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Doutorado em Matemática

Gustavo da Silva Araújo
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em Matemática - UFPB/UFCG, como
requisito parcial para a obtenção do t́ıtulo
de Doutor em Matemática.
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são verdadeiros heróis; em especial, agradeço ao Prof. Uberlandio Batista Severo, meu
orientador na graduação e no mestrado, que teve fundamental importância na minha
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Resumo

Este trabalho está dividido em três partes. Na primeira parte, investigamos
o comportamento das constantes das desigualdades polinomial e multilinear
de Bohnenblust–Hille e Hardy–Littlewood. Na segunda parte, mostramos um
resultado ótimo de espaçabilidade para o complementar de uma classe de ope-
radores múltiplo somantes em `p e também generalizamos um resultado rela-
cionado a cotipo (de 2010) devido a G. Botelho, C. Michels e D. Pellegrino.
Além disso, provamos novos resultados de coincidência para as classes de
operadores multilineares absolutamente e múltiplo somantes (em particular,
mostramos que o famoso teorema de Defant–Voigt é ótimo). Ainda na se-
gunda parte, mostramos uma generalização das desigualdades multilineares
de Bohnenblust–Hille e Hardy–Littlewood e apresentamos uma nova classe de
operadores multilineares somantes, a qual recupera as classes dos operadores
multilineares absolutamente e múltiplo somantes. Na terceira parte, prova-
mos a existência de grandes estruturas algébricas dentro de certos conjuntos,
como, por exemplo, a famı́lia das funções mensuráveis à Lebesgue que são
sobrejetivas em um sentido forte, a famı́lia das funções reais não constantes
e diferenciáveis que se anulam em um conjunto denso e a famı́lia das funções
reais não cont́ınuas e separadamente cont́ınuas.

Palavras-chave: Desigualdade de Bohnenblust–Hille, desigualdade de Hardy–Littlewood,
função cont́ınua, função diferenciável, função mensurável, lineabilidade, operadores mul-
tilineares somantes.
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Abstract

This work is divided into three parts. In the first part, we investigate the be-
havior of the constants of the Bohnenblust–Hille and Hardy–Littlewood poly-
nomial and multilinear inequalities. In the second part, we show an optimal
spaceability result for a set of non-multiple summing forms on `p and we also
generalize a result related to cotype (from 2010) as highlighted by G. Botelho,
C. Michels, and D. Pellegrino. Moreover, we prove new coincidence results for
the class of absolutely and multiple summing multilinear operators (in par-
ticular, we show that the well-known Defant–Voigt theorem is optimal). Still
in the second part, we show a generalization of the Bohnenblust–Hille and
Hardy–Littlewood multilinear inequalities and we present a new class of sum-
ming multilinear operators, which recovers the class of absolutely and multiple
summing operators. In the third part, it is proved the existence of large al-
gebraic structures inside, among others, the family of Lebesgue measurable
functions that are surjective in a strong sense, the family of non-constant
differentiable real functions vanishing on dense sets, and the family of non-
continuous separately continuous real functions.

Key-words: Bohnenblust–Hille inequality, continuous function, differentiable function,
Hardy–Littlewood inequality, lineability, measurable function, summing multilinear ope-
rators.

xv



The remainder of this page intentionally left blank



Contents

Introduction 1

Preliminaries and Notation 7

I The Bohnenblust–Hille and Hardy–Littlewood inequalities 13

1 The m-linear Bohnenblust–Hille and Hardy–Littlewood inequalities 15
1.1 Lower and upper bounds for the constants of the classical Hardy–Littlewood

inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.2 On the constants of the generalized Bohnenblust–Hille and Hardy–Littlewood

inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
1.2.1 Estimates for the constants of the generalized Bohnenblust–Hille

inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
1.2.2 Application 1: Improving the constants of the Hardy–Littlewood

inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
1.2.3 Application 2: Estimates for the constants of the generalized Hardy–

Littlewood inequality . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2 Optimal Hardy–Littlewood type inequalities for m-linear forms on `p
spaces with 1 ≤ p ≤ m 37

3 On the polynomial Bohnenblust–Hille and Hardy–Littlewood inequali-
ties 43
3.1 Lower bounds for the complex polynomial Hardy–Littlewood inequality . . 45
3.2 The complex polynomial Hardy–Littlewood inequality: Upper estimates . . 48

II Summability of multilinear operators 51

4 Maximal spaceability and optimal estimates for summing multilinear
operators 53
4.1 Maximal spaceability and multiple summability . . . . . . . . . . . . . . . 55
4.2 Some consequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.3 Multiple (r; s)-summing forms in c0 and `∞ spaces . . . . . . . . . . . . . . 61
4.4 Absolutely summing multilinear operators . . . . . . . . . . . . . . . . . . 63

xvii



5 A unified theory and consequences 67
5.1 Multiple summing operators with multiple exponents . . . . . . . . . . . . 67
5.2 Partially multiple summing operators: The unifying concept . . . . . . . . 76

III Strange functions 85

6 Lineability in function spaces 87
6.1 Measurable functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.2 Special differentiable functions . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.3 Discontinuous functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

References 93

xviii



Introduction

Part I: The Bohnenblust–Hille and Hardy–Littlewood

inequalities

To solve a problem posed by P.J. Daniell, Littlewood [101] proved in 1930 his famous
4/3-inequality, which asserts that(

∞∑
i,j=1

|T (ei, ej)|
4
3

) 3
4

≤
√

2 ‖T‖ ,

for every continuous bilinear form T : c0 × c0 → K. One year later, and due to his
interest in solving a long standing problem on Dirichlet series, H.F. Bohnenblust and
E. Hille proved in [42] a generalization of Littlewood’s 4/3 inequality to m-linear forms:
there exists a (optimal) constant Bmult

K,m ≥ 1 such that for all continuous m-linear forms
T : `n∞ × · · · × `n∞ → K and all positive integers n,(

n∑
j1,...,jm=1

|T (ej1 , ..., ejm)|
2m
m+1

)m+1
2m

≤ Bmult
K,m ‖T‖ .

The problem was posed by H. Bohr and consisted in determining the width of the maxi-
mal strips on which a Dirichlet series can converge absolutely but non uniformly. More
precisely, for a Dirichlet series

∑
n ann

−s, Bohr defined

σa = inf

{
r :
∑
n

ann
−s converges for Re(s) > r

}
,

σu = inf

{
r :
∑
n

ann
−s converges uniformly in Re (s) > r + ε for every ε > 0

}
and S := sup {σa − σu}. Bohr’s question asked for the precise value of S. The answer
came from H.F. Bohnenblust and E. Hille (1931): S = 1/2. The main tool is the, by
now, so-called Bohnenblust–Hille inequality. The precise growth of the constants Bmult

K,m
is important for applications and is nowadays a challenging problem in Mathematical
Analysis. For real scalars, the estimates of Bmult

R,m are important in Quantum Information
Theory (see [106]). In the last years a series of papers related to the Bohnenblust–Hille
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inequality have been published and several advances were achieved (see [6, 62, 65, 68,
111, 119, 129] and the references therein). Only very recently, in [32, 111] it was shown
that the constants Bmult

K,m have a sublinear growth, which means a major change in this
panorama since all previous estimates (from 1931 up to 2011) predicted an exponential
growth. For real scalars, in 2014 (see [75]) it was shown that the optimal constant for

m = 2 is
√

2 and in general Bmult
R,m ≥ 21− 1

m . In the case of complex scalars it is still an
open problem whether the optimal constants are strictly greater than 1.

Given α = (α1, . . . , αn) ∈ Nn, define |α| := α1+· · ·+αn and xα stands for the monomial
xα1

1 · · ·xαnn , for x = (x1, . . . , xn) ∈ Kn. The polynomial Bohnenblust–Hille inequality (see
[6, 42] and the references therein) ensures that, given positive integers m ≥ 2 and n ≥ 1, if
P is a homogeneous polynomial of degree m on `n∞ given by P (x1, ..., xn) =

∑
|α|=m aαx

α,
then ( ∑

|α|=m
|aα|

2m
m+1

)m+1
2m

≤ Bpol
K,m ‖P‖ ,

for some constant Bpol
K,m ≥ 1 which does not depend on n (the exponent 2m

m+1
is optimal),

where ‖P‖ := supz∈B`n∞
|P (z)|. The search of precise estimates of the growth of the

constants Bpol
K,m is crucial for different applications and remains an important open problem

(see [32] and the references therein). For real scalars, it was shown in [56] that the
hypercontractivity of Bpol

R,m is optimal. For complex scalars the behavior of Bpol
K,m is still

unknown. Moreover, in the complex scalar case, having good estimates for Bpol
C,m is crucial

to applications in Complex Analysis and Analytic Number Theory (see [65]); for instance,
the subexponentiality of the constants of the polynomial version of the Bohnenblust–Hille
inequality (complex scalars case) was recenly used in [32] in order to obtain the asymptotic
growth of the Bohr radius of the n-dimensional polydisk. More precisely, according to
Boas and Khavinson [41], the Bohr radius Kn of the n-dimensional polydisk is the largest
positive number r such that all polynomials

∑
α aαz

α on Cn satisfy

sup
z∈rDn

∑
α

|aαzα| ≤ sup
z∈Dn

∣∣∣∣∑
α

aαz
α

∣∣∣∣ .
The Bohr radius K1 was estimated by H. Bohr, and it was later shown (independently)
by M. Riesz, I. Schur and F. Wiener that K1 = 1/3 (see [41, 43] and the references
therein). For n ≥ 2, exact values of Kn are unknown. In [32], the subexponentiality of
the constants of the complex polynomial version of the Bohnenblust–Hille inequality was
established and using this fact it was finally proved that

lim
n→∞

Kn√
logn
n

= 1,

solving a challenging problem in Mathematical Analysis.

The Hardy-Littlewood inequality is a natural generalization of the Bohnenblust–Hille
inequality for `p spaces. The bilinear case was proved by Hardy and Littlewood in 1934
(see [91]) and in 1981 it was extended to multilinear operators by Praciano-Pereira (see
[128]). More precisely, the classical Hardy–Littlewood inequality asserts that for 0 ≤
|1/p| := 1/p1 + · · ·+ 1/pm ≤ 1/2 there exists a (optimal) constant Cmult

K,m,p ≥ 1 such that,
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for all positive integers n and all continuous m-linear forms T : `np1 × · · · × `
n
pm → K,

(
n∑

j1,...,jm=1

|T (ej1 , ..., ejm)|
2m

m+1−2| 1p |
)m+1−2| 1p |

2m

≤ Cmult
K,m,p ‖T‖ .

When |1/p| = 0 (or equivalently p1 = · · · = pm = ∞) since 2m/(m + 1 − 2|1/p|) =
2m/(m+ 1), we recover the classical Bohnenblust–Hille inequality (see [42]).

When replacing `n∞ by `np the extension of the polynomial Bohnenblust–Hille inequality
is called polynomial Hardy–Littlewood inequality. More precisely, given positive integers
m ≥ 2 and n ≥ 1, if P is a homogeneous polynomial of degree m on `np , with 2m ≤ p ≤ ∞,

given by P (x1, . . . , xn) =
∑
|α|=m aαx

α, then there is a constant Cpol
K,m,p ≥ 1 such that

( ∑
|α|=m

|aα|
2mp

mp+p−2m

)mp+p−2m
2mp

≤ Cpol
K,m,p ‖P‖ ,

and Cpol
K,m,p does not depend on n, where ‖P‖ := supz∈B`np

|P (z)|.
When p = ∞ we recover the polynomial Bohnenblust–Hille inequality. Using the

generalized Kahane–Salem–Zygmund inequality (see, for instance, [6]) we can verify that
the exponents in the above inequalities are optimal. The precise estimates of the constants
of the Hardy–Littlewood inequalities are unknown and even its asymptotic growth is a
mystery (as it happens with the Bohnenblust–Hille inequality).

Very recently, an extended version of the Hardy–Littlewood inequality was presented
in [6] (see also [73]).

Theorem 0.1 (Generalized Hardy–Littlewood inequality for 0 ≤ |1/p| ≤ 1/2). Let p :=
(p1, . . . , pm) ∈ [1,+∞]m such that 0 ≤ |1/p| ≤ 1/2. Let also q := (q1, . . . , qm) ∈ [(1 −
|1/p|)−1, 2]m. The following are equivalent:

(1) There is a (optimal) constant Cmult
K,m,p,q ≥ 1 such that

 ∞∑
j1=1

· · ·( ∞∑
jm=1

|T (ej1 , . . . , ejm)|qm
) qm−1

qm

· · ·


q1
q2


1
q1

≤ Cmult
K,m,p,q ‖T‖

for all continuous m-linear forms T : Xp1 × · · · ×Xpm → K.

(2) 1
q1

+ · · ·+ 1
qm
≤ m+1

2
−
∣∣∣ 1
p

∣∣∣.
For the case 1/2 ≤ |1/p| < 1 there is also a version of the multilinear Hardy–Littlewood

inequality, which is an immediate consequence of Theorem 1.2 from [5] (see also [73]).

Theorem 0.2 (Hardy–Littlewood inequality for 1/2 ≤ |1/p| < 1). Let m ≥ 1 and
p = (p1, . . . , pm) ∈ [1,∞]m be such that 1/2 ≤ |1/p| < 1. Then there is a (optimal)
constant Dmult

K,m,p ≥ 1 such that

(
N∑

i1,...,im=1

|T (ei1 , . . . , eim)|
1

1−| 1p |
)1−| 1p |

≤ Dmult
K,m,p‖T‖
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for every continuous m-linear operator T : `Np1 × · · · × `
N
pm → K. Moreover, the exponent

(1− |1/p|)−1 is optimal.

In this part of the work, we investigate the behavior of the constants Cmult
K,m,p,q, Dmult

K,m,p

(Chapter 1) and Cpol
K,m,p (Chapter 3). In Chapter 2 we answer, for 1 ≤ p ≤ m, the question

on how the Hardy–Littlewood multilinear inequalities behave if we replace the exponents
2mp/(mp + p − 2m) and p/(p − m) by a smaller value r (see Theorem 2.1). This case
(1 ≤ p ≤ m) was only explored for the case of Hilbert spaces (p = 2, see [47, Corollary
5.20] and [61]) and the case p =∞ was explored in [57].

Part II: Summability of multilinear operators

In 1950 A. Dvoretzky and C. A. Rogers [76] solved a long standing problem in Banach
Space Theory when they proved that in every infinite-dimensional Banach space there
exists an unconditionally convergent series which is not absolutely convergent. This result
is the answer to Problem 122 of the Scottish Book [104], addressed by S. Banach in [26,
page 40]). It was the starting point of the theory of absolutely summing operators.

A. Grothendieck, in [88], presented a different proof of the Dvoretzky-Rogers theorem
and his “Résumé de la théorie métrique des produits tensoriels topologiques” brought
many illuminating insights to the theory of absolutely summing operators.

The notion of absolutely p-summing linear operators is credited to A. Pietsch [124] and
the notion of (q, p)-summing operator is credited to B. Mitiagin and A. Pe lczyński [105].
In 1968 J. Lindenstrauss and A. Pe lczyński’s seminal paper [100] re-wrote Grothendieck’s
Résumé in a more comprehensive form, putting the subject in the spotlight. In 2003 M.
Matos [102] and, independently, F. Bombal, D. Pérez-Garćıa and I. Villanueva [44] intro-
duced a more general notion of absolutely summing operators called multiple summing
multilinear operators, which has gained special attention, being considered by several au-
thors as the most important multilinear generalization of absolutely summing operators:
let 1 ≤ p1, . . . , pm ≤ q < ∞. A bounded m-linear operator T : E1 × · · · × Em → F is
multiple (q; p1, . . . , pm)-summing if there exists Cm > 0 such that(

∞∑
j1,...,jm=1

∥∥∥T (x
(1)
j1
, . . . , x

(m)
jm

)
∥∥∥q) 1

q

≤ Cm
m∏
k=1

∥∥∥(x
(k)
j )∞j=1

∥∥∥
w,pk

,

for every (x
(k)
j )∞j=1 ∈ `wpk(Ek), k = 1, . . . ,m. The class of all multiple (q; p1, . . . , pm)-

summing operators from E1 × · · · × Em to F will be denoted by

Πm
mult(q;p1,...,pm)(E1, . . . , Em;F ).

The roots of the subject could probably be traced back to 1930, when, as we have
already said, Littlewood [101] proved his famous 4/3-inequality to solve a problem posed
by P.J. Daniell. One year later, interested in solving a long standing problem on Dirichlet
series, H.F. Bohnenblust and E. Hille generalized Littlewood’s 4/3 inequality to m-
linear forms. Using that L (c0;E) is isometrically isomorphic to `w1 (E) (see [72]), the
Bohnenblust–Hille inequality can be interpreted as the beginning of the notion of multiple
summing operators, because in the modern terminology, the classical Bohnenblust–Hille
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inequality [42] ensures that, for all m ≥ 2 and all Banach spaces E1, ..., Em,

L (E1, ..., Em;K) = Πm
mult( 2m

m+1
;1,...,1) (E1, ..., Em;K) .

In Chapter 4 we prove that, if 1 < s < p∗, the set (L (m`p;K)rΠm
mult( 2m

m+1
;s)

(m`p;K))∪
{0} contains a closed infinite-dimensional Banach space with the same dimension of
L(m`p;K). As a consequence we observe, for instance, a new optimal component of
the Bohnenblust–Hille inequality: the terms 1 from the tuple (2m/(m + 1); 1, ..., 1) is
also optimal. Moreover, we generalize a result related to cotype (from 2010) due to G.
Botelho, C. Michels, and D. Pellegrino, and we investigate the optimality of coincidence
results for multiple summing operators in c0 and in the framework of absolutely summing
multilinear operators. As a result, we observe that the Defant–Voigt theorem is optimal.
In Chapter 5 we present a new class of summing multilinear operators, which recovers
the class of absolutely (and multiple) summing operators. Moreover, we present a unified
version of the Bohnenblust–Hille and the Hardy–Littlewood inequalities with partial sums
which ensures that these results are in fact, corollaries of a unique yet general result.

Part III: Strange functions

Lebesgue ([99], 1904) was probably the first to show an example of a real function
on the reals satisfying the rather surprising property that it takes on each real value
in any nonempty open set (see also [86, 87]). The functions satisfying this property
are called everywhere surjective (functions with even more stringent properties can be
found in [80, 95]). Of course, such functions are nowhere continuous but, as we will see
later, it is possible to construct a Lebesgue measurable everywhere surjective function.
Entering a very different realm, in 1906 Pompeiu [126] was able to construct a nonconstant
differentiable function on the reals whose derivative vanishes on a dense set. Passing
to several variables, the first problem one meets related to the “minimal regularity” of
functions at a elementary level is that of whether separate continuity implies continuity,
the answer being given in the negative.

In this part of the thesis we will consider the families consisting of each of these kinds
of functions and analyze the existence of large algebraic structures inside all these families.
Nowadays the topic of lineability has had a major influence in many different areas on
mathematics, from Real and Complex Analysis [29], to Set Theory [84], Operator Theory
[92], and even (more recently) in Probability Theory [79]. Our main goal here is to
continue with this ongoing research. We will focus on diverse lineability properties of the
families MES (the family of Lebesgue measurable functions R→ R that are everywhere
surjective), P (the vector space of Pompeiu functions, i.e., the functions f : R → R
that are differentiable and f ′ vanishes on a dense set in R), DP (the vector space
of the derivatives of Pompeiu functions) and certain subsets of discontinuous functions,
completing or extending a number of known results about several strange classes of real
functions.
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Preliminaries and Notation

For any function f , whenever it makes sense, we formally define f(∞) = limp→∞ f(p).
Throughout this thesis, E,E1, E2, . . . , F shall denote Banach spaces over K, which shall
stands for the complex C or real R fields. In addition, L(E1, ..., Em;F ) stands for the
Banach space of all bounded m-linear operators from E1 × · · · × Em to F under the
supremum norm and when E1 = · · · = Em = E we denote L(E1, ..., Em;F ) by L(mE;F ).
The topological dual of E shall be denoted by E∗ and for any p ≥ 1 its conjugate is
represented by p∗, i.e., 1/p + 1/p∗ = 1. For p ∈ [1,∞], as usual, we consider the Banach
spaces of weakly and strongly p-summable sequences, respectively, as bellow:

`wp (E) :=

(xj)
∞
j=1 ⊂ E :

∥∥(xj)
∞
j=1

∥∥
w,p

:= sup
ϕ∈BE∗

(
∞∑
j=1

|ϕ(xj)|p
)1/p

<∞


and

`p(E) :=

(xj)
∞
j=1 ⊂ E :

∥∥(xj)
∞
j=1

∥∥
p

:=

(
∞∑
j=1

‖xj‖p
)1/p

<∞


(naturally, the sum

∑
should be replaced by the supremum if p = ∞). Besides, we set

X∞ := c0 and Xp := `p := `p(K). For a positive integer m, p stands for a multiple
exponent (p1, . . . , pm) ∈ [1,∞]m and∣∣∣ 1

p

∣∣∣ := 1
p1

+ · · ·+ 1
pm
.

Khinchine’s inequality

The real Khinchine inequality (see [72]) asserts that for any 0 < q < ∞, there are
positive constants AR,q, BR,q such that, regardless of the scalar sequence (aj)

∞
j=1 in `2, we

have

AR,q

(
∞∑
j=1

|aj|2
) 1

2

≤

(∫ 1

0

∣∣∣∣∣ ∞∑j=1

ajrj(t)

∣∣∣∣∣
q

dt

) 1
q

≤ BR,q

(
∞∑
j=1

|aj|2
) 1

2

,

where rj are the Rademacher functions. More generally, from the above inequality to-
gether with the Minkowski inequality we know that (see [17], for instance, and the refe-
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rences therein)

AmR,q

(
∞∑

j1,...,jm=1

|aj1···jm|2
) 1

2

≤

(∫
I

∣∣∣∣∣ ∞∑
j1,...,jm=1

aj1···jmrj1(t1) · · · rjm(tm)

∣∣∣∣∣
q

dt

) 1
q

≤ Bm
R,q

(
∞∑

j1,...,jm=1

|aj1···jm|2
) 1

2

, (1)

where I = [0, 1]m and dt = dt1 · · · dtm, for all scalar sequences (aj1···jm)∞j1,...,jm=1 in `2.
The optimal constants AR,q of the Khinchine inequality (these constants are due to U.
Haagerup [90]) are:

• AR,q =
√

2

(
Γ( 1+q

2 )√
π

) 1
q

if q > q0
∼= 1.8474;

• AR,q = 2
1
2
− 1
q if q < q0.

The definition of the number q0 above is the following: q0 ∈ (1, 2) is the unique real
number with

Γ
(
q0+1

2

)
=
√
π

2
.

For complex scalars, using Steinhaus variables instead of Rademacher functions it is well
known that a similar inequality holds, but with better constants (see [98, 133]). In this
case the optimal constant is:

• AC,q = Γ
(
q+2

2

) 1
q if q ∈ [1, 2].

The notation of the constant AK,q shown above will be employed throughout this thesis.

Kahane–Salem–Zygmund’s inequality

Using the argument introduced in [39, Theorem 4] we present a variant of a result by
Boas, that first appeared in [6, Lemma 6.1], and that is proved in [1].

Kahane–Salem–Zygmund’s inequality. Let m,n ≥ 1, p1, ..., pm ∈ [1,+∞]m and, for
p ≥ 1, define

α(p) =

{
1
2
− 1

p
, if p ≥ 2;

0 , otherwise.

Then there exists a m-linear map A : `np1 × · · · × `
n
pm → K of the form

A (z1, . . . , zm) =
n∑

j1,...,jm=1

εj1...jmz
1
j1
· · · zdjm

with εj1···jm ∈ {−1, 1}, such that

‖A‖ ≤ Cm · n
1
2

+α(p1)+···+α(pm) (2)

where Cm = (m!)
1− 1

min{max{p1,...,pm},2}
√

32m log(6m).
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The essence of the Kahane–Salem–Zygmund inequalities probably appeared for the
first time in [96], but our approach follows the lines of Boas’ paper [39]. Paraphrasing
Boas, the Kahane–Salem–Zygmund inequalities use probabilistic methods to construct
a homogeneous polynomial (or multilinear operator) with a relatively small supremum
norm but relatively large majorant function (we refer [1, Appendix B] for a more detailed
study of the Kahane–Salem–Zygmund inequalities).

Minkowski’s inequality

The following result is a corollary of one of the many versions of Minkowski’s inequality,
whose proof can be found, for instance, in [85, Corollary 5.4.2].

Minkowski’s inequality. For any 0 < p ≤ q <∞ and for any scalar matrix (aij)i,j∈N, ∞∑
i=1

(
∞∑
j=1

|aij|p
) q

p

 1
q

≤

(
∞∑
j=1

(
∞∑
i=1

|aij|q
) p

q

) 1
p

.

Hölder’s (interpolative) inequality for mixed `p spaces

The following general Hölder’s inequality was presented in the classical paper [33] on
mixed norms in Lp spaces. We shall now work with Lp(N) = `p, since it is the case we are
interested in. We need to recall some useful multi-index notation: for a positive integer
m and a non-void subset D ⊂ N we denote the set of multi-indices i = (i1, . . . , im), with
each ik ∈ D, by

M(m,D) := {i = (i1, . . . , im) ∈ Nm; ik ∈ D, k = 1, . . . ,m} = Dm.

We also denote
M(m,n) :=M(m, {1, 2, . . . , n}).

For p = (p1, . . . , pm) ∈ [1,∞)m, and a Banach space E, let us consider the space

`p(X) := `p1 (`p2 (. . . (`pm(X)) . . . )) ,

namely, a vector matrix (xi)i∈M(m,N) ∈ `p(X) if, and only if,

 ∞∑
i1=1

 ∞∑
i2=1

. . .( ∞∑
im−1=1

(
∞∑

im=1

‖xi‖pmE
) pm−1

pm

) pm−2
pm−1

. . .


p2
p3


p1
p2


1
p1

<∞.

When X = K, we just write `p instead of `p(K). Also, we deal with the coordinatewise
product of two scalar matrices a = (ai)i∈M(m,n) and b = (bi)i∈M(m,n), i.e.,

ab := (aibi)i∈M(m,n) .

The following result seems to be first observed by A. Benedek and R. Panzone (see
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[33]):

Hölder’s inequality for mixed `p spaces. Let m,n,N be positive integers, r ∈ [1,∞)m

and q(1), . . . ,q(N) ∈ [1,∞]m be such that

1
rj

= 1
qj(1)

+ · · ·+ 1
qj(N)

, j ∈ {1, 2, . . . ,m}

and also let ak := (aki )i∈M(m,n), k = 1, . . . , N be scalar matrices. Then∥∥∥∥ N∏
k=1

ak

∥∥∥∥
r

≤
N∏
k=1

‖ak‖q(k) .

In particular, if each q(k) ∈ [1,∞)m, we have n∑
i1=1

(
. . .

(
n∑

im=1

|a1
i a

2
i . . . a

N
i |qm

) qm−1
qm

. . .

) q1
q2


1
q1

≤
N∏
k=1


 n∑
i1=1

. . .( n∑
im=1

|aki |qm(k)

) qm−1(k)

qm(k)

. . .


q1(k)
q2(k)


1

q1(k)
 .

Using the above result we are able to recover the interpolative inequality from [5, 6,
7, 32] (see also [4]) that we can also, in some sense, call Hölder’s inequality for multiple
exponents. Under the point of view of interpolation theory it is not a complicated result
but, just in 2013, it began to be used in all its full strength.

For a positive real number θ, let us define aθ :=
(
aθi
)
i∈M(m,n)

. It is straightforward to

see that ∥∥aθ∥∥
q/θ

= ‖a‖θq ,

where q/θ := (q1/θ, . . . , qm/θ).

Hölder’s interpolative inequality for multiple exponents. Let m,n,N be positive
integers and r,q(1), . . . ,q(N) ∈ [1,∞]m and θ1, . . . , θN ∈ [0, 1] be such that θ1+· · ·+θN =
1 and

1
rj

= θ1
qj(1)

+ · · ·+ θN
qj(N)

, for all j = 1, . . . ,m.

Then, for all scalar matrix a = (ai)i∈M(m,n) we have

‖a‖r ≤
N∏
k=1

‖a‖θkq(k) .

In particular, if each q(k) ∈ [1,∞)m, the previous inequality means that n∑
i1=1

(
. . .

(
n∑

im=1

|ai|rm
) rm−1

rm

. . .

) r1
r2


1
r1
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≤
N∏
k=1


 n∑
i1=1

. . .( n∑
im=1

|ai|qm(k)

) qm−1(k)

qm(k)

. . .


q1(k)
q2(k)


1

q1(k)

θk

.

