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Abstract

We study two types of Neumann problem related to Capillary problem and to the

evolution of graphs under mean curvature �ow in Riemannian manifolds endowed with

a Killing vector �eld. In particular, we prove the existence of Killing graphs with

prescribed mean curvature and prescribed boundary conditions.

Keywords: Neumann, Capillary, Mean curvature �ow.
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Introduction

Capillarity phenomena happens whenever two materials are situated adjacent to

each other and do not mix. We use the term capillary surface to describe the free

interface that occurs when one of the materials is a liquid and the other a liquid or gas.

We can observe the capillarity phenomena in various places, some are simple,

others, such as the rise of liquid in a narrow tube, are more important and has been

studied since the 17th century by an Italian scientis Nicoló Aggiunti. He wrote in his

booklet a �rst description of the observation of that problem [1].

The modern theory of capillarity starts in the beginning of the 19th century and

is mainly based on mathematical methods of calculus of variations, and on di�erential

geometry. But the initial mathematical insights were introduced by Thomas Young, a

medical physician and natural philosopher who in 1805 introduced the mathematical

concept of mean curvature H of a surface and who showed its importance for capillarity

by relating it to the pressure change across the surface [2].

It was Laplace [3] that derived a formal mathematical expression for the mean

curvature H of a surface u(x, t),

2H = divTu, where Tu =
Du√

1 + |Du|2

The notion of mean curvature of a surface was introduced by T. Young (1805)

and P. S. Laplace (1806) just for characterizing quantitatively the rise of liquid in a

narrow tube. The Laplace or Young-Laplace equation can be written as

P = σ(
1

R1

+
1

R2

),

where P is the pressure, σ is the surface tension, R1 and R2 are the two principal
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radii of curvature, so for the height u of the surface above the level corresponding to

atmospheric pressure we have

1

2
ku = H(

1

R1

+
1

R2

),

where k is a physical constant.

One of the reasons for studying capillary problems is that the problem of �nding

a capillary surface is a purely geometric one, that is, to �nd a surface whose mean cur-

vature is a prescribed function of position and which meets prescribed rigid boundary

walls in a prescribed angle. That is if we assume that the surface can be described as

a graph of a function u over a domain Ω then we have

div
(∇u
W

)
= ku. in Ω (1)

〈N, ν〉 = φ on ∂Ω. (2)

Now a large number of the modern results on capillary surfaces are devoted to esta-

blishing the existence of solutions for the problem (1), (2). The �rst general result was

obtained only in 1973 using the variational approach [4].

Gauss uni�ed the work of Young and Laplace in 1830, deriving both the di�eren-

tial equation and boundary conditions using Johann Bernoulli's virtual work principles,

according to which the energy of a mechanical system in equilibrium is unvaried under

arbitrary virtual displacements consistent with the constraints [5]. We observe that,

the energy functional consists of a 'surface integral' plus a 'volume integral'. Now the

problem is that the classical de�nition of surface area is rather inadequate for treating

this type of problem. A satisfactory theory of surface area for a general class of surfaces

of codimension one in Rn, n ≥ 2, has been developed by E. De Giorgi in the �fties, and

then by M. Miranda, M. Giaquinta, E. Giusti, and others [6]-[9]. Independently the

ideas of geometric measure theory were developed by H. Fédérer, W. H. Fleming, F.

J. Almgren, W. K. Allard, and others, and have been used e�ectively by Jean Taylor

to consider boundary regularity for capillarity problems [10]-[14].

One of the problems that we will discuss in this thesis is the existence of solution

to the problem of capillarity

div
(∇u
W

)
− 〈∇γ

2γ
,
∇u
W
〉 = Ψ. (3)
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Notice that equation (3.1) is the prescribed mean curvature equation for Killing graphs.

The �rst general existence results for constant mean curvature graphs in Riemannian

ambients as warped product spaces were treated in [15]. A general existence result

for solutions of the Dirichlet problem for this equation may be found in [16]. There

the authors used local perturbations of the Killing cylinders as barriers for obtaining

height and gradient estimates. However this kind of barrier is not suitable to obtain a

priori estimates for solutions of Neumann problems. For that reason we consider now

local perturbations of the graph itself adapted from the original Korevaar's approach

in [17] and its extension by M. Calle e L. Shahriyari [18].

Solutions of mean curvature equations can also be constructed as stationary limits

of mean curvature �ow with speed given by the di�erence of the actual and the desired

mean curvature.

We say that a hypersurfaceMt in a Riemannian manifoldM is said to be evolving

by mean curvature �ow if each point of the surface moves, in time and space, in the

direction of its unit normal N with speed equal to the mean curvature H at that point.

For example, round spheres in Euclidean space evolve under mean curvature �ow while

concentrically shrinking inward until they collapse in �nite time to a single point, the

common center of the spheres. Equivalently if one considers the mean curvature �ow

of smooth family of immersions Ft = F (·, t) : Mn −→M
n+1

this is given by

∂

∂t
F (p, t) = nH(F (p, t))N(F (p, t)),∀(p, t) ∈Mn × [0, T )

There are two approaches to the study of mean curvature �ow. One may work di-

rectly with the immersions or if the hypersurfaces obey a graph condition, one may

study mean curvature �ow with classical techniques by considering it as a quasilinear

parabolic partial di�erential equation.

Mean curvature �ow is perhaps the most important geometric evolution equation

of submanifolds in Riemannian manifolds and has been studied for some time, at

least since 1956, when Mullins [19] considered a version of mean curvature �ow in one

dimension, were he proposed mean curvature �ow to model the formation of grain

boundaries in annealing metals. In 1978 Brakke [20] studied the mean curvature �ow

of surfaces from the point of view of geometric measure theory.

For closed convex surfaces in Rn+1, one result of great interest is that of Huisken
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[21]. There the author proves that under mean curvature �ow, compact, initially convex

surfaces retain their convexity and becoming more and more spherical at the end of

the evolution. In [22] this was extended to general Riemannian manifolds under the

assumption that the initial hypersurface is su�ciently convex: Each principal curvature

λi of the initial surface has to be bounded below by a constant depending on the

curvature and the derivative of the curvature in the ambient manifold. The analogous

result for the one dimensional case, the curve shortening �ow, was obtained by Gage

and Hamilton [23], [24], where it was proved that initially convex planar curves contract

to points. This was later generalised by Grayson [25],[26] for all closed embedded planar

curves. He proved that any embedded closed curve on a 2-surface of bounded geometry

will either smoothly contract to a point in �nite time or converge to a geodesic in in

�nite time.

In many contributions to the theory of mean curvature �ow one assumes that M

is a smooth closed manifold. The reason is, that one key technique in mean curvature

�ow (or more generally in the theory of parabolic geometric evolution equations) is

the application of the maximum principle. But even for complete non-compact subma-

nifolds there are powerful techniques, similar to the maximum principle, that can be

applied in some situations. In the complete case one of the most important tools is the

monotonicity formula found by Huisken [27], Ecker and Huisken [28] and Hamilton [29]

and that equally well applies to mean curvature �ow in higher codimension. A local

monotonicity for evolving Riemannian manifolds has been found recently by Ecker,

Knopf, Ni and Topping [30].

The non-parametric mean curvature �ow of graphs with either a ninety degree

contact angle or Dirichlet boundary condition on cylindrical domains has been studied

by Huisken [31] and there proves a long time existence and convergence to minimal

surfaces theorem. This was later generalised by Altschuler and Wu [32], where they

allow arbitrary contact angles at the �xed boundary for two dimensional graphs. This

in turn was also later generalised to arbitrary dimensions by Guan [33] in Euclidian

space, and Calle [18] in Riemannian manifolds. From the point of view of immersions

mean curvature �ow with Dirichlet boundary data has been studied by Stone [34],[35]

in Euclidean space and Priwitzer in [36] in the setting of Riemannian manifolds.

In this thesis we study the following Neumann problem in Riemannian manifold
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related to the evolution of Killing graphs under mean curvature �ow.

∂X

∂t
= (nH −H)N, (4)

X(0, ·) = ϑ(u0(·), ·), (5)

with boundary condition

〈N, ν〉|∂Σt = φ, (6)

As an application we prove the existence of Killing graphs with prescribed mean cur-

vature and prescribed boundary conditions. This problem is considered as a �ow of

immersions which have also the property of being graphs. This will allow us to trans-

form the evolution equation for the immersion into that for a scalar function.

This equation is parabolic and quasilinear and standard theory guarantees that

the problem of solving (1.6)-(1.8) is reduced to obtaing a priori height and gradient

estimates for solutions the problem. This thesis is divided into four chapter as follows.

In Chapter 1 we give a brief explanation of the problems that we treat in this

thesis, namely, Capillary Problem and Mean Curvature Flow of Killing Graphs, both

with Neumann boundary conditions.

In Chapter 2 we present a set of theorems which concerns the theory parabolic,

including maximum principle and short time existence.

In Chapter 3 and Chapter 4 we will proof the Capillary Problem and Mean

Curvature Flow of Killing Graphs respectively.
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Capı́tulo 1
The Problems

Let M be a (n + 1)-dimensional Riemannian manifold endowed with a Killing

vector �eld Y . Suppose that the distribution orthogonal to Y is of constant rank and

integrable. Given an integral leaf P of that distribution, let Ω ⊂ P be a bounded

domain with regular boundary Γ = ∂Ω. Let ϑ : I × Ω̄ → M the �ow generated by

Y with initial values in M , where I is a maximal interval of de�nition. In geometric

terms, the ambient manifold is a warped product M = P ×1/
√
γ I where γ = ε/〈Y, Y 〉.

Given T ∈ [0,+∞), let u : Ω̄× [0, T )→ I be a smooth function. Fixed this nota-

tion, the Killing graph of u(·, t), t ∈ [0, T ), is the hypersurface Σt ⊂ M parametrized

by the map

X(t, x) = ϑ(u(x, t), x), x ∈ Ω̄.

Notice that this de�nition could be slightly more general if we suppose that the coor-

dinates of x ∈ Ω̄ change with the parameter t ∈ [0, T ). To abolish this possibility is

equivalent to rule out tangential di�eomorphisms of Ω.

The Killing cylinder K over Γ is by its turn de�ned by

K = {ϑ(s, x) : s ∈ I, x ∈ Γ}. (1.1)

Let N be a unit normal vector �eld along Σt. In what follows, we denote by H

the mean curvature of Σt with respect to the orientation given by N .

The height function with respect to the leaf P is measured by the arc lenght

parameter ς of the �ow lines of Y , that is,

ς =
1
√
γ
s.
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In this thesis we work with two types of problems. The �rst is a capillary problem.

We prove that there exist solutions for a non-parametric capillary problem in a wide

class of Riemannian manifolds endowed with a Killing vector �eld. In other terms, we

prove the existence of Killing graphs with prescribed mean curvature and prescribed

contact angle along its boundary. For the second type of problem we consider the mean

curvature �ow of killing graphs with a Neumann boundary condition.

In what follows we present a brief presentation of the problems

1.1 Capillary problem

We formulate a capillary problem in this geometric context which model statio-

nary graphs under a gravity force whose intensity depends on the point in the space.

More precisely, given a gravitational potential Ψ ∈ C1,α(Ω̄×R) we de�ne the functional

A[u] =

∫
Σ

(
1 +

∫ u/
√
γ

0

Ψ(x, s(ς)) dς

)
dΣ. (1.2)

The volume element dΣ of Σ is given by

1
√
γ

√
γ + |∇u|2 dσ,

where dσ is the volume element in P .

The �rst variation formula of this functional may be deduced as follows. Given

an arbitrary function v ∈ C∞c (Ω) we compute

d

dτ

∣∣∣
τ=0
A[u+ τv] =

∫
Ω

(
1
√
γ

〈∇u,∇v〉√
γ + |∇u2|

+
1
√
γ

Ψ(x, u(x))v

)√
σdx

=

∫
Ω

(
div
( 1
√
γ

∇u
W

v
)
− div

( 1
√
γ

∇u
W

)
v +

1
√
γ

Ψ(x, u(x))v

)√
σdx

−
∫

Ω

(
1
√
γ
div
(∇u
W

)
− 1
√
γ
〈∇γ

2γ
,
∇u
W
〉 − 1
√
γ

Ψ(x, u(x))

)
v
√
σdx,

where
√
σdx is the volume element dσ expressed in terms of local coordinates in P .

The di�erential operators div and ∇ are respectively the divergence and gradient in P

with respect to the metric induced from M .

We conclude that stationary functions satisfy the capillary-type equation

div
(∇u
W

)
− 〈∇γ

2γ
,
∇u
W
〉 = Ψ. (1.3)
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Notice that a Neumann boundary condition arises naturally from this variational set-

ting: given a C2,α function Φ : K → (−1, 1), we impose the following prescribed angle

condition

〈N, ν〉 = Φ (1.4)

along ∂Σ, where

N =
1

W

(
γY − ϑ∗∇u

)
(1.5)

is the unit normal vector �eld along Σ satisfying 〈N, Y 〉 > 0 and ν is the unit normal

vector �eld along K pointing inwards the Killing cylinder over Ω.

Following [18] and [17] we suppose that the data Ψ and Φ satisfy

i. |Ψ|+ |∇̄Ψ| ≤ CΨ in Ω̄× R,

ii. 〈∇̄Ψ, Y 〉 ≥ β > 0 in Ω̄× R,

iii. 〈∇̄Φ, Y 〉 ≤ 0,

iv. (1− Φ2) ≥ β′,

v. |Φ|2 ≤ CΦ in K,

for some positive constants CΨ, CΦ, β and β′, where ∇̄ denotes the Riemannian connec-

tion in M . Assumption (ii) is classically referred to as the positive gravity condition.

Even in the Euclidean space, it seems to be an essential assumption in order to obtain

a priori height estimates. A very geometric discussion about this issue may be found

at [37]. Condition (iii) is the same as in [18] and [17] since at those references N is

chosen in such a way that 〈N, Y 〉 > 0.

We will prove the following result

Theorem 1 Let Ω be a bounded C3,α domain in P . Suppose that the Ψ ∈ C1,α(Ω̄×R)

and Φ ∈ C2,α(K) with |Φ| ≤ 1 satisfy conditions (i)-(v) above. Then there exists a

unique solution u ∈ C3,α(Ω̄) of the capillary problem (3.1)-(3.2).

We observe that Ψ = nH, where H is the mean curvature of Σ calculated with

respect to N . Therefore Theorem 13 establishes the existence of Killing graphs with

prescribed mean curvature Ψ and prescribed contact angle with K along the boundary.

Since the Riemannian product P × R corresponds to the particular case where γ = 1,
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our result extends the main existence theorem in [18]. Space forms constitute other

important examples of the kind of warped products we are considering. In particular,

we encompass the case of Killing graphs over totally geodesic hypersurfaces in the

hyperbolic space Hn+1.

1.2 Mean curvature �ow

We will establish conditions for longtime existence of a prescribed mean curvature

�ow of the form

∂X

∂t
= (nH −H)N, (1.6)

X(0, ·) = ϑ(u0(·), ·), (1.7)

for given functions u0 : Ω̄→ R and H : Ω̄→ R. In order to de�ne boundary conditions

for the evolution problem (1.6) we consider a function φ ∈ C∞(Γ) such that |φ| ≤ φ0 <

1 for some positive constant φ0. Let ν be the inward unit normal vector �eld along K.

We impose the following Neumann condition associated to (1.6)

〈N, ν〉|∂Σt = φ, (1.8)

where 〈·, ·〉 denotes the Riemannian metric in M .

Let x1, . . . , xn be local coordinates in P . This system is augmented to be a

coordinate system inM by setting x0 = s, the �ow parameter of Y . The tangent space

of Σt at a point X(t, x), x ∈ Ω̄, is spanned by the coordinate vector �elds

X∗
∂

∂xi
= ϑ∗

∂

∂xi
+ uiϑ∗

∂

∂x0
=

∂

∂xi

∣∣∣
X

+ ui
∂

∂x0

∣∣∣
X
. (1.9)

In terms of these coordinates the induced metric in Σt is expressed in local components

by

gij = σij +
1

γ
uiuj, (1.10)

where γ = 1
|Y |2 and σij are the local components of the metric in P .

