foundations on local cohomology
	Basic properties of local cohomology modules
	Vanishing and non-vanishing
	Local duality

	Top local cohomology modules
	Artinianness and cohomological dimension
	Attached primes of top local cohomology modules

	The -depth
	Cofiniteness and local cohomology modules
	Associated primes of local cohomology modules

	Endomorphism modules
	On -depth level
	On top local cohomology modules

	Linear topologies and local homology
	The -adic topology
	Local homology modules
	Co-localisation and co-support

	Local cohomology and D-modules
	Rings of differential operators over differentiable admissible algebras
	Quasi-holonomic D-modules
	Local cohomology and Bass numbers

	Complementary results
	Bibliography