Lineability notions

A number of concepts have been coined in order to describe the algebraic size of a
given set; see [21, 31, 35, 78, 89] (see also the survey paper [38] and the forthcoming book
[18] for an account of lineability properties of specific subsets of vector spaces). Namely,
if X is a vector space, α is a cardinal number and A ⊂ X, then A is said to be:

• lineable if there is an infinite dimensional vector space M such that M \ {0} ⊂ A,

• α-lineable if there exists a vector space M with dim(M) = α and M \ {0} ⊂ A
(hence lineability means ℵ0-lineability, where ℵ0 = card (N), the cardinality of N),
and

• maximal lineable in X if A is dim (X)-lineable.

If, in addition, X is a topological vector space, then A is said to be:

• dense-lineable in X whenever there is a dense vector subspace M of X satisfying
M \ {0} ⊂ A (hence dense-lineability implies lineability as soon as dim(X) = ∞),
and

• maximal dense-lineable in X whenever there is a dense vector subspace M of X
satisfying M \ {0} ⊂ A and dim (M) = dim (X),

• spaceable in X if there is a closed infinite dimensional vector subspace M such that
M \ {0} ⊂ A (hence spaceability implies lineability), and

• maximal spaceable in X if A in X is spaceable and dim(A) = dim(X).

According to [24, 28], when X is a topological vector space contained in some (linear)
algebra, then A is called:

• algebrable if there is an algebra M so that M\{0} ⊂ A and M is infinitely generated,
that is, the cardinality of any system of generators of M is infinite.

• densely algebrable in X if, in addition, M can be taken dense in X.

• α-algebrable if there is an α-generated algebra M with M \ {0} ⊂ A.

• strongly α-algebrable if there exists an α-generated free algebra M with M \{0} ⊂ A
(for α = ℵ0, we simply say strongly algebrable).

• densely strongly α-algebrable if, in addition, the free algebra M can be taken dense
in X.

Observe that strong α-algebrability =⇒ α-algebrability =⇒ α-lineability, and none of
these implications can be reversed; see [38, p. 74].
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Part I

The Bohnenblust–Hille and
Hardy–Littlewood inequalities
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Chapter 1
The m-linear Bohnenblust–Hille and
Hardy–Littlewood inequalities

In 1931 F. Bohnenblust and E. Hille proved in [42] that there exists a (optimal)
constant Bmult

K,m ≥ 1 such that for all continuous m-linear forms T : `n∞ × · · · × `n∞ → K,
and all positive integers n,(

n∑
j1,...,jm=1

|T (ej1 , ..., ejm)|
2m
m+1

)m+1
2m

≤ Bmult
K,m ‖T‖ . (1.1)

The precise growth of the constants Bmult
K,m is important for many applications (see, e.g.,

[106]) and remains an open problem. Only very recently, in [32, 111] it was shown that
the constants have a sublinear growth. For real scalars (2014, see [75]) it was shown that

the optimal constant for m = 2 is
√

2 and in general Bmult
R,m ≥ 21− 1

m . In the case of complex
scalars it is still an open problem whether the optimal constants are strictly grater than
1; in the polynomial case, in 2013 D. Núñez-Alarcón proved that the complex constants
are strictly greater than 1 (see [108]). Even basic questions related to the constants Bmult

K,m
remain unsolved. For instance:

• Is the sequence of optimal constants
(
Bmult

K,m
)∞
m=1

increasing?

• Is the sequence of optimal constants
(
Bmult

K,m
)∞
m=1

bounded?

• Is Bmult
C,m = 1?

The best known estimates for the constants in (1.1), which are recently presented in
[32], are (Bmult

K,1 = 1 is obvious)

Bmult
K,m ≤

m∏
j=2

A−1

K, 2j−2
j

,

where AK,(2j−2)/j are the respective constants of the Khnichine inequality, i.e.,

Bmult
C,m ≤

m∏
j=2

Γ
(

2− 1
j

) j
2−2j

,
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Bmult
R,m ≤

m∏
j=2

2
1

2j−2 , for 2 ≤ m ≤ 13,

Bmult
R,m ≤ 2

446381
55440

−m
2

m∏
j=14

(
Γ( 3

2
− 1
j )√

π

) j
2−2j

, for m ≥ 14.

(1.2)

In a more friendly presentation the above formulas tell us that the growth of the constants
Bmult

K,m is sublinear since, from the above estimates it can be proved that (see [32])

Bmult
C,m < m

1−γ
2 < m0.21139,

Bmult
R,m < 1.3 ·m 2−log 2−γ

2 < 1.3 ·m0.36482,

where γ denotes the Euler–Mascheroni constant. Differently of the above estimates, all
previous estimates (from 1931 up to 2011) predicted an exponential growth. It was only
in 2012, with [119] (motivated by [68]), when the perspective on the subject changed
entirely.

The Hardy-Littlewood inequality is a natural generalization of the Bohnenblust–Hille
inequality to `p spaces. More precisely, the classical Hardy–Littlewood inequality asserts
that for 0 ≤ |1/p| ≤ 1/2 there exists a (optimal) constant Cmult

K,m,p ≥ 1 such that, for all
positive integers n and all continuous m-linear forms T : `np1 × · · · × `

n
pm → K,

(
n∑

j1,...,jm=1

|T (ej1 , ..., ejm)|
2m

m+1−2| 1p |
)m+1−2| 1p |

2m

≤ Cmult
K,m,p ‖T‖ . (1.3)

Using the generalized Kahane-Salem-Zygmund inequality (2) (see [6]) one can easily verify
that the exponents 2m/(m + 1 − 2|1/p|) are optimal. When |1/p| = 0 (or equivalently
p1 = · · · = pm = ∞), since 2m/(m + 1 − 2|1/p|) = 2m/(m + 1), we recover the classical
Bohnenblust–Hille inequality (see [42]).

The precise estimates of the constants of the Hardy–Littlewood inequalities are un-
known and even its asymptotic growth is a mystery (as it happens with the Bohnenblust–
Hille inequality). The original estimates for Cmult

K,m,p (see [6]) were of the form

Cmult
K,m,p ≤

(√
2
)m−1

. (1.4)

Very recently an extended version of the Hardy–Littlewood inequality was presented
in [6] (see also [73]).

Theorem 1.1 (Generalized Hardy–Littlewood inequality for 0 ≤ |1/p| ≤ 1/2). Let p :=
(p1, . . . , pm) ∈ [1,+∞]m be such that 0 ≤ |1/p| ≤ 1/2. Let also q := (q1, . . . , qm) ∈
[(1− |1/p|)−1, 2]m. The following are equivalent:

(1) There is a (optimal) constant Cmult
K,m,p,q ≥ 1 such that

 ∞∑
j1=1

· · ·( ∞∑
jm=1

|T (ej1 , . . . , ejm)|qm
) qm−1

qm

· · ·


q1
q2


1
q1

≤ Cmult
K,m,p,q ‖T‖

for all continuous m-linear forms T : Xp1 × · · · ×Xpm → K.
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(2) 1
q1

+ · · ·+ 1
qm
≤ m+1

2
−
∣∣∣ 1
p

∣∣∣.
Some particular cases of Cmult

K,m,p,q will be used throughout this chapter, therefore, we
will establish notations for the (optimal) constants in some special cases:

• If p1 = · · · = pm = ∞ we recover the generalized Bohnenblust–Hille inequa-
lity and we will denote Cmult

K,m,(∞,...,∞),q by Bmult
K,m,q. Moreover, if q1 = · · · = qm =

2m/(m + 1) we recover the classical Bohnenblust–Hille inequality and we will de-
note Bmult

K,m,(2m/(m+1),...,2m/(m+1)) by Bmult
K,m ;

• If q1 = · · · = qm = 2m/(m+ 1− 2|1/p|) we recover the classical Hardy–Littlewood
inequality and we will denote Cmult

K,m,p,(2m/(m+1−2|1/p|),...,2m/(m+1−2|1/p|)) by Cmult
K,m,p. More-

over, if p1 = · · · = pm = p we will denote Cmult
K,m,p by Cmult

K,m,p.

For the case 1/2 ≤ |1/p| < 1 there is also a version of the multilinear Hardy–Littlewood
inequality, which is an immediate consequence of Theorem 1.2 from [5] (see also [73]).

Theorem 1.2 (Hardy–Littlewood inequality for 1/2 ≤ |1/p| < 1). Let p = (p1, . . . , pm) ∈
[1,∞]m be such that 1/2 ≤ |1/p| < 1. Then there is a (optimal) constant Dmult

K,m,p ≥ 1 such
that (

N∑
i1,...,im=1

|T (ei1 , . . . , eim)|
1

1−| 1p |
)1−| 1p |

≤ Dmult
K,m,p‖T‖

for every continuous m-linear operator T : `Np1 × · · · × `
N
pm → K. Moreover, the exponent

(1− |1/p|)−1 is optimal.

The best known upper bounds for the constants on the previous result are Dmult
R,m,p ≤(√

2
)m−1

and Dmult
C,m,p ≤ (2/

√
π)

m−1
(see [5, 73]). We will only deal with this second case of

the Hardy–Littlewood inequality in Chapters 2 and 5. Again, we will establish notations
for the (optimal) constants Dmult

K,m,p in some special cases:

• When p1 = · · · = pm = p we denote Dmult
K,m,p by Dmult

K,m,p.

Our main contributions regarding the constants of the multilinear case of the Hardy–
Littlewood inequality can be summarized in the following result, which is a direct conse-
quence of the forthcomings sections 1.1 and 1.2.

Theorem 1.3. Let m ≥ 2 and let σR =
√

2 and σC = 2/
√
π. Then,

(1) Let q = (q1, ..., qm) ∈ [1, 2]m such that |1/q| = (m+ 1)/2 and max qi < (2m2−4m+
2)/(m2 −m− 1), then

Bmult
K,m,q ≤

m∏
j=2

A−1

K, 2j−2
j

.

(2) Cmult
R,m,p ≥ 2

mp+2m−2m2−p
mp for 2m < p ≤ ∞ and Cmult

R,m,2m > 1.
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(3) (i) For |1/p| ≤ 1/2,

Cmult
K,m,p ≤ (σK)2(m−1)| 1p | (Bmult

K,m
)1−2| 1p | .

In particular,
(
Cmult

K,m,p
)∞
m=1

is sublinear if |1/p| ≤ 1/m.

(ii) For 2m3 − 4m2 + 2m < p ≤ ∞,

Cmult
K,m,p ≤

m∏
j=2

A−1

K, 2j−2
j

.

(4) Let 2m < p ≤ ∞ and let q := (q1, ..., qm) ∈ [p/(p − m), 2]m such that |1/q| =
(mp+ p− 2m)/2p. If max qi < (2m2 − 4m+ 2)/(m2 −m− 1), then

Cmult
K,m,p,q ≤

m∏
j=2

A−1

K, 2j−2
j

.

Note that, for instance, if 2m3−4m2 +2m < p ≤ ∞, the formula of item (3)(ii) is not
dependent on p, contrary to what happens in item (3)(i), where we can see a dependence
on p but, paradoxically, it is worse than the formula from item (3)(ii). This suggests the
following problems:

• Are the optimal constants of the Bohnenblust–Hille and Hardy–Littlewood inequa-
lities the same?

• Are the optimal constants of the Hardy–Littlewood inequality independent of p (at
least for large p)?

Several advances and improvements have been obtained by various authors in this
context. We can highlight and summarize these findings in the following remarks:

Remark 1.4. D. Pellegrino and D.M. Serrano-Rodŕıguez proved in [120] the following
result: if m ≥ 2 is a positive integer, and q = (q1, ..., qm) ∈ [1, 2]m are such that |1/q| =
(m+ 1)/2, then, for j = 1, 2,

Bmult
R,m,q ≥ 2

(m−1)(1−qj)q̂j+
m∑
i=1
i 6=j

q̂i

q1···qm ,

with q̂i = q1 · · · qm/qi, i = 1, ...,m. In particular1,

Bmult
R,m,(1,2,...,2) = Bmult

R,m,(2,1,2,...,2) = (
√

2)m−1.

Remark 1.5. J. Campos, W. Cavalcante, V.V. Fávaro, D. Núñez-Alarcón, D. Pellegrino
and D.M. Serrano-Rodŕıguez proved in [55] that, for qm ∈ [1, 2],

Bmult

R,m,( 2(m−1)qm
(m+1)qm−2

,...,
2(m−1)qm
(m+1)qm−2

,qm)
≥ 2

3qmm−2m−5qm+4
2qm(m−1) .

1The optimal value for the constant Bmult
R,m,(1,2,...,2) was first obtained by Daniel Pellegrino in [118].
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In particular, it was possible to conclude that

Bmult
R,3,(4/3,4/3,2) = Bmult

R,3,(4/3,8/5,8/5) = Bmult
R,3,(4/3,2,4/3) = 23/4.

Remark 1.6. Very recently, D. Pellegrino presented2 new lower bounds for the real
case of the Hady–Littlewood inequalities, which improve the so far best known lower
estimates (item (2) of the previous theorem) and provide a closed formula even for the
case p = 2m (see [55]). Pellegrino’s approach is very interesting because even with a
simple argument, he finds an overlooked connection between the Clarkson’s inequalities
and Hardy–Littlewood’s constants which helps to find analytical lower estimates for these
constants. More precisely, using Clarkson’s inequalities, D. Pellegrino proved that for
m ≥ 2 and p ≥ 2m, we have

Cmult
R,m,p ≥ 2

2mp+2m−p−2m2

mp

sup
x∈[0,1]

((1+x)p
∗
+(1−x)p∗ )1/p∗

(1+xp)1/p

.

Remark 1.7. If p = (p, ..., p) in Theorem 1.3 (3)(i) we have the following estimate for
Cmult

K,m,p with 2m ≤ p ≤ ∞:

Cmult
K,m,p ≤ (σK)

2m(m−1)
p (Bmult

K,m )
p−2m
p . (1.5)

Very recently, D. Pellegrino in [113]3 proved that, for m ≥ 3 and 2m ≤ p ≤ 2m3 − 4m2 +
2m, we can improve (1.5) to

Cmult
K,m,p ≤ (σK)

p−2m−mp+6m2−6m3+2m4

mp(m−2) (Bmult
K,m )

(m−1)

(
2m−p+mp−2m2

m2p−2mp

)
.

When p = 2m3 − 4m2 + 2m this formula coincides with Theorem 1.3 (3)(ii) when p →
2m3 − 4m2 + 2m.

Remark 1.8. Let p0 ∈ (1, 2) be the unique real number satisfying

Γ
(
p0+1

2

)
=
√
π

2
.

D. Núñez-Alarcón and D. Pellegrino in [109] found the exact value of the constant in the
particular case K = R, m = 2, q = (p/(p− 1), 2) and p = (p,∞) with p ≥ p0/(p0 − 1).
More precisely, they showed that

Cmult
R,2,(p,∞),( p

p−1
,2) = 2

1
2
− 1
p

whenever p ≥ p0/(p0 − 1). For 2 < p < p0, they found almost optimal constants, with
better precision than 4× 10−4.

Remark 1.9. D. Pellegrino proved in [116] that for m ≥ 3, 2m ≤ p ≤ ∞ and q :=
(q1, ..., qm) ∈ [p/(p−m), 2]m such that |1/q| = (mp+ p− 2m)/2p and max qi ≥ (2m2 −

2The original paper that D. Pellegrino presented the new lower bounds for the real case of the Hardy–
Littlewood inequalities has been withdrawn by the author (see [112]). This arXiv preprint is now incor-
porated to [55].

3This arXiv preprint is now incorporated to [14].
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4m+ 2)/(m2 −m− 1), we have

Cmult
K,m,p,q ≤ (σK)

(m−1)

(
1− (m+1)(2−max qi)(m−1)2

(m2−m−2)max qi

)(
m∏
j=2

A−1

K, 2j−2
j

) (m+1)(2−max qi)(m−1)2

(m2−m−2)max qi

. (1.6)

The estimates (1.6) behaves continuously when compared with Theorem 1.3 (4).

1.1 Lower and upper bounds for the constants of the

classical Hardy–Littlewood inequality

From [32, 111] we know that Bmult
K,m has a sublinear growth. On the other hand, the

best known upper bounds for the constants Cmult
K,m,p are

(√
2
)m−1

(see [5, 6, 73]). In this

section we show that
(√

2
)m−1

can be improved to

Cmult
R,m,p ≤

(√
2
)2(m−1)| 1p | (Bmult

R,m
)1−2| 1p | ,

Cmult
C,m,p ≤

(
2√
π

)2(m−1)| 1p | (
Bmult

C,m
)1−2| 1p | .

(1.7)

These estimates are better than
(√

2
)m−1

because Bmult
K,m is sublinear. Moreover, our

estimates depend on p and m and catch more subtle information since now it is clear
that the estimates improve as |1/p| decreases. As |1/p| goes to zero we note that the
above estimates tend to Bmult

K,m (see (1.2)) and, for instance, if |1/p| ≤ 1/m we conclude

that
(
Cmult

K,m,p
)∞
m=1

has a sublinear growth. One of our main results in this section is the
following:

Theorem 1.10. Let m ≥ 2 be a positive integer and |1/p| ≤ 1/2. Then, for all continuous
m-linear forms T : `np1 × · · · × `

n
pm → K and all positive integers n, we have

(
n∑

j1,...,jm=1

|T (ej1 , ..., ejm)|
2m

m+1−2| 1p |
)m+1−2| 1p |

2m

≤ Cmult
K,m,p ‖T‖ , (1.8)

with Cmult
K,m,p as in (1.7). In particular,

(
Cmult

K,m,p
)∞
m=1

has a sublinear growth if |1/p| ≤ 1/m.

Remark 1.11. If p1 = · · · = pm = p and 2m3 − 4m2 + 2m < p ≤ ∞, we already have
better information for Cmult

K,m,p when compared to the previous theorem (see Theorem 1.17).

Proof of Theorem 1.10. For the sake of simplicity we shall deal with the case p1 = · · · =
pm = p. The case p =∞ in (1.8) is precisely the Bohnenblust–Hille inequality, so we just
need to consider 2m ≤ p <∞. Let (2m− 2)/m ≤ s ≤ 2 and λ0 = 2s/(ms+ s− 2m+ 2).
Since (m− 1)/s + 1/λ0 = (m+ 1)/2, from the generalized Bohnenblust–Hille inequality
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(see [6]) we know that there is a constant Bmult
K,m,(λ0,s,...,s) ≥ 1 such that for all m-linear

forms T : `n∞ × · · · × `n∞ → K we have, for all i = 1, ....,m, n∑
ji=1

(
n∑̂

ji=1

|T (ej1 , ..., ejm)|s
) 1

s
λ0


1
λ0

≤ Bmult
K,m,(λ0,s,...,s) ‖T‖ . (1.9)

Above,
∑n

ĵi=1 means the sum over all jk for all k 6= i. If we choose s = 2mp/(mp+ p− 2m),
we have λ0 < s ≤ 2. The multiple exponent (λ0, s, ..., s) can be obtained by interpolating
the multiple exponents (1, 2, ..., 2) and (2m/(m+ 1), ..., 2m/(m+ 1)) with, respectively,
θ1 = 2 (1/λ0 − 1/s) and θ2 = m (2/s− 1), in the sense of [6].

It is thus important to control the constants associated with the multiple exponents
(1, 2..., 2) and (2m/(m+ 1), ..., 2m/(m+ 1)). The exponent (2m/(m+ 1), ..., 2m/(m+ 1))
is the classical exponent of the Bohnenblust–Hille inequality and the estimate of the cons-
tant associated with (1, 2..., 2) is well-known (we present the details for the sake of com-
pleteness). In fact, in general, for the exponent (2k/(k + 1), ..., 2k/(k + 1), 2, ..., 2) (with
2k/(k + 1) repeated k times and 2 repeated m − k times), using the multiple Khinchine
inequality (1), we have, for all m-linear forms T : `n∞ × · · · × `n∞ → K,( n∑

j1,...,jk=1

( n∑
jk+1,...,jm=1

|T (ej1 , ..., ejm)|2
) 1

2
2k
k+1
) k+1

2k

≤
( n∑
j1,...,jk=1

(
A
−(m−k)

K, 2k
k+1

( ∫
[0,1]m−k

∣∣∣ n∑
jk+1,...,jm=1

rjk+1
(tk+1) · · · rjm(tm)

× T (ej1 , ..., ejm)
∣∣∣ 2k
k+1
dtk+1 · · · dtm

) k+1
2k
) 2k
k+1
) k+1

2k

= A
−(m−k)

K, 2k
k+1

( n∑
j1,...,jk=1

∫
[0,1]m−k

∣∣∣T(ej1 , ..., ejk , n∑
jk+1=1

rjk+1
(tk+1)ejk+1

, ...,

n∑
jm=1

rjm(tm)ejm

)∣∣∣ 2k
k+1
dtk+1 · · · dtm

) k+1
2k

= A
−(m−k)

K, 2k
k+1

( ∫
[0,1]m−k

n∑
j1,...,jk=1

∣∣∣T(ej1 , ..., ejk , n∑
jk+1=1

rjk+1
(tk+1)ejk+1

, ...,

n∑
jm=1

rjm(tm)ejm

)∣∣∣ 2k
k+1
dtk+1 · · · dtm

) k+1
2k

≤ A
−(m−k)

K, 2k
k+1

sup
tk+1,...,tm∈[0,1]

Bmult
K,k

∥∥∥T( · , ..., · , n∑
jk+1=1

rjk+1
(tk+1)ejk+1

, ...,
n∑

jm=1

rjm(tm)ejm

)∥∥∥
= A

−(m−k)

K, 2k
k+1

Bmult
K,k ‖T‖ .

So, choosing k = 1, since AK,1 = σ−1
K and Bmult

K,1 = 1 we conclude that the constant

associated with the multiple exponent (1, 2, ..., 2) is σm−1
K .

Therefore, the optimal constant associated with the multiple exponent (λ0, s, ..., s) is
less than or equal to (

σm−1
K

)2
(

1
λ0
− 1
s

) (
Bmult

R,m
)m( 2

s
−1)
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i.e.,

Bmult
K,m,(λ0,s,...,s) ≤ (σK)

2m(m−1)
p

(
Bmult

R,m
) p−2m

p . (1.10)

More precisely, (1.9) is valid with Bmult
K,m,(λ0,s,...,s) as above.

Let λj = λ0p/(p− λ0j) for all j = 1, ....,m. Note that λm = s and that (p/λj)
∗ =

λj+1/λj for all j = 0, ...,m− 1. Let us suppose that 1 ≤ k ≤ m and that n∑
ji=1

(
n∑̂

ji=1

|T (ej1 , ..., ejm)|s
) 1

s
λk−1


1

λk−1

≤ Bmult
K,m,(λ0,s,...,s)‖T‖

is true for all continuous m-linear forms T : `np ×
k − 1 times· · · × `np × `n∞ × · · · × `n∞ → K and

for all i = 1, ...,m. Let us prove that n∑
ji=1

(
n∑̂

ji=1

|T (ej1 , ..., ejm)|s
) 1

s
λk


1
λk

≤ Bmult
K,m,(λ0,s,...,s)‖T‖,

for all continuous m-linear forms T : `np ×
k times· · · × `np × `n∞ × · · · × `n∞ → K and for all

i = 1, ...,m.

The initial case (the case k = 0) is precisely (1.9) with Bmult
K,m,(λ0,s,...,s) as in (1.10).

Consider
T ∈ L(`np ,

k times. . . , `np , `
n
∞, . . . , `

n
∞;K)

and for each x ∈ B`np define

T (x) : `np ×
k − 1 times· · · × `np × `n∞ × · · · × `n∞ → K

(z(1), ..., z(m)) 7→ T (z(1), ..., z(k−1), xz(k), z(k+1), ..., z(m)),

with xz(k) = (xjz
(k)
j )nj=1. Observe that ‖T‖ ≥ sup{‖T (x)‖ : x ∈ B`np}. By applying the

induction hypothesis to T (x), we obtain n∑
ji=1

(
n∑̂

ji=1

|T (ej1 , ..., ejm)|s |xjk |
s

) 1
s
λk−1


1

λk−1

=

 n∑
ji=1

(
n∑̂

ji=1

∣∣T (ej1 , ..., ejk−1
, xejk , ejk+1

, ..., ejm
)∣∣s) 1

s
λk−1


1

λk−1

=

 n∑
ji=1

(
n∑̂

ji=1

∣∣T (x) (ej1 , ..., ejm)
∣∣s) 1

s
λk−1


1

λk−1

≤ Bmult
K,m,(λ0,s,...,s)‖T

(x)‖
≤ Bmult

K,m,(λ0,s,...,s)‖T‖, (1.11)

for all i = 1, ...,m.
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We shall analyze two cases, namely, i = k and i 6= k.

• i = k.

Since (p/λj−1)∗ = λj/λj−1 for all j = 1, ...,m, we conclude that n∑
jk=1

(
n∑̂

jk=1

|T (ej1 , ..., ejm)|s
) 1

s
λk


1
λk

=

 n∑
jk=1

(
n∑̂

jk=1

|T (ej1 , ..., ejm)|s
) 1

s
λk−1

(
p

λk−1

)∗
1

λk−1

1(
p

λk−1

)∗

=

∥∥∥∥∥∥
( n∑̂

jk=1

|T (ej1 , ..., ejm)|s
) 1

s
λk−1

n

jk=1

∥∥∥∥∥∥
1

λk−1

(
p

λk−1

)∗

=

 sup
y∈B`n p

λk−1

n∑
jk=1

|yjk |

(
n∑̂

jk=1

|T (ej1 , ..., ejm)|s
) 1

s
λk−1


1

λk−1

=

 sup
x∈B`np

n∑
jk=1

|xjk |λk−1

(
n∑̂

jk=1

|T (ej1 , ..., ejm)|s
) 1

s
λk−1


1

λk−1

= sup
x∈B`np

 n∑
jk=1

(
n∑̂

jk=1

|T (ej1 , ..., ejm)|s |xjk |
s

) 1
s
λk−1


1

λk−1

≤ Bmult
K,m,(λ0,s,...,s)‖T‖

where the last inequality holds by (1.11).

• i 6= k.

Let us first suppose that k ∈ {1, ...,m− 1} . It is important to note that in this case
λk−1 < λk < s for all k ∈ {1, ...,m− 1}. Denoting, for i = 1, ....,m,

Si =

(
n∑̂

ji=1

|T (ej1 , ..., ejm)|s
) 1

s

we get

n∑
ji=1

(
n∑̂

ji=1

|T (ej1 , ..., ejm)|s
) 1

s
λk

=
n∑

ji=1

Sλki =
n∑

ji=1

Sλk−si Ssi

=
n∑

ji=1

n∑̂
ji=1

|T (ej1 ,...,ejm )|s

S
s−λk
i

=
n∑

jk=1

n∑̂
jk=1

|T (ej1 ,...,ejm )|s

S
s−λk
i
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=
n∑

jk=1

n∑̂
jk=1

|T (ej1 ,...,ejm )|
s(s−λk)
s−λk−1

S
s−λk
i

|T (ej1 , ..., ejm)|
s(λk−λk−1)

s−λk−1 .