In order to compute the mean curvature of Σt, we �x N as the vector �eld

N =
1

W

(
γY − ϑ∗∇u

)
, (1.11)

where ∇u is the gradient of u in P and

W =
√
γ + |∇u|2. (1.12)
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The second fundamental form of Σt calculated with respect to this choice of normal

vector �eld has local components

aij = 〈∇̄X∗
∂

∂xi
X∗

∂

∂xj
, N〉, (1.13)

where ∇̄ denotes the covariant derivative in M . We then compute

aij = 〈∇̄X∗
∂

∂xi
ϑ∗

∂

∂xj
, N〉+ 〈∇̄X∗

∂

∂xi
ujϑ∗

∂

∂x0
, N〉

= 〈∇̄ϑ∗
∂

∂xi
ϑ∗

∂

∂xj
, N〉+ ui〈∇̄ϑ∗

∂
∂x0
ϑ∗

∂

∂xj
, N〉+ uj〈∇̄ϑ∗

∂

∂xi
ϑ∗

∂

∂x0
, N〉

+ui,j〈ϑ∗
∂

∂x0
, N〉+ uiuj〈∇̄ϑ∗

∂
∂x0
ϑ∗

∂

∂x0
, N〉.

Hence using the fact that the maps x 7→ ϑ(s, x) are isometries and that the hypersur-

faces de�ned by {ϑ(s, x) : x ∈ P}, s ∈ I, are totally geodesic one concludes that

aij = 〈∇̄ ∂

∂xi

∂

∂xj
,− 1

W
∇u〉+ ui〈∇̄ ∂

∂xj
Y,

1

W
γY 〉+ uj〈∇̄ ∂

∂xi
Y,

1

W
γY 〉

+ui,j〈Y,
1

W
γY 〉+ uiuj〈∇̄Y Y,−

1

W
∇u〉.

It follows from Killing's equation that

aij =
ui;j
W
− ui
W

γj
2γ
− uj
W

γi
2γ
− uiuj

2W
uk
γk
γ2
. (1.14)

It turns out that aij could be also expressed by

aij =
ui;j
W
− ui
W
γ〈∇̄Y Y,

∂

∂xj
〉 − uj

W
γ〈∇̄Y Y,

∂

∂xi
〉 − uiuj

W
〈∇̄Y Y,∇u〉. (1.15)

Taking traces with respect to the induced metric one obtains the following expression

for the mean curvature H of the hypersurface Σt

nH =
(
σij − ui

W

uj

W

)ui;j
W
− 2γ + |∇u|2

W 3
〈∇̄γ

2γ
,∇u〉. (1.16)

Alternatively one has

nH =
(
σij − ui

W

uj

W

)ui;j
W
− 2γ + |∇u|2

W 3
γ〈∇̄Y Y,∇u〉. (1.17)

At this point we recall that

∇̄ ∂

∂xi
Y = −1

2

γi
γ
Y (1.18)

and

∇̄Y Y =
1

2

∇γ
γ2

. (1.19)
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what implies that

〈∇̄Y Y,∇u〉 = −〈∇̄∇uY, Y 〉 =
1

2γ2
〈∇γ,∇u〉. (1.20)

Using this one easily veri�es that (1.16) may be written in divergence form as

div
∇u
W
− 1

2γW
〈∇γ,∇u〉 = nH. (1.21)

In fact we have ( ui
W

)
;i

=
1

W
ui;i −

1

W 3
uiujui;j −

1

2W 3
uiγi.

It is worth to point out that (1.21) is equivalent to

div
∇u
W
− γ

W
〈∇̄Y Y,∇u〉 = nH. (1.22)

We conclude that (1.6) may be written nonparametrically as

∂u

∂t
= Wdiv

∇u
W
−WH− γ〈∇̄Y Y,∇u〉. (1.23)

Indeed it holds that

nH −H = 〈∂X
∂t

,N〉 = 〈∂u
∂t
ϑ∗

∂

∂x0
,
γ

W
ϑ∗

∂

∂x0
〉 =

1

W

∂u

∂t
.

Using (1.16) one veri�es that (1.23) is equivalent to

∂u

∂t
=
(
σij − ui

W

uj

W

)
ui;j −

2γ + |∇u|2

W 2
〈∇̄γ

2γ
,∇u〉 −WH. (1.24)

We conclude that the Neumann problem (1.6)-(1.8) has the following nonparametric

form

ut =
(
σij − ui

W

uj

W

)
ui;j −

( 1

2γ
+

1

2W 2

)
γiui −WH in Ω× [0, T ) (1.25)

u(·, 0) = u0(·) in Ω× {0} (1.26)

with boundary condition

〈N, ν〉 = φ on ∂Ω× [0, T ). (1.27)

This boundary value problem describes the evolution of the Killing graph of the func-

tion u(·, t) by its mean curvature in the direction of the unit normal N with prescribed

contact angle at the boundary.
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The standard theory for quasilinear parabolic equations [48] guarantees that the

problem of solving (1.6)-(1.8) is reduced to obtaning a priori height and gradient

estimates for solutions to (4.4)-(4.6).

We will prove the following result

Theorem 2 There exists a unique solution u : Ω̄ × [0,∞) → I to the problem (1.6)-

(1.8). Moreover, if φ = 0 and H = 0 the graphs Σt converge to a minimal graph which

contacts the cylinder K orthogonally along its boundary.

Theorem 2 extends Theorem 1.1 in [31] as well as Theorem 2.4 in [33] and Theo-

rem 2.4 in [18] in a twofold way. The corresponding theorems in [31] and [33] concern

evolution of graphs in Euclidean space whereas [18] deals with the case of graphs in

Riemannian product spaces of the form P × R. Moreover those earlier results hold

only for the case when the prescribed mean curvature is H = 0. An existence result

for evolution of graphs in Euclidean space by the Gauss-Kronecker curvature under

Neumann boundary conditions is proved in [39]. We also mention that the Dirichlet

problem for the evolution of graphs in warped spaces is extensively studied in [38].
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Capı́tulo 2
Parabolic Theory

2.1 Maximum and comparison principles

The maximum principle is an important tool in the study of second order para-

bolic problems, in particular here for the study of mean curvature �ow. In general the

maximum principle states that the maximum of a solution of a homogeneous linear or

quasilinear parabolic equation in a domain must occur on the boundary of that domain.

In fact, this maximum must occur on a special subset called the parabolic boundary.

The parabolic boundary includes the domain at initial time. The strong maximum

principle asserts that the solution is constant if the maximum occurs anywhere other

than on the parabolic boundary.

In this chapter we present a set of maximum principles for scalar functions which

satisfy a parabolic evolution equation on a bounded domain in a Riemannian manifold

(P n, σ). We follow the PhD thesis of Valentina Mira [42] and Benjamin Lambert [43]

which were based on Lieberman [48] . The comparison and maximum principles will

be used to obtain interior estimates, and since we have a boundary value problem, the

estimates we give here will depend upon the boundary values.

Let Ω ⊂ P n be a domain with a smooth boundary ∂Ω. We de�ne our parabolic

domain to be

Ω̃ = Ω× [0, T ).

The parabolic boundary PΩ̃ is the union of the following three components: BΩ̃ =

Ω×{0}, SΩ̃ = ∂Ω×(0, T ) and CΩ̃ = ∂Ω×{0}. We denote an arbitrary point (x, t) ∈ Ω̃

by X.
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Consider the quasilinear operator P de�ned by

Pu = aij(x,∇u)ui;j + a(x,∇u)− ut,

for some u ∈ C2,1(Ω̃) where the coe�cients are given by

aij = σij − ui

W

uj

W
(2.1)

and

a = −
( 1

2γ
+

1

2W 2

)
γiui −WH (2.2)

in terms of the notation �xed in Chapter I.

Notice that the coe�cients do not depend explicitly on the variables t or u but

only implicitly through the terms involving ∇u. This operator is parabolic in the sense

that the matrix aij is positive de�nite. Indeed, for any (x, p) ∈ TΩ and ζ ∈ T ∗xP we

have
γ

γ + |p|2
|ζ|2 ≤ aij(x, p)ζiζj ≤ |ζ|2,

We conclude that restricted to the points of the form (x,∇u) the extremal eigenvalues

are given by

λ =
γ

γ + |∇u|2
and Λ = 1.

Hence P is parabolic in u. However, the ratio Λ
λ

= 1 + 1
γ
|∇u|2 is uniformly bounded if

and only if |∇u| is uniformly bounded in Ω̃. This means that P is uniformly parabolic

in u if and only if ∇u is uniformly bounded.

In order to prove a maximum principle we prove �rst a comparison principle as

follows.

Theorem 3 (Comparison principle) Let P be the quasilinear operator as above. Sup-

pose that there exists an increasing positive constant k such that a(x, p) + k(M)z is a

decreasing function of z on T Ω̃ × [−M,M ] for any M > 0. If u and v are functions

in C2,1(Ω̃\P Ω̃) ∩ C(Ω̃) such that P is parabolic with respect to u or v, Pu ≥ Pv in

Ω̃\P Ω̃, and u ≤ v in PΩ̃, then u ≤ v in Ω̃.

Proof. We de�ne w = (u − v)eλt, where λ is a constant to be chosen later. Let

M = max{sup |u|, sup |v|}. We have that u ≤ v in PΩ̃, then, w ≤ 0 in PΩ̃. Let



2.1 Maximum and comparison principles 23

X0 = (x0, t0) be a point where w attains its �rst positive maximum. At this point, we

have,

Du−Dv = Dw = 0

(D2u−D2v)eλt = D2w ≤ 0, and (2.3)

(ut − vt)eλt + λ(u− v)eλt = wt > 0.

Now let α = (X0, u(X0), Du(X0)) and β = (X0, v(X0), Dv(X0)), then

Lu(X0)− Lv(X0) = aij(α)D2
ij(u− v) + (a(α)− a(β))− ∂

∂t
(u− v).

It follows by (2.3) and the hypothesis on the existence of the constant k that

Pu(X0)− Pv(X0) ≤ (k(M) + λ)(u− v).

Now if we have u > v choosing λ < −k(M) we conclude that

Pu(X0)− Pv(X0) < 0,

which contradicts the hypothesis that Lu ≥ Lv. So we cannot have an interior positive

maximum of w, which gives us u ≤ v in Ω̃.

�

The uniqueness of a solution for a parabolic boundary value problem follows

directly from the comparison principle above.

Corollary 4 (Uniqueness) Suppose that P is as in Theorem 3 and that u and v belong

to C2,1(Ω̃) ∩ C(Ω̃). If Pu = Pv in Ω̃ and u = v on PΩ̃, then u = v in Ω̃.

Now, we prove a maximum principle using the comparison principle above.

Theorem 5 (Maximum Principle) Let P be a parabolic operator whose coe�cients aij

and a do not depend on z. If Pu ≥ 0 in Ω̃ then

sup
Ω̃

u ≤ sup
PΩ̃

u.

Proof. Let v = supPΩ̃ u. Observe that Pv = 0 then Pu ≥ 0 = Pv. And u ≤ supPΩ̃ u =

v in PΩ̃. It follows by Theorem 3 that u ≤ v in Ω̃. Then supΩ̃ u ≤ v, this completes

the prove. �
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We will need the boundary point lemma of E. Hopf , which is normally referred

to as the Hopf Lemma. At a maximum point of a scalar function on a domain the

directional derivative towards that point is non-negative. If this point is a boundary

point and the scalar function satis�es a parabolic inequality, then the following result

gives us a strict sign on the derivative in a direction away from the boundary. Here we

prove a Hopf Lemma where the parabolic boundary is assumed to be at least C1. This

result can be found throughout the literature, for example in [44].

Lemma 6 (Hopf Lemma) Let Ω̃ be a space-time domain with C1-boundary in which u

is a solution of the parabolic inequality

Pu ≥ 0

where P is a quasilinear parabolic operator with smooth coe�cients. Suppose that

X0 = (x0, t0) is a point on the boundary ∂Ω̃ where the maximum value M of u occurs.

Assume that there exists a sphere through X0 whose interior lies entirely in Ω̃ and in

which u < M . Also suppose that the radial direction from the centre of the sphere to

X is not parallel to the times axis. Then if ∂
∂ν

denotes any directional derivative away

from the boundary, we have

∂u
∂ν
> 0 at X0.

Remark 7 In the proof we use a local system of coordinates and then we assimilate

the distance sphere to an Euclidean sphere for sake of simplicity.

Proof. Observe that inX0 any directional derivative of u in a direction pointing towards

the point X0 will be non-negative. So in order to obtain the strict sign we will consider

a perturbation of the solution u to which we apply the maximum principle.

Let S ⊂ Ω̃ the sphere that appear in the hypothesis, with boundary ∂Ω and centre

at Xs = (xs, ts). Consider now another sphere K centered at X0 and with boundary

∂K and with radius smaller than |X0 −Xs|Rn+1 =
√
|x0 − xs|2Rn + |t0 − ts|2.

Now denote by C1 and C2 the portion of ∂K which is included in S, respectively

the portion of ∂S included in K. We also add the end points of the arcs C1 and C2 to

obtain a closed lens-shaped domais which we denote by D. Then we have

(i) u < M on C2 except at X0. If S does not satisfy this then a slightly smaller

sphere osculating the boundary at X0 will be contained in the interior of S, and so the

condition u < M will be satis�ed everywhere on the arc C2 except the point X0.
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(ii) u = M at X0. It is because the hypothesis.

(iii) There exists a su�ciently small constant µ > 0 such that u ≤M − µ on C1.

Since u < M everywhere in the interior of S and C1 is a closed subset of S.

De�ne the function

v(x, t) = e−α|X−Xs|
2
Rn+1 − e−α|X0−Xs|2Rn+1 ,

and choose α large enough such that

Pv(x, t) > 0 for all (x, t) on D ∪ ∂D.

Now, consider the function

w = u+ εv.

Observe that for every positive ε, Pw = Pu+ εPv > 0 everywhere in D. It follows by

(iii) that there exists an ε so small that we have

w < M on C1. (2.4)

Now v = 0 on ∂S, also on the arc C2. This together with relation (i) gives

w < M on C2 except at X0, (2.5)

and

w = M at X0. (2.6)

Applying the maximum principle for the function w and using (2.4), (2.5) and

(2.6) we conclude that the maximum of the function w occurs only at the boundary

point X0. It follows that

∂w

∂ν
=
∂u

∂ν
+ ε

∂v

∂ν
≥ 0 (2.7)

for any outward pointing direction ν of the set D. Denote by η the outer pointing

unit normal to the boundary ∂Ω̃ at X0. We have that 〈ν, η〉 > 0 since ν is also



26 Parabolic Theory

outward pointing. Choose a coordinate system such that Xs is the origin and let

r(X) = |X −Xs|Rn+1 . We may rewrite v as

v(x, t) = e−αr
2 − e−α|X0−Xs|2Rn+1 ,

than we have
∂v

∂xi
= −2αxie

−αr2

.

It follows that
∂u

∂ν
= −2αre−αr

2〈ν, η〉 < 0.

Using this and (2.7) we conclude that

∂u

∂ν
> 0 at X0.

�

2.2 Short and longtime existence results

The Neumann problem (1.6)-(1.8) we stated in Chapter I may be rewritten as

follows

Pu = 0 in Ω̃,

Mu = −φ in SΩ̃,

u = u0 in BΩ̃ ∩ CΩ̃.

(2.8)

where

Pu =
(
σij − ui

W

uj

W

)
ui;j −

( 1

2γ
+

1

2W 2

)
γiui −WH− ut (2.9)

and the boundary operator is given by

Mu = 〈N,−ν〉 = 〈∇u
W

, ν〉. (2.10)

We also assume that Mu0 = −φ in CΩ̃ in order to have compatibility between the

boundary and initial value conditions.

The �rst step towards solving (2.8) is to show that a solution exists for a short

interval of time. After that we proof that given uniform bounds on |∇u| and u we have

a bound on |u|δ for some δ ∈ (1, 2). This Hölder norm will be de�ned in the sequel.
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Then, the short time existence, under the assumption that |u|δ is bounded implies the

existence of solutions for t ∈ [0,+∞).

We now de�ne the above mentioned Hölder space Hδ and other further spaces and

norms needed for what follows. For α ∈ (0, 1], we say that a real function f : Ω̃ → R

is Hölder continuous at X0 with exponent α if the quantity

[f ]α;X0 = sup
X∈Ω̃\{X0}

|f(X)− f(X0)|
|X −X0|α

is �nite. Here and from now on we are considering the following parabolic distance

between points X = (x, t) and X0 = (x0, t0):

|X −X0| = max{d(x, x0),
√
t− t0}. (2.11)

If [f ]1:X0 is �nite , we say that f is Lipschitz continuous at X0. Also it is easy to

see that if f is Hölder continuous at a point, then it is also continuous there. If the

semi-norm

[f ]α;Ω̃ = sup
X0∈Ω̃

[f ]α;X0

is �nite, we say that f is uniformly Hölder continuous in Ω̃. Finally, if f is di�erentiable

then it is Lipschitz.

