IATEX Tutorials

A PRIMER

Indian TgX Users Group
Trivandrum, India

2003 September

IXTEX TUTORIALS — A PRIMER
Indian TgX Users Group

EDITOR: E. Krishnan
COVER: G. S. Krishna

Copyright ©2002, 2003 Indian TgX Users Group
Floor 111, SJP Buildings, Cotton Hills

Trivandrum 695014, India
http://www.tug.org.in

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU
Free Documentation License, version 1.2, with no invariant sections, no front-cover texts, and no
back-cover texts. A copy of the license is included in the end.

This document is distributed in the hope that it will be useful, but without any warranty; without
even the implied warranty of merchantability or fitness for a particular purpose.

Published by the Indian TgX Users Group

Online versions of this tutorials are available at:
http://www.tug.org.in/tutorials.html

PREFACE

The ideal situation occurs when
the things that we regard as beau-
tiful are also regarded by other
people as useful.

— Donald Knuth

For us who wrote the following pages, TgX is something beautiful and also useful. We
enjoy TgX, sharing the delights of newly discovered secrets amongst ourselves and won-
dering ever a new at the infinite variety of the program and the ingenuity of its creator.
We also lend a helping hand to the new initiates to this art. Then we thought of extend-
ing this help to a wider group and The Net being the new medium, we started an online
tutorial. This was well received and now the Free Software Foundation has decided to
publish these lessons as a book. It is a fitting gesture that the organization which upholds
the rights of the user to study and modify a software publish a book on one of the earliest
programs which allows this right.

Dear reader, read the book, enjoy it and if possible, try to add to it.

The TUGIndia Tutorial Team

II.

I11.

IV.

VI.

VII.

VIII.

IX.

XI.

CONTENTS

TheBasics . « v v v v v v vt e e e e e e e e e 7
L1 What is XTEX? — 7 e .2 Simple typesetting — 8 © 1.3 Fonts— 13 e 1.4 Type size — 15

The DocUumMent v v v v v i e e e e e e e e e e e e e e e e 17

1.1 Document class — 17 o 1.2 Page style — 18 o 1.3 Page numbering — 19 e 1.4 Formatting
lengths — 20 @ 11.5 Parts of a document — 20 e 11.6 Dividing the document — 21 e 1.7 What next?

- 23

Bibliography e e e e e 27

.1 Introduction — 27 e 1Il.2 natbib — 28

Bibliographic Databases i i e 33

1v.x The BIBIEX program — 33 e IV.2 BIBTEX style files — 33 o 1v.3 Creating a bibliographic
database - 34

Table of contents, Indexand Glossary. 39
V.1 Table of contents — 39 ¢ V.2 Index — 41 ® V.3 Glossary — 44

Displayed Text v v v v i it ittt e i e 47

VI.1 Borrowed words — 47 ¢ VI.2 Poetry in typesetting — 48 © V1.3 Making lists— 48 e VI.4 When
order matters — 51 ® VI.5 Descriptions and definitions — 54

Rowsand Columnst i it ittt e e et et e e e e 57
Vil.1 Keeping tabs — 57 ¢ Vil.2 Tables - 62

Typesetting Mathematics ¢ v v v v vt vt e et e e et 77

Viil.1 The basics — 77 o Viil.2 Custom commands — 81 e VIIl.3 More on mathematics — 82 e
VIIl.4 Mathematics miscellany — 89 e VIIl.5 New operators — 101 ® VIII.6 The many faces of
mathematics — 102 @ VIIL.7 And that is not all! — 103 e VIII.8 Symbols — 103

Typesetting Theoremso it it i ittt et e e 109

1X.1 Theorems in IKTEX - 109 e 1X.2 Designer theorems—The amsthm package — 111 o 1X.3
Housekeeping — 118

Several Kindsof Boxes i i i 119

X.1 LR boxes — 119 ® X.2 Paragraph boxes — 121 e X.3 Paragraph boxes with specific height —
122 ® X.4 Nested boxes — 123 o X.5 Rule boxes — 123

Floats . . v v o e 125

XL.1 The figure environment — 125 XIL.2 The table environment — 130

XII.

XIII.

CONTENTS

Cross References in ISTEXo o v v i i i i i v e e v .. 135

XI1I.1 Why cross references? — 135 ® Xil.2 Let ISTEX do it — 135 e XII.3 Pointing to a page—the
package varioref — 138 e XIl.4 Pointing outside—the package xr — 140 ® XII.5 Lost the keys? Use
Tablst.tex — 140

Footnotes, Marginpars, and Endnotes 143
XIIL.1 Footnotes — 143 ® XIIl.2 Marginal notes — 147 ¢ XII11.3 Endnotes — 148

TUTORIAL I

THE BASICS

L.1. WHAT IS IXTEX?

The short and simple answer is that IKTEX is a typesetting program and is an extension
of the original program TgX written by Donald Knuth. But then what is a #ypesetting
program?

To answer this, let us look at the various stages in the preparation of a document
using computers.

The text is entered into the computer.

The input text is formatted into lines, paragraphs and pages.
The output text is displayed on the computer screen.

The final output is printed.

AW opH

In most word processors all these operations are integrated into a single application
package. But a typesetting program like TEX is concerned only with the second stage
above. So to typeset a document using TEX, we type the text of the document and the
necessary formatting commands in a text editor (such as Emacs in GNU/Linux) and then
compile it. After that the document can be viewed using a previewer or printed using a
printer driver.

TEX is also a programming language, so that by learning this language, people can
write code for additional features. In fact BTEX itself is such a (large) collection of extra
features. And the collective effort is continuing, with more and more people writing extra
packages.

L1.1. A small example

Let us see ISTEX in action by typesetting a short (really short) document. Start your
favorite text editor and type in the lines below exactly as shown

\documentclass{article}

\begin{document}

This is my \emph{first} document prepared in \LaTeX.
\end{document}

Be especially careful with the \ character (called the backslash) and note that this is
different from the more familiar / (the slash) in and/or and save the file onto the hard
disk as myfile.tex. (Instead of myfile you can use any name you wish, but be sure to
have .tex at the end as the extension.) The process of compiling this and viewing the
output depends on your operating system. We describe below the process of doing this
in GNU/Linux.

8 1. THE BASICS

At the shell prompt type
Tatex myfile

You will see a number of lines of text scroll by in the screen and then you get the prompt
back. To view the output in screen, you must have the X Window running. So, start X if
you have not done so, and in a terminal window, type

xdvi myfile

A window comes up showing the output below

This is my first document prepared in BIgEX.

Now let us take a closer look at the source file (that is, the file you have typed).
The first line \documentclass{article} tells BIEX that what we want to produce is an
article. If you want to write a book, this must be changed to \documentclass{book}.
The whole document we want to typeset should be included between \begin{document}
and \end{document}. In our example, this is just one line. Now compare this line in the
source and the output. The first three words are produced as typed. Then \emph{first},
becomes first in the output (as you have probably noticed, it is a common practice to
emphasize words in print using italic letters). Thus \emph is a command to BIEX to
typeset the text within the braces in italic*. Again, the next three words come out without
any change in the output. Finally, the input \LaTeX comes out in the output as IIEX.

Thus our source is a mixture of text to be typeset and a couple of BIEX commands
\emph and \LaTeX. The first command changes the input text in a certain way and the
second one generates new text. Now call up the file again and add one more sentence
given below.

This is my \emph{first} document prepared in \LaTeX. I typed it
on \today.

What do you get in the output? What new text does the command \today generate?

L1.2. Why BIEX?

So, why all this trouble? Why not simply use a word processor? The answer lies in the
motivation behind TgX. Donald Knuth says that his aim in creating TgX is to beautifully
typeset technical documents especially those containing a lot of Mathematics. It is very
difficult (sometimes even impossible) to produce complex mathematical formulas using a
word processor. Again, even for ordinary text, if you want your document to look really
beautiful then ISTEX is the natural choice.

I.2. SIMPLE TYPESETTING

We have seen that to typeset something in IETEX, we type in the text to be typeset together
with some BTEX commands. Words must be separated by spaces (does not matter how
many) and lines maybe broken arbitrarily.

The end of a paragraph is specified by a blank line in the input. In other words,
whenever you want to start a new paragraph, just leave a blank line and proceed. For
example, the first two paragraphs above were produced by the input

IThis is not really true. For the real story of the command, see the section on fonts.

I.2. SIMPLE TYPESETTING 9

We have seen that to typeset something in \LaTeX, we type in the
text to be typeset together with some \LaTeX\ commands.

Words must be separated by spaces (does not matter how many)

and lines maybe broken arbitrarily.

The end of a paragraph is specified by a \emph{blank Tine}
in the input. In other words, whenever you want to start a new
paragraph, just leave a blank 1line and proceed.

Note that the first line of each paragraph starts with an indentation from the left
margin of the text. If you do not want this indentation, just type \noindent at the start
of each paragraph for example, in the above input, \noindent We have seen ... and
\noindent The end of ... (come on, try it!) There is an easier way to suppress para-
graph indentation for all paragraphs of the document in one go, but such tricks can wait.

I.2.1. Spaces

You might have noticed that even though the length of the lines of text we type in a
paragraph are different, in the output, all lines are of equal length, aligned perfectly on
the right and left. TgX does this by adjusting the space between the words.

In traditional typesetting, a little extra space is added to periods which end sentences
and TgX also follows this custom. But how does TgX know whether a period ends a
sentence or not? It assumes that every period not following an upper case letter ends a
sentence. But this does not always work, for there are instances where a sentence does
end in an upper case letter. For example, consider the following

Carrots are good for your eyes, since they contain Vitamin A. Have you ever seen a rabbit
wearing glasses?

The right input to produce this is

Carrots are good for your eyes, since they contain Vitamin A\@. Have
you ever seen a rabbit wearing glasses?

Note the use of the command \@ before the period to produce the extra space after the
period. (Remove this from the input and see the difference in the output.)

On the other hand, there are instances where a period following a lowercase letter
does not end a sentence. For example

The numbers 1, 2, 3, etc. are called natural numbers. According to Kronecker, they were made
by God; all else being the work of Man.

To produce this (without extra space after etc.) the input should be

The numbers 1, 2, 3, etc.\ are called natural numbers. According to
Kronecker, they were made by God;all else being the works of Man.

Here, we use the command \ (that is, a backslash and a space—here and elsewhere, we
sometimes use to denote a space in the input, especially when we draw attention to the
space).

There are other situations where the command \ (which always produce a space in
the output) is useful. For example, type the following line and compile it.

I think \LaTeX is fun.

I0 I. THE BASICS

You get
I think BTEXis fun.

What happened to the space you typed between \LaTeX and is? You see, TgX gobbles up
all spaces after a command. To get the required sequence in the output, change the input
as

I think \LaTeX\ is fun.

Again, the command \ comes to the rescue.

L.2.2. Quotes

Have you noticed that in typesetting, opening quotes are different from closing quotes?
Look at the TgX output below

Note the difference in right and left quotes in ‘single quotes’ and “double quotes™.

This is produced by the input

Note the difference in right and left quotes in ‘single quotes’
and ‘double quotes’’.

Modern computer keyboards have a key to type the symbol * which produces a left quote
in TEX. (In our simulated inputs, we show this symbol as ‘.) Also, the key ’ (the usual
‘typewriter’ quote key, which also doubles as the apostrophe key) produces a left quote
in TEX. Double quotes are produced by typing the corresponding single quote twice. The
‘usual’ double quote key " can also be used to produce a closing double quote in TgX.

If your keyboard does not have a left quote key, you can use \1q command to produce
it. The corresponding command \rq produces a right quote. Thus the output above can
also be produced by

Note the difference in right and Tleft quotes in \1q single
quotes\rg\ and \1g\1qg double quotes\rg\rq.