Therefore, using Hölder’s inequality twice (first with the exponents (s − λk−1)/(s − λk)
and (s − λk−1)/(λk − λk−1) and then next with λk(s − λk−1)/λk−1(s − λk) and λk(s −
λk−1)/s(λk − λk−1) we obtain

n∑
ji=1

(
n∑̂

ji=1

|T (ej1 , ..., ejm)|s
) 1

s
λk

≤
n∑

jk=1

( n∑̂
jk=1

|T (ej1 ,...,ejm )|s

S
s−λk−1
i

) s−λk
s−λk−1

(
n∑̂

jk=1

|T (ej1 , ..., ejm)|s
)λk−λk−1

s−λk−1



≤

 n∑
jk=1

(
n∑̂

jk=1

|T (ej1 ,...,ejm )|s

S
s−λk−1
i

) λk
λk−1


λk−1
λk
· s−λk
s−λk−1

×

 n∑
jk=1

(
n∑̂

jk=1

|T (ej1 , ..., ejm)|s
) 1

s
λk


1
λk
·
(λk−λk−1)s

s−λk−1

. (1.12)

We know from the case i = k that n∑
jk=1

(
n∑̂

jk=1

|T (ej1 , ..., ejm)|s
) 1

s
λk


1
λk
·
(λk−λk−1)s

s−λk−1

≤
(
Bmult

K,m,(λ0,s,...,s)‖T‖
) (λk−λk−1)s

s−λk−1 . (1.13)

Now we investigate the first factor of the right side in (1.12). From Hölder’s inequality
(with the exponents s/(s− λk−1) and s/λk−1) and (1.11) it follows that

 n∑
jk=1

(
n∑̂

jk=1

|T (ej1 ,...,ejm )|s

S
s−λk−1
i

) λk
λk−1


λk−1
λk

=

∥∥∥∥∥∥
(∑̂

jk

|T (ej1 ,...,ejm )|s

S
s−λk−1
i

)n

jk=1

∥∥∥∥∥∥(
p

λk−1

)∗
= sup

y∈B`n p
λk−1

n∑
jk=1

|yjk |
n∑̂

jk=1

|T (ej1 ,...,ejm )|s

S
s−λk−1
i

= sup
x∈B`np

n∑
jk=1

n∑̂
jk=1

|T (ej1 ,...,ejm )|s

S
s−λk−1
i

|xjk |λk−1

= sup
x∈B`np

n∑
ji=1

n∑̂
ji=1

|T (ej1 ,...,ejm )|s−λk−1

S
s−λk−1
i

|T (ej1 , ..., ejm)|λk−1|xjk |λk−1

≤ sup
x∈B`np

n∑
ji=1

(
n∑̂

ji=1

|T (ej1 ,...,ejm )|s

Ssi

) s−λk−1
s

(
n∑̂

ji=1

|T (ej1 , ..., ejm)|s|xjk |s
) 1

s
λk−1

= sup
x∈B`np

n∑
ji=1

(
n∑̂

ji=1

|T (ej1 , ..., ejm)|s|xjk |s
) 1

s
λk−1

≤
(
Bmult

K,m,(λ0,s,...,s)‖T‖
)λk−1

. (1.14)
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Replacing (1.13) and (1.14) in (1.12) we finally conclude that

n∑
ji=1

(
n∑̂

ji=1

|T (ej1 , ..., ejm)|s
) 1

s
λk

≤
(
Bmult

K,m,(λ0,s,...,s)‖T‖
)λk−1

s−λk
s−λk−1

(
Bmult

K,m,(λ0,s,...,s)‖T‖
) (λk−λk−1)s

s−λk−1

=
(
Bmult

K,m,(λ0,s,...,s)‖T‖
)λk .

It remains to consider k = m. In this case λm = s and we have a simpler situation
since n∑

ji=1

(
n∑̂

ji=1

|T (ej1 , ..., ejm)|s
) 1

s
λm


1
λm

=

 n∑
jm=1

(
n∑̂

jm=1

|T (ej1 , ..., ejm)|s
) 1

s
λm


1
s

≤ Bmult
K,m,(λ0,s,...,s)‖T‖,

where the inequality is due to the case i = k. This concludes the proof.

Now we will provide nontrivial lower bounds for Cmult
R,m,p. Currently, the best lower

bounds for the constants of the real case of the Hardy–Littlewood inequalities can be
founded in [55] (see Remark 1.6), but our next result was the first in this direction and
we present the proof for the sake of completeness.

Theorem 1.12. The optimal constants of the Hardy–Littlewood inequalities satisfies

Cmult
R,m,p ≥ 2

mp+2m−2m2−p
mp > 1 for 2m < p ≤ ∞,

and
Cmult

R,m,2m > 1.

Proof. Following the lines of [75], it is possible to prove that Cmult
R,m,p ≥ 2

mp+2m−2m2−p
mp > 1

for 2m < p ≤ ∞, but note that when p = 2m we have 2
mp+2m−2m2−p

mp = 1 and thus we do
not have nontrivial information.

All that remains is to prove the case p = 2m. The next step follows the lines of [75].
For 2m ≤ p ≤ ∞, consider T2,p : `2

p × `2
p → R given by

(x(1), x(2)) 7→ x
(1)
1 x

(2)
1 + x

(1)
1 x

(2)
2 + x

(1)
2 x

(2)
1 − x

(1)
2 x

(2)
2

and Tm,p : `2m−1

p × · · · × `2m−1

p → R given by

(x(1), ..., x(m)) 7→ (x
(m)
1 + x

(m)
2 )Tm−1,p(x

(1), ..., x(m))

+(x
(m)
1 − x(m)

2 )Tm−1,p(B
2m−1

(x(1)), B2m−2

(x(2)), ..., B2(x(m−1))),

where x(k) = (x
(k)
j )2m−1

j=1 ∈ `2m−1

p , 1 ≤ k ≤ m, and B is the backward shift operator in

`2m−1

p . Observe that

|Tm,p(x(1), ..., x(m))|
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≤ |x(m)
1 + x

(m)
2 | · |Tm−1,p(x

(1), ..., x(m))|
+ |x(m)

1 − x(m)
2 | · |Tm−1,p(B

2m−1

(x(1)), B2m−2

(x(2)), ..., B2(x(m−1)))|
≤ ‖Tm−1,p‖(|x(m)

1 + x
(m)
2 |+ |x

(m)
1 − x(m)

2 |)
= ‖Tm−1,p‖2 max{|x(m)

1 |, |x
(m)
2 |}

≤ 2‖Tm−1,p‖ · ‖x(m)‖p.

Therefore,
‖Tm,p‖ ≤ 2m−2‖T2,p‖. (1.15)

Note that
‖T2,p‖ = sup{‖T (x(1))

2,p ‖ : ‖x(1)‖p = 1},

where T
(x(1))
2,p : `2

p → R is given by x(2) 7→ T2,p

(
x(1), x(2)

)
. Thus we have the operator

T
(x(1))
2,p (x(2)) = (x

(1)
1 + x

(1)
2 )x

(2)
1 + (x

(1)
1 − x

(1)
2 )x

(2)
2 .

Since (`p)
∗ = `p∗ for 1 ≤ p <∞, we obtain

‖T (x(1))
2,p ‖ = ‖(x(1)

1 + x
(1)
2 , x

(1)
1 − x

(1)
2 , 0, 0, ...)‖p∗ .

Therefore

‖T2,p‖ = sup{(|x(1)
1 + x

(1)
2 |p

∗
+ |x(1)

1 − x
(1)
2 |p

∗
)

1
p∗ : |x(1)

1 |p + |x(1)
2 |p = 1}.

We can verify that it is enough to maximize the above expression when x
(1)
1 , x

(1)
2 ≥ 0.

Then

‖T2,p‖ = sup{((x+ (1− xp)
1
p )p
∗

+ |x− (1− xp)
1
p |p∗)

1
p∗ : x ∈ [0, 1]}

= max{sup{fp(x) : x ∈ [0, 2−
1
p ]}, sup{gp(x) : x ∈ [2−

1
p , 1]}}

where
fp(x) := ((x+ (1− xp)

1
p )p
∗

+ ((1− xp)
1
p − x)p

∗
)

1
p∗

and
gp(x) := ((x+ (1− xp)

1
p )p
∗

+ (x− (1− xp)
1
p )p
∗
)

1
p∗ .

It is not too difficult to see that
‖T2,p‖ < 2 (1.16)

(for instance, the precise value of ‖T2,4‖ seems to be graphically
√

3 (see Figure 1.1)).

From (1.15) and (1.16) we would conclude that ‖Tm,p‖ < 2m−1. On the other hand,
from Theorem 1.3 we have

(4m−1)
mp+p−2m

2mp =

(
2m−1∑

j1,...,jm=1

|Tm,p(ej1 , ..., ejm)|
2mp

mp+p−2m

)mp+p−2m
2mp

< Cmult
R,m,p2

m−1.

and thus

Cmult
R,m,p >

(4m−1)
mp+p−2m

2mp

2m−1 = 2
mp+2m−2m2−p

mp = 1,
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as required.
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−

1

4

Figure 1.1: Graphs of the functions f4 and g4, respectively.

1.2 On the constants of the generalized Bohnenblust–

Hille and Hardy–Littlewood inequalities

In this section, among other results, we show that for 2m3 − 4m2 + 2m < p ≤ ∞
the constants Cmult

K,m,p have the exactly same upper bounds that we have now for the
Bohnenblust–Hille constants (1.2). More precisely we will show that if p > 2m3−4m2+2m,
then

Cmult
C,m,p ≤

m∏
j=2

Γ
(

2− 1
j

) j
2−2j

,

Cmult
R,m,p ≤

m∏
j=2

2
1

2j−2 , for 2 ≤ m ≤ 13,

Cmult
R,m,p ≤ 2

446381
55440

−m
2

m∏
j=14

(
Γ( 3

2
− 1
j )√

π

) j
2−2j

, for m ≥ 14.

(1.17)

It is not difficult to verify that (1.17) in fact improves (1.7). However the most interesting
point is that in (1.17), contrary to (1.7), we have no dependence on p in the formulas and,
besides, these new estimates are precisely the best known estimates for the constants of
the Bohnenblust–Hille inequality (see (1.2)).

To prove these new estimates we also improve the best known estimates for the gene-
ralized Bohnenblust–Hille inequality (see Section 1.2.1). The importance of this result
(generalized Bohnenblust–Hille inequality) trancends the intrinsic mathematical novelty
since, as it was recently shown (see [32]), this new approach is fundamental to improve
the estimates of the constants of the classical Bohnenblust–Hille inequality. In Section
1.2.2 we use these estimates to prove new estimates for the constants of the Hardy–
Littlewood inequality. In the final section (Section 1.2.3) the estimates of the previous
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sections (Sections 1.2.1 and 1.2.2) are used to obtain new constants for the generalized
Hardy–Littlewood inequality.

1.2.1 Estimates for the constants of the generalized Bohnenblust–
Hille inequality

The best known estimates for the constants Bmult
K,m,(q1,...,qm) are presented in [5]. More

precisely, for complex scalars and 1 ≤ q1 ≤ · · · ≤ qm ≤ 2, from [5] we know that, for
q = (q1, ..., qm),

Bmult
C,m,q ≤

(
m∏
j=1

Γ
(

2− 1
j

) j
2−2j

)2m( 1
qm
− 1

2)

×

m−1∏
k=1

(
Γ
(

3k+1
2k+2

)(−k−1
2k )(m−k)

k∏
j=1

Γ
(

2− 1
j

) j
2−2j

)2k

(
1
qk
− 1
qk+1

) . (1.18)

In the present section we improve the above estimates for a certain family of (q1, ..., qm).
More precisely, if max qi < (2m2 − 4m+ 2)/(m2 −m− 1), then

Bmult
C,m,(q1,...,qm) ≤

m∏
j=2

Γ
(

2− 1
j

) j
2−2j

.

A similar result holds for real scalars. These results have a crucial importance in the next
sections.

Lemma 1.13. Let m ≥ 2 and i ∈ {1, ...,m}. If qi ∈ [(2m− 2)/m, 2] and q = 2(m −
1)qi/((m+ 1)qi − 2), then

Bmult
K,m,(q,...,q,qi,q,...,q) ≤

m∏
j=2

A−1

K, 2j−2
j

,

with qi in the i-th position.

Proof. There is no loss of generality in supposing that i = 1. By [32, Proposition 3.1] we
have, for each k = 1, ...,m, n∑̂

jk=1

(
n∑

jk=1

|T (ej1 , ..., ejm)|2
) 1

2
2m−2
m


m

2m−2

≤ A−1
K, 2m−2

m

Bmult
K,m−1 ‖T‖

≤
m∏
j=2

A−1

K, 2j−2
j

‖T‖

(see proof of Theorem 1.10 for details).

We define

qk = (qk(1), ...,qk(m)) =
(

2m−2
m

, ..., 2m−2
m

, 2, 2m−2
m

, ..., 2m−2
m

)
,
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where the 2 is in the k-th coordinate and take θ1 = m− (2m− 2)/q1 and θ2 = · · · = θm =
2/q1 − 1. Recalling that q1 ≥ (2m− 2)/m we can see that θk ∈ [0, 1] for all k = 1, ....,m.
It can be easily checked that

θ1
q1(1)

+ · · ·+ θm
qm(1)

= 1
q1

and θ1
q1(j)

+ · · ·+ θm
qm(j)

= 1
q

for j = 2, ...,m.

Then a straightforward application of the Minkowski inequality (using that (2m− 2)/m <
2) and of the generalized Hölder inequality ([33, 81]) completes the proof.

Lemma 1.14. Let m ≥ 2 be a positive integer, 2m < p ≤ ∞ and q1, ..., qm ∈ [p/(p−m), 2].
If |1/q| = (mp+ p− 2m)/2p, then, for all s ∈ (max qi, 2], the vector

(
q−1

1 , ..., q−1
m

)
belongs

to the convex hull in Rm of {
∑m

k=1 a1kek, ...,
∑m

k=1 amkek}, where ajk = s−1 if k 6= j and
ajk = λ−1

m,s if k = j, and λm,s = 2ps/(mps+ ps+ 2p− 2mp− 2ms).

Proof. We want to prove that for (q1, ..., qm) ∈ [p/(p−m), 2]m and s ∈ (max qi, 2] there
are 0 < θj,s < 1, j = 1, ...,m, such that

m∑
j=1

θj,s = 1,

1
q1

= θ1,s
λm,s

+ θ2,s
s

+ · · ·+ θm,s
s
,

...

1
qm

= θ1,s
s

+ · · ·+ θm−1,s

s
+ θm,s

λm,s
.

Observe initially that from |1/q| = (mp+ p− 2m)/2p we have max qi ≥ 2mp/(mp +
p− 2m). Note also that for all s ∈ [(2mp− 2p)/(mp− 2m), 2] we have

mps+ ps+ 2p− 2mp− 2ms > 0 and p
p−m ≤ λm,s ≤ 2. (1.19)

Since s > max qi ≥ 2mp/(mp+ p− 2m) > (2mp− 2p)/(mp− 2m) (the last inequality is
strict because we are not considering the case p = 2m) it follows that λm,s is well defined
for all s ∈ (max qi, 2]. Furthermore, for all s > 2mp/(mp+ p− 2m) it is possible to prove
that λm,s < s. In fact, s > 2mp/(mp+ p− 2m) implies mps+ ps− 2ms > 2mp and thus
adding 2p in both sides of this inequality we can conclude that

λm,s = 2ps
mps+ps+2p−2mp−2ms

< 2ps
2p

= s. (1.20)

For each j = 1, ...,m, consider θj,s = λm,s (s− qj)/qj (s− λm,s). Since
∑m

j=1 q
−1
j =

(mp+ p− 2m)/2p we conclude that

m∑
j=1

θj,s =
m∑
j=1

λm,s(s−qj)
qj(s−λm,s) = λm,s

s−λm,s

(
s

m∑
j=1

1
qj
−m

)
= 1.

By hypothesis s > max qi ≥ qj for all j = 1, ...,m, so it follows that θj,s > 0 for all
j = 1, ...,m and thus 0 < θj,s <

∑m
j=1 θj,s = 1.

Finally, note that

θj,s
λm,s

+
1−θj,s
s

=

λm,s(s−qj)
qj(s−λm,s)

λm,s
+

1−
λm,s(s−qj)
qj(s−λm,s)

s
= 1

qj
.
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Therefore
1
q1

= θ1,s
λm,s

+ θ2,s
s

+ · · ·+ θm,s
s
,

...

1
qm

= θ1,s
s

+ · · ·+ θm−1,s

s
+ θm,s

λm,s

and the proof is done.

Combining the two previous lemmas we have:

Theorem 1.15. Let m ≥ 2 be a positive integer and q = (q1, ..., qm) ∈ [1, 2]m. If
|1/q| = (m+ 1)/2, and max qi < (2m2 − 4m+ 2)/(m2 −m− 1), then

Bmult
K,m,(q1,...,qm) ≤

m∏
j=2

A−1

K, 2j−2
j

.

Proof. Let s = (2m2 − 4m+ 2)/(m2 −m− 1) and q = (2m− 2)/m. Since (m− 1)/s +
1/q = (m+ 1)/2, from Lemma 1.13 the exponents (t1, ..., tm) = (s, ..., s, q), ..., (q, s, ..., s)
are associated with

Bmult
K,m,(t1,...,tm) ≤

m∏
j=2

A−1

K, 2j−2
j

.

By hypothesis max qi < (2m2 − 4m+ 2)/(m2 −m− 1) = s, then, from the previous
lemma (Lemma 1.14) with p = ∞, the exponent (q1, ..., qm) is the interpolation of
(2s/(ms+ s+ 2− 2m), s, ..., s), ..., (s, ..., s, 2s/(ms+ s+ 2− 2m)).

Note that 2s/(ms+s+2−2m) = (2m−2)/m and from Lemma 1.13 they are associated
with the constants

Bmult
K,m,(q1,...,qm) ≤

m∏
j=2

A−1

K, 2j−2
j

,

which completes the proof.

Corollary 1.16. Let m ≥ 2 be a positive integer and q = (q1, ..., qm) ∈ [1, 2]m. If
|1/q| = (m+ 1)/2, and max qi < (2m2 − 4m+ 2)/(m2 −m− 1), then

Bmult
C,m,(q1,...,qm) ≤

m∏
j=2

Γ
(

2− 1
j

) j
2−2j

,

Bmult
R,m,(q1,...,qm) ≤

m∏
j=2

2
1

2j−2 , for 2 ≤ m ≤ 13,

Bmult
R,m,(q1,...,qm) ≤ 2

446381
55440

−m
2

m∏
j=14

(
Γ( 3

2
− 1
j )√

π

) j
2−2j

, for m ≥ 14.

The following table compares the estimate obtained for Bmult
C,m,(q1,...,qm) in [5] (see (1.18))

and the new and better estimate obtained in Theorem 1.15.
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1 ≤ q1 ≤ · · · ≤ qm ≤ 2; Bmult
C,m,(q1,...,qm)

m ≥ 2 1
q1

+ · · ·+ 1
qm

= m+1
2

and Estimates of [5] Estimates of

max qi <
2m2−4m+2
m2−m−1

(see (1.18)) Theorem 1.15

5 q1 = · · · = q4 = 668
401
, q5 = 1.67 < 1.34783 < 1.34745

10 q1 = · · · = q9 = 327618
180211

, q10 = 1.8201 < 1.55231 < 1.55151

20 q1 = · · · = q19 = 14478
7601

, q20 = 1.905 < 1.79162 < 1.79137

50 q1 = · · · = q49 = 240198
122501

, q50 = 1.9608 < 2.170671 < 2.170620

100 q1 = · · · = q99 = 1960398
990001

, q100 = 1.9802 < 2.511775 < 2.511760

1000 q1 = · · · = q999 = 665334666000666
333000000333667

, < 4.08463471 < 4.08463446

q1000 = 1.998002000002

1.2.2 Application 1: Improving the constants of the Hardy–
Littlewood inequality

The main result of this section shows that for 2m3 − 4m2 + 2m < p ≤ ∞ the optimal
constants satisfying the Hardy–Littlewood inequality for m-linear forms in `p spaces are
dominated by the best known estimates for the constants of the m-linear Bohnenblust–
Hille inequality; this result improves (for 2m3 − 4m2 + 2m < p ≤ ∞) the best estimates
we have thus far (see (1.7)), and may suggest a subtler connection between the optimal
constants of those inequalities.

Theorem 1.17. Let m ≥ 2 be a positive integer and 2m3 − 4m2 + 2m < p ≤ ∞. Then,
for all continuous m-linear forms T : `np × · · · × `np → K and all positive integers n, we
have (

n∑
j1,...,jm=1

|T (ej1 , ..., ejm)|
2mp

mp+p−2m

)mp+p−2m
2mp

≤

(
m∏
j=2

A−1

K, 2j−2
j

)
‖T‖ . (1.21)

Proof. The case p = ∞ in (1.21) is precisely the Bohnenblust–Hille inequality, so we
just need to consider 2m3 − 4m2 + 2m < p < ∞. Let (2m− 2)/m ≤ s ≤ 2 and λ0,s =
2s/(ms+ s+ 2− 2m). Note that

ms+ s+ 2− 2m > 0 and 1 ≤ λ0,s ≤ 2. (1.22)

Since (m− 1)/s+ 1/λ0,s = (m+ 1)/2, from the generalized Bohnenblust–Hille inequality
(see [6]) we know that there is a constant Cm ≥ 1 such that for all m-linear forms
T : `n∞ × · · · × `n∞ → K we have n∑

ji=1

(
n∑̂

ji=1

|T (ej1 , ..., ejm)|s
) 1

s
λ0,s


1
λ0,s

≤ Cm ‖T‖ , (1.23)

for all i = 1, ....,m.
If we choose s = 2mp/(mp+ p− 2m) (note that this s belongs to the interval [(2m−

2)/m, 2]), we have s > 2m/(m+ 1) (this inequality is strict because we are considering
the case p < ∞) and thus λ0,s < s. In fact, s > 2m/(m+ 1) implies ms + s > 2m and
thus adding 2 in both sides of this inequality we can conclude that

λ0,s = 2s
(ms+s+2−2m)

< 2s
2

= s. (1.24)
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Since p > 2m3 − 4m2 + 2m we conclude that s < (2m2 − 4m+ 2)/(m2 −m− 1).
Thus, from Theorem 1.15, the optimal constant associated with the multiple exponent
(λ0,s, s, s, ..., s) is less than or equal to

Cm =
m∏
j=2

A−1

K, 2j−2
j

.

More precisely, (1.23) is valid with Cm as above. Now the proof follows the same lines,
mutatis mutandis, of the proof of Theorem 1.10 (see [17, Theorem 1.1]), which has its
roots in the work of Praciano-Pereira [128].

It is simple to verify that these new estimates are better than the old ones. In fact,
for complex scalars the inequality

m∏
j=2

A−1

C, 2j−2
j

<
(

2√
π

) 2m(m−1)
p

(
m∏
j=2

A−1

C, 2j−2
j

) p−2m
p

is a straightforward consequence of

m∏
j=2

A−1

C, 2j−2
j

<
(

2√
π

)m−1

,

which is true for m ≥ 3. The case of real scalars is analogous.
The following table compares the estimates for Cmult

C,m,p obtained in Theorem 1.10 (see
[17]) and the estimate obtained in Theorem 1.17 for 2m3 − 4m2 + 2m < p ≤ ∞.

Cmult
C,m,p

m ≥ 2 2m3 − 4m2 + 2m < p ≤ ∞ Estimates of Estimates of

Theorem 1.10 Theorem 1.17

p = 73 < 1.30433

4 p = 500 < 1.29114 < 1.28890

p = 1000 < 1.29002

p = 1621 < 1.56396

10 p = 3000 < 1.55822 < 1.55151

p = 5000 < 1.55553

p = 240101 < 2.175275

50 p = 500000 < 2.172854 < 2.170620

p = 1000000 < 2.171737

p = 1960201 < 2.514590

100 p = 5000000 < 2.512869 < 2.511760

p = 20000000 < 2.512037

p = 1996002001 < 4.08512258

1000 p = 6000000000 < 4.08479684 < 4.08463446

p = 50000000000 < 4.08465395

Recall that from the previous section that for p ≥ m2 the constants of the Hardy–
Littlewood inequality have a sublinear growth. The graph 1.2 illustrates what we have
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m∏

j=2

Γ

(

2 − 1
j

)
j

2−2j

(sublinear)

Cmult
C,m,p ≤

(
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√
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Figure 1.2: Behavior of Cmult
C,m,p.

thus far, combined with Theorem 1.17.

1.2.3 Application 2: Estimates for the constants of the genera-
lized Hardy–Littlewood inequality

The best known estimates for the constants Cmult
K,m,p,q are

(√
2
)m−1

for real scalars

and (2/
√
π)

m−1
for complex scalars (see [6]). In Theorem 1.10 (see [17, Theorem 1.1])

and the previous section (see (1.17)) better constants were obtained when q1 = ... =
qm = 2mp/(mp+ p− 2m). Now we extend the results from [17] to general multiple
exponents. Of course the interesting case is the borderline case, i.e., 1/q1 + · · ·+ 1/qm =
(mp+ p− 2m)/2p. The proof is slightly more elaborated than the proof of Theorem 1.17
and also a bit more technical than the proof of the main result in [17].

Theorem 1.18. Let m ≥ 2 be a positive integer, let 2m < p ≤ ∞ and let q :=
(q1, ..., qm) ∈ [p/(p−m), 2]m be such that |1/q| = (mp+ p− 2m)/2p. If max qi < (2m2−
4m+ 2)/(m2 −m− 1), then

Cmult
K,m,p,q ≤

m∏
j=2

A−1

K, 2j−2
j

.

Proof. The arguments follow the general lines of [17], but are slightly different and
due to the technicalities we present the details for the sake of clarity. Define for s ∈
(max qi, (2m

2 − 4m+ 2)/(m2 −m− 1)),

λm,s = 2ps
mps+ps+2p−2mp−2ms

. (1.25)

Observe that λm,s is well defined for all s ∈ (max qi, (2m
2 − 4m+ 2)/(m2 −m− 1)).
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In fact, as we have in (1.19) note that for all s ∈ [(2mp− 2p)/(mp− 2m), 2] we have
mps + ps + 2p − 2mp − 2ms > 0 and p/(p−m) ≤ λm,s ≤ 2. Since s > max qi ≥
2mp/(mp+ p− 2m) > (2mp− 2p)/(mp− 2m) (the last inequality is strict because we
are not considering the case p = 2m) and (2m2 − 4m+ 2)/(m2 −m− 1) ≤ 2 it follows
that λm,s is well defined for all s.

Let us prove

Cmult
K,m,p,(λm,s,s,...,s) ≤

m∏
j=2

A−1

K, 2j−2
j

(1.26)

for all s ∈ (max qi, (2m
2 − 4m+ 2)/(m2 −m− 1)). In fact, for these values of s, consider

λ0,s = 2s/(ms+ s+ 2− 2m). Observe that if p =∞ then λm,s = λ0,s. Since (m− 1)/s+
1/λ0,s = (m+ 1)2, from the generalized Bohnenblust–Hille inequality (see [6]) we know
that there is a constant Cm ≥ 1 such that for all m-linear forms T : `n∞ × · · · × `n∞ → K
we have, for all i = 1, ....,m, n∑

ji=1

(
n∑̂

ji=1

|T (ej1 , ..., ejm)|s
) 1

s
λ0,s


1
λ0,s

≤ Cm ‖T‖ . (1.27)

Since 2m/(m+ 1) ≤ 2mp/(mp+ p− 2m) ≤ max qi < s < (2m2 − 4m+ 2)/(m2 −m− 1)
it is not to difficult to prove that (see (1.24)) λ0,s < s < (2m2 − 4m+ 2)/(m2 −m− 1).
Since s < (2m2 − 4m+ 2)/(m2 −m− 1) we conclude by Theorem 1.15 that the optimal
constant associated with the multiple exponent (λ0,s, s, s, ..., s) is less than or equal to

m∏
j=2

A−1

K, 2j−2
j

.

More precisely, (1.27) is valid with Cm as above. Since λm,s = λ0,s if p = ∞, we have
(1.26) for all s ∈ (max qi, (2m

2 − 4m+ 2)/(m2 −m− 1)) and the proof is done for this
case. For 2m < p < ∞, let λj,s = λ0,sp/(p− λ0,sj) for all j = 1, ....,m. Note that
λm,s = 2ps/(mps+ ps+ 2p− 2mp− 2ms) and this notation is compatible with (1.25).
Since s > max qi ≥ 2mp/(mp+ p− 2m) ≥ 2mp/(mp+ p− 2j) for all j = 1, ...,m we also
observe that

λj,s < s (1.28)

for all j = 1, ....,m. Moreover, observe that (p/λj,s)
∗ = λj+1,s/λj,s for all j = 0, ...,m− 1.

From now on, following the same steps in the proof of the Theorem 1.10, if we suppose,
for 1 ≤ k ≤ m, that n∑

ji=1

(
n∑̂

ji=1

|T (ej1 , ..., ejm)|s
) 1

s
λk−1,s


1

λk−1,s

≤ Cm‖T‖

is true for all continuous m-linear forms T : `np ×
k − 1 times· · · × `np × `n∞ × · · · × `n∞ → K and

for all i = 1, ...,m, it is possible to prove that n∑
ji=1

(
n∑̂

ji=1

|T (ej1 , ..., ejm)|s
) 1

s
λk,s


1
λk,s

≤ Cm‖T‖,
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for all continuous m-linear forms T : `np ×
k times· · · × `np × `n∞ × · · · × `n∞ → K and for all i =

1, ...,m. This allows to conclude (1.26) for all s ∈ (max qi, (2m
2 − 4m+ 2)/(m2 −m− 1)).