We also de�ne a kind of temporal Hölder quotient

〈f〉β;X0 = sup

{
|f(x0, t)− f(x0, t0)|

|t− t0|
β
2

: (x0, t) ∈ Ω̃\{(x0, t0)}

}

with the corresponding semi-norm de�ned by

〈f〉β;Ω̃ = sup
X0∈Ω̃

〈f〉β;X0 .

Then for any a > 0 such that a = k+α, where k is a non-negative integer and α ∈ (0, 1],

we can de�ne

〈f〉a;Ω̃ =
∑

|β|+2j=k−1

〈∇β∂jt f〉α+1,

[f ]a;Ω̃ =
∑

|β|+2j=k

[
∇β∂jt f

]
α
,



28 Parabolic Theory

|f |a;Ω̃ =
∑

|β|+2j≤k

sup
∣∣∇β∂jt f

∣∣+ [f ]a;Ω̃ + 〈f〉a;Ω̃.

We may verify that |f |α de�nes a norm on Ha(Ω̃) = {f : Ω̃ → R; |f |a < ∞} which

makes Ha(Ω̃) a Banach space.

The smoothness of ∂Ω ⊂ P n implies that given any sistem of local coordinates

(x1, . . . , xn−1, xn) which �atten out ∂Ω locally, we may describe SΩ̃ in terms of the

augmented coordinate system (x1, . . . , xn−1, xn, t) as a graph of the form

xn = f(x1, . . . , xn−1, t),

for some function f ∈ Hδ(Q), where Q = B(0, r) × [0, ε) ∈ Rn−1 × R, for some

r > 0, ε > 0 and for any δ ≥ 1. In particular we conclude from the very de�nition that

the parabolic boundary P Ω̃ has Hδ regularity, for any δ ∈ (1, 2).

The proof of short time existence for quasilinear partial equations follows in two

steps. First we obtain the existence of a solution for an associated linear problem, and

then extend the existence to the quasilinear case through a �xed point argument.

Given ε ∈ (0, T ), we denote Ω̃ε = {X = (x, t) ∈ Ω̃ : t < ε}. Then, �xed a function

u, we consider the linear problem

Luv = aij(x,∇u)vi;j −
(

1

2γ2
+

1

2(γ + |∇u|2)

)
γivi − vt = H

√
γ + |∇u|2

in P Ω̃ε,

Muv = 〈 ∇v√
γ + |∇u|2

, ν〉 = −φ on SΩ̃ε, (2.12)

v = u0 on BΩ̃ε ∪ CΩ̃ε.

Fixed δ ∈ (1, 2) and θ ∈ (1, δ), denote B0 = 1 + |u0|θ. Then de�ne

S = {u ∈ Hθ(Ω̃ε); |u|θ ≤ B0},

where ε > 0 will be chosen later. We de�ne the map J : S → Hθ by declaring that

Ju = v if v is the solution of the problem (2.12). We claim that J is well de�ned.

For that we use the next result which may be found in [48] and that yields a short

time solution for the linear problem (2.12) under some requirements on the boundary

and initial conditions as well as on the regularity of the parabolic boundary.
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Theorem 8 ([48], Th. 5.18). Given a linear parabolic operator of the form

Lv = āij(x)vi;j + āi(x)vi − vt

and the boundary operator

Nv = 〈∇v, β〉,

for a given vector �eld β, suppose that there exists α0 ∈ (0, 1) such that P Ω̃ is Hδ where

δ = 2 + α0 and that

• L is uniformly parabolic, that is, that there exists λ̄ and Λ̄ so that

λ̄|ζ|2 ≤ āijζiζj ≤ Λ̄|ζ|2;

• there exist positive constants A e B such that |āij|α0 ≤ A, |āi|α0 ≤ B;

• there exist constants χ > 0 and B1 > 0 such that 〈β, ν〉 ≥ χ and |β|1+α0 ≤ B1χ.

Then for all f ∈ Hα0, φ ∈ H1+α0 and for any initial data u0 ∈ H2+α0(Ω) ∩ C(Ω̄) such

that Nu0 = −φ, there exists a unique solution v ∈ H2+α0 of the problem

Lv = f in P Ω̃,

Nv = −φ on SΩ̃,

v = u0 on BΩ̃ ∪ CΩ̃.

and there is a constant C determined only by A, B, B1, C1, n, α, γ, δ and Ω̃ such that

|v|2+α ≤ C
(
|f |α0 + |φ|1+α0/χ+ |u0|2+α0

)
.

Remark 9 Since

β =
ν√

γ + |∇u|2
.

it follows that

〈β, ν〉 =
1√

γ + |∇u|2
= |β|.

Hence we �x µ = 1 in the original notation of Theorem 5.18 in [?]. Now we observe

that if ∇u is uniformly bounded by a constant C0 then we obtain we �x the constant R

in the statement of the Theorem 5.18 as

2R

infΩ γ −R infΩ |∇γ|
=

infΩ γ

2 supΩ γ
2 + supΩ |∇γ|

infΩ γ

supΩ γ + C2
0

Then we obtain

2R + 2R sup |(ā1, . . . , ān)| ≤ λ̄

since in our case

λ̄ =
γ

γ + |∇u|2
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and

āi = −
(

1

2γ2
+

1

2(γ + |∇u|2)

)
γi

and c = 0.

To pass from the linear results to the quasilinear ones we need the following

Brouwer �xed point theorem. The proof can be found in [48].

Theorem 10 (Lieberman [48], 1996). Let S be a compact, convex subset of a Banach

space B and let J be a continuous map of S into itself. Then J has a �xed point.

Now we can state the result of short time existence for quasilinear problems.

Theorem 11 Under the hypothesis of the Theorem 2, there exists a positive constant

ε > 0 such that the problem (2.8) has a unique solution u ∈ H2+α de�ned in Ω̃ε.

Proof. As we mentioned above, P Ω̃ε is Hδ regular for any δ ∈ (1, 2). We proceed with

the proof observing that the the gradient estimates we will obtain in the subsequent

chapters for the quasilinear problem are uniform in Ω̃ε (they are global in space, only

local in time). Using the classical work by Ladyzhenskaia and Uraltseva [40] we prove

that there exists a (locally de�ned) Hölder exponent α0 such that u is bounded in the

parabolic Hölder norm with such exponent. The compactness of Ω and the fact that

ε may be taken small enough imply that we may choose the same α0 for the whole

domain Ω̃ε.

Hence given a prospective solution u of the quasilinear problem (2.8) there exists

C0 such that |u|1+α0 ≤ C0. Hence if we de�ne

āij(x) := σij +
uiuj

γ + |∇u|2
, (2.13)

āi(x) :=

(
1

2γ2
+

1

2(γ + |∇u|2)

)
γi, (2.14)

f(x) := H
√
γ + |∇u|2, (2.15)

β(x) :=
1√

γ + |∇u|2
ν. (2.16)
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we obtain constants A,B,B1 and χ depending on the H1+α0 norm of u and on the

geometry of Ω. Hence Theorem 8 implies that there exists a solution v ∈ H2+α0 to the

problem (2.12).

The same reasoning may be replicated starting with arbitrary functions u in the

set

S = {u ∈ Hθ(Ω̃ε) : |u|θ ≤ B0},

where θ ∈ (1, δ) with δ = 1 + α0 chosen in such a way that H1+α0 ⊂ Hθ continuously

for any θ ∈ (1, δ = 1 + α0). The time interval [0, ε) will be chosen later.

We conclude that the map J : S → Hθ is well-de�ned. In order to use the

Brouwer �xed point theorem, we have to prove that J map S into itself. For proving

this, we observe that the the Schauder-type estimate in Theorem 8 implies that

|v|1 ≤ |v|δ=1+α0 ≤ C|v|2+α0 ≤ Ĉ, (2.17)

where C comes from Theorem 8 and depends on all the inicial data and boundary

coe�cients and also on Ĉ = Ĉ(A,B, n, α, δ, γ, Ω̃ε) <∞. In particular, we have v ∈ Hθ.

Now we will prove that v ∈ S. Denoting θ = 1 + α we have

|v − u0|θ = sup |∇v −∇u0|+ [∇v −∇u0]α + sup |v − u0|+ 〈v − u0〉1+α.

The terms |∇xv| and |vt| are estimated by Ĉ since they are summands in the norm

|v|1. Then the �rst and third terms are controlled. Now since v(·, 0) = u0 we have

|∇v(x, t)−∇u0(x)| = |∇v(x, t)−∇v(x, 0)| ≤ Ĉε
1+α

2 ,

where ∇ indicates both space and time derivatives, and

|v(x, t)− u0(x)| = |v(x, t)− v(x, 0)| ≤ Ĉε.

With respect to the last term it follows from |v|t ≤ Ĉ that denoting g = v−u0 we have

〈g〉1+α = sup
s 6=t

g(x, s)− g(x, t)

|s− t| 1+α
2

≤ Ĉ sup
s 6=t
|s− t|

1−α
2 ≤ Cε

1−α
2 .

Finally observing that [∇v]1+α is estimated by |v|2+α and then by Ĉ it results that

[∇g]1+α = sup
X,Y ∈Ω̃, X 6=Y

|∇g(X)−∇g(Y )|
(max d(x, y),

√
s− t)α

≤ Ĉε1−
α
2 .
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We conclude that choosing ε > 1 there exists C = C(n) > 0 such that

|v − u0|θ ≤ CĈε
1−α

2 .

Then we choose ε small enough in order to guarantee that

|v|θ ≤ |u0|θ + |v − u0|θ ≤ |u0|θ + CĈε
1−α

2 ≤ B0.

We conclude that J maps S into itself and we can apply the Theorem 10, since the

set S is a ball in the function space Hθ(Ω̃ε), and so a convex set. Then the map J has

a �xed point u, which is in H2+α(θ−1) and which solves our quasilinear problem. This

completes the proof. �

Finally we have the following longtime existence theorem.

Theorem 12 Suppose that we have short-time existence to problem (2.8) and that

there exist constants δ ∈ (1, 2) and Cδ > 0 such that

|u|δ ≤ Cδ

in the maximal interval of de�nition. Then there exists a solution to (2.8) de�ned in

[0,+∞).

Proof. Suppose that there exists a solution u to problem 2.8 de�ned in some maximal

open time interval [0, T ) where T is �nite. Then u satis�es Luu = 0 in Ω̃,Muu = −φ on

SΩ̃ and u = u0 on BΩ̃. Setting δ = 1+α, it follows that the estimate |u|δ ≤ Cδ implies

that there exists α ∈ [0, 1) such that |aij(X,∇u)|α and |a(X,∇u)|α are bounded by a

constant depending on Cδ. It follows by Theorem 8 that we have the uniform estimate

|u|2+α ≤ C1(Cδ)|u0|2+α = C2, for t ∈ [0, T ). (2.18)

Now, take a sequence of times ti → T , and de�ne ũi(·) = u(·, ti). Then the bound |u|δ
implies that there exists a subsequence, which by abuse of notation we also write ũi,

such that

ũi → ũ uniformly as i→∞. (2.19)

Moreover, by (2.18) we have equicontinuity of ∇jũi, ∇2
jkũi and ũi,t and taking subse-

quences we have

∇jũi → ∇jũ, ∇2
jkũi → ∇2

jkũ and ũi,t → ũt, (2.20)
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uniformly, where we de�ne ũt here to be aij(x,∇ũ)ui;j+̃a(x,∇ũ).

Then we extend u to the interval [0, T ] by using ũ. The bound |u|δ still holds by

the C2 convergence of ũi to ũ, and so by the continuity of P and M we have that u is

a solution of (2.8) on [0, T ].

Now we will prove that ũ ∈ C2+α. Let x, y ∈ Ω, for simplicity we denote by ∇2u

an arbitrary component ∇2
jku. Using the uniform convergence of the second derivatives

we choose t su�ciently close to T that

|∇2ũ(·)−∇2u(·, t)| < ε < d(x, y).

Then
|∇2u(x)−∇2u(y)|

d(x, y)α
≤ |∇

2u(x, t)−∇2u(y, t)|
max{d(x, y), |T − t| 12}α

≤ 2 + C2

due to the bound on [∇2u]α for t < T . It follows that |ũ|2+α.

Now we apply the short time existence theorem to (2.8) but with u0 = ũ and get

a solution û in Ωε. Then we de�ne

w(x, t) =
{ u(x, t) for (x, t) ∈ Ω× [0, T ]

û(x, t− T ) for (x, t) ∈ Ω× [T, T + ε].

We have that ut(·, s)→ ût(0) as s→ T , then w is twice di�erentiable in space and once

di�erentiable in time and satis�es Pw = 0 and Mw = −φ. Moreover, by the strong

maximum principle it is the unique solution Lw = 0 and by Theorem 8 it follows that

w ∈ H2+α(ΩT+ε). And this contradicts the de�nition of T . This completes the proof.

�
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Capı́tulo 3
Capillary Problem

Consider the capillary equation

div
(∇u
W

)
− 〈∇γ

2γ
,
∇u
W
〉 = Ψ. (3.1)

Given a C2,α function Φ : K → (−1, 1), we will impose the following prescribed angle

condition

〈N, ν〉 = Φ (3.2)

along ∂Σ, where

N =
1

W

(
γY − ϑ∗∇u

)
(3.3)

is the unit normal vector �eld along Σ satisfying 〈N, Y 〉 > 0 and ν is the unit normal

vector �eld along K pointing inwards the Killing cylinder over Ω.

Equation (3.1) is the prescribed mean curvature equation for Killing graphs.

We suppose that the data Ψ and Φ satisfy

i. |Ψ|+ |∇̄Ψ| ≤ CΨ in Ω̄× R,

ii. 〈∇̄Ψ, Y 〉 ≥ β > 0 in Ω̄× R,

iii. 〈∇̄Φ, Y 〉 ≤ 0,

iv. (1− Φ2) ≥ β′,

v. |Φ|2 ≤ CΦ in K,

for some positive constants CΨ, CΦ, β and β′, where ∇̄ denotes the Riemannian con-

nection in M .

The main result in this chapter is the following one
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Theorem 13 Let Ω be a bounded C3,α domain in P . Suppose that the Ψ ∈ C1,α(Ω̄×R)

and Φ ∈ C2,α(K) with |Φ| ≤ 1 satisfy conditions (i)-(v) above. Then there exists a

unique solution u ∈ C3,α(Ω̄) of the capillary problem (3.1)-(3.2).

We will use the classical Continuity Method to (3.1)-(3.2) for proving the existence

of result. So we need a priori height estimates and a interior and boundary gradient

estimates.

3.1 Height estimates

In this section, we use a technique developed by N. Uraltseva [41] (see also [40]

and [45] for classical references on the subject) in order to obtain a height estimate

for solutions of the capillary problem (3.1)-(3.2). This estimate requires the positive

gravity assumption (ii) stated in the Introduction.

Proposition 14 Denote

β = inf
Ω×R
〈∇̄Ψ, Y 〉 (3.4)

and

µ = sup
Ω

Ψ(x, 0). (3.5)

Suppose that β > 0. Then any solution u of (3.1)-(3.2) satis�es

|u(x)| ≤ supΩ |Y |
infΩ |Y |

µ

β
(3.6)

for all x ∈ Ω̄.

Proof. Fix an arbitrary real number k with

k >
supΩ |Y |
infΩ |Y |

µ

β
.

Suppose that the superlevel set

Ωk = {x ∈ Ω : u(x) > k}

has a nonzero Lebesgue measure. De�ne uk : Ω→ R as

uk(x) = max{u(x)− k, 0}.



3.1 Height estimates 37

From the variational formulation we have

0 =

∫
Ωk

(
1
√
γ

〈∇u,∇uk〉√
γ + |∇u2|

+
1
√
γ

Ψ(x, u(x))uk

)√
σdx

=

∫
Ωk

(
1
√
γ

|∇u|2

W
+

1
√
γ

Ψ(x, u(x))(u− k)

)√
σdx

=

∫
Ωk

(
1
√
γ

W 2 − γ
W

+
1
√
γ

Ψ(x, u(x))(u− k)

)√
σdx

=

∫
Ωk

(
W
√
γ
−
√
γ

W
+

1
√
γ

Ψ(x, u(x))(u− k)

)√
σdx.