(Why the command \ after the first \rq?)

I.2.3. Dashes

In text, dashes are used for various purposes and they are distinguished in typesetting by
their lengths; thus short dashes are used for hyphens, slightly longer dashes are used to
indicate number ranges and still longer dashes used for parenthetical comments. Look at
the following TEX output

X-rays are discussed in pages 221-225 of Volume 3—the volume on electromagnetic waves.

This is produced from the input

X-rays are discussed in pages 221--225 of Volume 3---the volume on
electromagnetic waves.

Note that a single dash character in the input - produces a hyphen in the output, two
dashes -- produces a longer dash (=) in the output and three dashes --- produce the
longest dash (—) in the output.

I.2. SIMPLE TYPESETTING I1

I.2.4. Accents

Sometimes, especially when typing foreign words in English, we need to put different
types of accents over the letters. The table below shows the accents available in IXTEX.
Each column shows some of the accents and the inputs to generate them.

o \‘o 60 \o o0 \o 6 \o
0 \=o0 o \.o o \'"o ¢ \cc
6 \uo 6 \vo 6 \Ho |0 \do
o \bo 00 \t oo

The letters i and j need special treatment with regard to accents, since they should not
have their customary dots when accented. The commands \i and \j produce dot-less i
and j as 1and j. Thus to get

El esta aqui

you must type
\'{E}1 est\’{a} aqu\’{\i}

Some symbols from non-English languages are also available in IfTgX, as shown in
the table below:

e \oe &E \OE 2 \ae A \AE
\aa \AA

g \o g \O 1 \1 'd \L

$ \ss

[¢ 7

I.2.5. Special symbols

We have see that the input \LaTeX produces ISTEX in the output and \ produces a space.
Thus TEX uses the symbol \ for a special purpose—to indicate the program that what
follows is not text to be typeset but an instruction to be carried out. So what if you
want to get \ in your output (improbable as it may be)? The command \textbackslash
produces \ in the output.

Thus \ is a symbol which has a special meaning for TgX and cannot be produced by
direct input. As another example of such a special symbol, see what is obtained from the
input below

Maybe I have now learnt about 1% of \LaTeX.

You only get
Maybe I have now learnt about 1

What happened to the rest of the line? You see, TEX uses the per cent symbol % as the
comment character; that is a symbol which tells TEX to consider the text following as
‘comments’ and not as text to be typeset. This is especially useful for a TEX programmer
to explain a particularly sticky bit of code to others (and perhaps to himself). Even for
ordinary users, this comes in handy, to keep a ‘to do’ list within the document itself for
example.

But then, how do you get a percent sign in the output? Just type \% as in

I2 I. THE BASICS

Maybe I have now learnt about 1\% of \LaTeX.

The symbols \ and % are just two of the ten charcaters TEgX reserves for its internal

use. The complete list is
T# 8% & _\{}

We have seen how TgX uses two of these symbols (or is it four? Did not we use { } in
one of our examples?) The use of others we will see as we proceed.

Also, we have noted that \ is produced in the output by the command \textbackslash
and % is produced by \%. What about the other symbols? The table below gives the inputs
to produce these symbols.

~ \textasciitilde & \&
\# - =
$ \$ \ \textbackslash
% \% [\{
" \textasciicircum b\

You can see that except for three, all special symbols are produced by preceding them
with a \. Of the exceptional three, we have seen that \" and \" are used for producing

accents. So what does \\ do? It is used to break lines. For example,
This is the first Tine.\\ This is the second Tine

produces

This is the first line.
This is the second line

We can also give an optional argument to \\ to increase the vertical distance between the

lines. For example,
This 1is the first Tine.\\[10pt]

This 1is the second Tine

gives
This is the first line.
This is the second line

Now there is an extra 10 points of space between the lines (1 point is about 1/72"4 of an

inch).

1.2.6. Text positioning

We have seen that TgX aligns text in its own way, regardless of the way text is formatted
in the input file. Now suppose you want to typeset something like this

The TgXnical Institute

Certificate

This is to certify that Mr. N. O. Vice has undergone a course at this institute
and is qualified to be a TgXnician.

The Director
The TgXnical Institute

This is produced by

1.3. FONTS 13

\begin{center}

The \TeX nical Institute\\[.75cm]

Certificate

\end{center}
\nhoindent This is to certify that Mr. N. O. Vice has undergone a
course at this institute and is qualified to be a \TeX nician.
\begin{flushright}

The Director\\

The \TeX nical Institute
\end{flushright}

Here, the commands

\begin{center} ... \end{center}

typesets the text between them exactly at the center of the page and the commands
\begin{flushright} ... \end{flushright}

typesets text flush with the right margin. The corresponding commands
\begin{flushleft} ... \end{flushleft}

places the enclosed text flush with the left margin. (Change the flushright to flushleft
and see what happens to the output.)

These examples are an illustration of a ISTEX construct called an environment, which
is of the form

\begin{name} ... \end{name}

where name is the name of the environment. We have seen an example of an environment
at the very beginning of this chapter (though not identified as such), namely the document
environment.

I.3. FONTS

The actual letters and symbols (collectively called type) that ISTEX (or any other typeset-
ting system) produces are characterized by their style and size. For example, in this book
emphasized text is given in italic style and the example inputs are given in typewriter

style. We can also produce smaller and blgger type. A set of types of a particular style
and size is called a font.

1.3.1. Type style

In BIEX, a type style is specified by family, series and shape. They are shown in the table
L.1.

Any type style in the output is a combination of these three characteristics. For exam-
ple, by default we get roman family, medium series, upright shape type style in a BETEX
output. The \textit command produces roman family, medium series, italic shape type.
Again, the command \textbf produces roman family, boldface series, upright shape type.

We can combine these commands to produce a wide variety of type styles. For exam-
ple, the input

\textsf{\textbf{sans serif family, boldface series, upright shape}}
\textrm{\texts1{roman family, medium series, slanted shape}}

14 I. THE BASICS

Table I.1:
STYLE COMMAND
> roman \textrm{roman}
> | sans serif \textsf{sans serif}
- typewriter | \texttt{typewriter}
g | medium \textmd{medium}
2 | boldface | \textbf{boldface}
upright \textup{upright}
£ | italic \textit{italic}
Z | slanted \textsT{slanted}
SMALL CAP | \textsc{small cap}

produces the output shown below:

sans serif family, boldface series, upright shape
roman family, medium series, slanted shape

Some of these type styles may not be available in your computer. In that case, IETEX
gives a warning message on compilation and substitutes another available type style
which it thinks is a close approximation to what you had requested.

We can now tell the whole story of the \emph command. We have seen that it usually,
that is when we are in the middle of normal (upright) text, it produces italic shape. But if
the current type shape is slanted or italic, then it switches to upright shape. Also, it uses
the family and series of the current font. Thus

\textit{A polygon of three sides is called a \emph{triangle} and a
polygon of four sides is called a \emph{quadrilateral}}

gives
A polygon of three sides is called a triangle and a polygon of four sides is called a quadrilateral

while the input

\textbf{A polygon of three sides is called a
\emph{triangle} and a polygon of four sides is called a
\emph{quadrilateral}}

produces

A polygon of three sides is called a triangle and a polygon of four sides is called a quadrilateral

Each of these type style changing commands has an alternate form as a declaration.
For example, instead of \textbf{boldface} you can also type {\bfseries boldface} to
get boldface. Note that that not only the name of the command, but its usage also is
different. For example, to typeset

I.4. TYPE SIZE 15

By a triangle, we mean a polygon of three sides.
if you type
By a \bfseries{triangle}, we mean a polygon of three sides.

you will end up with
By a triangle, we mean a polygon of three sides.

Thus to make the declaration act upon a specific piece of text (and no more), the decla-
ration and the text should be enclosed in braces.

The table below completes the one given earlier, by giving also the declarations to
produce type style changes.

STYLE COMMAND DECLARATION

upright \textup{upright} {\upshape upright}

é italic \textit{italic} {\itshape italic}

Z | slanted \textsl{slanted} {\sTshape sTanted}
SMALL CAP | \textsc{small cap} | {\scshape small cap}

4 | medium \textmd{medium} {\mdseries medium}

§ boldface \textbf{boldface} {\bfseries boldface}

> | roman \textrm{roman} {\rmfamily roman}

E sans serif \textsf{sans serif} | {\sffamily sans serif}

= | typewriter | \texttt{typewriter} | {\ttfamily typewriter}

These declaration names can also be used as environment names. Thus to type-
set a long passage in, say, sans serif, just enclose the passage within the commands
\begin{sffmily} ... \end{sffamily}.

I.4. TYPE SIZE

Traditionally, type size is measured in (printer) points. The default type that TEX pro-
duces is of 10 pt size. There are some declarations (ten, to be precise) provided in ITEX
for changing the type size. They are given in the following table:

size {\tiny size} size {\large size}
size {\scriptsize size} S1Z¢€ {\Large size}
size {\footnotesize size} | S1Z€ {\LARGE size}
size | {\small size} SIZ€ {\huge size}
size | {\normalsize size} SIZC {\Huge size}

Note that the \normalsize corresponds to the size we get by default and the sizes form
an ordered sequence with \tiny producing the smallest and \Huge producing the largest.
Unlike the style changing commands, there are no command-with-one-argument forms
for these declarations.

We can combine style changes with size changes. For example, the “certificate” we
typed earlier can now be ‘improved’ as follows

\begin{center}
{\bfseries\huge The \TeX nical Institute}\\[lcm]
{\scshape\LARGE Certificate}

16 I. THE BASICS
\end{center}

\noindent This 1is to certify that Mr. N. 0. Vice has undergone a
course at this institute and 1is qualified to be a \TeX nical Expert.

\begin{flushright}
{\sffamily The Director\\
The \TeX nical Institute}

\end{flushright}

and this produces

The TEXnical Institute

CERTIFICATE

This is to certify that Mr. N. O. Vice has undergone a course at this institute and is
qualified to be a TgXnical Expert.

The Director
The TpXnical Institute

TUTORIAL II

THE DOCUMENT

II.t. DOCUMENT CLASS

We now describe how an entire document with chapters and sections and other embellish-
ments can be produced with ISTEX. We have seen that all KTEX files should begin by spec-
ifying the kind of document to be produced, using the command \documentclass{... }.
We’ve also noted that for a short article (which can actually turn out to be quite long!) we
write \documentclass{article} and for books, we write \documentclass{book}. There
are other document classes available in BIEX such as report and letter. All of them
share some common features and there are features specific to each.

In addition to specifying the type of document (which we must do, since IKIEX has
no default document class), we can also specify some options which modify the default
format.Thus the actual syntax of the \documentclass command is

\documentclass [options]{class}

Note that options are given in square brackets and not braces. (This is often the
case with BETEX commands—options are specified within square brackets, after which
mandatory arguments are given within braces.)

II.1.1. Font size

We can select the size of the font for the normal text in the entire document with one of
the options

10pt 11pt 12pt
Thus we can say
\documentclass[1llpt]{article}

to set the normal text in our document in 11 pt size. The default is 10pt and so this is the
size we get, if we do not specify any font-size option.

II.1.2. Paper size

We know that ISTEX has its own method of breaking lines to make paragraphs. It also has
methods to make vertical breaks to produce different pages of output. For these breaks
to work properly, it must know the width and height of the paper used. The various
options for selecting the paper size are given below:

Tetterpaper 11X8.51n adpaper | 20.7X211n
legalpaper 14X8.51n aSpaper 21X14.81n
executivepaper | 10.§X7.251n | b5paper 25X17.61n

Normally, the longer dimension is the vertical one—that is, the height of the page. The
default is Tetterpaper.