Now the proof uses a different argument from those from Theorem 1.10, since a
new interpolation procedure is needed. From (1.28) we know that λm,s < s for all
s ∈ (max qi, (2m

2 − 4m+ 2)/(m2 −m− 1)). Therefore, using the Minkowski inequality
as in [6], it is possible to obtain from (1.26) that, for all fixed i ∈ {1, ...,m},

Cmult
K,m,p,(s,...,s,λm,s,s,...,s) ≤

m∏
j=2

A−1

K, 2j−2
j

, (1.29)

for all s ∈ (max qi, (2m
2 − 4m+ 2)/(m2 −m− 1)) with λm,s in the i-th position. Finally,

from Lemma 1.14 we know that
(
q−1

1 , ..., q−1
m

)
belongs to the convex hull of

{(λ−1
m,s, s

−1, . . . , s−1), . . . , (s−1, . . . , s−1, λ−1
m,s)},

for all s ∈ (max qi, (2m
2 − 4m+ 2)/(m2 −m− 1)) with certain constants θ1,s, ..., θm,s and

thus, from the interpolative technique from [6], we get

Cmult
K,m,p,q ≤

(
Cmult

K,m,p,(λm,s,s,...,s)

)θ1,s
· · ·
(
Cmult

K,m,p,(s,...,s,λm,s)

)θm,s
≤

(
m∏
j=2

A−1

K, 2j−2
j

)θ1,s+···+θm,s

=
m∏
j=2

A−1

K, 2j−2
j

.

Corollary 1.19. Let m ≥ 2 be a positive integer and 2m < p ≤ ∞. Let also q :=
(q1, ..., qm) ∈ [p/(p−m), 2]m be such that |1/q| = (mp+ p− 2m)/2p. If max qi < (2m2−
4m+ 2)/(m2 −m− 1), then

Cmult
C,m,p,q ≤

m∏
j=2

Γ
(

2− 1
j

) j
2−2j

,

Cmult
R,m,p,q ≤

m∏
j=2

2
1

2j−2 if 2 ≤ m ≤ 13,

Cmult
R,m,p,q ≤ 2

446381
55440

−m
2

m∏
j=14

(
Γ( 3

2
− 1
j )√

π

) j
2−2j

if m ≥ 14.
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Chapter 2
Optimal Hardy–Littlewood type inequalities
for m-linear forms on `p spaces with
1 ≤ p ≤ m

In [47, Corollary 5.20] it is shown that in `n2 the Hardy–Littlewood multilinear ine-
qualities has an extra power of n in its right hand side. Therefore, a natural question
is:

• For 1 ≤ p ≤ m, what power of n (depending on r,m, p) will appear in the right
hand side of the Hardy–Littlewood multilinear inequalities if we replace the optimal
exponents 2mp/(mp+ p− 2m) and p/(p−m) by a smaller value r?

This case (1 ≤ p ≤ m) was only explored for the case of Hilbert spaces (p = 2, see
[47, Corollary 5.20] and [61]) and the case p =∞ was explored in [57]. The results of this
chapter answer the remaining cases of the above question (see Theorem 2.1) and extends
previous results to 1 ≤ p ≤ m (c.f. [47, Corollary 5.20]).

The following theorem is the main result of this chapter and it first item recovers [47,
Corollary 5.20(i)] (just make p = 2) and [57, Proposition 5.1].

Theorem 2.1. Let m ≥ 2 be a positive integer.

(a) If (r, p) ∈ ([1, 2]× [2, 2m))∪([1,∞)× [2m,∞]), then there is a constant Hmult
K,m,p,r > 0

(not depending on n) such that(
n∑

j1,...,jm=1

|T (ej1 , ..., ejm)|r
) 1

r

≤ Hmult
K,m,p,rn

max{ 2mr+2mp−mpr−pr
2pr

,0} ‖T‖

for all m-linear forms T : `np × · · · × `np → K and all positive integers n. Moreover,
the exponent max {(2mr + 2mp−mpr − pr)/2pr, 0} is optimal.

(b) If (r, p) ∈ [2,∞)× (m, 2m], then there is a constant Hmult
K,m,r,p > 0 (not depending on

n) such that(
n∑

j1,...,jm=1

|T (ej1 , ..., ejm)|r
) 1

r

≤ Hmult
K,m,r,pn

max{ p+mr−rppr
,0} ‖T‖ ,
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with 1 ≤ p ≤ m

for all m-linear forms T : `np × · · · × `np → K and all positive integers n. Moreover,
the exponent max {(p+mr − rp)/pr, 0} is optimal.

Proof. Let 1 ≤ q ≤ r ≤ ∞ and E be a Banach space. We say that an m-linear form
S : E × · · · × E → K is multiple (r; q)-summing if there is a constant C > 0 such that

∥∥∥(S(x
(1)
j1
, ..., x

(m)
jm

))nj1,...,jm=1

∥∥∥
`r
≤ C sup

ϕ∈BE∗

(
n∑
j=1

|ϕ(x
(1)
j )|q

) 1
q

· · · sup
ϕ∈BE∗

(
n∑
j=1

|ϕ(x
(m)
j )|q

) 1
q

for all positive integers n.

(a) Let us consider first (r, p) ∈ [1, 2]× [2, 2m). From now on T : `np × · · · × `np → K is
an m-linear form. Since

sup
ϕ∈B(`np )∗

n∑
j=1

|ϕ(ej)| = nn−
1
p∗ = n

1
p

and since T is multiple (2m/(m+ 1); 1)-summing (we will see in the next chapter that
from the Bohnenblust–Hille inequality it is possible to prove that all continuous m-linear
forms are multiple (2m/(m+ 1); 1)-summing with constant Bmult

K,m ), we conclude that(
n∑

j1,...,jm=1

|T (ej1 , ..., ejm)|
2m
m+1

)m+1
2m

≤ Bmult
K,m ‖T‖n

m
p . (2.1)

Therefore, if 1 ≤ r < 2m/(m+ 1), using the Hölder inequality and (2.1), we have(
n∑

j1,...,jm=1

|T (ej1 , ..., ejm)|r
) 1

r

≤

(
n∑

j1,...,jm=1

|T (ej1 , ..., ejm)|
2m
m+1

)m+1
2m
(

n∑
j1,...,jm=1

|1|
2mr

2m−rm−r

) 2m−rm−r
2mr

=

(
n∑

j1,...,jm=1

|T (ej1 , ..., ejm)|
2m
m+1

)m+1
2m

(nm)
2m−rm−r

2mr

≤ Bmult
K,m ‖T‖n

m
p n

2m−rm−r
2r

= Bmult
K,m n

2mr+2mp−mpr−pr
2pr ‖T‖ .

Now we consider the case 2m/(m+1) ≤ r ≤ 2. From the proof of [16, Theorem 3.2(i)]
we know that, for all 2m/(m + 1) ≤ r ≤ 2 and all Banach spaces E, every continuous
m-linear form S : E × · · · × E → K is multiple (r; 2mr/(mr + 2m− r))-summing with
constant Cmult

K,m,2mr/(r+mr−2m). Therefore

(
n∑

j1,...,jm=1

|T (ej1 , ..., ejm)|r
) 1

r
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≤ Cmult
K,m, 2mr

r+mr−2m

‖T‖

( sup
ϕ∈B(`np )∗

n∑
j=1

|ϕ(ej)|
2mr

mr+2m−r

)mr+2m−r
2mr

m . (2.2)

Since 1 ≤ 2mr/(mr + 2m− r) ≤ 2m/(2m− 1) = (2m)∗ < p∗, we have(
sup

ϕ∈B(`np )∗

n∑
j=1

|ϕ (ej)|
2mr

mr−r+2m

)mr−r+2m
2mr

= (n(n−
1
p∗ )

2mr
mr−r+2m )

mr−r+2m
2mr

= n
2mr+2mp−mpr−pr

2mpr (2.3)

and finally, from (2.2) and (2.3), we obtain(
n∑

j1,...,jm=1

|T (ej1 , ..., ejm)|r
) 1

r

≤ Cmult
K,m, 2mr

r+mr−2m

n
2mr+2mp−mpr−pr

2pr ‖T‖ .

Now we prove the optimality of the exponents. Suppose that the theorem is valid for
an exponent s, i.e., (

n∑
j1,...,jm=1

|T (ej1 , ..., ejm)|r
) 1

r

≤ Hmult
K,m,p,rn

s ‖T‖ .

Since p ≥ 2, from the generalized Kahane–Salem–Zygmund inequality (2) we have

n
m
r ≤ CmH

mult
K,m,p,rn

sn
m+1

2
−m
p

and thus, making n→∞, we obtain s ≥ (2mr + 2mp−mpr − pr)/2pr.
The case (r, p) ∈ [1, 2mp/(mp + p − 2m)] × [2m,∞] is analogous. In fact, from the

Hardy–Littlewood/Praciano-Pereira inequality we know that(
n∑

j1,...,jm=1

|T (ej1 , ..., ejm)|
2mp

mp+p−2m

)mp+p−2m
2mp

≤ Cmult
K,m,p ‖T‖ . (2.4)

Therefore, from Hölder’s inequality and (2.4), we have(
n∑

j1,...,jm=1

|T (ej1 , ..., ejm)|r
) 1

r

≤

(
n∑

j1,...,jm=1

|T (ej1 , ..., ejm)|
2mp

mp+p−2m

)mp+p−2m
2mp

×

(
n∑

j1,...,jm=1

|1|
2mpr

2mp+2mr−mpr−pr

) 2mp+2mr−mpr−pr
2mpr

≤ Cmult
K,m,p ‖T‖ (nm)

2mp+2mr−mpr−pr
2mpr

= Cmult
K,m,pn

2mp+2mr−mpr−pr
2pr ‖T‖ . (2.5)
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with 1 ≤ p ≤ m

Since p ≥ 2m, the optimality of the exponent is obtained ipsis litteris as in the previous
case.

If (r, p) ∈ (2mp/(mp+p−2m),∞)×[2m,∞] we have (2mr + 2mp−mpr − pr)/2pr <
0 and(

n∑
j1,...,jm=1

|T (ej1 , ..., ejm)|r
) 1

r

≤

(
n∑

j1,...,jm=1

|T (ej1 , ..., ejm)|
2mp

mp+p−2m

)mp+p−2m
2mp

≤ Cmult
K,m,p ‖T‖

= Cmult
K,m,p ‖T‖n

max{ 2mr+2mp−mpr−pr
2pr

,0}.

In this case the optimality of the exponent max {(2mr + 2mp−mpr − pr)/2pr, 0} is im-
mediate, since one can easily verify that no negative exponent of n is possible.

(b) Let us first consider (r, p) ∈ [2, p/(p −m)] × (m, 2m]. Define q = mr/(r − 1) and
note that q ≤ 2m and r = q/(q −m). Since q/(q −m) = r ≤ p/(p −m) we have p ≤ q.
Then m < p ≤ q ≤ 2m. Note that q∗ = mr/(mr + 1− r). Since m < q ≤ 2m, by
the Hardy-Littlewood/Dimant-Sevilla-Peris inequality and using [73, Section 5] we know
that every continuous m-linear form on any Banach space E is multiple (q/(q −m); q∗)-
summing with constantDmult

K,m,q, i.e., multiple (r;mr/(mr + 1− r))-summing with constant

Dmult
K,m,mr/(r−1). So for T : `np × · · · × `np → K we have (since q∗ ≤ p∗),

(
n∑

j1,...,jm=1

|T (ej1 , ..., ejm)|r
) 1

r

≤ Dmult
K,m, mr

r−1
‖T‖

( sup
ϕ∈B(`np )∗

n∑
j=1

|ϕ (ej)|
mr

mr+1−r

)mr+1−r
mr

m

= Dmult
K,m, mr

r−1
‖T‖

[
(n(n−

1
p∗ )

mr
mr+1−r )

mr+1−r
mr

]m
= Dmult

K,m, mr
r−1
‖T‖n

p+mr−rp
pr .

Above, if we had tried, via Hölder’s inequality, to use an argument similar to (2.5) we
would obtain worse exponents.

Now we prove the optimality following the lines of [73]. Defining R : `np ×· · ·× `np → K
by R(x(1), ..., x(m)) =

∑n
j=1 x

(1)
j · · ·x

(1)
j , from Hölder’s inequality we can easily verify that

‖R‖ ≤ n1−m
p . So if the theorem holds for ns, plugging the m-linear form R into the

inequality we have
n

1
r ≤ Hmult

K,m,p,rn
sn1−m

p

and thus, by making n→∞, we obtain s ≥ (p+mr − rp)/pr.
If (r, p) ∈ (p/(p−m),∞)× (m, 2m] we have (p+mr − rp)/pr < 0 and(

n∑
j1,...,jm=1

|T (ej1 , ..., ejm)|r
) 1

r

≤

(
n∑

j1,...,jm=1

|T (ej1 , ..., ejm)|
p

p−m

) p−m
p

≤ Dmult
K,m,p ‖T‖
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= Dmult
K,m,p ‖T‖n

max{ p+mr−rppr
,0}.

In this case the optimality of the exponent max {(p+mr − rp)/pr, 0} is immediate, since
one can easily verify that no negative exponent of n is possible.

Remark 2.2. Observing the proof of Theorem 2.1 we conclude that the optimal constant
Hmult

K,m,p,r satisfies:

Hmult
K,m,p,r ≤



Bmult
K,m if (r, p) ∈

[
1, 2m

m+1

]
× [2, 2m),

Cmult
K,m, 2mr

r+mr−2m

if (r, p) ∈
[

2m
m+1

, 2
]
× [2, 2m),

Cmult
K,m,p if (r, p) ∈ [1,∞)× [2m,∞],

Dmult
K,m, mr

r−1
if (r, p) ∈

[
2, p

p−m

]
× (m, 2m],

Dmult
K,m,p if (r, p) ∈

(
p

p−m ,∞
)
× (m, 2m].

Using results of the previous chapters, we have the following estimates for the constants
Hmult

K,m,p,r:

Hmult
K,m,p,r ≤



ηK,m if (r, p) ∈
[
1, 2m

m+1

]
× [2, 2m),

(σK)
(m−1)(mr+r−2m)

r (ηK,m)
2m−rm

r if (r, p) ∈
(

2m
m+1

, 2
]
× [2, 2m),

(σK)
p−2m−mp+6m2−6m3+2m4

mp(m−2)

×(ηK,m)
(m−1)

(
2m−p+mp−2m2

m2p−2mp

)
if (r, p) ∈ [1,∞)× [2m, 2m3 − 4m2 + 2m],

ηK,m if (r, p) ∈ [1,∞)× (2m3 − 4m2 + 2m,∞],

(
√

2)m−1 if (r, p) ∈ [2,∞)× (m, 2m],

where σR =
√

2 and σC = 2/
√
π and

ηC,m :=
m∏
j=2

Γ
(

2− 1
j

) j
2−2j

,

ηR,m :=
m∏
j=2

2
1

2j−2 , for m ≤ 13,

ηR,m := 2
446381
55440

−m
2

m∏
j=14

(
Γ( 3

2
− 1
j )√

π

) j
2−2j

, for m ≥ 14.

Now we will obtain partial answers for the cases not covered by our main theorem,
i.e., the cases (r, p) ∈ [1, 2]× [1, 2) and (r, p) ∈ (2,∞)× [1,m].

Proposition 2.3. Let m ≥ 2 be a positive integer.

(a) If (r, p) ∈ [1, 2]× [1, 2), then there is a constant Hmult
K,m,p,r > 0 such that(

n∑
j1,...,jm=1

|T (ej1 , ..., ejm)|r
) 1

r

≤ Hmult
K,m,p,rn

2mr+2mp−mpr−pr
2pr ‖T‖ , (2.6)
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with 1 ≤ p ≤ m

for all m-linear forms T : `np × · · · × `np → K and all positive integers n. Moreover
the optimal exponent of n is not smaller than (2m− r)/2r.

(b) If (r, p) ∈ (2,∞)× [1,m], then there is a constant Hmult
K,m,p,r > 0 such that(

n∑
j1,.,...,jm=1

|T (ej1 , ..., ejm)|r
) 1

r

≤

 Hmult
K,m,p,rn

2m−p+ε
pr ‖T‖ if p > 2,

Hmult
K,m,p,rn

2m−p
pr ‖T‖ if p = 2,

for all m-linear forms T : `np ×· · ·×`np → K and all positive integers n and all ε > 0.
Moreover the optimal exponent of n is not smaller than (2mr+2mp−mpr−pr)/2pr
and not smaller than (2m− r)/2r if 2 ≤ p ≤ m. In the case 1 ≤ p ≤ 2, the optimal
exponent of n is not smaller than (2m− r)/2r.

Proof. (a) The proof of (2.6) is the same of the proof of Theorem 2.1(a). The estimate
for the bound of the optimal exponent also uses the generalized Kahane–Salem–Zygmund
inequality (2). Since p ≤ 2 we have

n
m
r ≤ CmH

mult
K,m,p,rn

sn
1
2

and thus, by making n→∞, s ≥ 2m−r
2r

.
(b) Let δ = 0 if p = 2 and δ > 0 if p > 2. First note that every continuous m-

linear form on `p spaces is obviously multiple (∞; p∗ − δ)-summing and also multiple
(2; 2m/(2m− 1))-summing (this is a consequence of the Hardy–Littlewood inequality and
[73, Section 5]). Using [47, Proposition 4.3] we conclude that every continuous m-linear
form on `p spaces is multiple (r;mpr/(2m+mpr −mr − p+ ε))-summing for all ε > 0
(and ε = 0 if p = 2). Therefore, there exist Hmult

K,m,p,r > 0 such that(
n∑

j1,...,jm=1

|T (ej1 , ..., ejm)|r
) 1

r

≤ Hmult
K,m,p,r

[
(n(n−

1
p∗ )

mpr
2m+mpr−mr−p+ε )

2m+mpr−mr−p+ε
mpr

]m
‖T‖

= Hmult
K,m,p,rn

2m+mpr−mr−p+ε
pr (n

1
p
−1)m ‖T‖

= Hmult
K,m,p,rn

2m−p+ε
pr ‖T‖ .

The bounds for the optimal exponents are obtained via the generalized Kahane–Salem–
Zygmund inequality (2) as in the previous cases.

Remark 2.4. Item (b) of the Proposition 2.3 with p = 2 recovers [47, Corollary 5.20(ii)].

We believe that the remaining cases (those in which we do not have achieved the
optimality of the exponents) are interesting for further investigation1 trying to have a full
panorama, covering all cases with optimal estimates.

1Daniel Galicer informed us that already have some progresses in this context. In cooperation with
Mart̀ın Mansilla and Santiago Muro they already have found the optimality of the exponent if 1 ≤ r ≤ 2
and 1 ≤ p ≤ 2 or if r > 2 and p = 1, 2,m. Furthermore, if r > 2 and 2 < p < m they have better lower
bounds for the exponents and they believe that ε > 0 appearing in Proposition 2.3 may be deleted.



Chapter 3
On the polynomial Bohnenblust–Hille and
Hardy–Littlewood inequalities

Given α = (α1, . . . , αn) ∈ Nn, define |α| := α1+· · ·+αn and xα stands for the monomial
xα1

1 · · ·xαnn for x = (x1, . . . , xn) ∈ Kn. The polynomial Bohnenblust–Hille inequality (see
[6, 42] and the references therein) ensures that, given positive integers m ≥ 2 and n ≥ 1, if
P is a homogeneous polynomial of degree m on `n∞ given by P (x1, ..., xn) =

∑
|α|=m aαx

α,
then ( ∑

|α|=m
|aα|

2m
m+1

)m+1
2m

≤ Bpol
K,m ‖P‖ , (3.1)

for some constant Bpol
K,m ≥ 1 which does not depend on n (the exponent 2m/(m+ 1) is

optimal), where ‖P‖ := supz∈B`n∞
|P (z)|. The search of precise estimates of the growth

of the constants Bpol
K,m is fundamental for different applications and remains an important

open problem (see [32] and the references therein).

For real scalars it was shown in [56, Theorem 2.2] that

(1.17)m ≤ Bpol
R,m ≤ C(ε) (2 + ε)m ,

where C(ε) (2 + ε)m means that given ε > 0, there is a constant C (ε) > 0 such that
Bpol

R,m ≤ C(ε) (2 + ε)m for all m. In other words, this means that for real scalars the

hypercontractivity of Bpol
R,m is optimal.

For complex scalars the behavior of Bpol
K,m is still unknown. The best information we

have thus far about Bpol
C,m are due to D. Núñez-Alarcón [108] (lower bounds) and F. Bayart,

D. Pellegrino and J.B. Seoane-Sepúlveda [32] (upper bounds)

Bpol
C,m ≥


(
1 + 1

2m−1

) 1
4 , for m even;(

1 + 1
2m−1

)m−1
4m , for m odd;

Bpol
C,m ≤ C(ε) (1 + ε)m .

The following diagram shows the evolution of the estimates ofBpol
K,m for complex scalars.
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Authors Year Estimate

Bohnenblust and Hille
1931, [42]

(Ann.Math.)
Bpol

C,m ≤ m
m+1
2m

(√
2
)m−1

Defant, Frerick, Ortega-Cerdá,
Ounäıes, and Seip

2011, [65]
(Ann.Math.)

Bpol
C,m ≤

(
1 + 1

m−1

)m−1√
m
(√

2
)m−1

Bayart, Pellegrino,
and Seoane-Sepúlveda

2014, [32]
(Adv .Math.)

Bpol
C,m ≤ C(ε) (1 + ε)m

When replacing `n∞ by `np the extension of the polynomial Bohnenblust–Hille ine-
quality is called polynomial Hardy–Littlewood inequality and the optimal exponents are
2mp/(mp+ p− 2m) for 2m ≤ p ≤ ∞. More precisely, given positive integers m ≥ 2 and
n ≥ 1, as a consequence of the multilinear Hardy–Littlewood inequality (see [5, 73]),
if P is a homogeneous polynomial of degree m on `np with 2m ≤ p ≤ ∞ given by

P (x1, . . . , xn) =
∑
|α|=m aαx

α, then there is a constant Cpol
K,m,p ≥ 1 such that

( ∑
|α|=m

|aα|
2mp

mp+p−2m

)mp+p−2m
2mp

≤ Cpol
K,m,p ‖P‖ , (3.2)

and Cpol
K,m,p does not depend on n, where ‖P‖ := supz∈B`np

|P (z)|. Using the generali-

zed Kahane–Salem–Zygmund inequality (2) (see, for instance, [6]) we can verify that
the exponents 2mp/(mp+ p− 2m) are optimal for 2m ≤ p ≤ ∞. When p = ∞, since
2mp/(mp+ p− 2m) = 2m/(m+ 1), we recover the polynomial Bohnenblust–Hille ine-
quality.

As in the multilinear case, for m < p < 2m there is also a version of the polynomial
Hardy–Littlewood inequality (see [73]): given positive integers m ≥ 2 and n ≥ 1, if P is
a homogeneous polynomial of degree m on `np with m < p < 2m given by P (x1, . . . , xn) =∑
|α|=m aαx

α, then there is a (optimal) constant Dpol
K,m,p ≥ 1 (not depending on n) such

that ( ∑
|α|=m

|aα|
p

p−m

) p−m
p

≤ Dpol
K,m,p ‖P‖ (3.3)

and the exponents p/(p−m) are optimal.

In this chapter we look for upper and lower estimates for Cpol
K,m,p and Dpol

K,m,p. Our main
contributions regarding the constants of the polynomial Hardy–Littlewood inequality can
be summarized in the following result (in this chapter we will only present the proof of
the items (1)(ii) and (3). For details of other results see [10]):

Theorem 3.1. Let m ≥ 2.

(1) Let 2m ≤ p ≤ ∞.

(i) If K = R, then Cpol
R,m,p ≥ 2

m2p+10m−p−6m2−4
4mp ≥

(
16
√

2
)m

.

(ii) If K = C, then

Cpol
C,m,p ≥

{
2
m
p , for m even,

2
m−1
p , for m odd.



Chapter 3. Lower bounds for the complex polynomial Hardy–Littlewood inequality 45

(2) For 2m ≤ p ≤ ∞,

Cpol
K,m,p ≤ Cmult

K,m,p
mm

(m!)
mp+p−2m

2mp

.

(3) For m < p < 2m,

Dpol
C,m,p ≥

{
2
m
p for m even,

2
m−1
p for m odd.

(4) For m < p < 2m,
Dpol

K,m,p ≤ Dmult
K,m,p

mm

(m!)
p−m
p
.

Remark 3.2. Trying to find a certain pattern in the behavior of the constants of the
Bohnenblust–Hille and Hady–Littlewood inequalities, we define Bpol

K,m(n), Cpol
K,m,p(n) and

Dpol
K,m,p(n) as the best (meaning smallest) value of the constants appearing in (3.1), (3.2)

and (3.3), respectively, for n ∈ N fixed. A number of papers related to these particular
cases are being produced and we can summarize the main findings of these papers as
follows:

• Bpol
C,2(2) = 4

√
3/2;

• Bpol
R,2(2) = (2t

4/3
0 +(2

√
t0 − t20)4/3)3/4, with t0 = (2

3
√

107 + 9
√

129+
3
√

856− 72
√

129+
16)/36;

• Bpol
R,3(2) ≥ 2.5525, Bpol

R,5(2) ≥ 6.83591, Bpol
R,6(2) ≥ 10.7809, Bpol

R,7(2) ≥ 19.96308,

Bpol
R,8(2) ≥ 33.36323, Bpol

R,10(2) ≥ 90.35556, Bpol
R,600(2) ≥ (1.65171)600, Bpol

R,602(2) ≥
(1.61725)602;

• For 4 ≤ p ≤ ∞,

Cpol
R,2,p(2) = max

α∈[0,1]

[
2

∣∣∣∣ 2αp−1

α2+(1−αp)
2
p

∣∣∣∣ 4p
3p−4

+

(
2α (1− αp)

1
p
αp−2+(1−αp)

p−2
p

α2+(1−αp)
2
p

) 4p
3p−4

] 3p−4
4p

;

• Cpol
R,2,4(2) = Dpol

R,2,4(2) =
√

2;

• Cpol
R,3,6(2) = Dpol

R,3,6(2) ≥ 2.236067, Cpol
R,5,10(2) = Dpol

R,5,10(2) ≥ 6.236014, Cpol
R,6,12(2) =

Dpol
R,6,12(2) ≥ 10.636287, Cpol

R,7,14(2) = Dpol
R,7,14(2) ≥ 18.095148, Cpol

R,8,16(2) = Dpol
R,8,16(2) ≥

31.727174, Cpol
R,10,20(2) = Dpol

R,10,20(2) ≥ 91.640152.

• For 2 < p ≤ 4, Dpol
R,2,p(2) = 2

2
p .

See [11, 57, 59, 60, 94].

3.1 Lower bounds for the complex polynomial Hardy–

Littlewood inequality

In this section, we provide nontrivial lower bounds for the constants of the complex
case of the polynomial Hardy–Littlewood inequality. More precisely we prove that, for
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m ≥ 2 and 2m ≤ p <∞, Cpol
C,m,p ≥ 2m/p for m even, and Cpol

C,m,p ≥ 2(m−1)/p for m odd. For

instance,
√

2 ≤ Cpol
C,2,4 ≤ 3.1915.

Let m ≥ 2 be an even positive integer and let p ≥ 2m. Consider the 2-homogeneous
polynomials Q2 : `2

p → C and Q̃2 : `2
∞ → C both given by (z1, z2) 7→ z2

1−z2
2 +cz1z2, c ∈ R.

We know from [22, 56] that ‖Q̃2‖ = (4 + c2)
1
2 . If we follow the lines of [108] and we define

the m-homogeneous polynomial Qm : `mp → C by Qm(z1, ..., zm) = z3 . . . zmQ2(z1, z2) we
obtain

‖Qm‖ ≤ 2−
m−2
p ‖Q2‖ ≤ 2−

m−2
p ‖Q̃2‖ = 2−

m−2
p
(
4 + c2

) 1
2 ,

where we use the obvious inequality ‖Q2‖ ≤ ‖Q̃2‖. Therefore, for m ≥ 2 even and c ∈ R,
from the polynomial Hardy–Littlewood inequality it follows that

Cpol
C,m,p ≥

(
2+|c|

2mp
mp+p−2m

)mp+p−2m
2mp

2
−m−2

p (4+c2)
1
2

.

If

c >

(
2
2p+4−2m

p −2
mp+p−2m

mp

1−2
− 2m−4

p

) 1
2

,

it is not too difficult to prove that

2−
m−2
p
(
4 + c2

) 1
2 <

((
2
mp+p−2m

2mp

)2

+ c2

) 1
2

,

i.e.,

2−
m−2
p
(
4 + c2

) 1
2 <

∥∥∥(2
mp+p−2m

2mp , c
)∥∥∥

2
.