However

Ψ(x, u(x)) = Ψ(x, 0) +

∫ u(x)

0

∂Ψ

∂s
ds ≥ −µ+ βu(x).

Since
√
γ

W
≤ 1 we conclude that

|Ωk| − |Ωk| − µ
∫

Ωk

1
√
γ

(u− k) + β

∫
Ωk

1
√
γ
u(u− k) ≤ 0.

Hence we have

β

∫
Ωk

1
√
γ
u(u− k) ≤ µ

∫
Ωk

1
√
γ

(u− k).

It follows that

βk inf
Ω
|Y |
∫

Ωk

(u− k) ≤ µ sup
Ω
|Y |
∫

Ωk

(u− k)

Since |Ωk| 6= 0 we have

k ≤ supΩ |Y |
infΩ |Y |

µ

β
,

what contradicts the choice of k. We conclude that |Ωk| = 0 for all k ≥ supΩ |Y |
infΩ |Y |

µ
β
. This

implies that

u(x) ≤ supΩ |Y |
infΩ |Y |

µ

β
,

for all x ∈ Ω̄. A lower estimate may be deduced in a similar way. This �nishes the

proof of the Proposition. �

Remark 15 The construction of geometric barriers similar to those ones in [37] is also

possible at least in the case where P is endowed with a rotationally invariant metric

and Ω is contained in a normal neighborhood of a pole of P .
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3.2 Gradient estimates

Let Ω′ be a subset of Ω and de�ne

Σ′ = {ϑ(u(x), x) : x ∈ Ω′} ⊂ Σ (3.7)

be the graph of u|Ω′ . Let O be an open subset inM containing Σ′. We consider a vector

�eld Z ∈ Γ(TM) with bounded C2 norm and supported in O. Hence there exists ε > 0

such that the local �ow Ξ : (−ε, ε)×O → M generated by Z is well-de�ned. We also

suppose that

〈Z(y), ν(y)〉 = 0, (3.8)

for any y ∈ K ∩ O. This implies that the �ow line of Z passing through a point

y ∈ K ∩ O is entirely contained in K.

We de�ne a variation of Σ by a one-parameter family of hypersurfaces Στ , τ ∈

(−ε, ε), parameterized by Xτ : Ω̄→M where

Xτ (x) = Ξ(τ, ϑ(u(x), x)), x ∈ Ω̄. (3.9)

It follows from the Implicit Function Theorem that there exists Ωτ ⊂ P and uτ : Ω̄τ →

R such that Στ is the graph of uτ . Moreover, (3.8) implies that the Ωτ ⊂ Ω.

Hence given a point y ∈ Σ, denote yτ = Ξ(τ, y) ∈ Στ . It follows that there exists

xτ ∈ Ωτ such that yτ = ϑ(uτ (xτ ), xτ ). Then we denote by ŷτ = ϑ(u(xτ ), xτ ) the point

in Σ in the �ow line of Y passing through yτ . The vertical separation between yτ and

ŷτ is by de�nition the function s(y, τ) = uτ (xτ )− u(xτ ).

Lemma 16 For any τ ∈ (−ε, ε), let Aτ and Hτ be, respectively, the Weingarten map

and the mean curvature of the hypersurface Στ calculated with respect to the unit normal

vector �eld Nτ along Στ which satis�es 〈Nτ , Y 〉 > 0. Denote H = H0 and A = A0. If

ζ ∈ C∞(O) and T ∈ Γ(TO) are de�ned by

Z = ζNτ + T (3.10)

with 〈T,Nτ 〉 = 0 then

i. ∂s
∂τ

∣∣
τ=0

= 〈Z,N〉W.

ii. ∇̄ZN
∣∣
τ=0

= −AT −∇Σζ

iii. ∂H
∂τ

∣∣
τ=0

= ∆Σζ + (|A|2 + RicM(N,N))ζ + 〈∇̄Ψ, Z〉,
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where W = 〈Y,Nτ 〉−1 = (γ + |∇uτ |2)−1/2. The operators ∇Σ and ∆Σ are, respectively,

the intrinsic gradient operator and the Laplace-Beltrami operator in Σ with respect

to the induced metric. Moreover, ∇̄ and RicM denote, respectively, the Riemannian

covariant derivative and the Ricci tensor in M .

Proof. (i) Let (xi)ni=1 a set of local coordinates in Ω ⊂ P . Di�erentiating (3.9) with

respect to τ we obtain

Xτ∗
∂

∂τ
= Z|Xτ = ζNτ + T

On the other hand di�erentiating both sides of

Xτ (x) = ϑ(uτ (xτ ), xτ )

with respect to τ we have

Xτ∗
∂

∂τ
=

(∂uτ
∂τ

+
∂uτ
∂xi

∂xiτ
∂τ

)
ϑ∗Y +

∂xiτ
∂τ

ϑ∗
∂

∂xi

=
∂uτ
∂τ

ϑ∗Y +
∂xiτ
∂τ

(
ϑ∗

∂

∂xi
+
∂uτ
∂xi

ϑ∗Y
)

Since the term between parenthesis after the second equality is a tangent vector �eld

in Στ we conclude that

∂uτ
∂τ
〈Y,Nτ 〉 = 〈Xτ∗

∂

∂τ
,Nτ 〉 = ζ

from what follows that
∂uτ
∂τ

= ζW

and

∂s

∂τ
=

∂

∂τ
(uτ − u) =

∂uτ
∂τ

= ζW.

(ii) Now we have

〈∇̄ZNτ , X∗∂i〉 = −〈Nτ , ∇̄ZX∗∂i〉 = −〈Nτ , ∇̄X∗∂iZ〉 = −〈Nτ , ∇̄X∗∂i(ζN + T )〉

= −〈Nτ , ∇̄X∗∂iT 〉 − 〈Nτ , ∇̄X∗∂iζNτ 〉 = −〈AτT,X∗∂i〉 − 〈∇Σζ,X∗∂i〉,

for any 1 ≤ i ≤ n. It follows that

∇̄ZN = −AT −∇Σζ.
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(iii) This is a well-known formula whose proof may be found at a number of references

(see, for instance, [46]). �

For further reference, we point out that the Comparison Principle [45] when

applied to (3.1)-(3.2) may be stated in geometric terms as follows. Fixed τ , let x ∈ Ω̄′

be a point of maximal vertical separation s(·, τ). If x is an interior point we have

∇uτ (x, τ)−∇u(x) = ∇s(x, τ) = 0,

what implies that the graphs of the functions uτ and u + s(x, τ) are tangent at their

common point yτ = ϑ(uτ (x), x). Since the graph of u + s(x, τ) is obtained from Σ

only by a translation along the �ow lines of Y we conclude that the mean curvature of

these two graphs are the same at corresponding points. Since the graph of u+ s(x, τ)

is locally above the graph of uτ we conclude that

H(ŷτ ) ≥ Hτ (yτ ). (3.11)

If x ∈ ∂Ω ⊂ ∂Ω′ we have

〈∇uτ , ν〉|x − 〈∇u, ν〉|x = 〈∇s, ν〉 ≤ 0

since ν points toward Ω. This implies that

〈N, ν〉|yτ ≥ 〈N, ν〉|ŷτ (3.12)

3.2.1 Interior gradient estimate

Proposition 17 Let BR(x0) ⊂ Ω where R < injP . Then there exists a constant C > 0

depending on β, CΨ,Ω and K such that

|∇u(x)| ≤ C
R2

R2 − d2(x)
, (3.13)

where d = dist(x0, x) in P .

Proof. Fix Ω′ = BR(x0) ⊂ Ω. We consider the vector �eld Z given by

Z = ζN, (3.14)

where ζ is a function to be de�ned later. Fixed τ ∈ [0, ε), let x ∈ BR(x0) be a point

where the vertical separation s(·, τ) attains a maximum value.
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If y = ϑ(u(x), x) it follows that

Hτ (yτ )−H0(y) =
∂Hτ

∂τ

∣∣∣
τ=0

τ + o(τ). (3.15)

However the Comparison Principle implies that H0(ŷτ ) ≥ Hτ (yτ ). Using Lemma 16

(iii) we conclude that

H0(ŷτ )−H0(y) ≥ ∂Hτ

∂τ

∣∣∣
τ=0

τ + o(τ) = (∆Σζ + |A|2ζ + RicM(N,N)ζ)τ + o(τ).

Since ŷτ = ϑ(−s(y, τ), yτ ) we have

dŷτ
dτ

∣∣∣
τ=0

= −ds
dτ
ϑ∗

∂

∂s
+
∂yiτ
∂τ

ϑ∗
∂

∂xi
= −ds

dτ
Y +

dyτ
dτ

∣∣∣
τ=0

= −ds
dτ
Y + Z(y). (3.16)

Hence using Lemma 16 (i) and (3.14) we have

dŷτ
dτ

∣∣∣
τ=0

= −ζWY + ζN. (3.17)

On the other hand for each τ ∈ (−ε, ε) there exists a smooth ξ : (−ε, ε) → TM such

that

ŷτ = expy ξ(τ).

Hence we have

dŷτ
dτ

∣∣∣
τ=0

= ξ′(0).

With a slight abuse of notation we denote Ψ(s, x) by Ψ(y) where y = ϑ(s, x). It results

that

H0(ŷτ )−H0(y) = Ψ(xτ , u(xτ ))−Ψ(x, u(x)) = Ψ(expy ξτ )−Ψ(y) = 〈∇̄Ψ|y, ξ′(0)〉τ+o(τ).

However

〈∇̄Ψ, ξ′(0)〉 = ζ〈∇̄Ψ, N −WY 〉 = −ζW ∂Ψ

∂s
+ ζ〈∇̄Ψ, N〉. (3.18)

We conclude that

−ζW ∂Ψ

∂s
τ + ζ〈∇̄Ψ, N〉τ + o(τ) ≥ (∆Σζ + |A|2ζ + RicM(N,N)ζ)τ + o(τ).

Suppose that

W (x) >
C + |∇̄Ψ|

β
(3.19)
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for a constant C > 0 to be chosen later. Hence we have

(∆Σζ + RicM(N,N)ζ)τ + Cζτ ≤ o(τ).

Following [18] and [17] we choose

ζ = 1− d2

R2
,

where d = dist(x0, ·). It follows that

∇Σζ = − 2d

R2
∇Σd

and

∆Σζ = − 2d

R2
∆Σd−

2

R2
|∇Σd|2

However using the fact that P is totally geodesic and that [Y, ∇̄d] = 0 we have

∆Σd = ∆Md− 〈∇̄N∇̄d,N〉+ nH〈∇̄d,N〉

= ∆Pd− 〈∇∇u
W
∇d, ∇u

W
〉 − γ2〈Y,N〉2〈∇̄Y ∇̄d, Y 〉+ nH〈∇̄d,N〉

Let π : M → P the projection de�ned by π(ϑ(s, x)) = x. Then

π∗N = −∇u
W

.

We denote

π∗N
⊥ = π∗N − 〈π∗N,∇d〉∇d.

If Ad and Hd denote, respectively, the Weingarten map and the mean curvature of the

geodesic ball Bd(x0) in P we conclude that

∆Σd = nHd − 〈Ad(π∗N⊥), π∗N
⊥〉+ γ〈Y,N〉2κ+ nH〈∇̄d,N〉.

where

κ = −γ〈∇̄Y ∇̄d, Y 〉

is the principal curvature of the Kiling cylinder over Bd(x0) relative to the principal

direction Y . Therefore we have

|∆Σd| ≤ C1(CΨ, sup
BR(x0)

(Hd + κ), sup
BR(x0)

γ)
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in BR(x0). Hence setting

C2 = sup
BR(x0)

RicM

we �x

C = max{2(C1 + C2), sup
R×Ω
|∇̄Ψ|}. (3.20)

With this choice we conclude that

Cζ ≤ o(τ)

τ
,

a contradiction. This implies that

W (x) ≤ C − |∇̄Ψ|
β

. (3.21)

However

ζ(z)W (z) + o(τ) = s(X(z), τ) ≤ s(X(x), τ) = ζ(x)W (x) + o(τ),

for any z ∈ BR(x0). It follows that

W (z) ≤ R2 − d2(z)

R2 − d2(x)
W (x) + o(τ) ≤ R2

R2 − d2(x)

C − |∇̄Ψ|
β

+ o(τ) ≤ C̃
R2

R2 − d2(x)
,

for very small ε > 0. This �nishes the proof of the proposition. �

Remark 18 If Ω satis�es the interior sphere condition for a uniform radius R > 0 we

conclude that

W (x) ≤ C

dΓ(x)
, (3.22)

for x ∈ Ω, where dΓ(x) = dist(x,Γ).

3.2.2 Boundary gradient estimates

Now we establish boundary gradient estimates using other local perturbation of

the graph which this time has also tangential components.

Proposition 19 Let x0 ∈ P and R > 0 such that 3R < injP . Denote by Ω′ the subdo-

main Ω∩B2R(x0). Then there exists a positive constant C = C(R, β, β′, CΨ, CΦ,Ω, K)

such that

W (x) ≤ C, (3.23)

for all x ∈ Ω
′
.
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Proof. Now we consider the subdomain Ω′ = Ω ∩BR(x0). We de�ne

Z = ηN +X, (3.24)

where

η = α0v + α1dΓ

and α0 and α1 are positive constants to be chosen and dΓ is a smooth extension of the

distance function dist( · ,Γ) to Ω′ with |∇dΓ| ≤ 1 and

v = 4R2 − d2,

where d = dist(x0, ·). Moreover

X = α0Φ(vν − dΓ∇v).

In this case we have

ζ = η + 〈X,N〉 = α0v + α1dΓ + α0Φ(v〈N, ν〉 − dΓ〈N,∇v〉).

Fixed τ ∈ [0, ε), let x ∈ Ω̄′ be a point where the maximal vertical separation between

Σ and Στ is attained. We �rst suppose that x ∈ int(∂Ω′ ∩ ∂Ω). In this case denoting

yτ = ϑ(uτ (x), x) ∈ Στ and ŷτ = ϑ(u(x), x) ∈ Σ it follows from the Comparison

Principle that

〈Nτ , ν〉|yτ ≥ 〈N, ν〉|ŷτ . (3.25)

Notice that ŷτ ∈ ∂Σ. Moreover since Z|K∩O is tangent to K there exists y ∈ ∂Σ such

that

y = Ξ(−τ, yτ ).

We claim that

|〈∇̄〈Nτ , ν〉,
dyτ
dτ

∣∣
τ=0
〉| ≤ α1(1− Φ2) + C̃α0 (3.26)

for some positive constant C̃ = C(CΦ, K,Ω, R).

Hence (3.2) implies that

〈N, ν〉|ŷτ − 〈N, ν〉|y = Φ(ŷτ )− Φ(y) = τ〈∇̄Φ,
dŷτ
dτ

∣∣
τ=0
〉+ o(τ).

Therefore

〈N, ν〉|yτ − 〈N, ν〉|y ≥ τ〈∇̄Φ,
dŷτ
dτ

∣∣
τ=0
〉+ o(τ).
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On the other hand we have

〈N, ν〉|yτ − 〈N, ν〉|y = τ〈∇̄〈N, ν〉, dyτ
dτ

∣∣
τ=0
〉+ o(τ).

We conclude that

τ〈∇̄〈N, ν〉, dyτ
dτ

∣∣
τ=0
〉 ≥ τ〈∇̄Φ,

dŷτ
dτ

∣∣
τ=0
〉+ o(τ).

Hence we have

α1(1− Φ2)τ + C̃α0τ ≥ τ〈∇̄Φ,
dŷτ
dτ

∣∣
τ=0
〉+ o(τ).

It follows from (3.16) that

α1(1− Φ2) + C̃α0 ≥ −ζW 〈∇̄Φ, Y 〉+ ζ〈∇̄Φ, N〉+ o(τ)/τ.

Since

〈∇̄Φ, Y 〉 =
∂Φ

∂s
≤ 0

we conclude that

W (x) ≤ C(CΦ, β
′, K,Ω, R). (3.27)

We now prove the claim. For that, observe that Lemma 16 (ii) implies that

〈N, ν〉|yτ − 〈N, ν〉|y = τ
∂

∂τ

∣∣∣
τ=0
〈Nτ , ν〉|yτ + o(τ)

= τ(〈N, ∇̄Zν〉|y − 〈AT +∇Σζ, ν〉|y) + o(τ).