17

18 1. THE DOCUMENT

1.1.3. Page formats

There are options for setting the contents of each page in a single column (as is usual) or
in two columns (as in most dictionaries). This is set by the options

onecolumn twocolumn

and the default is onecolumn.
There is also an option to specify whether the document will be finally printed on just
one side of each paper or on both sides. The names of the options are

oneside twoside

One of the differences is that with the twoside option, page numbers are printed on
the right on odd-numbered pages and on the left on even numbered pages, so that when
these printed back to back, the numbers are always on the outside, for better visibility.
(Note that KTEX has no control over the actual printing. It only makes the formats for
different types of printing.) The default is oneside for article, report and letter and
twoside for book.

In the report and book class there is a provision to specify the different chapters (we
will soon see how). Chapters always begin on a new page, leaving blank space in the
previous page, if necessary. With the book class there is the additional restriction that
chapters begin only on odd-numbered pages, leaving an entire page blank, if need be.
Such behavior is controlled by the options,

openany openright

The default is openany for reportclass (so that chapters begin on “any” new page)
and openright for the book class (so that chapters begin only on new right, that is, odd
numbered, page).

There is also a provision in BKIEX for formatting the “title” (the name of the docu-
ment, author(s) and so on) of a document with special typographic consideration. In the
article class, this part of the document is printed along with the text following on the
first page, while for report and book, a separate title page is printed. These are set by the
options

notitlepage titlepage

As noted above, the default is notitlepage for article and titlepage for report and
book. As with the other options, the default behavior can be overruled by explicitly
specifying an option with the documentclass command.

There are some other options to the documentclass which we will discuss in the rele-
vant context.

II.2. PAGE STYLE

Having decided on the overall appearance of the document through the \documentclass
command with its various options, we next see how we can set the style for the individual
pages. In IATEX parlance, each page has a “head” and “foot” usually containing such
information as the current page number or the current chapter or section. Just what goes
where is set by the command

\pagestyle{...}
where the mandatory argument can be any one of the following styles
plain empty headings myheadings

The behavior pertaining to each of these is given below:

11.3. PAGE NUMBERING 19

plain The page head is empty and the foot contains just the page number, cen-
tered with respect to the width of the text. This is the default for the
article class if no \pagestyle is specified in the preamble.
empty Both the head and foot are empty. In particular, no page numbers are
printed.

headings This is the default for the book class. The foot is empty and the head
contains the page number and names of the chapter section or subsection,
depending on the document class and its options as given below:

CLASS OPTION LEFT PAGE | RIGHT PAGE
one-sided — chapter
book, report - -
two-sided chapter section
: one-sided — section
article - - -
two-sided section subsection

myheadings The same as headings, except that the ‘section’ information in the head
are not predetermined, but to be given explicitly using the commands
\markright or \markboth as described below.

Moreover, we can customize the style for the current page only using the command
\thispagestyle{style}

where style is the name of one of the styles above. For example, the page number may
be suppressed for the current page alone by the command \thispagestyle{empty}. Note
that only the printing of the page number is suppressed. The next page will be numbered
with the next number and so on.

1.2.1. Heading declarations

As we mentioned above, in the page style myheadings, we have to specify the text to
appear on the head of every page. It is done with one of the commands

\markboth{left head{right head}
\markright{right head}

where left head is the text to appear in the head on left-hand pages and right head is the
text to appear on the right-hand pages.

The \markboth command is used with the twoside option with even numbered pages
considered to be on the left and odd numbered pages on the right. With oneside option,
all pages are considered to be right-handed and so in this case, the command \markright
can be used. These commands can also be used to override the default head set by the
headings style.

Note that these give only a limited control over the head and foot. since the general
format, including the font used and the placement of the page number, is fixed by IATEX.
Better customization of the head and foot are offered by the package fancyhdr, which is
included in most ISTEX distributions.

11.3. PAGE NUMBERING

The style of page numbers can be specified by the command
\pagenumbering{...}

The possible arguments to this command and the resulting style of the numbers are given
below:

20 1. THE DOCUMENT

arabic Indo-Arabic numerals

roman lowercase Roman numerals
Roman upper case Roman numerals
alph lowercase English letters
Alph uppercase English letters

The default value is arabic. This command resets the page counter. Thus for example, to
number all the pages in the ‘Preface’ with lowercase Roman numerals and the rest of the
document with Indo-Arabic numerals, declare \pagenumbering{roman} at the beginning
of the Preface and issue the command \pagestyle{arabic} immediately after the first
\chapter command. (The \chapter{...} command starts a new chapter. We will come
to it soon.)

We can make the pages start with any number we want by the command

\setcounter{page}{number}

where number is the page number we wish the current page to have.

1.4. FORMATTING LENGTHS

Each page that ISTEX produces consists not only of a head and foot as discussed above
but also a body (surprise!) containing the actual text. In formatting a page, IKTEX uses
the width and heights of these parts of the page and various other lengths such as the
left and right margins. The values of these lengths are set by the paper size options and
the page format and style commands. For example, the page layout with values of these
lengths for an odd page and even in this book are separately shown below.

These lengths can all be changed with the command \setlength. For example,

\setTlength{\textwidth}{15cm}

makes the width of text 15 cm. The package geometry gives easier interfaces to customize
page format.

II.5. PARTS OF A DOCUMENT

We now turn our attention to the contents of the document itself. Documents (especially
longer ones) are divided into chapters, sections and so on. There may be a title part
(sometimes even a separate title page) and an abstract. All these require special typo-
graphic considerations and ISTEX has a number of features which automate this task.

I.5.1. Title

The “title” part of a document usually consists of the name of the document, the name
of author(s) and sometimes a date. To produce a title, we make use of the commands
\title{document name}
\author{author names}
\date{date text}

\maketitle
Note that after specifying the arguments of \title, \author and \date, we must issue the
command \maketitle for this part to be typeset.

By default, all entries produced by these commands are centered on the lines in which
they appear. If a title text is too long to fit in one line, it will be broken automatically.
However, we can choose the break points with the \\ command.

If there are several authors and their names are separated by the \and command, then
the names appear side by side. Thus

11.6. DIVIDING THE DOCUMENT 21

\title{Title}
\author{Author 1\\
Address 1ine 11\\
Address 1ine 12\\
Address Tine 13
\and
Author 2\\
Address 1ine 21\\
Address 1ine 22\\
Address 1ine 23}
\date{Month Date, Year}

produces

Title

Author 1 Author 2
Address line 11 Address line 21
Address line 12 Address line 22
Address line 13 Address line 23

Month Date, Year

If instead of \and, we use (plain old) \\, the names are printed one below another.

We may leave some of these arguments empty; for example, the command \date{ }
prints no date. Note, however, that if you simply omit the \date command itself, the
current date will be printed. The command

\thanks{footnote text}

can be given at any point within the \title, \author or \date. It puts a marker at this
point and places the footnote text as a footnote. (The general method of producing a
footnote is to type \footnote{footnote text} at the point we want to refer to.)

As mentioned earlier, the “title” is printed in a separate page for the document classes
book and report and in the first page of the document for the class article. (Also recall
that this behavior can be modified by the options titlepage or notitlepage.)

I.5.2. Abstract

In the document classes article and report, an abstract of the document in special for-
mat can be produced by the commands

\begin{abstract} Abstract Text

\end{abstract}
Note that we have to type the abstract ourselves. (There is a limit to what even KTEX can
do.) In the report class this appears on the separate title page and in the article class it
appears below the title information on the first page (unless overridden by the title page
option). This command is not available in the book class.

11.6. DIVIDING THE DOCUMENT

A book is usually divided into chapters and (if it is technical one), chapters are divided
into sections, sections into subsections and so on. ISIEX provides the following hierarchy

22 1. THE DOCUMENT

of sectioning commands in the book and report class:

\chapter
\section
\subsection
\subsubsection
\paragraph
\subparagraph

Except for \chapter all these are available in article class also. For example, the
heading at the beginning of this chapter was produced by

\chapter{The Document}
and the heading of this section was produced by
\section{Dividing the document}

To see the other commands in action, suppose at this point of text I type
\subsection{Example}
In this example, we show how subsections and subsubsections
are produced (there are no subsubsubsections). Note how the
subsections are numbered.

\subsubsection{Subexample}

Did you note that subsubsections are not numbered? This is so in the
\texttt{book} and \texttt{report} classes. In the \texttt{article}
class they too have numbers. (Can you figure out why?)

\paragraph{Note}
Paragraphs and subparagraphs do not have numbers. And they have
\textit{run-in} headings.

Though named ‘‘paragraph’’ we can have several paragraphs of text
within this.

\subparagraph{Subnote}
Subparagraphs have an additional indentation too.

And they can also contain more than one paragraph of text.

We get

11.6.1. Example

In this example, we show how subsections and subsubsections are produced (there are
no subsubsubsections). Note how the subsections are numbered.

Subexample
Did you note that subsubsections are not numbered? This is so in the book and report
classes. In the article class they too have numbers. (Can you figure out why?)

Note Paragraphs and subparagraphs do not have numbers. And they have run-in head-
ings. Though named “paragraph” we can have several paragraphs of text within this.

Subnote Subparagraphs have an additional indentation too. And they can also con-
tain more than one paragraph of text.

I.7. WHAT NEXT? 23

I1.6.2. More on sectioning commands

In the book and the report classes, the \chapter command shifts to the beginning of a
new page and prints the word “Chapter” and a number and beneath it, the name we have
given in the argument of the command. The \section command produces two numbers
(separated by a dot) indicating the chapter number and the section number followed
by the name we have given. It does not produce any text like “Section”. Subsections
have three numbers indicating the chapter, section and subsection. Subsubsections and
commands below it in the hierarchy do not have any numbers.

In the article class, \section is highest in the hierarchy and produces single number
like \chapter in book. (It does not produce any text like “Section”, though.) In this case,
subsubsections also have numbers, but none below have numbers.

Each sectioning command also has a “starred” version which does not produce num-
bers. Thus \section*{name} has the same effect as \section{name}, but produces no
number for this section.

Some books and longish documents are divided into parts also. IKTEX also has a \part
command for such documents. In such cases, \part is the highest in the hierarchy, but it
does not affect the numbering of the lesser sectioning commands.

You may have noted that TEX has a specific format for typesetting the section head-
ings, such as the font used, the positioning, the vertical space before and after the heading
and so on. All these can be customized, but it requires some TgXpertise and cannot be
addressed at this point. However, the package sectsty provided some easy interfaces for
tweaking some of these settings.

1I.7. WHAT NEXT?

The task of learning to create a document in IIEX is far from over. There are other
things to do such as producing a bibliography and a method to refer to it and also at the
end of it all to produce a table of contents and perhaps an index. All these can be done
efficiently (and painlessly) in KIEX, but they are matters for other chapters.