Since 2mp/(mp+ p− 2m) ≤ 2, we know that ` 2mp
mp+p−2m

⊂ `2 and ‖ · ‖2 ≤ ‖ · ‖ 2mp
mp+p−2m

.

Therefore, for all

c >

(
2
2p+4−2m

p −2
mp+p−2m

mp

1−2
− 2m−4

p

) 1
2

,

we have

2−
m−2
p (4 + c2)

1
2 <

∥∥∥(2
mp+p−2m

2mp , c
)∥∥∥

2

≤
∥∥∥(2

mp+p−2m
2mp , c

)∥∥∥
2mp

mp+p−2m

=
(

2 + c
2mp

mp+p−2m

)mp+p−2m
2mp

from which we conclude that

Cpol
C,m,p ≥

(
2+c

2mp
mp+p−2m

)mp+p−2m
2mp

2
−m−2

p (4+c2)
1
2

> 1.

If m ≥ 3 is odd, since ‖Qm‖ ≤ ‖Qm−1‖, then we have ‖Qm‖ ≤ 2−
m−3
p (4 + c2)

1
2 and
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thus we can now proceed analogously to the even case and finally conclude that for

c >

(
2
2p+6−2m

p −2
mp+p−2m

mp

1−2
− 2m−6

p

) 1
2

we get

Cpol
C,m,p ≥

(
2+c

2mp
mp+p−2m

)mp+p−2m
2mp

2
−m−3

p (4+c2)
1
2

> 1.

So we have:

Proposition 3.3. Let m ≥ 2 be a positive integer and let p ≥ 2m. Then, for every ε > 0,

Cpol
C,m,p ≥

2+

( 2
2p+4−2m

p −2
mp+p−2m

mp

1−2
− 2m−4

p

) 1
2

+ε


2mp

mp+p−2m

mp+p−2m

2mp

2
−m−2

p

4+

( 2
2p+4−2m

p −2
mp+p−2m

mp

1−2
− 2m−4

p

) 1
2

+ε


2

1
2

> 1 if m is even

and

Cpol
C,m,p ≥

2+

( 2
2p+6−2m

p −2
mp+p−2m

mp

1−2
− 2m−6

p

) 1
2

+ε


2mp

mp+p−2m

mp+p−2m

2mp

2
−m−3

p

4+


 2

2p+6−2m
p −2

mp+p−2m
mp

1−2
− 2m−6

p

 1
2

+ε


2


1
2

> 1 if m is odd.

However, we have another approach to the problem, which is surprisingly simpler than
the above approach and still seems to give best (bigger) lower bounds for the constants
of the polynomial Hardy–Littlewood inequality (even for the case m < p < 2m).

Theorem 3.4. Let m ≥ 2 be a positive integer and let m < p ≤ ∞.

(i) If 2m ≤ p ≤ ∞, we have

Cpol
C,m,p ≥

{
2
m
p , for m even,

2
m−1
p , for m odd.

(ii) If m < p ≤ 2m, we have

Dpol
C,m,p ≥

{
2
m
p , for m even,

2
m−1
p , for m odd.

Proof. Let m ≥ 2 be a positive integer and let p ≥ 2m. Consider P2 : `2
p → C the

2-homogeneous polynomial given by z 7→ z1z2. Observe that

‖P2‖ = sup
|z1|p+|z2|p=1

|z1z2| = sup
|z|≤1

|z| (1− |z|p)
1
p = 2−

2
p .



48 Chapter 3. On the polynomial Bohnenblust–Hille and Hardy–Littlewood inequalities

More generally, if m ≥ 2 is even and Pm is the m-homogeneous polynomial given by
z 7→ z1 · · · zm, then ‖Pm‖ ≤ 2−m/p. Therefore, from the polynomial Hardy–Littlewood
inequality we know that

Cpol
C,m,p ≥

( ∑
|α|=m

|aα|
2mp

mp+p−2m

)mp+p−2m
2mp

‖Pm‖ ≥ 1

2
−mp

= 2
m
p .

If m ≥ 3 is odd, we define again the m-homogeneous polynomial Pm given by z 7→
z1 · · · zm and since ‖Pm‖ ≤ ‖Pm−1‖, then we have ‖Pm‖ ≤ 2−(m−1)/p and thus

Cpol
C,m,p ≥ 1

2
−m−1

p
= 2

m−1
p .

With the same arguments used for the case 2m ≤ p ≤ ∞, we obtain the similar
estimate (3) of Theorem 3.1 for the case m < p < 2m.

The estimates of Proposition 3.3 seems to become better when ε grows (this seems
to be a clear sign that we should avoid the terms z2

1 and z2
2 in our approach). Making

ε→∞ in Theorem 3.3 we obtain

Cpol
C,m,p ≥

 2
m−2
p for m even;

2
m−3
p for m odd,

which are slightly worse than the estimates from Theorem 3.4.

3.2 The complex polynomial Hardy–Littlewood ine-

quality: Upper estimates

In this section, let us use the following notation: S`np denotes the unit sphere on `np if
p <∞, and S`n∞ denotes the n-dimensional torus. More precisely: for p ∈ (0,∞)

S`np :=
{
z = (z1, ..., zn) ∈ Cn : ‖z‖`np = 1

}
and

S`n∞ := Tn = {z = (z1, ..., zn) ∈ Cn : |zi| = 1} .

Let µn be the normalized Lebesgue measure on the respective set. The following lemma
is a particular instance (1 ≤ p = s ≤ 2 and q = 2) of the Khinchin-Steinhaus polynomial
inequalities (for polynomials homogeneous or not) and p ≤ q.

Lemma 3.5. Let 1 ≤ s ≤ 2. For every m-homogeneous polynomial P (z) =
∑
|α|=m aαz

α

on Cn with values in C, we have( ∑
|α|=m

|aα|2
) 1

2

≤
(

2
s

)m
2
(∫

Tn |P (z)|s dµn(z)
) 1
s .
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When n = 1 a result due to F.B. Weissler (see [135]) asserts that the optimal cons-
tant for the general case is

√
2/s. In the n-dimensional case the best constant for m-

homogeneous polynomials is (
√

2/s)m (see also [30]).
For m ∈ [2,∞] let us define p0(m) as the infimum of the values of p ∈ [2m,∞] such

that for all 1 ≤ s ≤ 2p/(p− 2) there is a Ks,p > 0 such that( ∑
|α|=m

|aα|
2p
p−2

) p−2
2p

≤ Km
s,p

(∫
S`np
|P (z)|s dµn(z)

) 1
s
, (3.4)

for all positive integers n and all m-homogeneous polynomials P : Cn → C. From Lemma
3.5 we know that this definition makes sense, since from this lemma it follows that (3.4)
is valid for p = ∞. We conjecture that p0(m) ≤ m2. If it is true that p0(m) < ∞, it
is possible to prove the following new estimate for Cpol

C,m,p (see [10]): for m ∈ [2,∞] and
1 ≤ k ≤ m − 1, if p0(m − k) < p ≤ ∞ (and p = ∞ if p0(m − k) = ∞) then, for every
m-homogeneous polynomial P : `np → C, defined by P (z) =

∑
|α|=m aαz

α, we have

( ∑
|α|=m

|aα|
2mp

mp+p−2m

)mp+p−2m
2mp

≤ Km−k
2kp

kp+p−2k
,p
· mm

(m−k)m−k
·
(

(m−k)!
m!

) p−2
2p
(

2√
π

) 2k(k−1)
p ·

(
Bmult

C,k
) p−2k

p ‖P‖,

where Bmult
C,k is the optimal constant of the multilinear Bohnenblust–Hille inequality asso-

ciated with k-linear forms.
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Summability of multilinear operators
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Chapter 4
Maximal spaceability and optimal estimates
for summing multilinear operators

If 1 ≤ p ≤ q < ∞, we say that a continuous linear operator T : E → F is (q, p)-
summing if (T (xj))

∞
j=1 ∈ `q(F ) whenever (xj)

∞
j=1 ∈ `wp (E). The class of (q, p)-summing

linear operators from E to F will be represented by Π(q;p)(E,F ). An equivalent for-
mulation asserts that T : E → F is (q, p)-summing if there is a constant C ≥ 0 such
that (

∞∑
j=1

‖T (xj)‖q
)1/q

≤ C
∥∥(xj)

∞
j=1

∥∥
w,p

,

for all (xj)
∞
j=1 ∈ `wp (E). The above inequality can also be replaced by: there is a constant

C ≥ 0 such that (
n∑
j=1

‖T (xj)‖q
)1/q

≤ C
∥∥(xj)

n
j=1

∥∥
w,p

,

for all x1, . . . , xn ∈ E and all positive integers n. The infimum of all C that satisfy the
above inequalities defines a norm, denoted by π(q;p)(T ), and

(
Π(q;p) (E,F ) , π(q;p)(·)

)
is a

Banach space.
More generally, we can define:

Definition 4.1. For p = (p1, ..., pm) ∈ [1,+∞)m and 1/q ≤
∑m

j=1 1/pj recall that a
continuous m-linear operator T : E1×· · ·×Em → F is absolutely (q; p)-summing if there
is a C > 0 such that(

n∑
j=1

∥∥∥T (x
(1)
j , ..., x

(m)
j )

∥∥∥q) 1
q

≤ C
m∏
k=1

∥∥∥(x
(k)
j )nj=1

∥∥∥
w,pk

for all positive integers n and all (x
(k)
j )nj=1 ∈ Ek, k = 1, ...,m.

• We represent the class of all absolutely (q; p)-summing operators from E1, ..., Em to
F by Πm

as(q;p) (E1, ..., Em;F );

• When p1 = · · · = pm = p, we denote Πm
as(q;p)(E1, . . . , Em;F ) by

Πm
as(q;p)(E1, . . . , Em;F ).
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operators

The infimum over all C as above defines a norm on Πm
as(q;p) (E1, ..., Em;F ), which we

denote by πas(q;p) (T ) (or πas(q;p) (T ) if p1 = · · · = pm = p).
In 2003 Matos [102] and, independently, Bombal, Pérez-Garćıa and Villanueva [44]

introduced the notion of multiple summing multilinear operators.

Definition 4.2 (Multiple summing operators [44, 102]). Let p = (p1, ..., pm) ∈ [1,+∞)m

and 1 ≤ q < ∞ such that 1 ≤ p1, . . . , pm ≤ q < ∞. A bounded m-linear operator
T : E1 × · · · × Em → F is multiple (q; p)-summing if there exists Cm > 0 such that(

∞∑
j1,...,jm=1

∥∥∥T (x
(1)
j1
, . . . , x

(m)
jm

)
∥∥∥q) 1

q

≤ Cm
m∏
k=1

∥∥∥(x
(k)
j )∞j=1

∥∥∥
w,pk

(4.1)

for every (x
(k)
j )∞j=1 ∈ `wpk(Ek), k = 1, . . . ,m.

• The class of all multiple (q; p)-summing operators from E1 × · · · ×Em to F will be
denoted by Πm

mult(q;p)(E1, . . . , Em;F ).

• When p = (p, . . . , p) we write Πm
mult(q;p)(E1, ..., Em;F ) instead of

Πm
mult(q;p)(E1, ..., Em;F ).

The infimum over all Cm satisfying (4.1) defines a norm in Πm
mult(q;p)(E1, . . . , Em;F ), which

is denoted by πmult(q;p)(T ) (or πmult(q;p)(T ) if p1 = · · · = pm = p).
Using that L (c0;E) is isometrically isomorphic to `w1 (E) (see [72]), Bohnenblust–

Hille’s inequality can be re-written as:

Theorem 4.3 (Bohnenblust–Hille re-written [122]). If m ≥ 2 is a positive integer and
T ∈ L(E1, . . . , Em;K), then(

∞∑
j1,...,jm=1

∣∣∣T (x
(1)
j1
, . . . , x

(m)
jm

)
∣∣∣ 2m
m+1

)m+1
2m

≤ Bmult
K,m ‖T‖

m∏
k=1

∥∥∥(x
(k)
j )∞j=1

∥∥∥
w,1

(4.2)

for every (x
(k)
j )∞j=1 ∈ `w1 (Ek), k = 1, . . . ,m and j = 1, . . . , N , where Bmult

K,m is the optimal
constant of the classical Bohnenblust–Hille inequality.

Proof. Let T ∈ L (E1, . . . , Em;K) and let (x
(k)
j )∞j=1 ∈ `w1 (Ek), k = 1, . . . ,m. From [72,

Prop. 2.2.] we have the boundedness of the linear operator uk : c0 → Ek such that

uk (ej) = x
(k)
j and ‖uk‖ = ‖(x(k)

j )∞j=1‖w,1 for each k = 1, . . . ,m. Thus, S : c0×· · ·×c0 → K
defined by S(y1, . . . , ym) = T (u1 (y1) , . . . , um (ym)) is a bounded m-linear operator and
‖S‖ ≤ ‖T‖‖u1‖ · · · ‖um‖. Therefore,(

∞∑
j1,...,jm=1

∣∣∣T (x(1)
j1
, . . . , x

(m)
jm

)∣∣∣ 2m
m+1

)m+1
2m

=

(
∞∑

j1,...,jm=1

|S (ej1 , . . . , ejm)|
2m
m+1

)m+1
2m

≤ Bmult
K,m ‖S‖ ≤ Bmult

K,m ‖T‖
m∏
k=1

‖uk‖

= Bmult
K,m ‖T‖

m∏
k=1

∥∥∥(x
(k)
j )∞j=1

∥∥∥
w,1

,
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as required.

In this sense, the Bohnenblust–Hille theorem (1.1) can be seen as the beginning of the
notion of multiple summing operators, that is, in the modern terminology, the classical
Bohnenblust–Hille inequality [42] ensures that, for all m ≥ 2 and all Banach spaces
E1, ..., Em,

L (E1, ..., Em;K) = Πm
mult( 2m

m+1
;1) (E1, ..., Em;K) .

4.1 Maximal spaceability and multiple summability

In this section we are interested in estimating the size of the set of non-multiple
summing (and non-absolutely summing) multilinear operators. For this task we use the
notion of spaceability.

Definition 4.4. For a given Banach space E, a subset A ⊂ E is spaceable if A ∪ {0}
contains a closed infinite-dimensional subspace V of E. When dimV = dimE, A is called
maximal spaceable.

For details on spaceability and the related notion of lineability we refer to [21, 37, 58]
and the references therein. The next result will be useful to our purpose (see [77, Theorem
5.6 and its reformulation] and [97]).

Lemma 4.5 (Drewnowski, 1984). Let X and Z be Banach spaces and T : Z → X a
continuous linear operator with range Y = T (Z) not closed. Then the complement XrY
is spaceable.

From now on c denotes the cardinality of the continuum.

Proposition 4.6. Let E1, ..., Em be separable Banach spaces. Then,

dimL(E1, . . . , Em;K) = c.

Proof. From [46, Remark 2.5] we know that dimL(E1, ..., Em;K) ≥ c. Since E1, ..., Em
are separable, let ωj ⊆ Ej, j = 1, ...,m, be a countable, dense subset of Ej and let γ be a
basis of L(E1, ..., Em;K). Define

g : γ → Kω1×···×ωm

T 7→ T |ω1×···×ωm ,

with Kω1×···×ωm the set of all functions from ω1 × · · · × ωm to K. Observe that g is
injective. Indeed, let S, T ∈ γ such that g(S) = g(T ), i.e., S|ω1×···×ωm = T |ω1×···×ωm .
Given x ∈ E1 × · · · × Em, since ω1 × · · · × ωm is dense on E1 × · · · × Em, there exist
(xn)∞n=1 ⊂ ω1 × · · · × ωm with limn→∞ xn = x. Since S and T are continuous, it follows
that

S(x) = S( lim
n→∞

xn) = lim
n→∞

S(xn) = lim
n→∞

T (xn) = T ( lim
n→∞

xn) = T (x).

Thus S = T and hence g is injective, as required. Therefore,

dimL(E1, ..., Em;K) = card(γ) ≤ card(Kω1×···×ωm) = card(KN) = c,

where KN is the set of all functions from N to K.
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Corollary 4.7. dim(L(m`p;K)) = c.

Before we introduce the next result, it is important to note that:

Remark 4.8. Let 1 ≤ s ≤ r <∞ and let E1, ..., Em, F be Banach spaces with dimEj <
∞ for all j = 1, ...,m. Then

L(E1, ..., Em;F ) = Πm
mult(r;s)(E1, ..., Em;F ).

In fact, since s ≤ r we have `s ⊆ `r and ‖ · ‖r ≤ ‖ · ‖s. Since Ej has finite dimension
for all j = 1, ...,m, it follows that `ws (Ej) = `s(Ej) for all j = 1, ...,m. Thus, consider

T ∈ L(E1, ..., Em;F ), n ∈ N and (x
(k)
jk

)njk=1 ∈ `ws (Ek), k = 1, ...,m, and observe that(
n∑

j1,...,jm=1

∥∥∥T (x
(1)
j1
, ..., x

(m)
jm

)
∥∥∥r) 1

r

=

∥∥∥∥(∥∥∥T (x
(1)
j1
, ..., x

(m)
jm

)
∥∥∥)n

j1,...,jm=1

∥∥∥∥
r

≤
∥∥∥∥(∥∥∥T (x

(1)
j1
, ..., x

(m)
jm

)
∥∥∥)n

j1,...,jm=1

∥∥∥∥
s

=

(
n∑

j1,...,jm=1

∥∥∥T (x
(1)
j1
, ..., x

(m)
jm

)
∥∥∥s) 1

s

≤ ‖T‖

(
n∑

j1,...,jm=1

‖x(1)
j1
‖s · · · ‖x(m)

jm
‖s
) 1

s

= ‖T‖

(
n∑

j1=1

‖x(1)
j1
‖s
) 1

s

· · ·

(
n∑

jm=1

‖x(m)
jm
‖s
) 1

s

= ‖T‖
m∏
k=1

∥∥∥(x
(k)
jk

)njk=1

∥∥∥
s

= ‖T‖
m∏
k=1

∥∥∥(x
(k)
jk

)njk=1

∥∥∥
w,s
,

i.e., T ∈ Πm
mult(r;s)(E1, ..., Em;F ).

Theorem 4.9. Let m ≥ 1, p ∈ [2,∞) . If 1 ≤ s < p∗ and r < 2ms/(s+ 2m−ms) then
L (m`p;K) r Πm

mult(r;s) (m`p;K) is maximal spaceable in L (m`p;K).

Proof. We consider the case of complex scalars. The case of real scalars is obtained
from the complex case via a standard complexification argument (see [47]). An extended
version of the Kahane–Salem–Zygmund inequality (see (2) and [6, Lemma 6.1]) asserts
that, if m,n ≥ 1 and p ∈ [2,∞], there exists a m-linear map An : `np × · · · × `np → K of
the form

An(z(1), . . . , z(m)) =
∑n

j1,...,jm=1±z
(1)
j1
· · · z(m)

jm
(4.3)

such that ‖An‖ ≤ Cmn
(mp+p−2m)/2p for certain constant Cm > 0.

Let β := (p+ s− ps)/ps. Observe that s < p∗ implies β > 0. From the previous
remark (Remark 4.8) we have(

n∑
j1,...,jm=1

∣∣∣An ( ej1
jβ1
, ...,

ejm
jβm

)∣∣∣r) 1
r

≤ πmult(r;s) (An)

∥∥∥∥( ejjβ)n
j=1

∥∥∥∥m
w,s

,

i.e., (
n∑

j1,...,jm=1

∣∣∣ 1

jβ1 ...j
β
m

∣∣∣r) 1
r

≤ πmult(r;s) (An)

∥∥∥∥( ejjβ)n
j=1

∥∥∥∥m
w,s

. (4.4)
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Let us investigate separately the both sides of (4.4). On the one hand,(
n∑

j1,...,jm=1

∣∣∣ 1

jβ1 ...j
β
m

∣∣∣r) 1
r

=

(
n∑

j1=1

· · ·
n∑

jm=1

∣∣∣ 1

jβ1 ...j
β
m

∣∣∣r) 1
r

=

(
n∑

j1=1

1

jrβ1

) 1
r

· · ·

(
n∑

jm=1

1

jrβm

) 1
r

=

(
n∑
j=1

1
jrβ

)m
r

. (4.5)

On the other hand, for n ≥ 2, since βs+ s/p∗ = 1, we obtain

∥∥∥∥( ejjβ)n
j=1

∥∥∥∥
w,s

= sup
ϕ∈B`∗p

(
n∑
j=1

∣∣∣ϕ( ejjβ)∣∣∣s
) 1

s

= sup
ϕ∈B`p∗

(
n∑
j=1

|ϕj|s 1
jβs

) 1
s

≤

( n∑
j=1

|ϕj|p
∗

) s
p∗
(

n∑
j=1

1
j

)βs
 1

s

≤

(
n∑
j=1

1
j

)β

=

(
1 +

n∑
j=2

inf
{

1
x

: x ∈ [j − 1, j]
})β

<
(
1 +

∫ n
1

1
x
dx
)β

= (1 + log n)β . (4.6)

Hence, replacing (4.5) and (4.6) in (4.4), we have(
n∑
j=1

1
jrβ

)m
r

< πmult(r;s) (An) (1 + log n)mβ

and consequently (since
∑n

j=1 1/jrβ ≥
∑n

j=1 1/nrβ = n1−rβ)(
n1−rβ)mr < πmult(r;s) (An) (1 + log n)mβ .

Since ‖An‖ ≤ Cmn
(mp+p−2m)/2p, we have

πmult(r;s)(An)

‖An‖ > n
m
r −( p+s−psps )m

(1+logn)mβCmn
mp+p−2m

2p
= n

m
r +m2 −

m
s −

1
2

Cm(1+logn)rβ
.

Using that r < 2ms/(s+ 2m−ms) we get m/r + m/2 −m/s − 1/2 > 0. Therefore, by
making n→∞, it follows that

limn→∞
πmult(r;s)(An)

‖An‖ =∞. (4.7)

Using the above limit, let us prove that Πm
mult(r;s) (m`p;K) is not closed in L (m`p;K). In

fact, suppose (contrary to our claim) that Πm
mult(r;s) (m`p;K) is closed in L (m`p;K). Then(

Πm
mult(r;s) (m`p;K) , ‖ · ‖

)
is a Banach space and, since ‖ · ‖ ≤ πmult(r;s)(·) (see Proposition

5.3), we conclude that id :
(

Πm
mult(r;s) (m`p;K) , πmult(r;s)(·)

)
→
(

Πm
mult(r;s) (m`p;K) , ‖ · ‖

)
given by T 7→ T is continuous. Thus by the Open Mapping Theorem (see [53, Corollary
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2.7]) we conclude that id−1 is also continuous and thus there exists C > 0 such that
πmult(r;s)(·) ≤ C‖ · ‖, contrary to (4.7).

Therefore, from Lemma 4.5 we conclude that L (m`p;K) r Πm
mult(r;s) (m`p;K) is space-

able. It remains to prove the maximal spaceability. From Corollary 4.7 we know that
dim (L(m`p;K)) = c. Thus, if V ⊆ (L(m`p;K)rΠm

mult(r;s)(
m`p;K))∪{0} is a closed infinite-

dimensional subspace of L(m`p;K), we have dim(V ) ≤ c. Since V is a Banach space, we
also have dim(V ) ≥ c (see [46, Remark 2.5]). Thus, by the Cantor–Bernstein–Schröeder
Theorem, it follows that dim(V ) = c and the proof is done.

Remark 4.10. It is interesting to mention that it was not necessary to suppose the
Continuum Hypothesis. In fact, the proof given in, for instance, [46, Remark 2.5] of the
fact that the dimension of every infinite-dimensional Banach space is, at least, c does not
depends on the Continuum Hypothesis.

4.2 Some consequences

Here we show some consequences of the results of the previous section. For instance,
we observe a new optimality component of the Bohnenblust–Hille inequality: the term 1
from the pair (2m/(m+ 1); 1) is also optimal.

The following result is a simple consequence of Theorem 4.9.

Corollary 4.11. Let m ≥ 2 and r ∈ [2m/(m+ 1), 2]. Then

sup
{
s : L(m`p;K) = Πm

mult(r;s)(
m`p;K)

}
≤ 2mr

mr+2m−r

for all 2 ≤ p < 2mr/(r +mr − 2m).

Proof. Since 2m/(m+ 1) ≤ r ≤ 2 < 2m, it follows that 1 ≤ 2mr/(mr + 2m− r) and 2 <
2mr/(r +mr − 2m). Note that s > 2mr/(mr + 2m− r) implies r < 2ms/(s+ 2m−ms).
Therefore, for 2 ≤ p < 2mr

r+mr−2m
, from Theorem 4.9 we know that

L (m`p;K) r Πm
mult(r;s) (m`p;K)

is spaceable for all 2mr/(mr + 2m− r) < s < p∗ (note that p < 2mr/(r +mr − 2m)
implies p∗ > 2mr/(mr + 2m− r)). In particular, for 2 ≤ p < 2mr/(r +mr − 2m),

sup
{
s : L(m`p;K) = Πm

mult(r;s)(
m`p;K)

}
≤ 2mr

mr+2m−r .

This corollary together with Theorem 4.9 ensure that, for r ∈ [2m/(m+ 1), 2] and
2 ≤ p < 2mr/(r +mr − 2m),

sup
{
s : L(m`p;K) = Πm

mult(r;s)(
m`p;K)

}
= 2mr

mr+2m−r .

When p = 2 the expression above recovers the optimality of [47, Theorem 5.14] in the
case of m-linear operators on `2 × · · · × `2.
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In 2010 G. Botelho, C. Michels and D. Pellegrino [47] have shown that for m ≥ 1 and
Banach spaces E1, ..., Em of cotype 2,

L (E1, ..., Em;K) = Πm
mult(2; 2m

2m−1) (E1, ..., Em;K) ,

whereas for Banach spaces of cotype k > 2,

L (E1, ..., Em;K) = Πm
mult(2; km

km−1
−ε) (E1, ..., Em;K)

for all sufficiently small ε > 0. We now remark that it is not necessary to make any
assumptions on the Banach spaces E1, ..., Em and 2m/(2m− 1) holds in all cases. Given
k > 2, in [117, page 194] it is said that it is not known if s = km/(km− 1) is attained or
not in

sup{s : L(E1, ..., Em;K) = Πm
mult(2;s)(E1, ..., Em;K) for allEj of cotype k} ≥ km

km−1
.

The fact that 2m/(2m− 1) can replace km/(km− 1) in all cases ensures that s =
km/(km− 1) is not attained and thus refines the estimate of [117, Corollary 3.1], which
can be improved to

sup{s : L(E1,..., Em;K) = Πm
mult(2;s)(E1, ..., Em;K) for all Ej of cotype k}

∈
[

2m
2m−1

, 2km
2km+k−2m

]
if k > 2 and m ≥ k is a positive integer.

More precisely we prove the following more general result. Let us remark that part
(i) of the theorem bellow can be also derived from [5, 73], although it is not explicitly
written in the aforementioned papers:

Theorem 4.12. Let m ≥ 2 and let r ∈ [2m/(m+ 1),∞). Then the optimal s such that

L (E1, ..., Em;K) = Πm
mult(r;s) (E1, ..., Em;K) .

for all Banach spaces E1, ..., Em is:

(i) 2mr
mr+2m−r if r ∈

[
2m
m+1

, 2
]
;

(ii) mr
mr+1−r if r ∈ (2,∞).

Proof. (i) For 1 ≤ q < ∞, let Xq = `q and let us define X∞ = c0. Consider q :=
2mr/(r +mr − 2m). Since r ∈ [2m/(m+ 1), 2] we have q ∈ [2m,∞]. Since m/q ≤ 1/2
and r = 2m/(m + 1− 2m/q), from the multilinear Hardy–Littlewood inequality there is
a constant C ≥ 1 such that(

∞∑
j1,....,jm=1

|A (ej1 , ..., ejm)|r
) 1

r

≤ C ‖A‖ ,

for all continuous m-linear operators A : Xq × · · · ×Xq → K. Let T ∈ L (E1, ..., Em;K)

and (x
(k)
j )∞j=1 ∈ `wq∗(Ek), k = 1, ...,m. Now we use a standard argument (see [5]) to lift the

result from Xq to arbitrary Banach spaces. From [72, Proposition 2.2] there is a continuous
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linear operator uk : Xq → Ek so that uk(ejk) = x
(k)
jk

and ‖uk‖ = ‖(x(k)
j )∞j=1‖w,q∗ for all k =

1, ...,m. Therefore, S : Xq×· · ·×Xq → K defined by S(y1, ..., ym) = T (u1(y1), ..., um(ym))
is m-linear, continuous and

‖S‖ ≤ ‖T‖
m∏
k=1

‖uk‖ = ‖T‖
m∏
k=1

∥∥∥(x
(k)
j )∞j=1

∥∥∥
w,q∗

.