Since Z|y ∈ TyK it follows that

〈N, ν〉|yτ − 〈N, ν〉|y = −τ(〈AKZ,N〉|y + 〈AT +∇Σζ, ν〉|y) + o(τ),

where AK is the Weingarten map of K with respect to ν. We conclude that

−τ(〈AKZ,N〉|y + 〈AT +∇Σζ, ν〉|y) ≥ τ〈∇̄Φ,
dŷτ
dτ

∣∣
τ=0
〉+ o(τ) (3.28)

where

νT = ν − 〈N, ν〉N.

We have

〈∇Σζ + AT, νT 〉 = α0〈∇v, νT 〉+ α1〈∇ΣdΓ, ν
T 〉+ 〈∇Σ〈X,N〉, νT 〉+ 〈AT, νT 〉.
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We compute

〈∇Σ〈X,N〉, νT 〉 = α0(v〈N, ν〉 − dΓ〈N,∇v〉)〈∇̄Φ, νT 〉

+α0Φ
(
〈∇v, νT 〉〈N, ν〉+ v(〈∇̄νTN, ν〉+ 〈N, ∇̄νT ν〉)− 〈∇dΓ, ν

T 〉〈N,∇v〉

−dΓ(〈∇̄νTN,∇v〉+ 〈N, ∇̄νT∇v〉)
)
.

Hence we have at y that

〈∇Σ〈X,N〉, νT 〉 = α0(vΦ− dΓ〈N,∇v〉)〈∇̄Φ, νT 〉

+α0Φ
(
〈∇v, νT 〉Φ + v(−〈AνT , νT 〉+ 〈N, ∇̄νν〉 − 〈N, ν〉〈N, ∇̄Nν〉)

−〈ν, νT 〉〈N,∇v〉 − dΓ(−〈AνT ,∇v〉+ 〈N, ∇̄ν∇v〉 − 〈N, ν〉〈N, ∇̄N∇v〉)
)
.

Therefore we have

〈∇Σ〈X,N〉, νT 〉 = α0(vΦ− dΓ〈N,∇v〉)〈∇̄Φ, νT 〉

+α0Φ
(
〈∇v, νT 〉Φ− v(〈AνT , νT 〉+ 〈N, ν〉〈N, ∇̄Nν〉)

−〈ν, νT 〉〈N,∇v〉+ dΓ(〈AνT ,∇v〉 − 〈N, ∇̄ν∇v〉+ 〈N, ν〉〈N, ∇̄N∇v〉)
)
.

It follows that

〈∇Σζ + AT, νT 〉 = 〈AT, νT 〉+ α0〈∇v, νT 〉+ α1〈ν, νT 〉

+α0(vΦ− dΓ〈N,∇v〉)〈∇̄Φ, νT 〉

+α0Φ
(
〈∇v, νT 〉Φ− v(〈AνT , νT 〉+ 〈N, ν〉〈N, ∇̄Nν〉)

−〈ν, νT 〉〈N,∇v〉+ dΓ(〈AνT ,∇v〉 − 〈N, ∇̄ν∇v〉+ 〈N, ν〉〈N, ∇̄N∇v〉)
)
.

However

〈AT, νT 〉 = 〈AνT , X〉 = α0Φv〈AνT , νT 〉 − α0ΦdΓ〈AνT ,∇v〉.

Hence we have

〈∇Σζ + AT, νT 〉 = α0〈∇v, νT 〉+ α1〈ν, νT 〉+ α0(vΦ− dΓ〈N,∇v〉)〈∇̄Φ, νT 〉

+α0Φ
(
〈∇v, νT 〉Φ− vΦ〈N, ∇̄Nν〉 − 〈ν, νT 〉〈N,∇v〉

−dΓ(〈N, ∇̄ν∇v〉 − 〈N, ν〉〈N, ∇̄N∇v〉)
)
.

Since dΓ(y) = 0 we have

〈∇Σζ + AT, νT 〉 = α0〈∇v, νT 〉+ α1〈ν, νT 〉+ α0vΦ〈∇̄Φ, νT 〉

+α0Φ
(
〈∇v, νT 〉Φ− vΦ〈N, ∇̄Nν〉 − 〈ν, νT 〉〈N,∇v〉

)
.
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Rearranging terms we obtain

〈∇Σζ + AT, νT 〉 = α1(1− 〈N, ν〉2) + α0〈∇v, νT 〉(1 + Φ2) + α0vΦ〈∇̄Φ, νT 〉

−α0Φ
(
vΦ〈N, ∇̄Nν〉+ (1− 〈N, ν〉2)〈N,∇v〉

)
.

Therefore there exists a constant C = C(Φ, K,Ω, R) such that

|〈∇Σζ + AT, νT 〉| ≤ α1(1− Φ2) + Cα0. (3.29)

Since dΓ(y) = 0 it holds that

|〈AKZ,N〉| = |AK ||Z| ≤ |AK |(η + |X|) ≤ 4R2α0|AK |(1 + Φ).

from what we conclude that

|〈∇̄〈Nτ , ν〉,
dyτ
dτ

∣∣
τ=0
〉| ≤ α1(1− Φ2) + C̃α0 (3.30)

for some constant C̃(CΦ, K,Ω, R) > 0.

Now we suppose that x ∈ ∂Ω′ ∩ Ω. In this case, we have v(x) = 0. Then η = α1dΓ

and

X = −α0ΦdΓ∇v

at x. Thus

ζ = η + 〈X,N〉 = α1dΓ + 2α0ΦddΓ〈∇d,N〉.

Moreover we have

W (x) ≤ C

dΓ(x)

(see Remark 18). It follows that

ζW ≤ C(α1 + 2α0Φd〈∇d,N〉) ≤ C(α1 + 4Rα0Φ). (3.31)

We conclude that

W (x) ≤ C(CΦ, K,Ω, R). (3.32)

Now we consider the case when x ∈ Ω ∩ Ω′. In this case we have

∆Σζ = α0∆Σv + α1∆ΣdΓ + α0∆ΣΦ(v〈N, ν〉 − dΓ〈N,∇v〉)

+α0Φ(∆Σv〈N, ν〉+ v∆Σ〈N, ν〉+ 2〈∇Σv,∇Σ〈N, ν〉〉 −∆ΣdΓ〈N,∇v〉 − dΓ∆Σ〈N,∇v〉

−2〈∇ΣdΓ,∇Σ〈N,∇v〉)

+2α0〈∇ΣΦ,∇Σv〈N, ν〉+ v∇Σ〈N, ν〉 − ∇ΣdΓ〈N,∇v〉 − dΓ∇Σ〈N,∇v〉〉
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Notice that given an arbitrary vector �eld U along Σ we have

〈∇Σ〈N,U〉, V 〉 = −〈AUT , V 〉+ 〈N, ∇̄VU〉,

for any V ∈ Γ(TΣ). Here, UT denotes the tangential component of U . Hence using

Codazzi's equation we obtain

∆Σ〈N,U〉 ≤ 〈∇̄(nH), UT 〉+ RicM(UT , N) + C|A|

for a constant C depending on ∇̄U and ∇̄2U . Hence using (3.1) we conclude that

∆Σ〈N,U〉 ≤ 〈∇̄Ψ, UT 〉+ C̃|A| (3.33)

where C̃ is a positive constant depending on ∇̄U, ∇̄2U and RicM .

We also have

∆ΣdΓ = ∆PdΓ + γ〈∇̄Y ∇̄d, Y 〉 − 〈∇̄N∇̄dΓ, N〉+ nH〈∇̄dΓ, N〉

≤ C0Ψ + C1,

where C0 and C1 are positive constants depending on the second fundamental form of

the Killing cylinders over the equidistant sets dΓ = δ for small values of δ. Similar

estimates also hold for ∆Σd and then for ∆Σv.

We conclude that

∆Σζ ≥ −C̃0 − C̃1|A|, (3.34)

where C̃0 and C̃1 are positive constants depending on Ω, K, RicM , |Φ|2.

Now proceeding similarly as in the proof of Proposition 17, we observe that

Lemma 16 (iii) and the Comparison Principle yield

H0(ŷτ )−H0(y) ≥ ∂Hτ

∂τ

∣∣∣
τ=0

τ + o(τ) = (∆Σζ + |A|2ζ + RicM(N,N)ζ)τ + τ〈∇̄Ψ, T 〉+ o(τ).

However

H0(ŷτ )−H0(y) = 〈∇̄Ψ|y, ξ′(0)〉τ + o(τ).

Using (3.16) we have

〈∇̄Ψ, ξ′(0)〉 = 〈∇̄Ψ, Z − ζWY 〉 = 〈∇̄Ψ, Z〉 − ζW ∂Ψ

∂s
.

We conclude that

−ζW ∂Ψ

∂s
τ + ζ〈∇̄Ψ, N〉τ + o(τ) ≥ (∆Σζ + |A|2ζ + RicM(N,N)ζ)τ + o(τ).
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Suppose that

W >
C + |∇̄Ψ|

β
(3.35)

for a constant C > 0 as in (3.20). Hence we have

(∆Σζ + |A|2ζ + RicM(N,N)ζ)τ + Cζτ ≤ o(τ)

We conclude that

−C0 − C1|A|+ C2|A|2 + C ≤ o(τ)

τ
,

a contradiction. It follows from this contradiction that

W (x) ≤ C + |∇̄Ψ|
β

. (3.36)

Now, proceeding as in the end of the proof of Proposition 17, we use the estimate for

W (x) in each one of the three cases for obtaining a estimate for W in Ω′. This �nishes

the proof of the Proposition. �

3.3 Proof of the Theorem 13

We use the classical Continuity Method for proving Theorem 13. For details, we

refer the reader to [47] and [40]. For any τ ∈ [0, 1] we consider the Neumann boundary

problem Nτ of �nding u ∈ C3,α(Ω̄) such that

F [τ, x, u,∇u,∇2u] = 0, (3.37)

〈∇u
W

, ν〉+ τΦ = 0, (3.38)

where F is the quasilinear elliptic operator de�ned by

F [x, u,∇u,∇2u] = div

(
∇u
W

)
− 〈∇γ

2γ
,
∇u
W
〉 − τΨ. (3.39)

Since the coe�cients of the �rst and second order terms do not depend on u it follows

that
∂F
∂u

= −τ ∂Ψ

∂u
≤ −τβ < 0. (3.40)

We de�ne I ⊂ [0, 1] as the subset of values of τ ∈ [0, 1] for which the Neumann

boundary problem Nτ has a solution. Since u = 0 is a solution for N0, it follows that

I 6= ∅. Moroever, the Implicit Function Theorem (see [45], Chapter 17) implies that
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I is open in view of (3.40). Finally, the height and gradient a priori estimates we

obtained in Sections 3.1 and 3.2 are independent of τ ∈ [0, 1]. This implies that (3.1)

is uniformly elliptic. Moreover, we may assure the existence of some α0 ∈ (0, 1) for

which there there exists a constant C > 0 independent of τ such that

|uτ |1,α0,Ω̄ ≤ C.

Rede�ne α = α0. Thus, combining this fact, Schauder elliptic estimates and the

compactness of C3,α0(Ω̄) into C3(Ω̄) imply that I is closed. It follows that I = [0, 1].

The uniqueness follows from the Comparison Principle for elliptic PDEs. We

point out that a more general uniqueness statement - comparing a nonparametric

solution with a general hypersurface with the same mean curvature and contact angle

at corresponding points - is also valid. It is a consequence of a �ux formula coming

from the existence of a Killing vector �eld in M . We refer the reader to [16] for further

details.

This �nishes the proof of the Theorem 13.



Capı́tulo 4
Mean Curvature Flow of Killing

Graphs

In this chapter we prove the following result

Theorem 20 There exists a unique solution u : Ω̄× [0,∞)→ I to the problem

∂X

∂t
= (nH −H)N, (4.1)

(4.2)

with boundary condition

〈N, ν〉|∂Σt = φ, (4.3)

Moreover, if φ = 0 and H = 0 the graphs Σt converge to a minimal graph which

contacts the cylinder K orthogonally along its boundary.

Remember that (1.6), (1.7) may be written nonparametrically as

ut =
(
σij − ui

W

uj

W

)
ui;j −

( 1

2γ
+

1

2W 2

)
γiui −WH in Ω× [0, T ) (4.4)

u(·, 0) = u0(·) in Ω× {0} (4.5)

with boundary condition

〈N, ν〉 = φ on ∂Ω× [0, T ). (4.6)

In what follows we prove height and boundary gradient a priori estimates for

(1.6)-(1.8).
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4.1 Height estimates

In this section we obtain an a priori height estimates.

From now on, we consider the parabolic linear operator given by

Lv = gijvi;j −
( 1

2γ
+

1

2W 2

)
γivi −H

ui

W
vi − vt, (4.7)

where v ∈ C∞(Ω× [0, T )).

Proposition 21 For a solution u ∈ C∞(Ω̄ × [0, T ∗]), T ∗ < T , of (4.4)-(4.6), it holds

that

max
Ω̄×[0,T ∗]

|ut| = max
Ω̄
|ut(0, ·)|.

Then it follows that

max
Ω̄×[0,T ∗]

|u| ≤ CT ∗

for a given constant C > 0 which depends on T ∗.

Proof: First of all we verify that ut is a solution for a linear parabolic equation. Indeed

one has

Lut = gijuti;j −
( 1

2γ
+

1

2W 2

)
〈∇γ,∇ut〉 − utt

= (gijui;j)t − gij;t ui;j −
( 1

2γ
+

1

2W 2

)
〈∇γ,∇ut〉 − utt

= −gij;t ui;j +
( 1

2γ
+

1

2W 2

)
t
〈∇γ,∇u〉+

( 1

2γ
+

1

2W 2

)
〈∇γt,∇u〉+WtH.

However since γ = γ(x) in (1.24) and x is independent of t it follows that( 1

2γ
+

1

2W 2

)
t

=
( 1

2γ

)
t
− 1

W 3
Wt = − 1

2W 4
(γt + 2ukuk;t) = − 1

W 4
ukut;k.

In the same way we have

Wt =
1

2W
(γt + 2ukuk;t) =

1

W
ukut;k. (4.8)

We conclude that

Lut = −gij;t ui;j −
1

W 4
〈∇γ,∇u〉uk(ut)k +

1

W
Huk(ut)k.

Now using the fact that σij;t = 0 and γt = 0 we have

Lut =
2

W

(ui;tuj
W
− ui

W

uj

W
Wt

)
ui;j −

1

W 4
〈∇γ,∇u〉uk(ut)k +

1

W
Huk(ut)k

=
2

W

(
(Wi −

γi
2W

)ui;t − (Wi −
γi

2W
)
ui

W

uk

W
ut;k

)
− 1

W 4
〈∇γ,∇u〉uk(ut)k +

1

W
Huk(ut)k

=
2

W
(Wi −

γi
2W

)(σik − ui

W

uk

W
)ut;k −

1

W 4
〈∇γ,∇u〉uk(ut)k +

1

W
Huk(ut)k.
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Hence it follows that

Lut −
2

W
gik(Wi −

γi
2W

)(ut)k +
1

W 4
〈∇γ,∇u〉uk(ut)k −

1

W
Huk(ut)k = 0. (4.9)

Thus �xed T ∗ ∈ [0, T ) let (x0, t0) be a point in Ω̄× [0, T ∗] such that

ut(x0, t0) = max
Ω̄×[0,T ∗]

|ut|.

Hence we choose a coordinate system adapted to the boundary Γ in such a way that

∂
∂xn

= ν at x0. Then, at the point (x0, t0) we have

ui;t = ut;i = 0

for 1 ≤ i < n what implies that

Wt =
1

W
unun;t = −φ(x0)un;t,

where we used (4.6) and (4.8). On the other hand, (4.6) implies that

ut;n = un;t = −(φW )t = −φ(x0)Wt. (4.10)

at (x0, t0). We conclude that

(1− φ2(x0))un;t = 0.

However since | φ |< 1, it follows that ut;n = 0 what contradicts the parabolic Hopf

Lemma [48].

From this contradiction we conclude that t0 = 0. Since T ∗ is arbitrary, the

conclusion follows. �

4.2 Boundary gradient estimates

Now we will prove a gradient bound for a solution of (4.4)-(4.6) by applying a

modi�cation of the Korevaar's technique [17] which appeared formerly in [33].