: [? Header
[
. 3
|
|
|
|
|
|
|
|
|
|
|
|
|
Margin
Noﬁ?s Body @

|
|
|
I [

‘:,I

O~ a

|
|
|
I ()
I N .
I
| 4
I Footer
|

©O© N v w R

11

one inch + \hoffset

\evensidemargin = 54pt

\headheight = 12pt
\textheight = 609pt
\marginparsep = 7pt
\footskip = 25pt
\hoffset = Opt
\paperwidth = 597pt

o o AN

10

one inch + \voffset

\topmargin = 18pt

\headsep = 18pt

\textwidth = 380pt
\marginparwidth = 115pt
\marginparpush = 5pt (not shown)
\voffset = Opt

\paperheight = 845pt

Y Header

\hoffset = Opt
\paperwidth = 597pt

Margin
Bod 7
y <> Notes
le—
o
le—
|
|
|
|
|
(3)
| U
I <?
|
I Footer
I t
::: |
|
|
ke
1 one inch + \hoffset 2 one inch + \voffset
3 \oddsidemargin = 18pt 4 \topmargin = 18pt
5 \headheight = 12pt 6 \headsep = 18pt
7 \textheight = 609pt 8 \textwidth = 380pt
9 \marginparsep = 7pt 10 \marginparwidth = 115pt
11 \footskip = 25pt \marginparpush = 5pt (not shown)

\voffset = Opt
\paperheight = 845pt

26

TUTORIAL III

BIBLIOGRAPHY

III.1. INTRODUCTION

Bibliography is the environment which helps the author to cross-reference one publica-
tion from the list of sources at the end of the document. IIEX helps authors to write a
well structured bibliography, because this is how IETEX works—Dby specifying structure.

It is easy to convert the style of bibliography to that of a publisher’s requirement,
without touching the code inside the bibliography. We can maintain a bibliographic data
base using the program BIBTEX. While preparing the articles, we can extract the needed
references in the required style from this data base. harvard and natbib are widely used
packages for generating bibliography.

To produce bibliography, we have the environment thebibliography®, which is sim-
ilar to the enumerate environment. Here we use the command \bibitem to separate the
entries in the bibliography and use \cite to refer to a specific entry from this list in the
document. This means that at the place of citation, it will produce number or author-year
code connected with the list of references at the end.

\begin{thebibliography}{widest-label}
\bibitem{keyl}
\bibitem{key2}
\end{thebibliography}

The \begin{thebibliography} command requires an argument that indicates the
width of the widest label in the bibliography. If you know you would have between
10 and 99 citations, you should start with

\begin{thebibliography}{99}

You can use any two digit number in the argument, since all numerals are of the same
width. If you are using customized labels, put the longest label in argument, for example
\begin{thebibliography}{Long-name}. Each entry in the environment should start with

\bibitem{keyl}

If the author name is Alex and year 1991, the key can be coded as alegr or some
such mnemonic string®. This key is used to cite the publication within the document text.
To cite a publication from the bibliography in the text, use the \cite command, which
takes with the corresponding key as the argument. However, the argument to \cite can
also be two or more keys, separated by commas.

'Bibiliography environment need two compilations. In the first compilation it will generate file with aux
extension, where citation and bibcite will be marked and in the second compilation \cite will be replaced
by numeral or author-year code.

2Key can be any sequence of letters, digits and punctuation characters, except that it may not contain a
comma (maximum 256 characters).

27

2.8 II. BIBLIOGRAPHY

\cite{keyl} \cite{keyl,key2}

In bibliography, numbering of the entries is generated automatically. You may also add
a note to your citation, such as page number, chapter number etc. by using an optional
argument to the \cite command. Whatever text appears in this argument will be placed
within square brackets, after the label.

\cite[page 25]{keyl}
See below an example of bibliography and citation. The following code

It is hard to write unstructured and disorganised documents using
\LaTeX "\cite{les85}.It is interesting to typeset one
equation”\cite[Sec 3.3]{1es85} rather than setting ten pages of
running matter~\cite{don89, rondon89}.

\begin{thebibliography}{9}

\bibitem{les85}LesTlie Lamport, 1985. \emph{\LaTeX---A Document
Preparation System---User’s Guide and Reference Manual},
Addision-Wesley, Reading.

\bibitem{don89}Donald E. Knuth, 1989. \emph{Typesetting Concrete
Mathematics}, TUGBoat, 10(1):31-36.

\bibitem{rondon89}Ronald L. Graham, Donald E. Knuth, and Ore
Patashnik, 1989. \emph{Concrete Mathematics: A Foundation for
Computer Science}, Addison-Wesley, Reading.
\end{thebibTliography}

produces the following output:

It is hard to write unstructured and disorganised documents using BIEX [1]. It is interesting to
typeset one equation [1, Sec 3.3] rather than setting ten pages of running matter [2,3].

Bibliography

[1] Leslie Lamport, 1985. ETEX—A Document Preparation System—User’s Guide and Refer-
ence Manual, Addision-Wesley, Reading.

[2] Donald E. Knuth, 1989. Typesetting Concrete Mathematics, TUGBoat, 10(1):31-36.

[3] Ronald L. Graham, Donald E. Knuth, and Ore Patashnik, 1989. Concrete Mathematics:
A Foundation for Computer Science, Addison-Wesley, Reading.

II1.2. NATBIB

The natbib package is widely used for generating bibliography, because of its flexible
interface for most of the available bibliographic styles. The natbib package is a re-
implementation of the ISTEX \cite command, to work with both author-year and nu-
merical citations. It is compatible with the standard bibliographic style files, such as
plain.bst, as well as with those for harvard, apalike, chicago, astron, authordate, and
of course natbib. To load the package; use the command.

\usepackage[options]{natbib}

III.2. NATBIB 29

11.2.1. Options for natbib

round (default) for round parentheses

square for square brackets

curly for curly braces

angle for angle brackets

colon (default) to separate multiple citations with colons
comma to use commas as separators

authoryear (default) for author-year citations

numbers for numerical citations

super for superscripted numerical citations, as in Nature

sort orders multiple citations into the sequence in which they

appear in the list of references

sort&compress as sort but in addition multiple numerical citations are
compressed if possible (as 3-6, 15)

Tongnamesfirst makes the first citation of any reference the equivalent
of the starred variant (full author list) and subsequent
citations normal (abbreviated list)

sectionbib redefines \thebibliography to issue \section* instead of
\chapter®; valid only for classes with a \chapter com-
mand; to be used with the chapterbib package

nonamebreak keeps all the authors’ names in a citation on one line;
causes overfull hboxes but helps with some hyperref
problems.

You can set references in the Nature style of citations (superscripts) as follows
\documentclass{article}

\usepackage{natbib}

\citestyle{nature}
\begin{document}

\end{document}
1I.2.2. Basic commands

The natbib package has two basic citation commands, \citet and \citep for textual
and parenthetical citations, respectively. There also exist the starred versions \citet*
and \citep* that print the full author list, and not just the abbreviated one. All of these
may take one or two optional arguments to add some text before and after the citation.
Normally we use author name and year for labeling the bibliography.
\begin{thebibliography}{widest-Tabel}
\bibitem{Les1ie(1985)}{1es85}Leslie Lamport, 1985.
\emph{\LaTeX---A Document Preparation}...
\bibitem{Donale(00)}{don89}Donald E. Knuth, 1989.
\emph{Typesetting Concrete Mathematics},...
\bibitem{Ronald, Donald and Ore(1989)}{rondon89}Ronald L. Graham,
\end{thebibliography}

Year in parentheses is mandatory in optional argument for bibitem. If year is missing
in any of the bibitem, the whole author—year citation will be changed to numerical cita-
tion. To avoid this, give ‘(oooo)’ for year in optional argument and use partial citations
(\citeauthor) in text.

30

II. BIBLIOGRAPHY

Don’t put ‘space character’ before opening bracket of year in optional argument.

\citet{ale91l}
\citet[chap. " 4]{ale91}
\citep{ale9l}

\citep[chap. 4]{ale91}
\citep[see][]{ale91}
\citep[see] [chap. 4]{jon91}
\citet*{ale91}
\citep*{ale9l}

11.2.3. Multiple citations

Alex et al. (19971)

Alex et al. (1991, chap. 4)
(Alex et al., 1991)

(Alex et al., 1991, chap. 4)

(see Alex et al., 199T1)

(see Alex et al., 1991, chap. 4)
Alex, Mathew, and Ravi (1991)
(Alex, Mathew, and Ravi, 19971)

L A

Multiple citations may be made as usual, by including more than one citation key in the

\cite command argument.

\citet{ale91,rav92} =
\citep{ale9l, rav92} =
\citep{ale9l,ale92} =
\citep{ale9la,ale91lb} =

I.2.4. Numerical mode

Alex et al. (1991); Ravi et al. (1992)
(Alex et al., T991; Ravi et al. 1992)
(Alex et al., 1991, 1992)

(Alex et al., 1991a,b)

These examples are for author-year citation mode. In numerical mode, the results are

different.

\citet{ale91l}

\citet[chap. 4]{ale91}
\citep{ale9l}
\citep[chap. " 4]{ale91}
\citep[see][]{ale91}
\citep[see][chap. 4]{ale91}
\citep{ale9la,ale91b}

I1.2.5. Suppressed parentheses

As an alternative form of citation,

Alex et al. [5]

Alex et al. [5, chap. 4]
[5]

[5, chap. 4]

[see 5]

[see 5, chap. 4]

[5, 12]

L A

\citealt is the same as \citet but without any paren-

theses. Similarly, \citealp is \citep with the parentheses turned off. Multiple references,
notes, and the starred variants also exist.

\citealt{ale91}
\citealt*{ale91}
\citealp{ale91}
\citealp*{ale91}
\citealp{ale9l,ale92}
\citealp[pg. 7]1{ale91}
\citetext{short comm.}

L T A

Alex et al. 1991

Alex, Mathew, and Ravi 1991
Alex., 1991

Alex, Mathew, and Ravi, 1991
Alex et al., 19971; Alex et al., 1992

Alex., 1991, pg. 7
(short comm.)

The \citetext command allows arbitrary text to be placed in the current citation paren-
theses. This may be used in combination with \citealp.

III.2. NATBIB 31

1I.2.6. Partial citations

In author—year schemes, it is sometimes desirable to be able to refer to the authors with-
out the year, or vice versa. This is provided with the extra commands

\citeauthor{ale9l} = Alexetal.
\citeauthor*{ale91} = Alex, Mathew, and Ravi
\citeyear{ale91} = 1991
\citeyearpar{ale9l} = (1991)

11.2.7. Citations aliasing

Sometimes one wants to refer to a reference with a special designation, rather than by the
authors, i.e. as Paper I, Paper II. Such aliases can be defined and used, textually and/or
parenthetically with:

\defcitealias{jon90}{Paper~I}

\citetalias{ale91} = Paperl
\citepalias{ale91} = (Paper])

These citation commands function much like \citet and \citep: they may take multiple
keys in the argument, may contain notes, and are marked as hyperlinks.

I11.2.8. Selecting citation style and punctuation
Use the command \bibpunct with one optional and six mandatory arguments:

The opening bracket symbol, default = (

The closing bracket symbol, default =)

The punctuation between multiple citations, default = ;

The letter ‘n’ for numerical style, or ‘s’ for numerical superscript style, any other letter
for author—year, default = author--year;

The punctuation that comes between the author names and the year

6. The punctuation that comes between years or numbers when common author lists are
suppressed (default = ,);

S W P H

w

The optional argument is the character preceding a post-note, default is a comma
plus space. In redefining this character, one must include a space if that is what one
wants.

Example 1
\bibpunct{[}{1}{,}{a}{}{;}
changes the output of
\citep{jon90,jon9l,jam92}
into

[Jones et al. 1990; 19971, James et al. 1992].

32 1. BIBLIOGRAPHY

Example 2

\bibpunct[;1{(F3{,Hak{}{;}

changes the output of
\citep[and references therein]{jon90}
into

(Jones et al. 1990; and references therein).

TUTORIAL IV

BIBLIOGRAPHIC DATABASES

Bibliographic database is a database in which all the useful bibliographic entries can be
stored. The information about the various publications is stored in one or more files with
the extension .bib. For each publication, there is a key that identifies it and which may
be used in the text document to refer to it. And this is available for all documents with
a list of reference in the field. This database is useful for the authors/researchers who
are constantly referring to the same publications in most of their works. This database
system is possible with the BIBTEX program supplied with the ISTEX package.