Hence (
∞∑

j1,...,jm=1

∣∣∣T (x(1)
j1
, ..., x

(m)
jm

)∣∣∣r) 1
r

≤ C‖T‖
m∏
k=1

∥∥∥(x
(k)
j )∞j=1

∥∥∥
w,q∗

and, since q∗ = 2mr/(mr + 2m− r), the last inequality proves that, for all m ≥ 2 and
r ∈ [2m/(m+ 1), 2],

L (E1, ..., Em;K) = Πm
mult(r; 2mr

mr+2m−r )
(E1, ..., Em;K) .

Now let us prove the optimality. From what we have just proved, for r ∈ [2m/(m+ 1), 2],
we have

Um,r := sup
{
s : L(E1, ..., Em;K) = Πm

mult(r;s)(E1, ..., Em;K) for all Banach spaces Ej
}

≥ 2mr
mr+2m−r .

From Corollary 4.11 we have, for 2 ≤ p < 2mr/(r +mr − 2m),

sup
{
s : L(m`p;K) = Πm

mult(r;s)(
m`p;K)

}
≤ 2mr

mr+2m−r .

Therefore,

Um,r ≤ sup
{
s : L(m`p;K) = Πm

mult(r;s)(
m`p;K)

}
≤ 2mr

mr+2m−r .

and we conclude that Um,r = 2mr/(mr + 2m− r).

(ii) Given r > 2 consider m < p < 2m such that r = p/(p−m). In this case,
p = mr/(r − 1) and p∗ = mr/(mr + 1− r). From [73, Proposition 4.1] we know that

Πm
mult(r; mr

mr+1−r )(
m`p;K) = L(m`p;K) (4.8)

and the result is optimal, i.e., r = p/(p−m) cannot be improved. If s > p∗ let ε > 0 and
q ∈ (m, 2m) be such that q∗ = p∗ + ε < s. Since m < q < 2m, from [73, Proposition 4.1]
we have

Πm
mult( q

q−m ;q∗)(
m`q;K) = L(m`q;K)

and q/(q −m) is optimal. Since q/(q −m) > p/(p−m) we conclude that

Πm
mult( p

p−m ;q∗)(
m`q;K) 6= L(m`q;K),

and, a fortiori,
Πm

mult(r;s)(
m`q;K) 6= L(m`q;K).

and the proof is done.
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The following graph (Figure 4.1) illustrates for which (r, s) ∈ [1,∞)× [1, r] we have

L (E1, ..., Em;K) = Πm
mult(r;s) (E1, ..., Em;K) .
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Figure 4.1: Areas of coincidence for Πm
mult(r;s) (E1, ..., Em;K), (r, s) ∈ [1,∞)× [1, r].

The table below details the results of coincidence and non-coincidence in the “boun-
daries” of Figure 4.1. We can clearly see that the only case that remains open is the case
(r; s) with r > 2 and 2m/(2m− 1) < s ≤ mr/(mr + 1− r).

r ≥ 1 s = r non-coincidence

1 ≤ r < 2m
m+1

s = 1 non-coincidence
2m
m+1
≤ r ≤ 2 s = 2mr

mr+2m−r coincidence

r ≥ 2m
m+1

s = 1 coincidence

r > 2 s = mr
mr+1−r coincidence

4.3 Multiple (r; s)-summing forms in c0 and `∞ spaces

From standard localization procedures, coincidence results for c0 and `∞ are the same;
so we will restrict our attention to c0. It is well known that Πm

mult(r;s) (mc0;K) = L (mc0;K)

whenever r ≥ s ≥ 2 (see [47]). When s = 1, as a consequence of the Bohnenblust–Hille
inequality, we also know that the equality holds if and only if s ≥ 2m/(m+ 1). The next
result encompasses essentially all possible cases:

Proposition 4.13. If s ∈ [1,∞) then

inf
{
r : Πm

mult(r;s) (mc0;K) = L (mc0;K)
}

=

{
2m
m+1

if 1 ≤ s ≤ 2m
m+1

,

s if s ≥ 2m
m+1

.
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Proof. The case r ≥ s ≥ 2 is immediate (see [47, Corollary 4.10]). The Bohnenblust–Hille
inequality assures that when s = 1 the best choice for r is 2m/(m+ 1). So, it is obvious
that for 1 ≤ s ≤ 2m/(m+ 1) the best value for r is not smaller than 2m/(m+ 1). More
precisely,

Πm
mult(r;s) (mc0;K) 6= L (mc0;K)

whenever (r, s) ∈ [1, 2m/(m+ 1)) × [1, 2m/(m+ 1)] and r ≥ s. An adaptation of deep
result due to Pisier [125] to multiple summing operators (see [123, Theorem 3.16] or [47,
Lemma 5.2]) combined with the coincidence result for (r; s) = (2m/(m+ 1); 1) tells us
that we also have

L(mc0;K) = Πm
mult( 2m

m+1
;s)(mc0;K) (4.9)

for all 1 < s < 2m
m+1

. The remaining case (r; s) with 2m/(m+ 1) < s < 2 follows from
an interpolation procedure in the lines of [47, Proposition 4.3]. More precisely, given
2m/(m+ 1) < r < 2 and 0 < δ < (r(2− θ)− 2)/(2− θ), where θ = (mr + r − 2m)/r,
consider

ε = 2m
m+1
− 2(1−θ)(r−δ)

2−θ(r−δ) .

Note that 1 < 2(1− θ)(r − δ)/(2− θ(r − δ)) < 2m/(m+ 1) and thus 2m/(m+ 1) − ε =
2(1− θ)(r − δ)/(2− θ(r − δ)) ∈ (1, 2m/(m+ 1)). By (4.9) we know that

L(mc0;K) = Πm
mult( 2m

m+1
; 2m
m+1

−ε)(mc0;K) (4.10)

and by [44, Theorem 3.1] we have

L(mc0;K) = Πm
mult(2;2)(

mc0;K). (4.11)

Since
1
r

= θ
2

+ 1−θ
2m
m+1

and 1
r−δ = θ

2
+ 1−θ

2m
m+1

−ε ,

from (4.10) and (4.11) and invoking [47, Proposition 4.3] we conclude that L(mc0;K) =
Πm

mult(r;r−δ)(
mc0;K).

The following graph (Figure 4.2) illustrates for which (r, s) ∈ [1,∞)× [1, r] we have

L (mc0;K) = Πm
mult(r;s) (mc0;K) .

The table below details the results of coincidence and non-coincidence in the “boun-
daries” of Figure 4.2.

1 ≤ r < 2m
m+1

s = 1 non-coincidence

r = 2m
m+1

1 ≤ s < 2m
m+1

coincidence

r ≥ 2m
m+1

s = 1 coincidence

1 ≤ r < 2m
m+1

s = r non-coincidence
2m
m+1
≤ r < 2 s = r unknown

r ≥ 2 s = r coincidence



Chapter 4. Absolutely summing multilinear operators 63

−0.5

0

0.5

1

1.5

2

2.5

3

non coincidence coincidence

0 1 2m

m+1
2 3

0

1

2m

m+1

2

3

Figure 4.2: Areas of coincidence for Πm
mult(r;s) (mc0;K), (r, s) ∈ [1,∞)× [1, r].

We notice the only case that remains open is the case (r; s) with 2m/(m+ 1) ≤ r < 2
and s = r.

4.4 Absolutely summing multilinear operators

In this section we investigate the optimality of coincidence results within the framework
of absolutely summing multilinear operators and, as consequence, we observe that the
Defant–Voigt Theorem (see [8, Theorem 3.10], [23, Theorem 3], [49, Corollary 3.2] and
[127] for a very interesting approach) is optimal.

Theorem 4.14 (Defant–Voigt). For all Banach spaces E1, ..., Em,

Πm
as(1;1)(E1, ..., Em;K) = L(E1, ..., Em;K)

Combining the Defant–Voigt Theorem and a canonical inclusion theorem (see [52,
Proposition 2.1] and [103, Proposition 3.5]) we conclude that, for r, s ≥ 1 and s ≤
mr/(mr + 1− r), we have

Πm
as(r;s)(E1, ..., Em;K) = L(E1, ..., Em;K)

for all E1, ..., Em. From [137, Proposition 1] it is possible to prove that for r > 1 and
r/(mr + 1− r) ≤ t < r,

Πm
as(t; mr

mr+1−r )(E1, ..., Em;K) 6= L(E1, ..., Em;K)

for some choices of E1, ..., Em. In fact (repeating an argument used in the proof of Theorem
4.12), given r > 1, consider p > m such that p/(p−m) = r and observe that in this case
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mr/(mr + 1− r) = p∗ and thus we just need to prove that for all p∗/m ≤ t < p/(p−m),

Πm
as(t;p∗)(E1, ..., Em;K) 6= L(E1, ..., Em;K).

From [137, Proposition 1] we know that if p > m and p∗/m ≤ t < p/(p−m), then there
is a continuous m-linear form φ such that φ /∈ Πm

as(t;p∗)(E1, ..., Em;K), i.e.,

Πm
as(t;p∗)(E1, ..., Em;K) 6= L(E1, ..., Em;K).

All these pieces of information provide Figure 4.3, which illustrates for which (r, s) ∈
[1,∞)× [1,mr] we have

L (E1, ..., Em;K) = Πm
as(r;s) (E1, ..., Em;K) .
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Figure 4.3: Areas of coincidence for Πm
as(r;s) (E1, ..., Em;K), (r, s) ∈ [1,∞)× [1,mr].

The table below details the results of coincidence and non-coincidence in the “boun-
daries” of Figure 4.3. The only possible open situation is the case (r; s) with s = 1 and
r < 1, which we answer in the next lines.

1
m
≤ r < 1 s = 1 not known

r > 1
m

s = mr non-coincidence

r ≥ 1 s = 1 coincidence

r ≥ 1 s = mr
mr+1−r coincidence

Theorem 4.15. The Defant–Voigt Theorem is optimal. More precisely, if m ≥ 1 is a
positive integer, then

min

{
r :
L(E1, ..., Em;K) = Πm

as(r;1)(E1, ..., Em;K) for all

infinite-dimentional Banach spaces Ej

}
= 1.
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Proof. The equality holds for r = 1; this is the so called Defant–Voigt Theorem. It
remains to prove that the equality does not hold for r < 1. This is simple; we just need
to choose Ej = c0 for all j and suppose that

L(E1, ..., Em;K) = Πm
as(r;1)(E1, ..., Em;K). (4.12)

For all positive integers n, consider the m-linear forms Tn : c0 × · · · × c0 → K defined
by Tn(x(1), ..., x(m)) =

∑n
j=1 x

(1)
j · · ·x

(m)
j . Then it is plain that ‖Tn‖ = n and, from (4.12)

and from the Open Mapping Theorem for F-spaces (see [130, Corollary 2.12]), there is a
C ≥ 1 such that(

n∑
j=1

|Tn(ej, ..., ej)|r
) 1

r

≤ C ‖Tn‖
m∏
k=1

sup
ϕ∈BE∗

k

n∑
j=1

|ϕ(ej)| = Cn,

i.e., n1/r ≤ Cn. Since n is arbitrary, we conclude that r ≥ 1.

This simple proposition ensures that the zone defined by r < 1 and s = 1 in the
Figure 4.3 is a non-coincidence zone,i.e., the Defant–Voigt Theorem is optimal. Therefore,
we can construct a new table for the results of coincidence and non-coincidence in the
“boundaries” of Figure 4.3:

1
m
≤ r < 1 s = 1 non-coincidence

r ≥ 1
m

s = mr non-coincidence

r ≥ 1 s = 1 coincidence

r ≥ 1 s = mr
mr+1−r coincidence
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Chapter 5
A unified theory and consequences

Our main purpose here is to present a new class of summing multilinear operators,
which recovers the class of absolutely and multiple summing operators.

5.1 Multiple summing operators with multiple expo-

nents

For p := (p1, . . . , pm) ∈ [1,+∞)m,we shall consider the space

`p(E) := `p1 (`p2 (· · · (`pm(E)) · · · )) ,

namely, a vector matrix (xi1...im)∞i1,...,im=1 ∈ `p(E) if, and only if,

∥∥∥(xi1...im)∞i1,...,im=1

∥∥∥
`p(E)

:=

 ∞∑
i1=1

(
. . .

(
∞∑

im=1

‖xi1...im‖
pm
E

) pm−1
pm

. . .

) p2
p1


1
p1

< +∞.

When E = K, we simply write `p. Taking into account all that we have done in previous
chapters, the following definition seems natural:

Definition 5.1. Let p,q ∈ [1,+∞)m. A multilinear operator T : E1 × · · · × Em → F is
multiple (q; p)-summing if there exist a constant C > 0 such that ∞∑

j1=1

· · ·( ∞∑
jm=1

∥∥∥T (x
(1)
j1
, . . . , x

(m)
jm

)
∥∥∥qm
F

) qm−1
qm

· · ·


q1
q2


1
q1

≤ C
m∏
k=1

∥∥∥(x
(k)
j )∞j=1

∥∥∥
w,pk

for all (x
(k)
j )∞j=1 ∈ `wpk (Ek). We represent the class of all multiple (q; p)-summing operators

by Πm
mult(q;p) (E1, . . . , Em;F ).

Of course, when q1 = · · · = qm = q, then

Πm
mult(q;p) (E1, . . . , Em;F ) = Πm

mult(q;p) (E1, . . . , Em;F ) .
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As it happens with absolutely and multiple summing operators, the following result
characterizes the multiple (q; p)-summing operators.

Proposition 5.2. Let T : E1 × · · · × Em → F be a continuous multilinear operator and
p,q ∈ [1,+∞)m. The following are equivalent:

(1) T is multiple (q; p)-summing;

(2)
(
T (x

(1)
j1
, . . . , x

(m)
jm

)
)∞
j1,...,jm=1

∈ `q (F ) whenever (x
(k)
j )∞j=1 ∈ `wpk (Ek).

(3) There exist a constant C > 0 such that n∑
j1=1

· · ·( n∑
jm=1

∥∥∥T (x
(1)
j1
, . . . , x

(m)
jm

)
∥∥∥qm
F

) qm−1
qm

· · ·


q1
q2


1
q1

≤ C
m∏
k=1

∥∥∥(x
(k)
j )nj=1

∥∥∥
w,pk

for all positive integer n and all (x
(k)
j )nj=1 ∈ `wpk (Ek).

Proof. By definition, it follows that (1) ⇒ (2). Let us prove now that (2) ⇒ (1). Sup-
posing (2), we can define the m-linear operator

T̂ : `wp1 (E1)× · · · × `wpm (Em) → `q(F )(
(x

(1)
j )∞j=1, ..., (x

(m)
j )∞j=1

)
7→

(
T (x

(1)
j1
, ..., x

(m)
jm

)
)∞
j1,...,jm=1

.
(5.1)

Observe that T̂ is a continuous m-linear operator. In fact, let ((x
(k)
j,s )∞j=1)∞s=1 ⊂ `wpk (Ek),

k = 1, ...,m, such that
(x

(k)
j,s )∞j=1 → (x

(k)
j )∞j=1 in `wpk (Ek) (5.2)

and
T̂
(

(x
(1)
j1,s

)∞j1=1, ..., (x
(m)
jm,s

)∞jm=1

)
→ (yj1,...,jm)∞j1,...,jm=1 in `q(F ). (5.3)

From (5.2) we have that for every k ∈ {1, ...,m}, given ε > 0, there exist N ∈ N which
verify

s ≥ N ⇒ sup
ϕ∈BE∗

k

(
∞∑
j=1

∣∣∣ϕ(x
(k)
j,s − x

(k)
j )
∣∣∣pk) 1

pk

< ε.

So

s ≥ N ⇒
∞∑
j=1

∣∣∣ϕ(x
(k)
j,s − x

(k)
j )
∣∣∣pk < εpk for all ϕ ∈ BE∗k

and all k ∈ {1, ...,m}

and thus |ϕ(x
(k)
j,s − x

(k)
j )| < ε for all ϕ ∈ BE∗k

and all {j, k} ∈ N × {1, ...,m}. Then, from
the Hahn–Banach Theorem we conclude that

s ≥ N ⇒
∥∥∥x(k)

j,s − x
(k)
j

∥∥∥
Ek

= sup
ϕ∈BE∗

k

∣∣∣ϕ(x
(k)
j,s − x

(k)
j )
∣∣∣ ≤ ε for all {j, k} ∈ N× {1, ...,m},

i.e., x
(k)
j,s → x

(k)
j in Ek for all j ∈ N and all k ∈ {1, ...,m}. Since T is a continuous

multilinear operator, it follows that T (x
(1)
j1,s
, ..., x

(m)
jm,s

)→ T (x
(1)
j1
, ..., x

(m)
jm

) in F for all fixed
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j1, ..., jk ∈ N. From (5.3), given ε > 0, there exist M ∈ N such that

s ≥M ⇒
∥∥∥T̂ ((x

(1)
j1,s

)∞j1=1, ..., (x
(m)
jm,s

)∞jm=1

)
− (yj1,...,jm)∞j1,...,jm=1

∥∥∥
`q(F )

< ε,

from which we can obtain that, for s ≥M ,
∥∥∥T (x

(1)
j1,s
, ..., x

(m)
jm,s

)− yj1,...,jm
∥∥∥
F
< ε for all fixed

j1, ..., jk ∈ N. We deduce from the uniqueness of the limit that T (x
(1)
j1
, ..., x

(m)
jm

) = yj1,...,jm
for every j1, ..., jk ∈ N. Hence

T̂
(

(x
(1)
j1,s

)∞j1=1, ..., (x
(m)
jm,s

)∞jm=1

)
=
(
T (x

(1)
j1,s
, ..., x

(m)
jm,s

)
)∞
j1,...,jm=1

= (yj1,...,jm)∞j1,...,jm=1

and then, from the Closed Graph Theorem, we obtain that T̂ is a continuous m-linear
operator. Therefore, there is C > 0 such that∥∥∥∥(T (x

(1)
j1
, ..., x

(m)
jm

)
)∞
j1,...,jm=1

∥∥∥∥
`q(F )

=
∥∥∥T̂ ((x

(1)
j1

)∞j1=1, ..., (x
(m)
jm

)∞jm=1

)∥∥∥
`q(F )

≤ C
∥∥∥(x

(1)
j )∞j=1

∥∥∥
w,p1
· · ·
∥∥∥(x

(m)
j )∞j=1

∥∥∥
w,pm

.

(1) ⇒ (3). Fix n ∈ N and let (x
(1)
j )nj=1 ∈ E1, ..., (x

(m)
j )nj=1 ∈ Em. Then (x

(k)
j )∞j=1 =

(x
(k)
1 , x

(k)
2 , ..., x

(k)
n , 0, 0, ...) ∈ `wpk (Ek) for every k ∈ {1, ...,m}. Thus, using (1), we get∥∥∥∥(T (x(1)

j1
, ..., x

(m)
jm

))n
j1,...,jm=1

∥∥∥∥
`q(F

=

∥∥∥∥(T (x
(1)
j1
, ..., x

(m)
jm

)
)∞
j1,...,jm=1

∥∥∥∥
`q(F )

≤ C
∥∥∥(x

(1)
j )∞j=1

∥∥∥
w,p1
· · ·
∥∥∥(x

(m)
j )∞j=1

∥∥∥
w,pm

= C
∥∥∥(x

(1)
j )nj=1

∥∥∥
w,p1
· · ·
∥∥∥(x

(m)
j )nj=1

∥∥∥
w,pm

.

(3) ⇒ (1). Consider (x
(1)
j )∞j=1 ∈ `wp1 (E1) , ..., (x

(m)
j )∞j=1 ∈ `wpm (Em). Therefore∥∥∥∥(T (x

(1)
j1
, ..., x

(m)
jm

)
)∞
j1,...,jm=1

∥∥∥∥
`q(F

= sup
n

∥∥∥∥(T (x
(1)
j1
, ..., x

(m)
jm

)
)n
j1,...,jm=1

∥∥∥∥
`q(F )

≤ C sup
n

∥∥∥(x
(1)
j )nj=1

∥∥∥
w,p1
· · ·
∥∥∥(x

(m)
j )nj=1

∥∥∥
w,pm

= C
∥∥∥(x

(1)
j )∞j=1

∥∥∥
w,p1
· · ·
∥∥∥(x

(m)
j )∞j=1

∥∥∥
w,pm

.

This concludes the proof.

It is not to difficult to prove that Πm
mult(q;p)(E1, ..., Em;F ) is a subspace of L(E1,

...,Em;F ) and the infimum of the constants satisfying the above definition (Definition
5.1), i.e.,

inf

C ≥ 0 ;

∥∥∥∥(T (x
(1)
j1
, . . . , x

(m)
jm

)
)∞
j1,...,jm=1

∥∥∥∥
`q(F )

≤ C
m∏
k=1

∥∥∥(x
(k)
j )∞j=1

∥∥∥
w,pk

,

for all (x
(k)
j )∞j=1 ∈ `wpk (Ek) , k = 1, ...,m


defines a norm in Πm

mult(q;p) (E1, . . . , Em;F ), which will be denoted by πmult(q;p)(T ).
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Proposition 5.3. Let p,q ∈ [1,+∞)m. If T ∈ Πm
mult(q;p)(E1, . . . , Em;F ), then

‖T‖L(E1,...,Em;F ) ≤ πmult(q;p)(T ).

Proof. Consider xj ∈ BEj , j = 1, ...,m, and define (x
(j)
i )∞i=1 := (xj, 0, ...). It is clear that

(x
(j)
i )∞i=1 ∈ `wpj(Ej) for every j = 1, ...,m. Therefore, for T ∈ Πm

mult(q;p)(E1, ..., Em;F ),

‖T (x1, ..., xm)‖F

=

 ∞∑
j1=1

· · ·( ∞∑
jm=1

∥∥∥T (x
(1)
j1
, ..., x

(m)
jm

)
∥∥∥qm
F

) qm−1
qm

· · ·


q1
q2


1
q1

≤ πmult(q;p)(T )
m∏
j=1

∥∥∥(x
(j)
i )∞i=1

∥∥∥
w,pj

= πmult(q;p)(T )
m∏
j=1

sup
ϕ∈BE∗

j

(
∞∑
i=1

∣∣∣ϕ(x
(j)
i )
∣∣∣pj) 1

pj

= πmult(q;p)(T )
m∏
j=1

sup
ϕ∈BE∗

j

|ϕ(xj)|

= πmult(q;p)(T )
m∏
j=1

‖xj‖Ej = πmult(q;p)(T ),

as required.

Given T ∈ Πm
mult(q;p)(E1, . . . , Em;F ), we have defined in (5.1) the continuous m-linear

operator T̂ . Let us prove now that

‖T̂‖ = πmult(q;p)(T ). (5.4)

In fact, first note that∥∥∥∥(T (x
(1)
j1
, ..., x

(m)
jm

)
)∞
j1,...,jm=1

∥∥∥∥
`q(F )

=
∥∥∥T̂ ((x

(1)
j )∞j=1, ..., (x

(m)
j )∞j=1

)∥∥∥
`q(F )

≤ ‖T̂‖
∏m

k=1

∥∥∥(x
(k)
j )∞j=1

∥∥∥
w,pk

,

that is, πmult(q;p)(T ) ≤ ‖T̂‖. On the other hand, we have

‖T̂‖ = sup
(x

(k)
j )∞j=1∈B`wpk (Ek)

∥∥∥T̂ ((x
(1)
j )∞j=1, ..., (x

(m)
j )∞j=1

)∥∥∥
= sup

(x
(k)
j )∞j=1∈B`wpk (Ek)

∥∥∥∥(T (x
(1)
j1
, ..., x

(m)
jm

)
)∞
j1,...,jm=1

∥∥∥∥
`q(F )

≤ sup
(x

(k)
j )∞j=1∈B`wpk (Ek)

πmult(q;p)(T )
m∏
k=1

∥∥∥(x
(k)
j )∞j=1

∥∥∥
w,pk

= πmult(q;p)(T ),
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which proves (5.4).

We can naturally define the continuous operator

θ̂ : Πm
mult(q;p)(E1, . . . , Em;F ) → L

(
`wp1(E1), . . . , `wpm(Em); `q(F )

)
T 7→ T̂ ,

which, due to equation (5.4), is an isometry. These facts allow us to prove the following:

Theorem 5.4. Let p,q ∈ [1,+∞)m. Then (Πm
mult(q;p)(E1, ..., Em;F ), πmult(q;p)( · )) is a

Banach space.

Proof. Let (Tj)
∞
j=1 be a Cauchy sequence in Πm

mult(q;p)(E1, ..., Em;F ). Since ‖ · ‖ ≤
πmult(q;p) (·) (Proposition 5.3), it follows that (Tj)

∞
j=1 is also a Cauchy sequence in L(E1, ...,

Em;F ). Thus, consider T ∈ L(E1, ..., Em;F ) such that Tj → T in L(E1, ..., Em;F ). Let

us prove that T ∈ Πm
mult(q;p)(E1, ..., Em;F ). In fact, let (x

(k)
j )∞j=1 ⊂ `wpk(Ek), k = 1, ...,m. It

is enough to prove that (T (x
(1)
j1
, ..., x

(m)
jm

))∞j1,...,jm=1 ∈ `q(F ). Since θ̂ is an isometry, (T̂j)
∞
j=1

is a Cauchy sequence in L(`wp1(E1), ..., `wpm(Em); `q(F )), which is a Banach space because
`q(F ) is a Banach space. Thus, there exist S ∈ L(`wp1(E1), ..., `wpm(Em); `q(F )) such that

T̂j → S in L(`wp1(E1), ..., `wpm(Em); `q(F )). Therefore, if we consider Pk1,...,km : `q(F ) → F
the continuous linear operator given by

(yj1···jm)∞j1,...,jm=1 7→ yk1···km ,

and ε > 0 a positive real number, there exist a positive integer N such that∥∥∥Pk1,...,km (S((x
(1)
j1

)∞j1=1, ..., (x
(m)
jm

)∞jm=1)
)
− T (x

(1)
k1
, ..., x

(m)
km

)
∥∥∥
F

≤
∥∥∥Pk1,...,km (T̂j((x(1)

j1
)∞j1=1, ..., (x

(m)
jm

)∞jm=1)
)

− Pk1,...,km

(
S((x

(1)
j1

)∞j1=1, ..., (x
(m)
jm

)∞jm=1)
)∥∥∥

F

+
∥∥∥Pk1,...,km (T̂j((x(1)

j1
)∞j1=1, ..., (x

(m)
jm

)∞jm=1)
)
− T (x

(1)
k1
, ..., x

(m)
km

)
∥∥∥
F

=
∥∥∥Pk1,...,km (T̂j((x(1)

j1
)∞j1=1, ..., (x

(m)
jm

)∞jm=1)

− S((x
(1)
j1

)∞j1=1, ..., (x
(m)
jm

)∞jm=1)
)∥∥∥

F

+
∥∥∥Pk1,...,km ((Tj(x

(1)
j1
, ..., x

(m)
jm

))∞j1,...,jm=1

)
− T (x

(1)
k1
, ..., x

(m)
km

)
∥∥∥
F

≤ ‖Pk1,...,km‖
∥∥∥T̂j((x(1)

j1
)∞j1=1, ..., (x

(m)
jm

)∞jm=1)

− S((x
(1)
j1

)∞j1=1, ..., (x
(m)
jm

)∞jm=1)
∥∥∥
`q(F )

+
∥∥∥Tj(x(1)

k1
, ..., x

(m)
km

)− T (x
(1)
k1
, ..., x

(m)
km

)
∥∥∥
F

≤ C‖Pk1,...,km‖‖T̂j − S‖+ C‖Tj − T‖
< ε

for every j ≥ N . Then Pk1,...,km(S((x
(1)
j1

)∞j1=1, ..., (x
(m)
jm

)∞jm=1)) = T (x
(1)
k1
, ..., x

(m)
km

) for all
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k1, ..., km ∈ N, and consequently

S((x
(1)
j1

)∞j1=1, ..., (x
(m)
jm

)∞jm=1) = (T (x
(1)
j1
, ..., x

(m)
jm

))∞j1,...,jm=1. (5.5)

This proves that (T (x
(1)
j1
, ..., x

(m)
jm

))∞j1,...,jm=1 ∈ `q(F ), as required.