From now on, we consider a non-negative extension d : Ω̄ → R of the distance

function distP (·,Γ) satisfying |∇d| ≤ 1 in Ω̄. In the same way, we consider a C∞

extension of the boundary data φ to the domain Ω̄ which we denote also by φ. Then

we de�ne

η = eKuh (4.11)
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where

h = 1 + αd− φ〈∇d,N〉, (4.12)

where K and α are positive numbers to be �xed later.

Proposition 22 For α > 0 su�ciently large independent of K and t, if for some t ≥ 0

�xed, ηW (·, t) attains a local maximum value at a point x0 ∈ ∂Ω, then W (x0, t) ≤ K.

Proof: Let t ≥ 0 be such that

max
Ω̄

ηW (t, ·) = ηW (t, x0)

for a point x0 ∈ Γ. Hence we choose a coordinate system adapted to Γ such that

∂
∂xn

= ν at x0 and

u1(x0) ≥ 0 and ui(x0) = 0, for 2 ≤ i ≤ n− 1. (4.13)

We have at x0

0 = (ηW )1 = η1W + ηW1 = eKu
(
WKu1(1− φ2)− 2Wφφ1 +W1(1− φ2)

)
(4.14)

from what follows that

W1 = −Ku1W +
2φφ1

(1− φ2)
W. (4.15)

On the other hand at x0 we have

ηn = eKu
(
Kun(1− φ2) + α− φφn − φ(〈∇∇dN,∇d〉+ 〈N,∇∇d∇d〉)

)
= eKu

(
Kun(1− φ2) + α− φφn − φ(〈∂n

1

W
(γY −∇u), ∂n〉+ 〈 1

W
∇∂n(γY −∇u), ∂n〉)

)
= eKu

(
Kun(1− φ2) + α− φφn −

1

W 2
φunWn +

1

W
φun;n

)
.

Since (ηW )n ≤ 0 at x0 it holds that

0 ≥ WKun(1− φ2) + αW −Wφφn −
1

W
φunWn + φun;n + (1− φ2)Wn

= WKun(1− φ2) + αW +Wn + φun;n + unφn

= WKun(1− φ2) + αW +Wn + φun;n −Wφφn.

On the other hand

Wn =
γn

2W
+

1

W
(u1u1;n + unun;n) =

γn
2W
− 1

W
φu1W1 − φ1u1 − φun;n (4.16)
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what implies that

Wn =
γn

2W
− 1

W
φu1

(2φφ1W

1− φ2
−Ku1W

)
− φ1u1 − φun;n

=
γn

2W
− 1 + φ2

1− φ2
u1φ1 +Kφu2

1 − φun;n.

Therefore since

u2
1 = |∇u|2 − u2

n = W 2 − γ − φ2W 2 = W 2(1− φ2)− γ

we conclude that

0 ≥ α +
γn

2W 2
− 1 + φ2

1− φ2

u1

W
φ1 +

Kφu2
1

W
− φφn +Kun(1− φ2)

= α +
γn

2W 2
+

1 + φ2

1− φ2
N1φ1 +Kφ

(
W (1− φ2)− γ

W

)
− φφn −KφW (1− φ2)

= α +
γn

2W 2
+

1 + φ2

1− φ2
N1φ1 −

Kφγ

W
− φφn

≥ α + C − Kγ

W
,

for a given constant C depending solely on γ and φ. It follows that W (x0, t) ≤ K if α

is chosen large enough and independent of K and t.

�

4.3 Interior gradient estimates

In this section we deduce a global gradient bound using the techniques in [18]

and [33]. However the more general context of warped product gives rise to a long list

of additional terms which require a careful tracking along the calculations.

In the sequel, we consider the parabolic linear operator given by

Lv = gijvi;j −
( 1

2γ
+

1

2W 2

)
γivi − vt, (4.17)

where v ∈ C∞(Ω× [0, T )).

Some lemmata will be needed in the sequel. Their content could be also of

independent interest for other applications.

Lemma 23 Denote θ = 〈∇d,N〉. The di�erentials of the functions θ and h have

components given by

θi = −ajidj + (di;j − κσij)N j (4.18)
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and

hi = (αδji + φaji )dj − (φ(di;j − κσij) + φidj)N
j (4.19)

respectively, where κ = 〈γ∇̄Y Y,∇d〉.

Proof: We have

∂θ

∂xi
= X∗

∂

∂xi
〈N, ∇̄d〉 = 〈∇̄X∗

∂

∂xi
N, ∇̄d〉+ 〈N, ∇̄X∗

∂

∂xi
∇̄d〉

= −〈AX∗
∂

∂xi
, ∇̄d〉+ 〈N, ∇̄ ∂

∂xi
+ui

∂
∂x0
∇̄d〉

= −〈AX∗
∂

∂xi
, ∇̄d〉+

γ

W
〈 ∂
∂x0

, ∇̄ ∂

∂xi
∇̄d〉 − 〈∇u

W
, ∇̄ ∂

∂xi
∇̄d〉

+ui
γ

W
〈 ∂
∂x0

, ∇̄ ∂
∂x0
∇̄d〉 − ui〈

∇u
W

, ∇̄ ∂
∂x0
∇̄d〉

Since P is totally geodesic we have

〈 ∂
∂x0

, ∇̄ ∂

∂xi
∇̄d〉 = 〈 ∂

∂x0
, ∇̄ ∂

∂xi
∇d〉 = 0.

Moreover we compute

〈 ∂
∂x0

, ∇̄ ∂
∂x0
∇̄d〉 = |Y |2〈 Y

|Y |
, ∇̄ Y

|Y |
∇̄d〉 = |Y |2κ =

1

γ
κ

and

〈∇u
W

, ∇̄ ∂
∂x0
∇̄d〉 = 〈∇u

W
, ∇̄∇̄d

∂

∂x0
〉+ 〈∇u

W
, [

∂

∂x0
, ∇̄d]〉 = 0,

where we used the fact that [ ∂
∂x0 , ∇̄d] = 0 and that P is totally geodesic.

Thus we conclude that

∂θ

∂xi
= −〈AX∗

∂

∂xi
, ∇̄d〉 − 〈∇u

W
,∇ ∂

∂xi
∇d〉+ κ

ui
W
.

However

〈AX∗
∂

∂xi
, ∇̄d〉 = aji 〈X∗

∂

∂xj
, ∇̄d〉 = aji 〈

∂

∂xj
+ ujY, ∇̄d〉 = ajidj = gjkaikdj

Therefore we write

θi = −gjkaikdj + (di;j − κσij)N j. (4.20)

This �nishes the proof of the proposition.

We denote the components of the tensor X∗II in P by

bij = X∗II(
∂

∂xi
,
∂

∂xj
) := 〈AX∗

∂

∂xi
, X∗

∂

∂xj
〉 (4.21)
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Notice that the covariant derivatives of X∗II and II are related by

∇kbij = 〈(∇Σ
X∗

∂

∂xk
A)X∗

∂

∂xi
, X∗

∂

∂xj
〉+ 〈AX∗

∂

∂xj
, ∇̄X∗

∂

∂xk
X∗

∂

∂xi
−X∗∇ ∂

∂xk

∂

∂xi
〉

+〈AX∗
∂

∂xi
, ∇̄X∗

∂

∂xk
X∗

∂

∂xj
−X∗∇ ∂

∂xk

∂

∂xj
〉.

However since X∗ ∂
∂xi

= ∂
∂xi

+ uiY we compute

∇̄X∗
∂

∂xk
X∗

∂

∂xi
−X∗∇ ∂

∂xk

∂

∂xi
= ∇̄ ∂

∂xk

∂

∂xi
+ ui,kY + ui∇̄ ∂

∂xk
Y + uk∇̄Y

∂

∂xi
+ uiuk∇̄Y Y

−∇ ∂

∂xk

∂

∂xi
− 〈∇u,∇ ∂

∂xk

∂

∂xi
〉Y.

Therefore

∇̄X∗
∂

∂xk
X∗

∂

∂xi
−X∗∇ ∂

∂xk

∂

∂xi
= ui;kY + ui∇̄ ∂

∂xk
Y + uk∇̄ ∂

∂xi
Y + uiuk∇̄Y Y.

Hence using (1.14), (1.18) and (1.19) we obtain

∇̄X∗
∂

∂xk
X∗

∂

∂xi
−X∗∇ ∂

∂xk

∂

∂xi
= (Waik + uiuku

l γl
2γ2

)Y +
1

2
uiuk
∇γ
γ2

= WaikY +
1

2γ2
uiuk(〈∇u,∇γ〉Y +∇γ) = WaikY +

1

2γ2
uiukX∗∇γ.

Hence it follows that

〈AX∗
∂

∂xj
, ∇̄X∗

∂

∂xk
X∗

∂

∂xi
−X∗∇ ∂

∂xk

∂

∂xi
〉 = 〈AX∗

∂

∂xj
,
uiuk
2γ2

X∗∇γ +WaikY 〉

=
1

γ
Waika

l
jul +

uiuk
2γ2

ajlγ
l.

We conclude that

∇kbij = 〈(∇Σ
X∗

∂

∂xk
A)X∗

∂

∂xi
, X∗

∂

∂xj
〉+

1

γ
Waika

l
jul +

uiuk
2γ2

ajlγ
l

+
1

γ
Wajka

l
iul +

ujuk
2γ2

ailγ
l,

that is,

∇kbij = ∇Σ
k aij +

1

γ
Waika

l
jul +

1

γ
Wajka

l
iul +

uiuk
2γ2

ajlγ
l +

ujuk
2γ2

ailγ
l. (4.22)

Now we use (4.22) for computing the Hessian of the function θ.

Lemma 24 The trace of the Hessian of θ in Ω calculated with respect to the metric in

Σ is given by

gikθi;k = −|A|2θ − 2〈∇2d,X∗II〉Σ − n〈∇ΣH,∇Σd〉 − nHW 〈AY T ,∇Σd〉 − Ric(∇d, ∇u
W

)

−trΣ∇∇u
W
∇2d− |∇u|

2

W 2
〈A∇Σd,X∗

∇γ
2γ
〉+

1

2
〈AY T , Y T 〉〈∇d,∇γ〉 − 1

2W 2
∇2d(

∇u
W

,∇γ)

− γ

W 2
〈N,∇κ〉+ κ(nH − γ〈AY T , Y T 〉)− κ 1

2W 2
〈N,∇γ〉.
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Proof: Notice that we may write (4.20) as

θi = −gjlbildj + (di;j − κσij)N j. (4.23)

Hence we have

gikθi;k = −gik(gjlbildj);k + gik(di;jk − κkσij)N j + gik(di;j − κσij)N j
;k

= −gik(gjlbildj);k + gik(di;kj +Rl
jkidl − κkσij)N j − gik(di;j − κσij)(ajk −Nk

γj

2γ
).

However

gik(gjlbildj);k = gjlgikbil;kdj + gikgjl;kbildj + gikgjlbildj;k

= gjlgik(∇Σ
k ail +

1

γ
Waika

m
l um +

1

γ
Walka

m
i um + uiukalm

γm

2γ2
+ ulukaim

γm

2γ2
)dj

+gikgjl;kbildj + gikgjlbildj;k

Hence using Codazzi's equation we obtain

gik(gjlbildj);k = gjl(nHl + n
1

γ
WHaml um +

1

γ
Waila

m
i um +

|∇u|2

W 2
alm

γm

2γ
+ uluka

k
m

γm

2γ2
)dj

+gjlgik〈R̄(X∗
∂

∂xi
, X∗

∂

∂xk
)N,X∗

∂

∂xl
〉dj + gikgjl;kbildj + gikgjlbildj;k

Using that gjlul = γ
W 2u

j we conclude that

gik(gjlbildj);k = ngjlHldj − n
1

γ
W 2Hgjlaml Nmdj −

1

γ
W 2gjlaila

m
i Nmdj

+
|∇u|2

W 2
ajm

γm

2γ
dj +N jNka

k
m

γm

2γ
dj + gikgjl;kbildj + gikgjlbildj;k

However we have

gjl;k = (σjl −N jN l);k = −N j
;kN

l −N jN l
;k = (ajk −Nk

γj

2γ
)N l +N j(alk −Nk

γl

2γ
).

and

∇̄ ∂

∂xk
N = ∇̄X∗

∂

∂xk
N − ∇̄ukYN = −AX∗

∂

∂xk
− uk∇̄Y (

γ

W
Y − ∇u

W
)

= −AX∗
∂

∂xk
− uk

2W

(∇γ
γ

+ 〈∇u, ∇γ
γ
〉Y )

from what follows that

gik(gjlbildj);k = ngjlHldj − n
1

γ
W 2Haml Nmg

jldj −
1

γ
W 2aila

m
i Nmg

jldj

+
|∇u|2

W 2
ajm

γm

2γ
dj +N jNka

k
m

γm

2γ
dj + akl a

j
kN

ldj

−aklNkN
l γ

j

2γ
dj + akl a

l
kN

jdj − aklNk
γl

2γ
N jdj + gjlakl dj;k
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Therefore

gikθi;k = −ngjlHldj + n
1

γ
W 2Haml Nmg

jldj +
1

γ
W 2aila

m
i Nmg

jldj −
|∇u|2

W 2
ajm

γm

2γ
dj

−akl a
j
kN

ldj + aklNkN
l〈∇d, ∇γ

2γ
〉 − akl alkθ − gjlakl dj;k

+gik(di;kj +Rl
jkidl − κkσij)N j − gik(di;j − κσij)(ajk −Nk

γj

2γ
)

Now using the fact that gijuj = γ
W 2u

i and therefore gijNj = γ
W 2N

i we obtain

ami Nm = gkmaikNm =
γ

W 2
aikN

k =
γ

W 2
〈AX∗

∂

∂xi
, NkX∗

∂

∂xk
〉

=
γ

W 2
〈AX∗

∂

∂xi
, Nk ∂

∂xk
+ 〈Nk ∂

∂xk
,∇u〉Y 〉

=
γ

W 2
〈AX∗

∂

∂xi
, N − γ

W
Y + 〈N,∇u〉Y 〉

= − γ

W 2
〈AX∗

∂

∂xi
, Y 〉

( γ
W

+
|∇u|2

W

)
= − γ

W
〈AX∗

∂

∂xi
, Y 〉 = − γ

W
〈AY T , X∗

∂

∂xi
〉.

Therefore

aml Nmg
jldj = − γ

W
〈AY T , gjldjX∗

∂

∂xl
〉 = − γ

W
〈AY T ,∇Σd〉

Moreover notice that

aklN
l = gkmamlN

l = −gkmW 〈AY T , X∗
∂

∂xm
〉

and

aikN
k = −W 〈AY T , X∗

∂

∂xi
〉.

Similarly we have

ajkdj = gjmdj〈AX∗
∂

∂xk
, X∗

∂

∂xm
〉 = 〈AX∗

∂

∂xk
,∇Σd〉 = 〈A∇Σd,X∗

∂

∂xk
〉.

Replacing this above we obtain

gikθi;k = −n〈∇ΣH,∇Σd〉 − nHW 〈AY T ,∇Σd〉 −W 〈AY T , A∇Σd〉 − |∇u|
2

W 2
〈A∇Σd,X∗

∇γ
2γ
〉

+W 〈AY T , A∇Σd〉+ γ〈AY T , Y T 〉〈∇d, ∇γ
2γ
〉 − |A|2θ − gjlakl dj;k

+gik(di;kj +Rl
jkidl − κkσij)N j − gik(di;j − κσij)(ajk −Nk

γj

2γ
)
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Therefore

gikθi;k = −n〈∇ΣH,∇Σd〉 − nHW 〈AY T ,∇Σd〉 − |∇u|
2

W 2
〈A∇Σd,X∗

∇γ
2γ
〉

+γ〈AY T , Y T 〉〈∇d, ∇γ
2γ
〉 − |A|2θ − gjlakl dj;k

+gik(di;kj +Rl
jkidl − κkσij)N j − gik(di;j − κσij)(ajk −Nk

γj

2γ
)

However

gikσij = gik(gij −
uiuj
γ

) = δkj −
1

W 2
ukuj = δkj −NkNj.

Hence we have

gikθi;k = −n〈∇ΣH,∇Σd〉 − nHW 〈AY T ,∇Σd〉 − |∇u|
2

W 2
〈A∇Σd,X∗

∇γ
2γ
〉

+
1

2
〈AY T , Y T 〉〈∇d,∇γ〉 − |A|2θ − 2gikgjldi;jakl +

1

2W 2
di;jN

iγj

+gikdi;kjN
j − Ric(∇d, ∇u

W
)− γ

W 2
〈N,∇κ〉+ κ(nH − γ〈AY T , Y T 〉)− κ 1

2W 2
〈N,∇γ〉

This �nishes the proof of the Lemma.