IvV.1. THE BIBIEX PROGRAM

BIBTEX is an auxiliary program to ISTEX that automatically constructs a bibliography for
a ISTEX document from one or more databases. To use BIBTEX, you must include in your
BIEX input file a \bibliography command whose argument specifies one or more files
that contain the database. For example

\bibliography{databasel,database2}

The above command specifies that the bibliographic entries are obtained from databasel.bib
and database2.bib. To use BIBTEX, your ISTEX input file must contain a \bibTiographystyle
command. This command specifies the bibliography style, which determines the format
of the source list. For example, the command

\bibTliographystyle{plain}

specifies that entries should be formatted as specified by the plain bibliography style
(plain.bst). We can put \bibliographystyle command anywhere in the document after
the \begin{document} command.

IvV.2. BIBIEX STYLE FILES

plain Standard BIBTEX style. Entries sorted alphabetically with numeric labels.

unsrt Standard BIBTEX style. Similar to plain, but entries are printed in order of
citation, rather than sorted. Numeric labels are used.

alpha Standard BIBTEX style. Similar to plain, but the labels of the entries are formed
from the author’s name and the year of publication.

abbrv Standard BIBTEX style. Similar to plain, but entries are more compact, since
first names, month, and journal names are abbreviated.

acm Alternative BIBTEX style, used for the journals of the Association for Comput-
ing Machinery. It has the author name (surname and first name) in small caps,
and numbers as labels.

33

34 V. BIBLIOGRAPHIC DATABASES

apalike Alternative BIBTEX style, used by the journals of the American Psychology As-
sociation. It should be used together with the KIEX apalike package. The
bibliography entries are formatted alphabetically, last name first, each entry
having a hanging indentation and no label.

Examples of some other style files are:

abbrv.bst, abstract.bst, acm.bst, agsm.bst, | kluwer.bst, named.bst, named.sty, nat-
alpha.bst, amsalpha.bst, authordatei.bst, | bib.sty, natbib.bst, nature.sty, nature.bst,
authordate-4.sty, bbs.bst, cbe.bst, cell.bst, | phcpc.bst, phiaea.bst, phjcp.bst, phrmp.bst
dcu.bst, harvard.sty, ieeetr.bst, jtb.bst, | plainyr.bst, siam.bst

Various organisations or individuals have developed style files that correspond to the
house style of particular journals or editing houses. We can also customise a bibliography
style, by making small changes to any of the .bst file, or else generate our own using the
makebst program.

1v.2.1. Steps for running BIBTEX with IXTEX

1. Run ETEX, which generates a list of \cite references in its auxiliary file, .aux.

2. Run BIBTEX, which reads the auxiliary file, looks up the references in a database
(one or more .bib files, and then writes a file (the .bb1 file) containing the formatted
references according to the format specified in the style file (the .bst file). Warning
and error messages are written to the log file (the .b1g file). It should be noted that
BIBTEX never reads the original ISIEX source file.

3. Run ISIEX again, which now reads the .bb1 reference file.

4. Run KTEX a third time, resolving all references.

Occasionally the bibliography is to include publications that were 7ot referenced in
the text. These may be added with the command

\nocite{key}

given anywhere within the main document. It produces no text at all but simply informs
BIBTEX that this reference is also to be put into the bibliography. With \nocite{*}, every
entry in all the databases will be included, something that is useful when producing a list
of all entries and their keys.

After running BIBTEX to make up the .bb1 file, it is necessary to process BTEX at least
twice to establish both the bibliography and the in-text reference labels. The bibliography
will be printed where the \bibliography command is issued; it infact inputs the .bb1 file.

1V.3. CREATING A BIBLIOGRAPHIC DATABASE

Though bibliographic database creation demands more work than typing up a list of
references with the thebibliography environment; it has a great advantage that, the en-
tries need to be included in the database only once and are then available for all future
publications even if a different bibliography style is demanded in later works, all the in-
formation is already on hand in the database for BIBTEX to write a new thebibliography
environment in another format. Given below is a specimen of an entry in bibliographic
database:

@BOOK{knuth:86a,
AUTHOR ="Donald E. Knuth",

1V.3. CREATING A BIBLIOGRAPHIC DATABASE 35

TITLE ={The \TeX{}book},
EDITION ="third"

PUBLISHER ="Addison-Wesley",
ADDRESS ={Reading, MA},
YEAR =1986 }

The first word, prefixed @, determines the entry_type. The entry_type is followed by
the reference information for that entry enclosed in curly braces { }. The very first entry
is the key for the whole reference by which it is referred to in the \cite command. In the
above example it is knuth: 86a. The actual reference information is then entered in various
fields, separated from one another by commas. Each field consists of a field name, an =
sign, with optional spaces on either side, and the field text. The field names shows above
are AUTHOR, TITLE, PUBLISHER, ADDRESS, and YEAR. The field text must be enclosed either
in curly braces or in double quotation marks. However, if the text consists solely of a
number, as for YEAR above, the braces or quotation marks may be left off.

For each entry type, certain fields are required, others are optional, and the rest
are ignored. These are listed with the description of the various entry types below. If a
required field is omitted, an error message will appear during the BIBTEX run. Optional
fields will have their information included in the bibliography if they are present, but
they need not be there. Ignored fields are useful for including extra information in the
database that will not be output, such as a comment or an abstract of a paper. Ignored
fields might also be ones that are used by other database programs.

The general syntax for entries in the bibliographic database reads

@entry_type{key,
field_name = {field text},

field_name = {field text} }

The names of the entry_types as well as the field_names may be written in capitals
or lower case letters, or in a combination of both. Thus @B00K, @book, and @00k are all
acceptable variations.

The outermost pair of braces for the entire entry may be either curly braces { }, as
illustrated, or parentheses (). In the latter case, the general syntax reads

@entry_type(key,)

However, the field text may only be enclosed within curly braces {...} or double quotation
marks ... as shown in the example above.

The following is a list of the standard entry types in alphabetical order, with a brief
description of the types of works for which they are applicable, together with the required
and optional fields that they take.

@article: Entry for an article from a journal or magazine.

required fields: author, title, journal, year.

optional fields: volume, number, pages, month, note.

@book: Entry for a book with a definite publisher.

required fields: author or editor, title, publisher, year.

optional fields: volume or number, series, address, edition, month, note.

@booklet: Entry for a printed and bound work without the name of a publisher
or sponsoring organisation.

required fields: title.

optional fields: author, howpublished, address, month, year, note.

36

@conference:
required fields:
optional fields:

@inbook:

required fields:
optional fields:
@incollection:
required fields:
optional fields:

@inproceedings:

required fields:
optional fields:

@manual:
required fields:
optional fields:
@masterthesis:
required fields:
optional fields:
@misc:
required fields:
optional fields:
@phdthesis:
required fields:
optional fields:
@proceedings:
required fields:
optional fields:

@unpubT1ished:
required fields:
optional fields:

1v.3.1. Example of a ISTEX file (sample.tex) using bibliographical database (bsample.bib)

IV. BIBLIOGRAPHIC DATABASES

Entry for an article in conference proceedings.

author, title, booktitle, year.

editor, volume or number, series, pages, address, month, organisa-
tion, publisher, note.

Entry for a part (chapter, section, certain pages) of a book.

author or editor, title, chapter and/or pages, publisher, year.
volume or number, series, type, address, edition, month, note.
Entry for part of a book that has its own title.

author, title, booktitle, publisher, year.

editor, volume or number, series, type, chapter, pages, address, edi-
tion, month, note.

Entry for an article in conference proceedings.

author, title, booktitle, year.

editor, volume or number, series, pages, address, month, organisa-
tion, publisher, note.

Entry for technical documentation.

title.

author, organisation, address, edition, month, year, note.

Entry for a Master’s thesis.

author, title, school, year.

type, address, month, note.

Entry for a work that does not fit under any of the others.

none.

author, title, howpublished, month, year, note.

Entry for a PhD thesis.

author, title, school, year.

type, address, month, note.

Entry for conference proceedings.

title, year.

editor, volume or number, series, address, month, organisation,
publisher, note.

Entry for an unpublished work with an author and title.

author, title, note.

month, year.

\documentclass{article}
\pagestyle{empty}
\begin{document}

\section*{Example of Citations of Kind \texttt{plain}}

Citation of a normal book™\cite{Eijkhout:1991} and an edited
book™\cite{Roth:postscript}. Now we cite an article written by a
single™\cite{Felici:1991} and by multiple
authors™\cite{Mittlebatch/Schoepf:1990}. A reference to an
article inside proceedings™\cite{Yannis:1991}.

We refer to a manual™\cite{Dynatext} and a technical
report”\cite{Knuth:WEB}. A citation of an unpublished
work™\cite{EVH:0ffice}. A reference to a chapter in a
book™\cite{Wood:color} and to a PhD thesis™\cite{Liang:1983}.

1v.3. CREATING A BIBLIOGRAPHIC DATABASE 37

An example of multiple
citations™\cite{Eijkhout:1991,Roth:postscript}.

\bibTliographystyle{plain} %% plain.bst
\bibTliography{bsample} %% bsample.bib
\end{document}

1vV.3.2. Procedure for producing references for the above file sample.tex which uses bib-
liographic data base bsample.bib

$ latex sample % 1st run of LaTeX

$ bibtex sample % BibTeX run
% Then sample.bbl file will
% be produced

$ latex sample % 2nd run of LaTeX

If still unresolved citation references

$ latex sample % 3rd run of LaTeX

38

TUTORIAL V

TABLE OF CONTENTS, INDEX AND GLOSSARY

V.1. TABLE OF CONTENTS

A table of contents is a special list which contains the section numbers and corresponding
headings as given in the standard form of the sectioning commands, together with the
page numbers on which they begin. Similar lists exist containing reference information
about the floating elements in a document, namely, the list of tables and list of figures.
The structure of these lists is simpler, since their contents, the captions of the floating
elements, all are on the same level.

Standard IATEX can automatically create these three contents lists. By default, ISTEX
enters text generated by one of the arguments of the sectioning commands into the .toc
file. Similarly, ISTEX maintains two more files, one for the list of figures (.10f) and one for
the list of tables (.1ot), which contain the text specified as the argument of the \caption
command for figures and tables.