By definition we have T̂ ((x
(1)
j1

)∞j1=1, ..., (x
(m)
jm

)∞jm=1) = (T (x
(1)
j1
, ..., x

(m)
jm

))∞j1,...,jm=1. Re-

placing the above expression in (5.5) we conclude that T̂ = S. Thus, given ε > 0, it

follows from (5.4) that, for sufficiently large j, πmult(q;p)(Tj − T ) = ‖T̂j − T‖ = ‖T̂j −
T̂‖ = ‖T̂j − S‖ < ε, that is, Tj → T in Πm

mult(q;p)(E1, ..., Em;F ), and this proves that

(Πm
mult(q;p)(E1, ..., Em;F ), πmult(q;p)( · )) is a Banach space.

Using that `q \ `p 6= ∅ if 1 ≤ p < q ≤ ∞, let us prove the following result.

Proposition 5.5. If qj < pj for some j ∈ {1, . . . ,m}, then

Πm
mult(q;p)(E1, . . . , Em;F ) = {0}.

Proof. Since qj < pj, we know that there is a sequence (αi)
∞
i=1 ∈ `pj \`qj . Let xj ∈ Ej\{0}.

Then for all ϕ ∈ E ′j we have

∞∑
i=1

|ϕ (αixj)|pj ≤
∞∑
i=1

‖ϕ‖pj |αi|pj ‖xj‖pj = ‖ϕ‖pj‖xj‖pj
∞∑
i=1

|αi|pj <∞,

i.e., (αixj)
∞
i=1 ∈ `wpj(Ej). By means of contradiction, assume that there exists

T ∈ Πm
mult(q;p)(E1, ..., Em;F ) \ {0}.

Then, we can take xk ∈ Ek \ {0}, k ∈ {1, ...,m} \ {j}, such that T (x1, ..., xm) 6= 0. For

each k ∈ {1, ...,m} \ {j} let us consider (x
(k)
i )∞i=1 = (xk, 0, ...). Since (x

(k)
i )∞i=1 ∈ `wpk(Ek)

for every k ∈ {1, ...,m} \ {j} and (αixj)
∞
i=1 ∈ `wpj(Ej), Proposition 5.2 ensures that∥∥∥∥(T (x

(1)
i1
, ..., x

(j−1)
ij−1

, αijxj, x
(j+1)
ij+1

, ..., x
(m)
im

)
)∞
i1,...,im=1

∥∥∥∥
`q(F )

≤ C

 m∏
k=1
k 6=j

∥∥∥(x
(k)
i )∞i=1

∥∥∥
w,pk

 ‖(αixj)∞i=1‖w,pj .

However, ∥∥∥∥(T (x
(1)
i1
, ..., x

(j−1)
ij−1

, αijxj, x
(j+1)
ij+1

, ..., x
(m)
im

)
)∞
i1,...,im=1

∥∥∥∥
`q(F )

=

(
∞∑
ij=1

∥∥T (x1, ..., xj−1, αijxj, xj+1, ..., xm
)∥∥qj) 1

qj

= ‖T (x1, ..., xm)‖
(
∞∑
i=1

|αi|qj
) 1

qj

,
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from where we can conclude

‖T (x1, ..., xm)‖
(
∞∑
i=1

|αi|qj
) 1

qj

≤ C

 m∏
k=1
k 6=j

∥∥∥(x
(k)
i )∞i=1

∥∥∥
w,pk

 ‖(αixj)∞i=1‖w,pj .

Therefore,
∑∞

i=1

∣∣αij ∣∣qj <∞, which is a contradiction since (αi)
∞
i=1 ∈ `pj \ `qj .

Using the generalized Bohnenblust–Hille inequality (Theorem 1.1) together with the
fact that L(c0, E) and `w1 (E) are isometrically isomorphic (see [72, Proposition 2.2]), it is
possible to prove the following result (recall the notation of the constants Bmult

K,m,(q1,...,qm) in

Theorem 1.1). The proof is similar to the proof of Theorem 4.3 and we omit it.

Proposition 5.6 (Generalized Bohnenblust–Hille re-written). If q = (q1, . . . , qm) ∈
[1, 2]m are such that |1/q| ≤ (m+ 1)/2, then ∞∑

j1=1

· · ·( ∞∑
jm=1

∣∣∣T (x
(1)
j1
, . . . , x

(m)
jm

)
∣∣∣qm)

qm−1
qm

· · ·


q1
q2


1
q1

≤ Bmult
K,m,q ‖T‖

m∏
k=1

∥∥∥(x
(k)
j )∞j=1

∥∥∥
w,1

,

for all m-linear forms T : E1 × · · · × Em → K and all sequences (x
(k)
j )∞j=1 ∈ `w1 (Ek),

k = 1, . . . ,m. In other words, if q ∈ [1, 2]m are such that |1/q| ≤ (m+ 1)/2 we have the
following coincidence result:

Πm
mult(q;1,...,1) (E1, . . . , Em;K) = L (E1, . . . , Em;K) .

With the same idea of the proof of Proposition 5.6 (but now using L(c0, E) = `w1 (E)
and L(`p, E) = `wp∗(E)), we can re-write the Theorems 1.1 and 1.2 (recall the notation for
the constants on each result):

Proposition 5.7. Let m ≥ 1, p := (p1, . . . , pm) ∈ [1,∞]m.

(1) (Generalized Hardy–Littlewood inequality for 0 ≤ |1/p| ≤ 1/2 re-written) Let 0 ≤
|1/p| ≤ 1/2 and q := (q1, . . . , qm) ∈

[
(1− |1/p|)−1 , 2

]m
such that |1/q| ≤ (m +

1)/2− |1/p|. Then, for all continuous m-linear forms T : E1 × · · · × Em → K, ∞∑
i1=1

(
· · ·
(
∞∑

im=1

∣∣∣T (x(1)
i1
, . . . , x

(m)
im

)∣∣∣qm) qm−1
qm

· · ·

) q1
q2


1
q1

≤ Cmult
K,m,p,q ‖T‖

m∏
k=1

∥∥∥(x
(k)
i )∞i=1

∥∥∥
w,p∗k

,

regardless of the sequences (x
(k)
i )∞i=1 ∈ `wp∗k (Ek) , k = 1, . . . ,m. In other words, if

p = (p1, . . . , pm) ∈ [1,∞]m and q = (q1, . . . , qm) ∈
[
(1− |1/p|)−1 , 2

]m
are such that

0 ≤ |1/p| ≤ 1/2 and |1/q| ≤ (m+ 1)/2− |1/p|, then

Πm
mult(q;p∗1,...,p

∗
m) (E1, . . . , Em;K) = L (E1, . . . , Em;K) .
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(2) (Hardy–Littlewood inequality for 1/2 ≤ |1/p| < 1 re-written) If 1/2 ≤ |1/p| < 1,
then, for all continuous m-linear forms T : E1 × · · · × Em → K,(

N∑
i1,...,im=1

∣∣∣T (x(1)
i1
, . . . , x

(m)
im

)∣∣∣ 1

1−| 1p |
)1−| 1p |

≤ Dmult
K,m,p‖T‖

m∏
k=1

∥∥∥(x
(k)
i )∞i=1

∥∥∥
w,p∗k

regardless of the sequences (x
(k)
i )∞i=1 ∈ `wp∗k (Ek) , k = 1, . . . ,m. In other words, if

1/2 ≤ |1/p| < 1, then

Πm
mult((1−|1/p|)−1;p∗1,...,p

∗
m) (E1, . . . , Em;K) = L (E1, . . . , Em;K) .

The following proposition illustrates how, within this framework, coincidence results
for m-linear forms can be extended to m+ 1-linear forms.

Proposition 5.8. Let p,q ∈ [1,+∞)m. If

Πm
mult(q;p)(E1, . . . , Em;K) = L(E1, . . . , Em;K),

then
Πm+1

mult(q,2;p,1)(E1, . . . , Em, Em+1;K) = L(E1, . . . , Em, Em+1;K).

Proof. Let us first prove that, for all continuous (m+ 1)-linear forms T : E1× · · ·×Em×
c0 → K, there exist a constant C > 0 such that n∑

j1=1

· · ·( n∑
jm+1=1

∣∣∣T (x(1)
j1
, . . . , x

(m)
jm
, ejm+1

)∣∣∣2) qm
2

· · ·


q1
q2


1
q1

≤ CA−1
K,qm ‖T‖

m∏
k=1

∥∥∥(x
(k)
j )nj=1

∥∥∥
w,pk

, (5.6)

where AK,qm is the constant of the Khintchine inequality (1). In fact, from Khintchine’s
inequality, we have

AK,qm

(
n∑

jm+1=1

∣∣∣T (x(1)
j1
, . . . , x

(m)
jm
, ejm+1

)∣∣∣2) 1
2

≤

(∫ 1

0

∣∣∣∣∣ n∑
jm+1=1

rjm+1(t)T
(
x

(1)
j1
, . . . , x

(m)
jm
, ejm+1

)∣∣∣∣∣
qm

dt

) 1
qm

=

(∫ 1

0

∣∣∣∣∣T
(
x

(1)
j1
, . . . , x

(m)
jm
,

n∑
jm+1=1

rjm+1(t)ejm+1

)∣∣∣∣∣
qm

dt

) 1
qm

.

Thus, n∑
j1=1

· · ·( n∑
jm+1=1

∣∣∣T (x
(1)
j1
, . . . , x

(m)
jm

, ejm+1)
∣∣∣2) qm

2

· · ·


q1
q2


1
q1
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≤ A−1
K,qm

 n∑
j1=1

· · ·( n∑
jm=1

1∫
0

∣∣∣∣∣T (x
(1)
j1
, . . . , x

(m)
jm

,
n∑

jm+1=1
rjm+1(t)ejm+1)

∣∣∣∣∣
qm

dt

) qm−1
qm

· · ·


q1
q2


1
q1

= A−1
K,qm

 n∑
j1=1

· · ·( 1∫
0

n∑
jm=1

∣∣∣∣∣T (x
(1)
j1
, . . . , x

(m)
jm

,
n∑

jm+1=1
rjm+1(t)ejm+1)

∣∣∣∣∣
qm

dt

) qm−1
qm

· · ·


q1
q2


1
q1

≤ A−1
K,qm sup

t∈[0,1]

 n∑
j1=1

· · ·( n∑
jm=1

∣∣∣∣∣T (x
(1)
j1
, . . . , x

(m)
jm

,
n∑

jm+1=1
rjm+1(t)ejm+1)

∣∣∣∣∣
qm) qm−1

qm

· · ·


q1
q2


1
q1

≤ A−1
K,qm sup

t∈[0,1]
πmult(q;p)

(
T (·, . . . , ·,

n∑
jm+1=1

rjm+1(t)ejm+1)
) m∏
k=1

∥∥∥(x
(k)
j )nj=1

∥∥∥
w,pk

Since ‖ · ‖ ≤ πmult(q;p)( · ) (see Proposition 5.3) and since, by hypothesis

L(E1, . . . , Em;K) = Πm
mult(q;p)(E1, . . . , Em;K),

the Open Mapping Theorem ensures that the norms πmult(q;p)( · ) and ‖·‖ are equivalents.
Therefore, there exists a constant C > 0 such that n∑

j1=1

· · ·( n∑
jm+1=1

∣∣∣T (x(1)
j1
, . . . , x

(m)
jm
, ejm+1

)∣∣∣2) qm
2

· · ·


q1
q2


1
q1

≤ CA−1
K,qm sup

t∈[0,1]

∥∥∥∥∥T
(
·, . . . , ·,

n∑
jm+1=1

rjm+1(t)ejm+1

)∥∥∥∥∥ m∏
k=1

∥∥∥(x
(k)
j )nj=1

∥∥∥
w,pk

≤ CA−1
K,qm‖T‖ sup

t∈[0,1]

∥∥∥∥∥ n∑
jm+1=1

rjm+1(t)ejm+1

∥∥∥∥∥ m∏
k=1

∥∥∥(x
(k)
j )nj=1

∥∥∥
w,pk

≤ CA−1
K,qm‖T‖

m∏
k=1

∥∥∥(x
(k)
j )nj=1

∥∥∥
w,pk

.

Let T ∈ L(E1, . . . , Em, Em+1;K), (x
(k)
j )nj=1 ∈ `wpk(Ek), k = 1, . . . ,m, and (x

(m+1)
j )nj=1 ∈

`w1 (Em+1). From [72, Proposition 2.2] we have the boundedness of the linear operator

u : c0 → Em+1 such that ej 7→ u (ej) = x
(m+1)
j and ‖u‖ = ‖(x(m+1)

j )nj=1‖1,w. Then,
S : E1 × · · · × Em × c0 → K defined by S(y1, . . . , ym+1) = T (y1, . . . , ym, u(ym+1)) is a
continuous (m+ 1)-linear form and ‖S‖ ≤ ‖T‖‖u‖. Therefore, from (5.6), n∑

j1=1

· · ·( n∑
jm+1=1

∣∣∣T (x(1)
j1
, . . . , x

(m)
jm
, x

(m+1)
jm+1

)∣∣∣2) qm
2

· · ·


q1
q2


1
q1

=

 n∑
j1=1

· · ·( n∑
jm+1=1

∣∣∣S (x(1)
j1
, . . . , x

(m)
jm
, ejm+1

)∣∣∣2) qm
2

· · ·


q1
q2


1
q1
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≤ CA−1
K,qm ‖T‖ ‖u‖

∥∥∥(x
(1)
j )nj=1

∥∥∥
w,p1
· · ·
∥∥∥(x

(m)
j )nj=1

∥∥∥
w,pm

= CA−1
K,qm ‖T‖

∥∥∥(x
(1)
j )nj=1

∥∥∥
w,p1
· · ·
∥∥∥(x

(m)
j )nj=1

∥∥∥
w,pm

∥∥∥(x
(m+1)
j )nj=1

∥∥∥
w,1

,

i.e., T ∈ Πm+1
mult(q,2;p,1)(E1, . . . , Em+1;K).

5.2 Partially multiple summing operators: The uni-

fying concept

In addition to Bohnenblust–Hille and Hardy–Littlewood inequalities (see (1.1) and
Theorems 1.1 and 1.2, respectively), the following results on summability of m-linear
forms T : Xp1 × · · · ×Xpm → K are well known.

• Aron and Globevnik ([20], 1989): For every continuous m-linear form T : c0× · · · ×
c0 → K,

∞∑
i=1

|T (ei, . . . , ei)| ≤ ‖T‖ , (5.7)

and the exponent 1 is optimal.

• Zalduendo ([137], 1993): Let |1/p| < 1. For every continuous m-linear form T :
Xp1 × · · · ×Xpm → K,

(
∞∑
i=1

|T (ei, ..., ei)|
1

1−| 1p |
)1−| 1p |

≤ ‖T‖, (5.8)

and the exponent 1/(1− |1/p|) is optimal.

Our aims in this section is to present a unified version of the Bohnenblust–Hille and
the Hardy–Littlewood inequalities with partial sums (i.e., it was shown what happens
when some of the indices of the sums i1, . . . , im are repeated) which also encompasses
Zalduendo’s and Aron–Globevnik’s inequalities and to present a new class of summing
multilinear operators, recovering the class of absolutely and multiple summing operators.
To achieve this purpose, we will first establish some notations and results.

Let us establish the following notation: for Banach spaces E1, . . . , Em and an element
xj ∈ Ej, for some j ∈ {1, . . . ,m}, the symbol xj · ej represents the vector xj · ej ∈
E1 × · · · × Em such that its j-th coordinate is xj ∈ Ej, and 0 otherwise. The next result
(for a detailed proof see [2]) will be an important tool to obtain the forthcoming Lemma
5.10, wich is crucial to the proof of the Hardy–Littlewood inequalities with partial sums.
In the following we keep the notation of the constant Bmult

K,k,(q1,...,qk) from Theorem 1.1.

Theorem 5.9 (Generalized Bohnenblust–Hille inequality with partial sums). Let m, k be
positive integers with 1 ≤ k ≤ m, and q := (q1, . . . , qk) ∈ [1, 2]k such that 1/q1 + · · · +
1/qk ≤ (k + 1)/2. Let also I = {I1, . . . , Ik} be a family of non-void disjoints subsets of
{1, . . . ,m} such that ∪ki=1Ii = {1, . . . ,m}, that is, I is a partition of {1, . . . ,m}. Then,
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for all bounded m-linear forms T : c0 × · · · × c0 → K, ∞∑
i1=1

· · ·( ∞∑
ik=1

∣∣∣∣∣T
(

k∑
n=1

∑
j∈In

ein · ej

)∣∣∣∣∣
qk
) qk−1

qk

· · ·


q1
q2


1
q1

≤ Bmult
K,k,(q1,...,qk) ‖T‖ .

Lemma 5.10. Let m,N ≥ 1 and let 1 ≤ k ≤ m such that {1, ...,m} is the disjoint union
of non-void proper subsets I1, ..., Ik. Assume p := (p1, ..., pm) ∈ [1,∞]m is such that
1/p1 + · · · + 1/pm ≤ 1/2 and let λ = 1/(1 − |1/p|). Then for every continuous m-linear
form T : `Np1 × · · · × `

N
pm → K we have, for each r ∈ {1, ..., k},

 N∑
ir=1

 N∑̂
ir=1

∣∣∣∣∣T
(

k∑
n=1

∑
j∈In

ein · ej

)∣∣∣∣∣
2
λ

2


1
λ

≤ Bmult
K,k,(1,2,...,2)‖T‖.

Proof. Let C = Bmult
K,k,(1,2,...,2). Let us suppose that 1 ≤ s ≤ m and that

 N∑
ir=1

 N∑̂
ir=1

∣∣∣∣∣T
(

k∑
n=1

∑
j∈In

ein · ej

)∣∣∣∣∣
2


λs−1
2


1

λs−1

≤ C‖T‖

is true for all continuous m–linear forms T : `Np1 × · · · × `
N
ps−1
× `N∞× · · · × `N∞ → K and for

all r ∈ {1, ..., k}, where λi = 1/(1− (1/p1 + · · ·+ 1/pi)), i = 0, ...,m. Let us prove that N∑
ir=1

 N∑̂
ir=1

∣∣∣∣∣T
(

k∑
n=1

∑
j∈In

ein · ej

)∣∣∣∣∣
2


λs
2


1
λs

≤ C‖T‖

for all continuous m–linear forms T : `Np1 × · · · × `Nps × `N∞ × · · · × `N∞ → K and for all
r ∈ {1, ..., k}. The initial case (p1 = · · · = pm = ∞) is a consequence of the Theorem
5.9. In fact, we just need to observe that λ0 = 1 and that (k − 1)/2 + 1/λ0 = (k + 1)/2.
Consider T ∈ L(`Np1 , ..., `

N
ps , `

N
∞, ..., `

N
∞;K) and for each x ∈ B`Nps

define

T (x) : `Np1 × · · · × `
N
ps−1
× `N∞ × · · · × `N∞ → K

(z(1), ..., z(m)) 7→ T (z(1), ..., z(s−1), xz(s), z(s+1), ..., z(m)),

with xz(s) = (xiz
(s)
i )Ni=1. Observe that ‖T‖ ≥ sup{‖T (x)‖ : x ∈ B`Nps

}. Consider ks ∈
{1, ..., k} such that s ∈ Iks . By applying the induction hypothesis to T (x), we get N∑

ir=1

 N∑̂
ir=1

∣∣∣∣∣T
(

k∑
n=1

∑
j∈In

ein · ej

)∣∣∣∣∣
2 ∣∣xiks ∣∣2


λs−1

2


1

λs−1
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=

 N∑
ir=1

 N∑̂
ir=1

∣∣∣∣∣∣T
 k∑

n=1
n 6=ks

∑
j∈In

ein · ej +
∑

j∈Iksr{s}
eiks · ej + xeiks · es

∣∣∣∣∣∣
2

λs−1
2


1

λs−1

=

 N∑
ir=1

 N∑̂
ir=1

∣∣∣∣∣T (x)

(
k∑

n=1

∑
j∈In

ein · ej

)∣∣∣∣∣
2


λs−1
2


1

λs−1

≤ C‖T (x)‖ ≤ C‖T‖ (5.9)

for all r = 1, ..., k.
We will analyze two cases:

• r = ks.

Since (pi/λi−1)∗ = λi/λi−1 for all i = 1, ...,m, we conclude that N∑
iks=1

 N∑̂
iks=1

∣∣∣∣∣T
(

k∑
n=1

∑
j∈In

ein · ej

)∣∣∣∣∣
2


λs
2


1
λs

=

 N∑
iks=1

 N∑̂
iks=1

∣∣∣∣∣T
(

k∑
n=1

∑
j∈In

ein · ej

)∣∣∣∣∣
2


λs−1
2

(
ps

λs−1

)∗
1

λs−1

1(
ps

λs−1

)∗

=

∥∥∥∥∥∥∥∥∥

 N∑̂
iks=1

∣∣∣∣∣T
(

k∑
n=1

∑
j∈In

ein · ej

)∣∣∣∣∣
2


λs−1
2


N

iks=1

∥∥∥∥∥∥∥∥∥

1
λs−1

(
ps

λs−1

)∗

=

 sup
y∈B

`Nps
λs−1

N∑
iks=1

∣∣yiks ∣∣
 N∑̂
iks=1

∣∣∣∣∣T
(

k∑
n=1

∑
j∈In

ein · ej

)∣∣∣∣∣
2


λs−1
2


1

λs−1

=

 sup
x∈B

`Nps

N∑
iks=1

∣∣xiks ∣∣λs−1

 N∑̂
iks=1

∣∣∣∣∣T
(

k∑
n=1

∑
j∈In

ein · ej

)∣∣∣∣∣
2


λs−1
2


1

λs−1

= sup
x∈B

`Nps

 N∑
iks=1

 N∑̂
iks=1

∣∣∣∣∣T
(

k∑
n=1

∑
j∈In

ein · ej

)∣∣∣∣∣
2 ∣∣xiks ∣∣2


λs−1

2


1

λs−1

≤ C‖T‖

where the last inequality holds by (5.9).

• r 6= ks.
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Let us first suppose that 1/p1 + · · ·+ 1/ps < 1/2. It is important to note that in this
case λs−1 < λs < 2 for all s ∈ {1, ...,m}. Denoting, for r = 1, ...., k,

Sr =

 N∑̂
ir=1

∣∣∣∣∣T
(

k∑
n=1

∑
j∈In

ein · ej

)∣∣∣∣∣
2
 1

2

we get

N∑
ir=1

 N∑̂
ir=1

∣∣∣∣∣T
(

k∑
n=1

∑
j∈In

ein · ej

)∣∣∣∣∣
2


λs
2

=
N∑
ir=1

Sλsr =
N∑
ir=1

Sλs−2
r S2

r

=
N∑
ir=1

N∑̂
ir=1

∣∣∣∣∣T
(

k∑
n=1

∑
j∈In ein ·ej

)∣∣∣∣∣
2

S2−λs
r

=
N∑

iks=1

N∑̂
iks=1

∣∣∣∣∣T
(

k∑
n=1

∑
j∈In

ein ·ej

)∣∣∣∣∣
2

S2−λs
r

=
N∑

iks=1

N∑̂
iks=1

∣∣∣∣∣T
(

k∑
n=1

∑
j∈In

ein ·ej

)∣∣∣∣∣
2(2−λs)
2−λs−1

S2−λs
r

∣∣∣∣∣T
(

k∑
n=1

∑
j∈In

ein · ej

)∣∣∣∣∣
2(λs−λs−1)

2−λs−1

.

Therefore, using Hölder’s inequality twice we obtain

N∑
ir=1

 N∑̂
ir=1

∣∣∣∣∣T
(

k∑
n=1

∑
j∈In

ein · ej

)∣∣∣∣∣
2


λs
2

≤
N∑

iks=1

 N∑̂
iks=1

∣∣∣∣∣T
(

k∑
n=1

∑
j∈In

ein ·ej

)∣∣∣∣∣
2

S
2−λs−1
r


2−λs

2−λs−1
 N∑̂
iks=1

∣∣∣∣∣T
(

k∑
n=1

∑
j∈In

ein · ej

)∣∣∣∣∣
2


λs−λs−1
2−λs−1

≤

 N∑
iks=1

 N∑̂
iks=1

∣∣∣∣∣T
(

k∑
n=1

∑
j∈In

ein ·ej

)∣∣∣∣∣
2

S
2−λs−1
r


λs
λs−1


λs−1
λs

2−λs
2−λs−1

×

 N∑
iks=1

 N∑̂
iks=1

∣∣∣∣∣T
(

k∑
n=1

∑
j∈In

ein · ej

)∣∣∣∣∣
2


λs
2


1
λs

2(λs−λs−1)

2−λs−1

. (5.10)

We know from the case r = ks that

 N∑
iks=1

 N∑̂
iks=1

∣∣∣∣∣T
(

k∑
n=1

∑
j∈In

ein · ej

)∣∣∣∣∣
2


λs
2


1
λs

2(λs−λs−1)

2−λs−1

≤ (C‖T‖)
2(λs−λs−1)

2−λs−1 . (5.11)

Now we investigate the first factor in (5.10). From Hölder’s inequality and (5.9) it follows
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that N∑
iks=1

 N∑̂
iks=1

∣∣∣∣∣T
(

k∑
n=1

∑
j∈In

ein ·ej

)∣∣∣∣∣
2

S
2−λs−1
r


λs
λs−1


λs−1
λs

=

∥∥∥∥∥∥∥∥
∑̂

iks
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(

k∑
n=1

∑
j∈In

ein ·ej

)∣∣∣∣∣
2

S
2−λs−1
r


N

iks=1
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ps

λs−1

)∗

= sup
y∈B

`Nps
λs−1

N∑
iks=1
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N∑̂

iks=1

∣∣∣∣∣T
(
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j∈In

ein ·ej
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S
2−λs−1
r

= sup
x∈B

`Nps
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N∑̂
iks=1

∣∣∣∣∣T
(

k∑
n=1

∑
j∈In

ein ·ej

)∣∣∣∣∣
2

S
2−λs−1
r
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λs−1

= sup
x∈B

`Nps

N∑
ir=1

N∑̂
ir=1

∣∣∣∣∣T
(

k∑
n=1

∑
j∈In

ein ·ej

)∣∣∣∣∣
2−λs−1

S
2−λs−1
r

∣∣∣∣∣T
(

k∑
n=1

∑
j∈In

ein · ej

)∣∣∣∣∣
λs−1 ∣∣xiks ∣∣λs−1

≤ sup
x∈B

`Nps

N∑
ir=1

 N∑̂
ir=1

∣∣∣∣∣T
(

k∑
n=1

∑
j∈In

ein ·ej

)∣∣∣∣∣
2

S2
r


2−λs−1

2  N∑̂
ir=1

∣∣∣∣∣T
(

k∑
n=1

∑
j∈In

ein · ej

)∣∣∣∣∣
2 ∣∣xiks ∣∣2


λs−1

2

= sup
x∈B

`Nps

N∑
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 N∑̂
ir=1

∣∣∣∣∣T
(

k∑
n=1

∑
j∈In

ein · ej

)∣∣∣∣∣
2

|xiks |
2


λs−1

2

≤ (C‖T‖)λs−1 .

(5.12)
Replacing (5.11) and (5.12) in (5.10) we finally conclude that

N∑
ir=1

 N∑̂
ir=1

∣∣∣∣∣T
(

k∑
n=1

∑
j∈In

ein · ej

)∣∣∣∣∣
2


λs
2

≤ (C‖T‖)λs−1
2−λs

2−λs−1 (C‖T‖)
2(λs−λs−1)

2−λs−1

= (C‖T‖)λs .

It remains to consider when 1/p1 + · · ·+1/ps = 1/2. In this case it follows that λs = 2
and we have a more simple situation since N∑

ir=1

 N∑̂
ir=1

∣∣∣∣∣T
(

k∑
n=1

∑
j∈In

ein · ej

)∣∣∣∣∣
2


λs
2


1
λs

=

 N∑
iks=1

 N∑̂
iks=1

∣∣∣∣∣T
(

k∑
n=1

∑
j∈In

ein · ej

)∣∣∣∣∣
2


λs
2


1
λs

≤ C‖T‖,

where the inequality is due to the case r = ks. This concludes the proof.

Now we will show a generalization of the Bohnenblust–Hille and Hardy–Littlewood
multilinear inequalities, which ensures that these results are in fact, corollaries of a unique
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yet general result.

Theorem 5.11 (Hardy–Littlewood with partial sums1). Let m, k be positive integers
with 1 ≤ k ≤ m, and I = {I1, . . . , Ik} a partition of {1, . . . ,m}. Also, let us set p :=
(p1, . . . , pm) ∈ [1,∞]m with 0 ≤ |1/p| < 1.