Using Lemma 24 we will obtain an expression for Lh. Notice that

hi;k = αdi;k − φiθk − φkθi − φi;kθ − φθi;k.

Moreover it holds that

2gikφiθk = 2gikφi〈A∇Σd,X∗
∂

∂xk
〉 − 2gikdk;lφiN

l + 2κgikσklφiN
l

= 2〈A∇Σd,∇Σφ〉 − 2gikdk;lφiN
l + 2κ

γ

W 2
〈∇φ,N〉.

We conclude that

gikhi;k = αgikdi;k + 2〈A∇Σd,∇Σφ〉 − 2gikdk;lφiN
l + 2κ

γ

W 2
〈∇φ,N〉 − gikφi;kθ

+nφ〈∇ΣH,∇Σd〉+ nφHW 〈AY T ,∇Σd〉+
|∇u|2

W 2
φ〈A∇Σd,X∗

∇γ
2γ
〉

−1

2
φ〈AY T , Y T 〉〈∇d,∇γ〉+ |A|2φθ + 2gikgjldi;jaklφ−

1

2W 2
φdi;jN

iγj

−gikdi;kjN jφ+ Ric(∇d, ∇u
W

)φ+
γ

W 2
〈N,∇κ〉φ− κ(nH − γ〈AY T , Y T 〉)φ

+κ
1

2W 2
〈N,∇γ〉φ.
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Now we compute the derivatives with respect to t. We have

θt = X∗
∂

∂t
〈N, ∇̄d〉 = 〈∇̄X∗

∂
∂t
N, ∇̄d〉+ 〈N, ∇̄X∗

∂
∂t
∇̄d〉

= −〈∇Σ(nH −H), ∇̄d〉+ (nH −H)〈N, ∇̄N∇̄d〉.

However

〈N, ∇̄N∇̄d〉 = − 1

2W 2
〈∇̄γ, ∇̄d〉+ 〈∇u

W
, ∇̄∇u

W
∇̄d〉.

Hence we have

θt = −〈∇Σ(nH −H), ∇̄d〉+ (nH −H)(− 1

2W 2
〈∇γ,∇d〉+ 〈∇u

W
, ∇̄∇u

W
∇̄d〉).

Moreover we have

dt = 〈X∗
∂

∂t
, ∇̄d〉 = (nH −H)〈N, ∇̄d〉 = (nH −H)θ. (4.24)

Therefore

ht = α(nH −H)θ − (nH −H)〈N, ∇̄φ〉θ + φ〈∇Σ(nH −H), ∇̄d〉

−φ(nH −H)(− 1

2W 2
〈∇γ,∇d〉+ 〈∇u

W
, ∇̄∇u

W
∇̄d〉)

We also compute

〈∇γ,∇h〉 = α〈∇d,∇γ〉+ φ〈A∇Σd,X∗∇γ〉 − 〈∇φ,∇γ〉θ − φdi;jγiN j + κφ〈N,∇γ〉.

Now we obtain

gikdi;k = ∆d− 〈∇∇u
W
∇d, ∇u

W
〉 = −nHd − 〈∇∇u

W
∇d, ∇u

W
〉

and

gikdk;lφiN
l = dk;lφ

kN l − dk;lN
kN lN iφi = −〈∇∇u

W
∇d,∇φ〉 − 〈∇∇u

W
∇d, ∇u

W
〉〈N,∇φ〉.

Moreover we have

gijφi;j = ∆φ− 〈∇∇u
W
∇φ, ∇u

W
〉

and

gikdi;kjN
j = (σikdi;k);jN

j − di;kjN iNkN j = −n(Hd)jN
j +∇3d(

∇u
W

,
∇u
W

,
∇u
W

).
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Therefore grouping and rearranging these expressions we obtain

Lh = |A|2φθ + nφHW 〈AY T ,∇Σd〉+
(
κγ − 1

2
〈∇d,∇γ〉

)
φ〈AY T , Y T 〉

+2〈A∇Σd,∇Σφ〉+ 2〈A,∇2d〉Σφ−
1

W 2
φ〈A∇Σd,X∗∇γ〉(

nH −H
)(
〈N,∇φ〉θ − αθ − 1

2W 2
〈∇γ,∇d〉φ+ 〈∇∇u

W
∇d, ∇u

W
〉φ
)
− nκHφ

−nαHd +
(
2〈N,∇φ〉 − α

)
〈∇∇u

W
∇d, ∇u

W
〉+ 2〈∇∇u

W
∇d,∇φ〉

−φ〈∇∇u
W
∇d, ∇γ

2γ
〉+ φ〈∇ΣH, ∇̄d〉+ n〈∇Hd, N〉φ− φ∇3d(

∇u
W

,
∇u
W

,
∇u
W

) + Ric(∇d, ∇u
W

)φ

+
γ

W 2
〈N,∇κ〉φ−

( 1

2γ
+

1

2W 2

)
α〈∇d,∇γ〉+

( 1

2γ
+

1

2W 2

)
〈∇φ,∇γ〉θ

−κφ〈N, ∇γ
2γ
〉+ 2κ

γ

W 2
〈∇φ,N〉 −

(
∆φ− 〈∇∇u

W
∇φ, ∇u

W
〉
)
θ.

Lemma 25 We have

LW − 2

W
gijWiWj = |A|2W + nHW 3〈AY T , Y T 〉 − nHW 3〈∇γ

2γ2
, N〉 − 3γ〈AY T , X∗

∇γ
2γ
〉

+gij
γi;j
2γ

W − 3

4

|∇γ|2

4γ2
W − 1

4
〈∇γ

2γ
,N〉2W + γW 〈∇̄N

∇̄γ
2γ2

, N〉 −W 〈∇ΣH, N〉

−|∇γ|
2

4γ

1

W
−Wt.

Proof: Notice that

Wi = −W 2
(
〈∇̄X∗

∂

∂xi
Y,N〉+ 〈Y, ∇̄X∗

∂

∂xi
N〉
)

= −W 2
(
〈∇̄ ∂

∂xi
Y,N〉+ ui〈∇̄Y Y,N〉 − 〈Y,AX∗

∂

∂xi
〉
)

= −W 2
(
− γi

2γ
〈Y,N〉+ ui〈

∇γ
2γ2

, N〉 − 〈Y,AX∗
∂

∂xi
〉
)
.

Therefore

Wi =
γi
2γ
W +NiW

3〈∇γ
2γ2

, N〉+W 2〈AY T , X∗
∂

∂xi
〉.

However

〈AY T , X∗
∂

∂xi
〉 = gkl〈Y,X∗

∂

∂xk
〉〈X∗

∂

∂xl
, AX∗

∂

∂xi
〉 = gkl〈Y, ukY 〉bil =

1

W 2
ulbil.

Hence it follows that

Wi =
γi
2γ
W +NiW

3〈∇γ
2γ2

, N〉 −WN lbil.
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Hence we obtain

1

W
gijWiWj =

|∇Σγ|2

4γ2
W +W 〈∇γ,N〉〈∇γ

2γ2
, N〉+ 〈AY T ,

∇Σγ

γ
〉W 2

+γ|∇u|2〈∇γ
2γ2

, N〉2W − 〈AY T , Y T 〉〈∇γ
γ
,N〉W 3 + 〈AY T , AY T 〉W 3

Now we compute

Wi;j =
(γi;j

2γ
− γiγj

2γ2

)
W +

γi
2γ
Wj +Ni;jW

3〈∇γ
2γ2

, N〉+ 3NiW
2Wj〈

∇γ
2γ2

, N〉

+NiW
3
(
〈∇̄X∗

∂

∂xj

∇̄γ
2γ2

, N〉 − 〈∇γ
2γ2

, AX∗
∂

∂xj
〉
)
−WjN

lbil −WN l
;jbil −WN lbil;j.

However we have

gij
γi
2γ
Wj =

|∇Σγ|2

4γ2
W + 〈∇γ

2γ
,N〉2W +W 2〈AY T ,

∇Σγ

2γ
〉

and

gijNi;j = gijσikN
k
;j = −(δjk −N

jNk)(a
k
j −Nj

γk

2γ
)

= −nH +
γ

W 2
〈N, ∇γ

2γ
〉+ γ〈AY T , Y T 〉.

Moreover we compute

gijNiWj =
γ

W
〈N, ∇γ

2γ
〉+

γ|∇u|2

W
〈∇γ
2γ2

, N〉 − γW 〈AY T , Y T 〉

and

gijNiW
3
(
〈∇̄X∗

∂

∂xj

∇̄γ
2γ2

, N〉 − 〈∇̄γ
2γ2

, AX∗
∂

∂xj
〉
)

= γW
(
〈∇̄N−WY

∇̄γ
2γ2

, N〉 − 〈A∇
Σγ

2γ2
,−WY 〉

)
= γW 〈∇̄N

∇̄γ
2γ2

, N〉+W
|∇γ|2

4γ2
+ γW 2〈A∇

Σγ

2γ2
, Y T 〉.

We also have

2WgijWj〈AY T , X∗
∂

∂xi
〉 = 2W 2〈AY T ,

∇Σγ

2γ
〉 −W 3〈∇γ

γ
,N〉〈AY T , Y T 〉+ 2W 3〈AY T , AY T 〉.

Now we compute

gijWN lbil;j = WN lgij∇Σ
j ail +

1

γ
W 2gijaija

m
l N

lum +
1

γ
W 2gijaljN

lami um

+Wgij
uiuj
2γ2

almN
lγm +WgijN luluj

2γ2
aimγ

m.
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Hence we have

gijWN lbil;j = WN l(n∇Σ
l H + gij〈R̄(X∗

∂

∂xi
, X∗

∂

∂xj
)N,X∗

∂

∂xl
〉)

+nHW 2〈AY T , NkX∗
∂

∂xk
〉+W 2gij〈AY T , X∗

∂

∂xj
〉
(
−W 〈AY T , X∗

∂

∂xi
〉
)

−|∇u|2〈AY T , X∗
∇γ
2γ
〉+
|∇u|2

2γW
(−W 〈AY T , X∗

∂

∂xm
〉)γm.

Therefore

gijWN lbil;j = nWN l∇Σ
l H − nHW 3〈AY T , Y T 〉 −W 3〈AY T , AY T 〉 − |∇u|2〈AY T , X∗

∇γ
γ
〉.

Moreover

gijWjN
lbil = −W 2〈AY T ,

∇Σγ

2γ
〉+W 3〈∇γ

2γ
,N〉〈AY T , Y T 〉 −W 3〈AY T , AY T 〉

and

WgijN l
;jbil = −Wgij(alj −Nj

γl

2γ
)ail = −|A|2W − 1

2
〈AY T , X∗∇γ〉.

We conclude that

gijWi;j = |A|2W + 2W 3〈AY T , AY T 〉+
(
nH − 3〈∇γ

2γ
,N〉

)
W 3〈AY T , Y T 〉

+3W 2〈AY T ,
∇Σγ

2γ
〉+ |∇u|2〈AY T , X∗

∇γ
γ
〉+

1

2
〈AY T , X∗∇γ〉

+gij
γi;j
2γ

W − |∇
Σγ|2

4γ2
W +

|∇γ|2

4γ2
W +

(
5W + 3

W

γ
|∇u|2

)
〈∇γ

2γ
,N〉2

−nHW 3〈∇γ
2γ2

, N〉+ γW 〈∇̄N
∇̄γ
2γ2

, N〉 − nWN l∇Σ
l H.

Now

〈∇γ,∇W 〉 =
|∇γ|2

2γ
W +

1

2γ2
〈∇γ,N〉2W 3 +W 2〈AY T , X∗∇γ〉.
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Hence

LW − 2

W
gijWiWj = |A|2W +

(
nH + 〈∇γ

2γ
,N〉

)
W 3〈AY T , Y T 〉

−W 2〈AY T ,
∇Σγ

2γ
〉+ |∇u|2〈AY T , X∗

∇γ
γ
〉+

1

2
〈AY T , X∗∇γ〉

−
( 1

2γ
+

1

2W 2

)
W 2〈AY T , X∗∇γ〉

+gij
γi;j
2γ

W − 3

4

|∇Σγ|2

4γ2
W +

|∇γ|2

4γ2
W +

(
5W + 3

W

γ
|∇u|2

)
〈∇γ

2γ
,N〉2

−nHW 3〈∇γ
2γ2

, N〉+ γW 〈∇̄N
∇̄γ
2γ2

, N〉 − nWN l∇Σ
l H

−
( 1

2γ
+

1

2W 2

)( |∇γ|2
2γ

W +
1

2γ2
〈∇γ,N〉2W 3

)
− 1

γ2
〈∇γ,N〉2W − 2γ|∇u|2〈∇γ

2γ2
, N〉2W −Wt.

However

3
W

γ
|∇u|2〈∇γ

2γ
,N〉2 − 2γ|∇u|2〈∇γ

2γ2
, N〉2W =

W

γ
|∇u|2〈∇γ

2γ
,N〉2

and

5W 〈∇γ
2γ

,N〉2 − 1

γ2
〈∇γ,N〉2W = 〈∇γ

2γ
,N〉2W

and

−W 2〈AY T ,
∇Σγ

2γ
〉+ |∇u|2〈AY T , X∗

∇γ
γ
〉+

1

2
〈AY T , X∗∇γ〉 −

( 1

2γ
+

1

2W 2

)
W 2〈AY T , X∗∇γ〉

= −3γ〈AY T , X∗
∇γ
2γ
〉 −W 3〈∇γ

2γ
,N〉〈AY T , Y T 〉.

Moreover we compute

( 1

2γ
+

1

2W 2

)( |∇γ|2
2γ

W +
1

2γ2
〈∇γ,N〉2W 3

)
=
|∇γ|2

4γ2
W +

1

γ
W 3〈∇γ

2γ
,N〉2 +

|∇γ|2

4γ

1

W
+ 〈∇γ

2γ
,N〉2W

and

−nWN l∇Σ
l H = −nW 〈∇ΣH,N〉 = −W 〈∇ΣH, N〉.
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We conclude that

LW − 2

W
gijWiWj = |A|2W + nHW 3〈AY T , Y T 〉 − 3γ〈AY T , X∗

∇γ
2γ
〉

+gij
γi;j
2γ

W − 3

4

|∇Σγ|2

4γ2
W +

|∇u|2

γ
〈∇γ

2γ
,N〉2W

−nHW 3〈∇γ
2γ2

, N〉+ γW 〈∇̄N
∇̄γ
2γ2

, N〉 −W 〈∇ΣH, N〉

−1

γ
W 3〈∇γ

2γ
,N〉2 − |∇γ|

2

4γ

1

W
−Wt.

However

|∇u|2

γ
〈∇γ

2γ
,N〉2W − 1

γ
W 3〈∇γ

2γ
,N〉2 = −〈∇γ

2γ
,N〉2W

and

−3

4

|∇Σγ|2

4γ2
W − 〈∇γ

2γ
,N〉2W = −3

4

|∇γ|2

4γ2
W +

3

4
〈∇γ

2γ
,N〉2W − 〈∇γ

2γ
,N〉2W

= −3

4

|∇γ|2

4γ2
W − 1

4
〈∇γ

2γ
,N〉2W.

Hence we obtain

LW − 2

W
gijWiWj = |A|2W + nHW 3〈AY T , Y T 〉 − nHW 3〈∇γ

2γ2
, N〉 − 3γ〈AY T , X∗

∇γ
2γ
〉

+gij
γi;j
2γ

W − 3

4

|∇γ|2

4γ2
W − 1

4
〈∇γ

2γ
,N〉2W + γW 〈∇̄N

∇̄γ
2γ2

, N〉 −W 〈∇ΣH, N〉

−|∇γ|
2

4γ

1

W
−Wt.

This �nishes the proof of the lemma.

Now we are able to prove the following result

Proposition 26 For �xed T ∗ < T there exists K > 0 su�ciently large so that if

ηW (x0, t0) = max
Ω̄×[0,T ∗]

ηW

for some (x0, t0) ∈ Ω̄× [0, T ∗], then W (x0, t0) ≤ C, for some constant C.

Proof: We can assume x0 ∈ Ω and t0 > 0. At a point (x0, t0) where ηW attains

maximum value we have

ηiW + ηWi = 0 (4.25)
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and

1

η
Lη +

1

W

(
LW − 2

W
gijWiWj

)
≤ 0. (4.26)

We conclude that

1

η
Lη = KLu+

1

h
Lh+K2gijuiuj + 2Kgijui

hj
h

= KHW +
1

h
Lh+K2γ|∇u|2

W 2
+ 2Kgijui

hj
h
.