\tableofcontents produces a table of contents. \1istoffigures and \listoftables
produce a list of figures and list of tables respectively. These lists are printed at the
point where these commands are issued. Occasionally, you may find that you do not
like the way KIEX prints a table of contents or a list of figures or tables. You can fine-
tune an individual entry by using the optional arguments to the sectioning command or
\caption command that generates it. Formatting commands can also be introduced with
the \addtocontents. If all else fails, you can edit the .toc, 1of, 1ot files yourself. Edit
these files only when preparing the final version of your document, and use a \nofiles
command to suppress the writing of new versions of the files.

v.1.1. Additional entries

The *-form sectioning commands are not entered automatically in the table of contents.
ITEX offers two commands to insert such information directly into a contents file:

\addtocontents{file} {text} \addcontentsline{file}{type}{text}
file The extension of the contents file, usually toc, Tof or Tot.
type The type of the entry. For the toc file the type is normally the same as

the heading according to the format of which an entry must be typeset.
For the 1of or Tot files, figure or table is specified.
text The actual information to be written to the file mentioned. ISTEX com-
mands should be protected by \protect to delay expansion
The \addtocontents command does not contain a type parameter and is intended to
enter user-specific formatting information. For example, if you want to generate addi-
tional spacing in the middle of a table of contents, the following command can be issued:

\addtocontents{toc}{\protect\vspace{2ex}}

39

40 V. TABLE OF CONTENTS, INDEX AND GLOSSARY

The \addcontents1ine instruction is usually invoked automatically by the document
sectioning commands, or by the \caption commands. If the entry contains numbered
text, then \numberline must be used to separate the section number (number) from the
rest of the text for the entry (beading) in the text parameter:

\protect\numberline{number}{heading}

For example, a \caption command inside a figure environment saves the text an-
notating the figure as follows:

\addcontentsline{lof}{figurel{\protect\numberline{\thefigure}captioned text}

Sometimes \addcontentsline is used in the source to complement the actions of
standard ISTEX. For instance, in the case of the starred form of the section commands, no
information is written to the .toc file. So if you do not want a heading number (starred
form) but an entry in the .toc file you can write something like:

\chapter*{Forward}
\addcontentsline{toc}{chapter}{\numberline{}Forward}

This produces an indented “chapter” entry in the table of contents, leaving the space
where the chapter number would go free. Omitting the \numberline command would
typeset the word “Forward” flush left instead.

v.1.2. Typesetting a contents list

As discussed above, contents lists consist of entries of different types, corresponding to
the structural units that they represent. Apart from these standard entries, these lists may
contain any commands. A standard entry is specified by the command:

\contentsline{type}{text}{page}

type Type of the entry, e.g. section, or figure.

text Actual text as specified in the argument of the sectioning or \caption
commands.

page Pagenumber.

Note that section numbers are entered as a parameter of the \number1ine command
to allow formatting with the proper indentation. It is also possible for the user to create
a table of contents by hand with the help of the command \contentsline. For example:

\contentsTline {section}
{\numberTline {2.4}Structure of the Table of Contents}{31}

To format an entry in the table of contents files, standard BTEX makes use of the
following command:

\@dottedtocline{level}{indent} {numwidth}{text}{page}

The last two parameters coincide with those of \contentsline, since the latter usu-
ally invokes \@dottedtocline command. The other parameters are the following:
level The nesting level of an entry. This parameter allows the user to control
how many nesting levels will be displayed. Levels greater than the value
of counter tocdepth will not appear in the table of contents.

indent This is total indentation from the left margin.

numwidth The width of the box that contains the number if zext has a \numberline
command. This is also the amount of extra indentation added to the
second and later lines of a multiple line entry.

V.2. INDEX 41

Additionally, the command \@dottedtocline uses the following formatting parame-
ters, which specify the visual appearance of all entries:
\@numwidth The width of the box in which the page number is set.

\@tocmarg The indentation of the right margin for all but the last line of multiple
line entries. Dimension, but changed with \renewcommand.
\@dotsep The separation between dots, in mu (math units). It is a pure number

(like 1.7 or 2). By making this number large enough you can get rid of
the dots altogether. Changed with \renewcommand as well.

V.1.3. Multiple tables of contents

The minitoc package, initially written by Nigel Ward and Dan Jurafsky and completely
redesigned by Jean-Pierre Drucbert, creates a mini-table of contents (a “minitoc”) at the
beginning of each chapter when you use the book or report classes.

The mini-table of contents will appear at the beginning of a chapter, after the \chapter
command. The parameters that govern the use of this package are discussed below:

Table v.1: Summary of the minitoc parameters

\dominitoc Must be put just in front of \tableofcontents, to initialize
the minitoc system (Mandatory).

\faketableofcontents | This command replaces \tableofcontents when you want
minitocs but not table of contents.

\minitoc This command must be put right after each \chapter com-
mand where a minitoc is desired.

\minitocdepth A HBIEX counter that indicates how many levels of head-
ings will be displayed in the minitoc (default value is 2).

\mtcindent The length of the left/right indentation of the minitoc (de-
fault value is 24pt).

\mtcfont Command defining the font that is used for the minitoc

entries (The default definition is a small roman font).

For each mini-table, an auxiliary file with extension .mtc<N> where <N> is the chap-
ter number, will be created.

By default, these mini-tables contain only references to sections and subsections. The
minitocdepth counter, similar to tocdepth, allows the user to modify this behaviour.

As the minitoc takes up room on the first page(s) of a chapter, it will alter the page
numbering. Therefore, three runs normally are needed to get correct information in the
mini-table of contents.

To turn off the \minitoc commands, merely replace the package minitoc with mini-
tocoff on your \usepackage command. This assures that all \minitoc commands will be
ignored.

V.2. INDEX

To find a topic of interest in a large document, book, or reference work, you usually
turn to the table of contents or, more often, to the index. Therefore, an index is a very
important part of a document, and most users’ entry point to a source of information
is precisely through a pointer in the index. The most generally used index preparation
program is Makelndex.

42 V. TABLE OF CONTENTS, INDEX AND GLOSSARY

Page vi: \index{animal} \indexentry{animal}{vi}
Page 5: \index{animal} \indexentry{animal}{s}
Page 6: \index{animal} \indexentry{animal}{6}
Page 7: \index{animal} \indexentry{animal}{7}

\index{mammalltextbf) \%ndexentry animal@\emph{animal}}{17}
Page 26: \index{animal!mammal!cat} \indexentry{mammalltextbf}{17}
Page 32: \index{animallinsect} \indexentry{animal!mammal!cat}{26}
\indexentry{animal!insect}{32}

{ {
{ {
{ {
d } 1 { 1}} {
Page 11: \index{animalism|see{anima . . : c
Page 17+ \index{animal@\emph{animal}} \1ndexentry§an1mal1sm|seeammal}{11}
{
{ {
{ {
{
(

(a) The input file b) The .1idx file

\begin{theindex} animal, vi §—7
\item animal, vi, 5—7 insect, 32
\subitem insect, 32 mammal
\subitem mammal cat, 26
\subsubitem cat, 26 animal, 17
\item \emph{animal}, 17 animalism, see animal

\item animalism, \see{animal}{r1}
\indexspace

\item mammal, \textbf{r7}
\end{theindex}

mammal, 17

(c) The .1ind file (d) The typeset output

Figure Vv.1: Stepwise development of index processing

Each \index command causes ISIEX to write an entry in the .idx file. This command
writes the text given as an argument, in the .idx file. This .idx will be generated only if
we give \makeindex command in the preamble otherwise it will produce nothing.

\index{index_entry}
To generate index follow the procedure given below:

1. Tag the words inside the document, which needs to come as index, as an argument of
\index command.

2. Include the makeidx package with an \usepackage command and put \makeindex com-
mand at the preamble.

3. Puta \printindex command where the index is to appear, normally before \end{document}
command.

4. IETEX file. Then a raw index (file.idx) will be generated.

5. Then run makeindex. (makeindex file.idx or makeindex file). Then two more files will
be generated, file.ind which contains the index entries and file.ilg, a transcript file.

6. Then run BTEX again. Now you can see in the dvi that the index has been generated
in a new page.

V.2.1. Simple index entries

Each \index command causes IfZTEX to write an entry in the .idx file. For example

\index{index_entry}

V.2. INDEX 43

fonts Page ii: \index{table|(}
Computer Modern, 13-25 Page xi: \index{tablel)}
math, see math, fonts Page 5: \index{fonts!PostScript|(}
PostScript, 5 \index{fonts!PostScript|)}
table, ii—xi, 14 Page 13 \index{fonts!Computer Modern |(}
Page 14: \index{table}
Page 17: \index{fonts!math|see{math, fonts}}
Page 21: \index{fonts!Computer Modern}
Page 25: \index{fonts!Computer Modern|)}

Figure v.2: Page range and cross-referencing

V.2.2. Sub entries

Up to three levels of index entries (main, sub, and subsub entries) are available with
BTEX-MakeIndex. To produce such entries, the argument of the \index command should
contain both the main and subentries, separated by ! character.

Page 5: \'index{dimensions!rulelwidth}
This will come out as

dimensions
rule
width, 5

V.2.3. Page ranges and cross-references

You can specify a page range by putting the command \index{.. .| (} at the beginning of
the range and \index{...|)} at the end of the range. Page ranges should span a homoge-
neous numbering scheme (e.g., Roman and Arabic page numbers cannot fall within the
same range).

You can also generate cross-reference index entries without page numbers by using
the see encapsulator. Since “see” entry does not print any page number, the commands
\index{...|see{...}} can be placed anywhere in the input file after the \begin{document}
command. For practical reasons, it is convenient to group all such cross-referencing
commands in one place.

V.2.4. Controlling the presentation form

Sometimes you may want to sort an entry according to a key, while using a different
visual representation for the typesetting, such as Greek letters, mathematical symbols, or
specific typographic forms. This function is available with the syntax: key@uvisual, where
key determines the alphabetical position and the string value produces the typeset text of
the entry.

For some indexes certain page numbers should be formatted specially, with an italic
page number (for example) indicating a primary reference, and an n after a page number
denoting that the item appears in a footnote on that page. Makelndex allows you to
format an individual page number in any way you want by using the encapsulator syntax
specified | character. What follows the | sign will “encapsulate” or enclose the page num-
ber associated with the index entry. For instance, the command \1index{keyword|xxx]}
will produce a page number of the form \xxx{n}, where # is the page number in question.

44 V. TABLE OF CONTENTS, INDEX AND GLOSSARY

delta, 14 Page ii: \index{tabular|textbf}

0, 23 Page 5: \index{ninety-five}

delta wing, 16 Page 7: \index{tabbing}

flower, 19 Page 14: \index{delta}

ninety, 26 Page 16: \index{delta wing}

xc, 2.8 Page 19: \index{flower@\textbf{flower}}

ninety-five, 5 Page 21: \index{tabular|textit}

tabbing, 7, 34-37 Page 22: \index{tabular|nn}

tabular, ii, 21, 22n Page 23: \index{delta@0}

tabular environment, 23 \index{tabular@\texttt{tabular}
environment}

Page 26: \index{ninety}

Page 28: \index{ninety@xc}
Page 34: \index{tabbing|(textit}
Page 36: \index{tabbing|)}

Figure v.3: Controlling the presentation form

@ sign, 2 \index{bar@\texttt{" |} |see{vertical bar}}
|, see vertical bar Page 1: \index{quote (\verb+""+)}
exclamation (!), 4 \index{quote@\texttt{""} sign}

Ah!, 5 Page 2: \index{atsign@\texttt{"@} sign}
Maidchen, 3 Page 3: \index{maedchen@M\" {a}dchen}
quote ("), 1 Page 4: \index{exclamation ("!)}
" sign, 1 Page 5: \index{exclamation ("!)!Ah"!}

Figure V.4: Printing those special characters

Similarly, the command \index{keyword|(xxx)} will generate a page range of the form
\xxx{n-m}
\newcommand{\nn}[1] {#1n}

V.2.5. Printing those special characters

To typeset one of the characters having a special meaning to Makelndex (!, ", @, or |)
in the index, precede it with a " character. More precisely, any character is said to be
quoted if it follows an unquoted " that is not part of a \" command. The latter case is for
allowing umlaut characters. Quoted !, @, ", or | characters are treated like ordinary
characters, losing their special meaning. The " preceding a quoted character is deleted
before the entries are alphabetised.

V.3. GLOSSARY
A ‘glossary’ is a special index of terms and phrases alphabetically ordered together with
their explanations. To help set up a glossary, ISTEX offers the commands

\makeglossary in the preamble and
\glossary{glossary-entry} in the text part

V.3. GLOSSARY 45

which function just like the commands for making up an index register. The entries are
written to a file with extension .glo after the command \makeglossary has been given in
the preamble. The form of these file entries from each \glossary command is

\glossaryentry\textit{glossary-entry}{pagenumber}

The information in the .glo file can be used to establish a glossary. However, there is no
equivalent to the theindex environment for a glossary, but a recommended structure is
the description environment or a special list environment.