(1) If 0 ≤ |1/p| ≤ 1/2 and q := (q1, . . . , qk) ∈
[
(1− |1/p|)−1 , 2

]k
are such that |1/q| ≤

(k+1)/2−|1/p| then, for every continuous m–linear forms T : Xp1×· · ·×Xpm → K,
there exists a constant Cmult

K,k,m,I,p,q ≥ 1 such that

 ∞∑
i1=1

· · ·( ∞∑
ik=1

∣∣∣∣∣T
(

k∑
n=1

∑
j∈In

ein · ej

)∣∣∣∣∣
qk
) qk−1

qk

· · ·


q1
q2


1
q1

≤ Cmult
K,k,m,I,p,q ‖T‖ ,

with Cmult
K,k,m,I,p,q ≤ Bmult

K,k,(1,2,...,2).

(2) If 1/2 ≤ |1/p| < 1 then, there exists a constant Dmult
K,k,m,I,p ≥ 1 such that, for all

continuous m–linear forms T : `p1 × · · · × `pm → K, ∞∑
i1,...,ik=1

∣∣∣∣∣T
(

k∑
n=1

∑
j∈In

ein · ej

)∣∣∣∣∣
1

1−| 1p |
1−| 1p |

≤ Dmult
K,k,m,I,p ‖T‖

with Dmult
K,k,m,I,p ≤ Dmult

K,m,p. Moreover, the exponent is optimal.

Proof. (1) Since λ = (1 − |1/p|)−1 ≤ 2, using the Minkowski inequality as in [6], it is
possible to prove that we have, for all fixed j ∈ {1, ..., k}, similar inequalities to the
inequality of the previous lemma with the exponents q(j) := (2, ..., 2, λ, 2..., 2) ∈ [λ, 2]k

with λ in the j–th position. The multiple exponent (q1, ..., qk) ∈ [λ, 2]k can be obtained
by interpolating the multiple exponents q(1), ...,q(k) in the sense of [6] with θ1 = · · · =
θk = 1/k. Therefore 1/q1 + · · ·+ 1/qk = 1/λ+ (k − 1)/2 = (k + 1)/2− |1/p|.

(2) The case k = m is exactly the Theorem 1.2. Let 1 ≤ k < m and observe that ∞∑
i1,...,ik=1

∣∣∣∣∣T
(

k∑
n=1

∑
j∈In

ein · ej

)∣∣∣∣∣
1

1−| 1p |
1−| 1p |

≤

(
∞∑

i1,...,im=1

|T (ei1 , . . . , eim)|
1

1−| 1p |
)1−| 1p |

≤ Dmult
K,m,p ‖T‖ .

It remains to prove the optimality of the exponent. The argument is a variant of [137,
Proposition 1]. Let (βn)n be a strictly increasing sequence converging to (|1/p| − 1). For
each positive integer n, let us define the bounded m-linear form Φn : `p1 × · · · × `pm → K
by

Φn (ei1 , . . . , eim) :=

{
jβn , if i1 = · · · = im = j;

0, otherwise.

1The main result of [3] improves Theorem 5.11. We emphasize that the proof of that result is based
on a tensorial perspective and, since this approach does not fit on the context of this thesis we will not
present it. It is important to mention that in [3] it is shown that the exponent in (1) is also optimal and
that Cmult

K,k,m,I,p,q ≤ Cmult
K,k,r,q and Dmult

K,k,m,I,p ≤ Dmult
K,k,r with r := (r1, ..., rk), 1/ri =

∑
j∈Ii

1/pj , 1 ≤ i ≤ k.
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If s < λ we may take n ∈ N large enough such that −1/s < βn < (|1/p| − 1) < 0,
which results in 1 > −sβn > 0. Let us define Φ := Φn. Then,

∞∑
i1,...,ik=1

∣∣Φ (en1
i1
, . . . , enkik

)∣∣s =
∞∑
j=1

|Φ (ej, . . . , ej)|s =
∞∑
j=1

jsβn =
∞∑
j=1

1
j−sβn

diverges and, therefore, the exponent is optimal.

This theorem motivated us to give the following unifying notion of absolutely summing
multilinear operators (the essence of the notion of partially multiple summing operators
(below) was first sketched in [114, Definition 2.2.1] but it has not been explored since):

Definition 5.12. Let E1, . . . , Em, F be Banach spaces, m, k be positive integers with 1 ≤
k ≤ m, and (p,q) := (p1, . . . , pm, q1, . . . , qk) ∈ [1,∞)m+k. Let also I = {I1, . . . , Ik}
a family of non-void disjoints subsets of {1, . . . ,m} such that ∪ki=1Ii = {1, . . . ,m}. A
multilinear operator T : E1×· · ·×Em → F is I-partially multiple (q; p)-summing if there
exists a constant C > 0 such that ∞∑

i1=1

· · ·( ∞∑
ik=1

∥∥∥∥∥T
(

k∑
n=1

∑
j∈In

x
(j)
in
· ej

)∥∥∥∥∥
qk

F

) qk−1
qk

· · ·


q1
q2


1
q1

≤ C
m∏
j=1

∥∥∥(x
(j)
i )∞i=1

∥∥∥
w,pj

for all (x
(j)
i )∞i=1 ∈ `wpj (Ej) , j = 1, . . . ,m. We represent the class of all I-partially multiple

(q; p)-summing operators by Πk,m,I
(q;p) (E1, . . . , Em;F ). The infimum taken over all possible

constants C > 0 satisfying the previous inequality defines a norm in Πk,m,I
(q;p) (E1, . . . , Em;F ),

which is denoted by π(q;p).

As usual, Πk,m,I
(q;p) (E1, . . . , Em;F ) is a subspace of L(E1, . . . , Em;F ). Moreover, note

that when

• k = 1, we recover the class of absolutely (q; p)-summing operators, with q := q1;

• k = m and q1 = · · · = qm =: q, we recover the class of multiple (q; p)-summing
operators;

• k = m, we recover the class of multiple (q; p)-summing operators, as we have defined
in the section 5.1.

Example 5.13. As in Proposition 5.6, it is possible to prove the following result (now
using the generalized Bohnenblust–Hille inequality with partial sums (Theorem 5.9): if
m, k are positive integers with 1 ≤ k ≤ m, I = {I1, . . . , Ik} is a partition of {1, . . . ,m},
and q = (q1, . . . , qk) ∈ [1, 2]k is such that |1/q| ≤ (k + 1)/2, then

Πk,m,I
(q;1,m times... ,1)

(E1, . . . , Em;K) = L (E1, . . . , Em;K) .

More generally, with the same idea of Proposition 5.7, we can re-written the Hardy–
Littlewood inequalities with partial sums (Theorem 5.11): Let m, k be positive integers
with 1 ≤ k ≤ m, and I = {I1, . . . , Ik} a partition of {1, . . . ,m}. Also, let us set p :=
(p1, . . . , pm) ∈ [1,∞]m with 0 ≤ |1/p| < 1.
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(1) If 0 ≤ |1/p| ≤ 1/2 and q := (q1, . . . , qk) ∈
[
(1− |1/p|)−1 , 2

]k
are such that |1/q| ≤

(k + 1)/2− |1/p|, then

Πk,m,I
(q;p∗1,...,p

∗
m)

(E1, . . . , Em;K) = L (E1, . . . , Em;K) ;

(2) If 1/2 ≤ |1/p| < 1, we have

Πk,m,I
((1−|1/p|)−1;p∗1,...,p

∗
m)

(E1, . . . , Em;K) = L (E1, . . . , Em;K) .

The basis of this theory can be developed in the same lines as those from the previous
section, as we will be presenting in what follows. From now on, m, k are positive integers
with 1 ≤ k ≤ m, (p,q) := (p1, . . . , pm, q1, . . . , qk) ∈ [1,∞)m+k and I = {I1, . . . , Ik} is a
partition of {1, . . . ,m}.

Proposition 5.14. Let T : E1×· · ·×Em → F be a continuous multilinear operator. The
following assertions are equivalent:

(1) T is I-partially multiple (q; p)-summing;

(2)

(
T

(
k∑

n=1

∑
j∈In

x
(j)
in
· ej

))∞
i1,...,ik=1

∈ `q (F ) whenever (x
(j)
i )∞i=1 ∈ `wpj (Ej), for j =

1, . . . ,m.

(3) There exist a constant C > 0 such that n∑
i1=1

· · ·( n∑
ik=1

∥∥∥∥∥T
(

k∑
n=1

∑
j∈In

x
(j)
in
· ej

)∥∥∥∥∥
qk

F

) qk−1
qk

· · ·


q1
q2


1
q1

≤ C
m∏
k=1

∥∥∥(x
(j)
i )ni=1

∥∥∥
w,pj

for all positive integer n and all (x
(j)
i )ni=1 ∈ `wpj (Ej), j = 1, ...,m.

Proposition 5.15. If T ∈ Πk,m,I
(q;p) (E1, . . . , Em;F ), then ‖T‖L(E1,...,Em;F ) ≤ π(q;p)(T ).

Given T ∈ Πk,m,I
(q;p) (E1, . . . , Em;F ) we may define the m-linear operator

T̂ : `wp1 (E1)× · · · × `wpm (Em) → `q(F )(
(x

(1)
i )∞i=1, . . . , (x

(m)
i )∞i=1

)
7→

(
T
(∑k

n=1

∑
j∈In x

(j)
in
· ej
))∞

i1,...,ik=1
.

(5.13)

By using both, the Closed Graph and the Hahn–Banach Theorems, it is possible to prove
that T̂ is a continuous m-linear operator. Furthermore, we can prove that ‖T̂‖ = π(q;p)(T ),
therefore, naturally we define the isometric operator

θ̂ : Πk,m,I
(q;p) (E1, . . . , Em;F ) → L

(
`wp1(E1), . . . , `wpm(Em); `q(F )

)
T 7→ T̂ .

These facts lead us to the following results:
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Theorem 5.16.
(

Πk,m,I
(q;p) (E1, . . . , Em;F ), π(q;p)(·)

)
is a Banach space.

Proposition 5.17. If there exists n ∈ {1, . . . , k} such that 1/qn >
∑

j∈In 1/pj, then

Πk,m,I
(q;p) (E1, . . . , Em;F ) = {0}.
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Chapter 6
Lineability in function spaces

A real-valued function on R satisfying the property that it takes on each real value in
any nonempty open set is called everywhere surjective. In [21] the authors proved that
the set of everywhere surjective functions f : R → R is 2c-lineable, which is the best
possible result in terms of dimension. In other words, the last set is maximal lineable in
the space of all real functions. Other results establishing the degree of lineability of more
stringent classes of functions can be found in [38] and the references contained in it.

As usual, the symbol C(I) stands for the vector space of all real continuous functions
defined on an interval I ⊂ R. In the special case I = R, the space C(R) will be endowed
with the topology of the convergence in compacta. It is well known that C(R) under this
topology is an F-space, that is, a complete metrizable topological vector space. Turning
to the setting of more regular functions, in [83] the following results are proved: the set
of differentiable functions on R whose derivatives are discontinuous almost everywhere is
c-lineable; given a non-void compact interval I ⊂ R, the family of differentiable functions
whose derivatives are discontinuous almost everywhere on I is dense-lineable in the space
C(I), endowed with the supremum norm; and the class of differentiable functions on R
that are monotone on no interval is c-lineable.

Finally, recall that every bounded variation function on an interval I ⊂ R (that is, a
function satisfying sup{

∑n
i=1 |f(ti) − f(ti−1)| : {t1 < t2 < · · · < tn} ⊂ I, n ∈ N} < ∞)

is differentiable almost everywhere. A continuous bounded variation function f : I → R
is called strongly singular whenever f ′(x) = 0 for almost every x ∈ I and, in addition,
f is nonconstant on any subinterval of I. Balcerzak et al. [25] showed that the set of
strongly singular functions on [0, 1] is densely strongly c-algebrable in C([0, 1]).

A number of results related to the above ones will be shown in the next two sections.

6.1 Measurable functions

Our aim in this section is to study the lineability of the family of Lebesgue measurable
functions f : R → R that are everywhere surjective, denoted MES. This result is, in
some sense, unexpected since (as we can see in [82, 83]) the class of everywhere surjective
functions contains a 2c-lineable set of non-measurable ones (called Jones functions).

Theorem 6.1. The set MES is c-lineable.

Proof. Firstly, we consider the everywhere surjective function furnished in [83, Example
2.2]. For the sake of convenience, we reproduce here its construction. Let (In)n∈N be
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the collection of all open intervals with rational endpoints. The interval I1 contains a
Cantor type set, call it C1. Now, I2 \C1 also contains a Cantor type set, call it C2. Next,
I3\(C1∪C2) contains, as well, a Cantor type set, C3. Inductively, we construct a family of
pairwise disjoint Cantor type sets, (Cn)n∈N, such that for every n ∈ N, In\(

⋃n−1
k=1 Ck) ⊃ Cn.

Now, for every n ∈ N, take any bijection φn : Cn → R, and define f : R→ R as

f(x) =

{
φn(x) if x ∈ Cn,
0 otherwise.

Then f is clearly everywhere surjective. Indeed, let I be any interval in R. There exists
k ∈ N such that Ik ⊂ I. Thus f(I) ⊃ f(Ik) ⊃ f(Ck) = φk(Ck) = R. But the novelty of
the last function is that f is, in addition, zero almost everywhere, and in particular, it is
(Lebesgue) measurable. That is, f ∈MES.

Now, taking advantage of the approach of [21, Proposition 4.2], we are going to cons-
truct a vector space that shall be useful later on. Let Λ := span {ϕα : α > 0}, where
ϕα(x) := eαx − e−αx. Then M is a c-dimensional vector space because the functions
ϕα (α > 0) are linearly independent. Indeed, assume that there are scalars c1, . . . , cp
(not all 0) as well as positive reals α1, . . . , αp such that c1ϕα1(x) + · · · + cpϕαp(x) = 0
for all x ∈ R. Without loss of generality, we may assume that p ≥ 2, cp 6= 0 and
α1 < α2 < · · · < αp. Then lim

x→+∞
(c1ϕα1(x) + · · · + cpϕαp(x)) = +∞ or −∞, which is

clearly a contradiction. Therefore c1 = · · · = cp = 0 and we are done. Note that each
nonzero member g =

∑p
i=1 ci ϕαi (with the ci’s and the αi’s as before) of Λ is (conti-

nuous and) surjective because limx→+∞ g(x) = +∞ and limx→−∞ g(x) = −∞ if cp > 0
(with the values of the limits interchanged if cp < 0).

Next, we define the vector space M := {g ◦ f : g ∈ Λ}. Observe that, since the f is
measurable and the functions g in Λ are continuous, the members of M are measurable.
Fix any h ∈M \ {0}. Then, again, there are finitely many scalars c1, . . . , cp with cp 6= 0,
and positive reals α1 < α2 < · · · < αp such that g = c1ϕα1 + · · ·+ cpϕαp and h = g ◦ f .
Now, fix a non-degenerate interval J ⊂ R. Then h(J) = g(f(J)) = g(R) = R, which
shows that h is everywhere surjective. Hence M \ {0} ⊂ MES.

Finally, by using the linear independence of the functions ϕα and the fact that f is
surjective, it is easy to see that the functions ϕα ◦ f (α > 0) are linearly independent,
which entails that M has dimension c, as required.

In [136, Example 2.34] it is exhibited one sequence of measurable everywhere surjective
functions tending pointwise to zero. With Theorem 6.1 in hand, we now get a plethora
of such sequences, and even in a much easier way than described in [136].

Corollary 6.2. The family of sequences {fn}n≥1 of Lebesgue measurable functions R→
R such that fn converges pointwise to zero and such that fn(I) = R, for any positive
integer n and each non-degenerate interval I, is c-lineable.

Proof. Consider the family M̃ consisting of all sequences {hn}n≥1 given by hn(x) =
h(x)/n where the functions h run over the vector space M constructed in the last

theorem. It is easy to see that M̃ is a c-dimensional vector subspace of (RR)N, that
each hn is measurable, that hn(x)→ 0 (n→∞) for every x ∈ R and that every hn is
everywhere surjective if h is not the zero function.
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Remark 6.3. It would be interesting to know whether MES is, likewise the set of
everywhere surjective functions, maximal lineable in RR (that is, 2c-lineable).

6.2 Special differentiable functions

A function f : R→ R is said to be a Pompeiu function (see Figure 6.1) provided that
it is differentiable and f ′ vanishes on a dense set in R. The symbols P and DP stand
for the vector spaces of Pompeiu functions and of the derivatives of Pompeiu functions,
respectively. In this section, we analyze the lineability of the set of Pompeiu functions
that are not constant on any interval. Of course, this set is not a vector space.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.5

0

0.5

1

1.5

2

Figure 6.1: Rough sketch of the graph of Pompeiu’s original example.

Firstly, the following version of the well-known Stone–Weierstrass density theorem (see
e.g. [130]) for the space C(R) will be relevant to the proof of our main result. Its proof
is a simple application of the original Stone–Weierstrass theorem for C(S) (the Banach
space of continuous functions f : S → R, endowed with the uniform distance, where S
is a compact topological space) together with the fact that convergence in C(R) means
convergence on each compact subset of R. So we omit the proof.

Lemma 6.4. Suppose that A is a subalgebra of C(R) satisfying the following properties:

(a) Given x0 ∈ R there is F ∈ A with F (x0) 6= 0.

(b) Given a pair of distinct points x0, x1 ∈ R, there exists F ∈ A such that F (x0) 6=
F (x1).

Then A is dense in C(R).

In [25, Proposition 7], Balcerzak, Bartoszewicz and Filipczak established a nice al-
gebrability result by using the so-called exponential-like functions, that is, the functions
ϕ : R→ R of the form

ϕ(x) =
m∑
j=1

aje
bjx,
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for some m ∈ N, some a1, . . . , am ∈ R \ {0} and some distinct b1, . . . , bm ∈ R \ {0}. By
E we denote the class of exponential-like functions. The following lemma (see [36] or [18,
Chapter 7]) is a slight variant of the mentioned Proposition 7 of [25].

Lemma 6.5. Let Ω be a nonempty set and F be a family of functions f : Ω → R.
Assume that there exists a function f ∈ F such that f(Ω) is uncountable and ϕ ◦ f ∈ F
for every ϕ ∈ E. Then F is strongly c-algebrable. More precisely, if H ⊂ (0,∞) is a set
with card(H) = c and linearly independent over the field Q, then {exp ◦ (rf) : r ∈ H}
is a free system of generators of an algebra contained in F ∪ {0}.

Lemma 6.6 below is an adaptation of a result that is implicitly contained in [27, Section
6]. We sketch the proof for the sake of completeness.

Lemma 6.6. Let F be a family of functions in C(R). Assume that there exists a strictly
monotone function f ∈ F such that ϕ ◦ f ∈ F for every exponential-like function ϕ.
Then F is densely strongly c-algebrable in C(R).

Proof. If Ω = R then f(Ω) is a non-degenerate interval, so it is an uncountable set. Then,
it is sufficient to show that the algebra A generated by the system {exp ◦ (rf) : r ∈ H}
given in Lemma 6.5 is dense. For this, we invoke Lemma 6.4. Take any α ∈ H ⊂ (0,+∞).
Given x0 ∈ R, the function F (x) := eαf(x) belongs to A and satisfies F (x0) 6= 0.
Moreover, for prescribed distinct points x0, x1 ∈ R, the same function F fulfills F (x0) 6=
F (x1), because both functions f and x 7→ eαx are one-to-one. As a conclusion, A is
dense in C(R).

Now we state and prove the main result of this section.

Theorem 6.7. The set of functions in P that are nonconstant on any non-degenerated
interval of R is densely strongly c-algebrable in C(R).

Proof. From [136, Example 3.11] (see also [134, Example 13.3]) we know that there exists
a derivable strictly increasing real-valued function (a, b) → (0, 1) (with f((a, b)) =
(0, 1)) whose derivative vanishes on a dense set and yet does not vanish everywhere. By
composition with the function x 7→ ((b − a)/π) arctanx + (a+ b)/2, we get a strictly
monotone function f : R → R satisfying that D := {x ∈ R : f ′(x) = 0} is dense in R
but D 6= R. Observe that, in particular, f is a Pompeiu function that is nonconstant on
any interval.

According to Lemma 6.6, our only task is to prove that, given a prescribed function
ϕ ∈ E , the function ϕ ◦ f belongs to

F := {f ∈ P : f is nonconstant on any interval of R}.

By the chain rule, ϕ ◦ f is a differentiable function and (ϕ ◦ f)′(x) = ϕ′(f(x)) f ′(x)
(x ∈ R). Hence (ϕ ◦ f)′ vanishes at least on D, so this derivative vanishes on a dense
set. It remains to prove that ϕ ◦ f is nonconstant on any open interval of R. In order
to see this, fix one such interval J . Clearly, the function ϕ′ also belongs to E . Then ϕ′

is a nonzero entire function. Therefore the set S := {x ∈ R : ϕ′(x) = 0} is discrete in
R. In particular, it is closed in R and countable, so R \ S is open and dense in R. Of
course, S ∩ (0, 1) is discrete in (0, 1). Since f : R→ (0, 1) is a homeomorphism, the set
f−1(S) is discrete in R. Hence J \ f−1(S) is a nonempty open set of J . On the other
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hand, since D is dense in R, it follows that the set D0 of all interior points of D is
∅. Indeed, if this were not true, there would exist an interval (c, d) ⊂ D. Then f ′ = 0
on (c, d), so f would be constant on (c, d), which is not possible because f is strictly
increasing. Therefore R \D is dense in R, from which one derives that J \D is dense
in J . Thus (J \ f−1(S)) ∩ (J \D) 6= ∅. Finally, pick any point x0 in the last set. This
means that x0 ∈ J , f(x0) 6∈ S (so ϕ′(f(x0)) 6= 0) and x0 /∈ D (so f ′(x0) 6= 0). Thus
(ϕ ◦ f)′(x0) = ϕ′(f(x0))f ′(x0) 6= 0, which implies that ϕ ◦ f is nonconstant on J , as
required.

Remark 6.8. 1. In view of the last theorem one might believe that the expression “f ′ = 0
on a dense set” (see the definition of P) could be replaced by the stronger one “f ′ = 0
almost everywhere”. But this is not possible because every differentiable function is an
N-function –that is, it sends sets of null measure into sets of null measure– (see [134,
Theorem 21.9]) and every continuous N-function on an interval whose derivative vanishes
almost everywhere must be a constant (see [134, Theorem 21.10]).
2. If a real function f is a derivative then f 2 may be not a derivative (see [134, p. 86]).
This leads us to conjecture that the set DP of Pompeiu derivatives (and of course, any
subset of it) is not algebrable.
3. Nevertheless, from Theorem 3.6 (and also from Theorem 4.1) of [83] it follows that the
family BDP of bounded Pompeiu derivatives is c-lineable. A quicker way to see this is
by invoking the fact that BDP is a vector space that becomes a Banach space under the
supremum norm [54, pp. 33–34]. Since it is not finite dimensional, a simple application
of Baire’s category theorem yields dim(BDP) = c. Now, on one hand, we have that,
trivially, BDP is dense-lineable in itself. On the other hand, it is known that the set
of derivatives that are positive on a dense set and negative on another is a dense Gδ set
in the Banach space BDP [54, p. 34]. Then, as the authors of [83] suggest, it would be
interesting to see whether this set is also dense-lineable.

6.3 Discontinuous functions

Let n ≥ 2 and consider the function f : Rn → R given by

f(x1, . . . , xn) =


x1 · · ·xn

x2n
1 + · · ·+ x2n

n

if x2
1 + · · ·+ x2

n 6= 0,

0 if x1 = · · · = xn = 0.
(6.1)

Observe that f is discontinuous at the origin since arbitrarily near of 0 ∈ Rn there exist
points of the form x1 = · · · = xn = t at which f has the value 1/ntn. On the other
hand, fixed (x1, . . . , xi−1, xi+1, . . . , xn) ∈ Rn−1, the real-valued function of a real variable
given by ψ : xi 7→ f(x1, . . . , xn) is everywhere a continuous function of xi. Indeed, this
is trivial if all xj’s (j 6= i) are not 0, while ψ ≡ 0 if some xj = 0. Of course, f is
continuous at any point of Rn \ {0}.

Definition 6.9. Let n ≥ 2 be a positive integer. We say that a function f : Rn → R is
separately continuous if, fixed (x1, . . . , xi−1, xi+1, . . . , xn) ∈ Rn−1, the real-valued function
of a real variable given by xi 7→ f(x1, . . . , xn) is a continuous function of xi. Given
x0 ∈ Rn, we denote by SC(Rn, x0) the vector space of all separately continuous functions
f : Rn → R that are continuous on Rn \ {x0}.
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Example 6.10. The function f given in (6.1) belongs to SC(Rn, 0).

Since card (C(Rn \ {x0})) = c, it is easy to see that the cardinality (so the dimension)
of SC(Rn, x0) is equals c. In Theorem 6.11 below we will show the algebrability of the
family DSC(Rn, x0) := {f ∈ SC(Rn, x0) : f is discontinuous at x0} in a maximal sense.

Theorem 6.11. Let n ∈ N with n ≥ 2, and let x0 ∈ Rn. Then the set DSC(Rn, x0) is
strongly c-algebrable.

Proof. We can suppose without loss of generality that x0 = 0 = (0, 0, . . . , 0). Consider
the function f ∈ DSC(Rn, 0) given by (6.1). For each c > 0, we set ϕc(x) := e|x|

c−e−|x|c .
It is easy to see that these functions generate a free algebra. Indeed, if P (t1, . . . , tp) is
a nonzero polynomial in p variables with P (0, 0, . . . , 0) = 0 and c1, . . . , cp are distinct
positive real numbers, let M := {j ∈ {1, . . . , p} : the variable tj appears explicitly in
the expression of P}, and c0 := max{cj : j ∈ M}. Then one derives that the function
P (ϕc1 , . . . , ϕcp) has the form D em|x|

c0+g(x) + h(x), where D ∈ R \ {0}, m ∈ N, g is a
finite sum of the form

∑
kmk|x|αk with mk integers and αk < c0, and h is a finite linear

combination of functions of the form eq(x) where, in turn, each q(x) is a finite sum of
the form

∑
k nk|x|γk , with each γk satisfying that either γk < c0, or γk = c0 and nk < 0

simultaneously. Then
lim
x→∞
|P (ϕc1(x), . . . , ϕcp(x))| = +∞ (6.2)

and, in particular, P (ϕc1 , . . . , ϕcp) is not 0 identically. This shows that the algebra Λ
generated by the ϕc’s is free.

Now, define the set A := {ϕ ◦ f : ϕ ∈ Λ}. Plainly, A is an algebra of functions
Rn → R each of them being continuous on Rn\{0}. But, in addition, this algebra is freely
generated by the functions ϕc◦f (c > 0). To see this, assume that Φ = P (ϕc1 ◦f, . . . , ϕcp ◦
f) ∈ A, where P, c1, . . . , cp are as above. Suppose that Φ = 0. Evidently, the function
f is onto (note that, for example, f(x, . . . , x) = 1/n xn, f(−x, x, . . . , x) = −1/n xn and
f(0, . . . , 0) = 0). Therefore P (ϕc1(x), . . . , ϕcp(x)) = 0 for all x ∈ R, so P ≡ 0, which is
absurd because P (ϕc1 , . . . , ϕcp) becomes large as x→∞.

Hence our only task is to prove that every function Φ ∈ A\{0} as in the last paragraph
belongs to DSC(Rn, 0). Firstly, the continuity of each ϕc implies that Φ ∈ SC(Rn, 0).
Finally, the function Φ is discontinuous at the origin. Indeed, we have for all x 6= 0 that

|Φ(x, x, . . . , x)| =
∣∣∣∣P(ϕc1( 1

nxn
), . . . , ϕcp(

1

nxn
)
)∣∣∣∣ −→ +∞

as x→ 0, due to (6.2). This is inconsistent with continuity at 0. The proof is finished.
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quality: some recent and unexpected applications, arXiv:1412.2017 [math.FA].

[5] N. Albuquerque, F. Bayart, D. Pellegrino and J.B. Seoane-Sepúlveda, Optimal
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Seoane-Sepúlveda, Lineability in sequence and function spaces, arXiv:1507.04477
[math.FA].
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bility: the search for linearity in Mathematics, Monographs and Research Notes in
Mathematics, Chapman & Hall/CRC, Boca Raton, FL, 2015.

[19] R.M. Aron, F.J. Garćıa-Pacheco, D. Pérez-Garćıa and J.B. Seoane-Sepúlveda, On
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[111] D. Nuñez-Alarcón, D. Pellegrino, J.B. Seoane-Sepúlveda and D.M. Serrano-
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