Now we have

gijuihj =
γ

W 2
ujhj = − γ

W
(α〈N,∇d〉 − 〈N,∇φ〉θ − φ〈N,∇θ〉).

However

〈N,∇θ〉 = W 〈AY T ,∇Σd〉+ 〈∇∇u
W
∇d, ∇u

W
〉 − κ |∇u|

2

W 2
.

Therefore

gijuihj = −α γ

W
〈N,∇d〉+

γ

W
〈N,∇φ〉θ + γφ〈AY T ,∇Σd〉+

γ

W
φ〈∇∇u

W
∇d, ∇u

W
〉 − γφκ |∇u|

2

W 3
.

Thus the expression for Lh in Appendix allows us to conclude that

1

η
Lη = KHW +K2γ|∇u|2

W 2

+
2K

h

(
− α γ

W
〈N,∇d〉+

γ

W
〈N,∇φ〉θ + γφ〈AY T ,∇Σd〉+

γ

W
φ〈∇∇u

W
∇d, ∇u

W
〉 − γφκ |∇u|

2

W 3

)
+

1

h
|A|2φθ + n

1

h
φHW 〈AY T ,∇Σd〉+

1

h

(
κγ − 1

2
〈∇d,∇γ〉

)
φ〈AY T , Y T 〉

+
2

h
〈A∇Σd,∇Σφ〉+

2

h
〈A,∇2d〉Σφ−

1

hW 2
φ〈A∇Σd,X∗∇γ〉

+
1

h

(
nH −H

)(
〈N,∇φ〉θ − αθ − 1

2W 2
〈∇γ,∇d〉φ+ 〈∇∇u

W
∇d, ∇u

W
〉φ
)
− n1

h
κHφ

−nα
h
Hd +

1

h

(
2〈N,∇φ〉 − α

)
〈∇∇u

W
∇d, ∇u

W
〉+

2

h
〈∇∇u

W
∇d,∇φ〉

−1

h
φ〈∇∇u

W
∇d, ∇γ

2γ
〉+

1

h
φ〈∇ΣH, ∇̄d〉+ n

1

h
〈∇Hd, N〉φ−

1

h
φ∇3d(

∇u
W

,
∇u
W

,
∇u
W

)

+
1

h
Ric(∇d, ∇u

W
)φ+

γ

hW 2
〈N,∇κ〉φ− 1

h

( 1

2γ
+

1

2W 2

)
α〈∇d,∇γ〉+

1

h

( 1

2γ
+

1

2W 2

)
〈∇φ,∇γ〉θ

−κ1

h
φ〈N, ∇γ

2γ
〉+

2

h
κ
γ

W 2
〈∇φ,N〉 − 1

h

(
∆φ− 〈∇∇u

W
∇φ, ∇u

W
〉
)
θ.
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On the other hand Lemma 25 yields

1

W

(
LW − 2

W
gijWiWj

)
= |A|2 + nHW 2〈AY T , Y T 〉 − nHW 2〈∇γ

2γ2
, N〉

−3
1

W
γ〈AY T , X∗

∇γ
2γ
〉+ gij

γi;j
2γ
− 3

4

|∇γ|2

4γ2
− 1

4
〈∇γ

2γ
,N〉2 + γ〈∇̄N

∇̄γ
2γ2

, N〉

−〈∇ΣH, N〉 − |∇γ|
2

4γ

1

W 2
− Wt

W
.

Now we use the fact that x0 is a critical point to ηW . We have

eKu(Kuih+ hi)W = −eKuhWi.

what implies that

−KW 2hNiN
i +WhiN

i = −hWiN
i

and then

−Kh|∇u|2 +WhiN
i = −hWiN

i.

However

WiN
i =

γi
2γ
N iW +NiN

iW 3〈∇γ
2γ2

, N〉+W 2〈AY T , N iX∗
∂

∂xi
〉

=
1

2γ
〈∇γ,N〉W + |∇u|2W 〈∇γ

2γ2
, N〉 −W 3〈AY T , Y T 〉

and

hiN
i = αθ − 〈∇φ,N〉θ + φajiN

idj − φ(di;jN
iN j − κσij)N iN j

= αθ − 〈∇φ,N〉θ − φW 〈AY T ,∇Σd〉 − φ〈∇∇u
W
∇d, ∇u

W
〉+ φκ

|∇u|2

W 2
.

We then conclude that

−K |∇u|
2

W
+
αθ

h
− 1

h
〈∇φ,N〉θ − φ

h
W 〈AY T ,∇Σd〉 − φ

h
〈∇∇u

W
∇d, ∇u

W
〉+

φ

h
κ
|∇u|2

W 2

= − 1

2γ
〈∇γ,N〉 − |∇u|2〈∇γ

2γ2
, N〉+W 2〈AY T , Y T 〉

Moreover

−Wt

W
=

ηt
η

= Kut +
ht
h

= WK(nH −H) +
ht
h

= nHKW −KWH− 1

h
(nH −H)

(
〈∇φ,N〉θ − αθ − φ

2W 2
〈∇γ,∇d〉

)
+
φ

h
〈∇u
W

,∇∇u
W
∇d〉.
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Then we have

1

W

(
LW − 2

W
gijWiWj

)
= |A|2 +KnH

γ

W
+
αθ

h
nH − 1

h
nH〈∇φ,N〉θ − φ

h
nHW 〈AY T ,∇Σd〉

−1

h
(nH −H)

(
〈∇φ,N〉θ − αθ − φ

2W 2
〈∇γ,∇d〉

)
− φ

h
nH〈∇∇u

W
∇d, ∇u

W
〉+

φ

h
nHκ

|∇u|2

W 2

−3
1

W
γ〈AY T , X∗

∇γ
2γ
〉+ gij

γi;j
2γ
− 3

4

|∇γ|2

4γ2
− 1

4
〈∇γ

2γ
,N〉2 + γ〈∇̄N

∇̄γ
2γ2

, N〉 − 〈∇ΣH, N〉

−|∇γ|
2

4γ

1

W 2
−KWH +

φ

h
〈∇u
W

,∇∇u
W
∇d〉.

We conclude that

1

η
Lη +

1

W

(
LW − 2

W
gijWiWj

)
= K2γ|∇u|2

W 2
+A+ B,

where

A =
(

1 +
φθ

h

)
|A|2 +

2K

h
γφ〈AY T ,∇Σd〉+

φ

h

(
κγ − 1

2
〈∇d,∇γ〉

)
〈AY T , Y T 〉

+
2

h
〈A∇Σd,∇Σφ〉+

2

h
〈A,∇2d〉Σφ−

1

hW 2
φ〈A∇Σd,X∗∇γ〉

+KnH
γ

W
+
αθ

h
nH − 1

h
nH〈∇φ,N〉θ − φ

h
nHκ

γ

W 2
− 3

1

W
γ〈AY T , X∗

∇γ
2γ
〉

and

B =
2K

h

(
− α γ

W
〈N,∇d〉+

γ

W
〈N,∇φ〉θ +

γ

W
φ〈∇∇u

W
∇d, ∇u

W
〉 − γφκ |∇u|

2

W 3

)
−H〈∇∇u

W
∇d, ∇u

W
〉φ− nα

h
Hd +

1

h

(
2〈N,∇φ〉 − α

)
〈∇∇u

W
∇d, ∇u

W
〉+

2

h
〈∇∇u

W
∇d,∇φ〉

−1

h
φ〈∇∇u

W
∇d, ∇γ

2γ
〉+

1

h
φ〈∇ΣH, ∇̄d〉+ n

1

h
〈∇Hd, N〉φ−

1

h
φ∇3d(

∇u
W

,
∇u
W

,
∇u
W

)

+
1

h
Ric(∇d, ∇u

W
)φ+

γ

hW 2
〈N,∇κ〉φ− 1

h

( 1

2γ
+

1

2W 2

)
α〈∇d,∇γ〉

+
1

h

( 1

2γ
+

1

2W 2

)
〈∇φ,∇γ〉θ − κ1

h
φ〈N, ∇γ

2γ
〉+

2

h
κ
γ

W 2
〈∇φ,N〉

−1

h

(
∆φ− 〈∇∇u

W
∇φ, ∇u

W
〉
)
θ + gij

γi;j
2γ
− 3

4

|∇γ|2

4γ2
− 1

4
〈∇γ

2γ
,N〉2 + γ〈∇̄N

∇̄γ
2γ2

, N〉

−〈∇ΣH, N〉 − |∇γ|
2

4γ

1

W 2
+
φ

h
〈∇u
W

,∇∇u
W
∇d〉.

However using some standard inequalites we obtain

A ≥
(

1 +
φθ

h

)
|A|2 −

(2Kγ

h
√
γ

+
κ

h
+

1

2hγ
|∇γ|+ 2

h
|∇φ|+ 2

h
|∇2d|Σ

+
1

hW 2
|X∗∇γ|+

Kγ
√
n

W
+
αθ
√
n

h
+
θ
√
n

h
|∇φ|+ γ

√
nκ

hW 2
+

3γ
√
γW
|X∗
∇γ
2γ
|
)
|A|
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Using that W 2 ≥ γ and choosing α su�ciently large and depending only on n, γ, φ and

κ we have

A ≥ 1

2
|A|2 −

(
ε+ 2

√
γ
K

h
+
Kγ
√
n

W
+

3
√
γ

W
|X∗
∇γ
2γ
|
)
|A|

≥ −
(
ε+ 2

√
γ
K

h
+
Kγ
√
n

W
+

3
√
γ

W
|X∗
∇γ
2γ
|
)2

.

Moreover

B ≥ −C
(

1 +
α

h
+

α

hW 2
+

1

h
+

1

W 2
+

1

hW 2
+K

α

h
+
K

h

)
,

where C is a constant depending on n, γ, φ, d, κ and H.

Hence we obtain

1

η
Lη +

1

W

(
LW − 2

W
gijWiWj

)
≥ K2γ|∇u|2

W 2
− C(ε)− K

W
C(ε, γ, n)− K2

W 2
C(γ, n)

− 1

W
C(γ, ε)− K

W 2
C(γ, n)− K2

h2
C(γ)− K2

hW
C(γ, n)− 1

W 2
C(γ)− K

hW
C(γ)

−Kα

h
C − K

h
C(ε, γ)− C − α

h
C − α

hW 2
C − 1

h
C − 1

W 2
C − 1

hW 2
C.

Then

−K2γ|∇u|2

W 2
≥ −C

(
K2

W 2
+

K

W 2
+

1

W
+

K

hW
+
K2

h2
+

α

hW 2
+

1

W 2
+

1

hW 2
+
K

W
+

1

W

+K
α

h
+
K

h
+
α

h
+

1

h
+ 1

)
.

It follows that(
K2γ −

(K2

h2
+K

α

h
+
K

h
+

1 + α

h
+ 1
)
C

)
W 2 ≤

(
K2 +K +

1 + α

h
+ 1
)
C

+(K +
K

h
+ 1)CW.

Now suppose thatW (x0, t0) ≥ 1. Otherwise we are done. In this case we haveW ≤ W 2

and absorbing the terms withW into that one withW 2 transforms the inequality above

into(
K2γ − K2

h2
C − K

h
C −KC − C − 1

h
(α + 1)(K + 1)C

)
W 2 ≤

(
K2 +K + 1 +

1

h
(α + 1)

)
C.

If d0 = d(x0) then choosing α ≥ 1/(C(d0)d0 − 1) for some constant C(d0) > 1/d0 we

obtain (1 + α)/h ≤ C(d0) what implies that(
K2γ − K2

h2
C − K

h
C −KC(d0)− C(d0)

)
W 2 ≤ (K2 +K + C(d0))C.
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Then for α > 1
d0

max{1,
√

2C/γ} we have(
K2γ

2
−KC(d0)− C(d0)

)
W 2 ≤ (K2 +K + C(d0))C.

It follows that for K >
C(d0)+

√
C(d0)2+2γC(d0)

γ
we have K2 γ

2
−KC(d0)− C(d0) > 0 and

W 2 ≤ C(K2 +K + C(d0))

K2 γ
2
−KC(d0)− C(d0)

. (4.27)

This �nishes the proof of the proposition.

Theorem 27 There exists a unique solution u : Ω̄× [0,∞)→ I to the problem (1.6)-

(1.8).

Proof: Propositions 21, 22 and 26 yield the following global gradient bound

W (x, t) ≤ W (x0, t0)
η(x, t)

η(x0, t0)
≤ C1e

C2MT ∗ , (4.28)

for (x, t) ∈ Ω̄× [0, T ∗], where C1 and C2 are positive constants and

M = max
Ω̄×[0,T ∗]

|u− u0|.

It results that (4.4) is uniformly parabolic and then the standard theory of quasilinear

parabolic PDEs may be applied for assuring the existence of a unique smooth solution

to (4.4)-(4.6).

4.4 Asymptotic behavior

Suppose from now on that H = 0 and φ = 0. In the particular case when the

evolving functions have the form u(x, t) = v(x) + Ct, (x, t) ∈ Ω̄ × [0, T ), the initial

value problem (4.4)-(4.6) becomes

div
∇v
W
− γ〈∇̄Y Y,

∇v
W
〉 =

C

W
in Ω (4.29)

〈ν,N〉 = 0 on ∂Ω (4.30)

Conversely, notice that if v(x) is a solution of (4.29)-(4.30) then u = v+Ct is a solution

of (4.4) which is translating along the �ow lines of Y with speed C.

Now observe that

div
∇v
W
− γ〈∇̄Y Y,

∇v
W
〉 = div

∇v
W

+ γ〈∇̄∇v
W
Y, Y 〉 = div

∇v
W

+ γ〈∇̄Y
∇v
W

Y, Y 〉 = divM
∇v
W

.
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Therefore it follows from divergence theorem that∫
ϑ([0,s]×Ω̄)

C

W
+H = −

∫
ϑ([0,s]×Γ)

〈∇v
W

, ν〉 =

∫
ϑ([0,s]×Γ)

〈N, ν〉 =

∫
ϑ([0,s]×Γ)

φ. (4.31)

Since the integrands do not depend on s we have∫
Ω

C
1
√
γW

=

∫
Γ

1
√
γ
φ. (4.32)

from what results that

C = 0. (4.33)

We then obtain the following height estimate

Proposition 28 Given a solution u(x, t) of (4.4) there exists a constant M such that

|u(x, t)| ≤M (4.34)

for (x, t) ∈ Ω̄× [0,+∞).

Proof: We observe that since C is necessarily zero, v = cte. is a solution to (4.29).

In particular the constant functions v1 = inf
Ω
u0 and v2 = sup

Ω
u0 are solutions of (4.29)

with v1 ≤ u0 ≤ v2. Hence the parabolic maximum principle implies that

v1 ≤ u(·, t) ≤ v2,

for t ∈ [0, T ) from what we obtain (4.34).

Now, proceeding as in [31], we prove the following convergence result

Theorem 29 Suppose that H = 0 and φ = 0. Then limt→∞ ut = 0. In particular the

mean curvature �ow converges to a slice of the form ϑ({s} × Ω̄) for some s ∈ I.

Proof: It is immediate that v = s is a trivial solution to (4.29) with (necessarily)

C = 0. We also have

d

dt

∫
Ω

W =

∫
Ω

uiui;t
W

= −
∫

Ω

u2
t

W
−
∫

Ω

1

2W 3
〈∇u,∇γ〉 −

∫
Ω

|∇u|2

2γW 2
〈∇u,∇γ〉.

Therefore

−
∫

Ω

u2
t

W
=

d

dt

(∫
Ω

W

)
+

∫
Ω

1

2W 3
〈∇u,∇γ〉+

∫
Ω

|∇u|2

2γW 2
〈∇u,∇γ〉. (4.35)
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It follows that ∫ T

0

∫
Ω

u2
t

W
= −

∫
Ω

W (x, T ) +

∫
Ω

W (x, 0)

+

∫ T

0

∫
Ω

1

2W 3
〈∇u,∇γ〉+

∫ T

0

∫
Ω

|∇u|2

2γW 2
〈∇u,∇γ〉 ≤ C̃

for some positive constant C̃. It follows that lim
t→∞

u2
t

W
= 0. Since W is bounded then

lim
t→∞

ut = 0. This �nishes the proof of the theorem.

�
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