46

TUTORIAL VI

DISPLAYED TEXT

There are many instances in a document when we want to visually separate a portion
of text from its surrounding material. One method of doing this is to typeset the distin-
guished text with added indentation. It is called displaying. BTEX has various constructs
for displaying text depending the nature of the displayed text.

VI.1. BORROWED WORDS

Quotations are often used in a document, either to add weight to our arguments by
referring to a higher authority or because we find that we cannot improve on the way
an idea has been expressed by someone else. If the quote is a one-liner, we can simply
include it within double-quotes and be done with it (remember how to use quotes in
TEX?) But if the quotation is several lines long, it is better to display it. Look at the
following example:

Some mathematicians elevate the spirit of Mathematics to a kind of intellectual aesthetics. It
is best voiced by Bertrand Russell in the following lines.

The true spirit of delight, the exaltation, the sense of being more than man, which
is the touchstone of the highest excellence, is to be found in Mathematics as surely
as in poetry....Real life is, to most men, a long second best, a perpetual compro-
mise between the ideal and the possible; but the world of pure reason knows no
compromise, no practical limitations, no barriers to the creative activity embody-
ing in splendid edifices the passionate aspiration after the perfect, from which all
great work springs.

Yes, to men like Russell, Mathematics is more of an art than science.

This was type set as shown below

Some mathematicians elevate the spirit of Mathematics to a kind of
intellectual aesthetics. It is best voiced by Bertrand Russell 1in the
following Tines.

\begin{quote}
The true spirit of ... i i i iiaeeenn from which
all great work springs.

\end{quote}

Note that here we give instructions to TEX to typeset some material in a separate
paragraph with additional indentation on either side and indicate the start and end of
material requiring special treatment, by means of the commands

\begin{quote} ... \end{quote}

47

48 VI. DISPLAYED TEXT

This is an example of what is known in IfTgX parlance as an environment. Environ-
ments are used to delimit passages requiring special typographic treatments and to give
instructions to KTEX on how to typeset it. The general form of an environment is of the
form

\begin{name} ... \end{name}
where name is the name of the environment and signifies to IKTEX the type of typographic

treatment required (deliberate attempt at a pun, that).

The quoted part in this example is a single paragraph. If the quotation runs into
several paragraphs, we must use the quotation environment, by enclosing the quotation
within \begin{quotation} and \end{quotation}. As usual, paragraphs are separated by
blank lines while typing the source file.

VI.2. POETRY IN TYPESETTING

BIEX can write poetry...well almost; if you write poems, TgX can nicely typeset it for
you. (I have also heard some TgX wizards saying Knuth’s code is sheer poetry!) Look at
the passage below:

Contrary to popular belief, limericks are not always ribald. Some of them contain mathemati-
cal concepts:

A mathematician once confided

That a Mobius band is one sided
You’ll get quite a laugh

If you cut it in half

For it stays in one piece when divided

There is an extension of this to Klein’s bottle also.

This was typeset as follows:
Contrary to popular belief, ... tried their hands at it:

\begin{verse}
A mathematician confided\\
A M\"obius band is one sided\\
You’1l get quite a Taugh\\
If you cut it in half\\
For it stays in one piece when divided
\end{verse}
There is an extension of this to Klein’s bottle also.

Note that line breaks are forced by the symbol \\. Different stanzas are separated
in the input by one (or more) blank lines. If you do not want TgX to start a new page at
a particular line break (if you want to keep rhyming couplets together in one page, for
example), then use * instead of plain \\. Again, if you want more space between lines
than what ISTEX deems fit, then use \\ with an optional length as in \\[5pt] which adds
an extra vertical space of 5 points between the lines. You can also type *[5pt], whose
intention should be obvious by now.

VI.3. MAKING LISTS

Lists are needed to keep some semblance of order in a chaotic world and BTEX helps us
to typeset them nicely. Also, there are different kinds of lists available by default and if

VI.3. MAKING LISTS 49

none of them suits your need, there are facilities to tweak these or even design your own.
Let us first have a look at the types of lists IKTEX provides.

VI.3.1. Saying it with bullets

The itemize environment gives us a bullet-list. For example it produces something like

this:

One should keep the following in mind when using TEX

o TEX is a typesetting language and not a word processor

e TgX is a program and and not an application

e Theres is no meaning in comparing TgX to a word processor, since the design purposes

are different

Being a program, TgX offers a high degree of flexibility.

The input which produces this is given below:

One should keep the following in mind when using \TeX

\begin{itemize}

\item \TeX\ is a typesetting language and not a word processor

\item \TeX\ is a program and and not an application

\item Theres is no meaning in comparing \teX\ to a word processor, since the design
purposes are different

\end{itemize}

Being a program, \TeX\ offers a high degree of flexibility.

The \begin{itemize} ... \end{itemize} pair signifies we want a bullet-list of the
enclosed material. Each item of the list is specified by (what else?) an \1item command.
We can have lists within lists. For example:

One should keep the following in mind when using TEX

e TgEX is a typesetting language and not a word processor

e TgX is a program and and not an application

e Theres is no meaning in comparing TgX to a word processor, since the design purposes

are different

e TgX is the natural choice in one of these situations

— If we want to typeset a document containing lot of Mathematics

— If we want our typed document to look beautiful

Being a program, TgX offers a high degree of flexibility.

It is produced by the input below:

One should keep the following in mind when using \TeX

\begin{itemize}

\item \TeX\ is a typesetting language and not a word processor
\item \TeX\ is a program and and not an application

\item Theres is no

purposes are

\item \TeX\ is the
\begin{itemize}

\item If we want

meaning in comparing \TeX\ to a word processor, since the design
different
natural choice in one of these situations

to typeset a document containing lot of Mathematics

50 VI. DISPLAYED TEXT

\item If we want our typed document to look beautiful
\end{itemize}

\end{itemize}

Being a program, \TeX\ offers a high degree of flexibility.

The itemize environment supports four levels of nesting. The full list of labels for the
items (‘bullets’ for the first level, ‘dashes’ for the second and so on) is as shown below

e The first item in the first level
e the second item in the first level

— The first item in the second level
— the second item in the second level
+ The first item in the third level
+ the second item in the third level

- The first item in the fourth level
- the second item in the fourth level

Not satisfied with these default labels? How about this one?

> First item of a new list

> Second item

It was produced by the following input:

{\renewcommand{\1abelitemi}{\triangleright}
\begin{itemize}

\item First item of a new list

\item Second item

\end{itemize}}

Several things need explanation here. First note that the first level labels of the
itemize environment are produced by the (internal and so invisible to the user) command
\labelitemi and by default, this is set as \textbullet to produce the default ‘bullets’.
What we do here by issuing the \renewcommand is to override this by a choice of our own
namely \triangleright which produces the little triangles in the above list. Why the
braces { and } (did you notice them?) enclosing the whole input? They make the effect
of the \renewcommand local in the sense that this change of labels is only for this specific
list. Which means the next time we use an itemize environment, the labels revert back
to the original ‘bullets’. If we want the labels to be changed in the entire document, then
remove the braces.

What if we want to change the second level labels? No problem, just change the
\labelitemii command, using a symbol of our choice. The third and fourth level labels
are set by the commands (can you guess?) \1abelitemiii and \1abelitemiv. Look at the
following example.

VI.4. WHEN ORDER MATTERS SI

O The first item in the first level

O the second item in the first level

O The first item in the second level
O the second item in the second level

O The first item in the third level

O the second item in the third level
O The first item in the fourth level
O the second item in the fourth level

Here the labels are chosen from the PostScript ZapfDingbats font. We will have to use
the package pifont, by including the line \usepackage{pifont} in our document preamble
to access them. The source of the above output is
\renewcommand{\1abelitemi}{\ding{42}}
\renewcommand{\1abelitemii}{\ding{43}}
\renewcommand{\Tabelitemiii}{\ding{44}}
\renewcommand{\Tabelitemiv}{\ding{45}}
\begin{itemize}
\item The first item in the first level
\item the second item in the first level
\begin{itemize}
\item The first item in the second Tevel
\item the second item in the second level
\begin{itemize}
\item The first item in the third Tlevel
\item the second item in the third level
\begin{itemize}
\item The first item in the fourth Tevel
\item the second item in the fourth Tlevel
\end{itemize}
\end{itemize}
\end{itemize}
\end{itemize}}

VI.4. WHEN ORDER MATTERS

When the order of the items in a list is important, we need a list which specifies this order.
For example, consider this

The three basic steps in producing a printed document using BEIEX are as follows

1. Prepare a source file with the extension tex
2. Compile it with IETEX to produce a dvi file
3. Print the document using a dvi driver

Such a numbered list is produced by the enumerate environment in ISTEX. The above list
was produced by the following source.

\begin{enumerate}
\item prepare a source file with the extension "tex"

52 VI. DISPLAYED TEXT

\item Compile it with \LaTeX to produce a "dvi" file
\item Print the document using a "dvi" driver
\end{enumerate}

As in the case of itemize environment, here also four levels of nesting are supports.
The example below shows the labels used for different levels.

1. The first item in the first level
2. the second item in the first level
(a) The first item in the second level
(b) the second item in the second level
i. The first item in the third level
ii. the second item in the third level
A. The first item in the fourth level
B. the second item in the fourth level

How about customizing the labels? Here there is an additional complication in that
the labels for items in the same level must follow a sequence (such as 1,2,3,...for the
first level, (a), (b), (c),...for the second and so on, by default). There is a method for
doing it, but it will take us into somewhat deeper waters. Fortunately, there is a package
enumerate by David Carlisle, which makes it easy. So if we want

The three basic steps in producing a printed document using BEIEX are as follows:

Step 1. Prepare a source file with the extension tex
Step 2. Compile it with KIEX to produce a dvi file
i. Use a previewer (such as xdvi on X Window System) to view the output
ii. Edit the source if needed
iii. Recompile
Step 3. Print the document using a dvi driver (such as dvips)

just type the input as follows
The three basic steps in producing a printed document
using \LaTeX\ are as follows:
\begin{enumerate}[\hspace{0.5cm}Step 1.]
\item Prepare a source file with the extension "tex"
\item Compile it with \LaTeX to produce a "dvi" file
\begin{enumerate}[i.]
\item Use a previewer (such as "xdvi" on
\textsf{X Window System}) to view the output
\item Edit the source if needed
\item Recompile
\end{enumerate}
\item Print the document using a "dvi" driver
(such as "dvips")
\end{enumerate}

As you can see, the labels Step 1, Step 2 and Step 3 are produced by the optional ar-
gument Step 1 within square brackets immediately following the first \begin{enumerate}
command and the labels i, ii, iii for the second level enumeration are produced by the
optional [1] following the second \begin{enumerate}. So, what is \hspace{0.5cm} doing
in the first optional argument? It is to provide an indentation at the left margin of the
first level items, which the enumerate environment does not produce by default.

VI.4. WHEN ORDER MATTERS 53

We can add further embellishments. For example, if we want the labels in the
first level of the above example to be in boldface, just change the optional argument
[\hspace{0.5cm} Step 1] to [\hspace{0.5cm}\bfseries Step 1]. This produces:

The three basic steps in producing a printed document using BIEX are as follows:

Step 1 Prepare a source file with the extension tex

Step 2 Compile it with ITEX to produce a dvi file
(a) Use a previewer (such as xdvi on X Window System) to view the output
(b) Edit the source if needed
(c) Recompile

Step 3 Print the document using a dvi driver (such as dvips)

Some care must be taken when we give options like this. Suppose we want to pro-
duce something like this

Addition of numbers satisfies the following conditions:

(Ax
(A2
(A3
(A4

) It is commutative

) It is associative

) There is an additive identity
)

Each number has an additive inverse

If we give the option [\hspace{lcm}(A1)] as in

Addition of numbers satisfies the following conditions:
\begin{enumerate}[\hspace{lcm}(A1)]
\item It is commutative
\item It is associative
\item There is an additive identity
\item Each number has an additive inverse
\end{enumerate}

Then we get the (somewhat surprising) output
(r1) It is commutative
(22) It is associative
(33) There is an additive identity
(44) Each number has an additive inverse

44

What happened? In the enumerate package, the option [A] signifies that we want the
labels to be named in the sequence A, B, C,...,Z (the upper case Roman alphabet) and
the option [1] signifies we want them as 1,2,3,. .. (the Arabic numerals). Other signifiers
are [a] for lowercase Roman letters, [I] for uppercase Roman numerals and [i] for
lowercase Roman numerals. So, if we use any one of these in the optional argument with
some other purpose in mind, then enclose it in braces. Thus the correct input to generate
the above example is

Addition of numbers satisfies the following conditions
\begin{enumerate}[\hspace{lcm}({A}1)]
\item It is commutative
\item It is associative
\item There is an additive identity

54 VI. DISPLAYED TEXT

\item Each number has an additive 1inverse
\end{enumerate}

with braces surrounding the A. (The mystery is not over, is it? How come we got 11,
22,...1in the above example and not A1, B2,...? Work it out yourselves!)

VI.5. DESCRIPTIONS AND DEFINITIONS

There is a third type of list available off-the-shelf in IXTEX which is used in typesetting
lists like this

Let us take stock of what we have learnt
TEX A typesetting program

Emacs A text editor and also

a programming environment
a mailer

and a lot else besides

AbiWord A word processor

This is produced by the description environment as shown below:
Let us take stock of what we have Tearnt
\begin{description}
\item[\TeX] A typesetting program
\item[Emacs] A text editor and also
\begin{description}
\item a programming environment
\item a mailer
\item and a Tot else besides
\end{description}
\item[AbiWord] A word processor
\end{description}

Note that this environment does not produce on its own any labels for the various
items, but only produces as labels, whatever we give inside square brackets immediately
after each \item. By default, the labels are typeset in boldface roman. Also, there is no
indentation for the first level. As with the other list environments, these can be changed
to suit your taste. For example, suppose we want labels to be typeset in sans-serif roman
and also want an indentation even for the first level. The code below will do the trick
(remember why we include the whole input within braces?):

\renewcommand{\descriptionlabel}[1]{\hspace{lcm}\textsf{#1}}
Let us take stock of what we have Tlearnt
\begin{description}
\item[\TeX] A typesetting program
\item[Emacs] A text editor and also
\begin{description}
\item a programming environment
\item and a Tot else besides
\end{description}
\item[AbiWord] A word processor
\end{description}

VI.§. DESCRIPTIONS AND DEFINITIONS 55

and we get the output

Let us take stock of what we have learnt
TeX A typesetting program
Emacs A text editor and also

a programming environment

and a lot else besides

AbiWord A word processor

Now is perhaps the time to talk about a general feature of all the three list environ-
ments we have seen. In any of these, we can override the default labels (if any) produced
by the environment by something of our own by including it within square brackets
immediately after the \item. Thus the input

The real number $13% 1is the Teast upper bound of the

set A if it satisfies the following conditions

\begin{enumerate}
\item[(1)] 1 1is an upper bound of A
\item[(2)] if u is an upper bound of A, then $1\le u$
\end{enumerate}
The second condition is equivalent to
\begin{enumerate}
\item[(2)$’$] If $a<1$, then a is not an upper bound of $AS.
\end{enumerate}

produces

The real number [is the least upper bound of the set A if it satisfies the following conditions

(1) lis an upper bound of A
(2) if u is an upper bound of A, then [< u

The second condition is equivalent to

(2)" Ifa <, then a is not an upper bound of A.

This feature sometimes produces unexpected results. For example, if you type

Let’s review the notation
\begin{itemize}

\item (0,1) is an \emph{open} interval
\item [0,1] is a \emph{closed} interval
\end{itemize}

you will get
Let’s review the notation

e (0,1) is an open interval

o,T is a closed interval

What happened? The 0,1 within square brackets in the second item is interpreted by
ITEX as the optional label for this item. The correct way to typeset this is

56 VI. DISPLAYED TEXT

Let’s review the notation

\begin{itemize}

\item $(0,1)$ is an \emph{open} interval
\item $[0,1]% is a \emph{closed} interval
\end{itemize}

which produces

Let’s review the notation
e (0,1) is an open interval

e [0,1] is a closed interval

So, why the dollars around (0,1) also? Since (0,1) and [0,1] are mathematical entities,
the correct way to typeset them is to include them within braces in the input, even when
there is no trouble such as with \item as seen above. (By the way, do you notice any
difference between (o,1) produced by the input (0,1) and (0, 1) produced by $(0,1)$?)

In addition to all these tweaks, there is also provision in BIEX to design your own
‘custom’ lists. But that is another story.

TUTORIAL VII

ROWS AND COLUMNS

The various list environments allows us to format some text into visually distinct rows.
But sometimes the logical structure of the text may require these rows themselves to be
divided into vertically aligned columns. For example, consider the material below typeset
using the \description environment (doesn’t it look familiar?)

Let’s take stock of what we’ve learnt
Abiword A word processor
Emacs A text editor

TEX A typesetting program
A nicer way to typeset this is

Let’s take stock of what we’ve learnt

AbiWord A word processor
Emacs A text editor

TeX A typesetting program

Here the three rows of text are visually separated into two columns of left aligned text.
This was produced by the tabbing environment in ITEX.

VII.1. KEEPING TABS
VII.1.1. Basics

Let’s take stock of what we’ve Tlearnt

\begin{tabbing}
\hspace{lcm}\= \textbf{AbiWord}\quad\= A word processor\\[5pt]
\> \textbf{Emacs} \> A text editor\\[5pt]
\> \textbf{\TeX} \> A typesetting program
\end{tabbing}

Let’s analyze it line by line. In the first line the first tab is put at a distance of 1 cm. from
the left margin so that the text following it (‘AbiWord’ in boldface roman) starts from
this point. The second tab is put at a distance of one \quad (this is an inbuilt length
specification in TEX roughly equal to one space) after the word ‘Abiword’ in boldface
roman so that the text following it (‘A word processor’ in ordinary roman face) start
from this point. The \\[5pt] command signifies the end of the first line and also asks
for a vertical space of 5 points between the first and the second lines. In the second line,

57

58 VII. ROwS AND COLUMNS

the first \> command makes the text following it (‘Emacs’ in boldface roman) to start
from the first tab (already set in the first line), namely, rcm. from the left margin. The
second \> line makes the text following it (‘A text editor’ in ordinary roman face) at the
second tab already set, namely at a distance 1 cm plus the length of the word ‘AbiWord’
in boldface roman plus a \quad. The third line follows suit. The picture below will make
this clear.

tab 1 tab 2
d U
= AbiWord A word processor
8o
§ Emacs A text editor
s TeX A typesetting program

One should be careful in setting tabs. For example to typeset

TeX A typesetting program
Emacs A text editor

AbiWord A word processor

if you type
\begin{tabbing}
\textbf{\TeX}\quad\= A typesetting program\\[5pt]
\textbf{Emacs}\quad\> A text editor\\[5pt]
\textbf{AbiWord}\quad\> A word processor
\end{tabbing}

then you end up with the output

TeX A typesetting program
EmacsA text editor

AbiWakdword processor

Do you see what happened? The first line set the first tab (the only tab in this example) at
a distance of the length of the word “TEX’ in boldface roman plus a ‘quad’ from the left
margin and the \> command in the second line makes the text following to atart from
this tab, which is right next to the word ‘Emacs’ in this line. the same thing happens
in the third line, which is worse, since the position of the tab is at the ‘0’ of ’AbiWord’
and the next word ‘A word processor’ starts from this point, and overwrites the previous
word. The correct way to obtain the output we want is to use a dummy line to mark the
tabs, without actually typesetting that line. This is achieved by the \ki11 command in
the tabbing environment, as shown below
\begin{tabbing}
\textbf{AbiWord}\quad\= A word processor\kill
\textbf{\TeX}\quad \> A typesetting program\\[5pt]

Vil.1. KEEPING TABS 59

\textbf{Emacs}\quad \> A text editor\\[5pt]
\textbf{AbiWord}\quad\> A word processor
\end{tabbing}

New tabs, in addition to the ones already set by the first line (dummy or otherwise),
can be set in any subsequent line. Thus the output

TeX : A typesetting program

Emacs : A text editor
a programming environment
a mail reader
and a lot more besides

AbiWord : A word processor

is obtained from the source
\begin{tabbing}
\textbf{AbiWord}\quad\= : \= A word processor\kiTT\\
\textbf{\TeX}\quad \> : \> A typesetting program\\[5pt]
\textbf{Emacs}\quad \> : \> A text editor\\[5pt]
\> \> \quad\= a programming environment\\[5pt]

\> \> \> a mail reader\\[5pt]
\> \> \> and a lot more besides\\[5pt]
\textbf{AbiWord}\quad\> : \> A word processor

\end{tabbing}

Here the first line sets two tabs and the fourth line sets a third tab after these two. All the
three tabs can then be used in the subsequent lines. New tab positions which change the
ones set up by the first line, can also be introduced in any line by the \= command. Thus
we can produce

Program : TgX
Author : Donald Knuth

Manuals
Title Author Publisher
The TgXBook Donald Knuth ~ Addison-Wesley

The Advanced TgX Book David Salomon Springer-Verlag

by the input

\begin{tabbing}

Program\quad \= : \= \TeX\\[5pt]

Author \> : \> Donald Knuth\\[5pt]
Manuals >\

\quad\= The Advanced \TeX\ Book\quad\= David Salomon\quad
\= Springer-Verlag\kiTT\\
\>\textsf{Title} \>\textsf{Author} \>\textsf{Publisher}\\[8pt]

60 vil. Rows AND COLUMNS

\>The \TeX Book \>Donald Knuth \>Addison-Wesley\\[5pt]
\>The Advanced \TeX\ Book \>David Salomon \>Springer-Verlag
\end{tabbing}

Here the first line sets teo tabs and the next two lines use these tabs. The third line sets
three new tabs which replace the original tab positions. The next three lines use these
new tab positions.

VIL.1.2. Pushing and popping

What if you change the tab positions and then want the original settings back? Here’s
where the command pair \pushtabs ... \poptabs ia useful. Thus to typeset

Program : TgX
Author : Donald Knuth

Manuals
Title Author Publisher
The TEXBook Donald Knuth ~ Addison-Wesley

The Advanced TgX Book David Salomon Springer-Verlag

Tutorial : http://tug.org.in/tutorial

we type
\begin{tabbing}
Program\quad \= : \= \TeX\\[5pt]
Author \> : \> Donald Knuth\\[5pt]
Manuals >\
\pushtabs

\quad\= The Advanced \TeX\ Book \quad \= David Salomon \quad
\= Springer-VerTlag\kiTT\\

\>\textsf{Title} \>\textsf{Author} \>\textsf{PubTlisher}\\[8pt]
\>The \TeX Book \>Donald Knuth \>Addison-Wesley\\[5pt]

\>The Advanced \TeX\ Book \>David Salomon \> Springer-Verlag\\[8pt]
\poptabs

Tutorial \> \> "http://tug.org.in/tutorial”
\end{tabbing}

Here the first three lines follow a tabbing scheme, the next three lines follow another
tabbing scheme and the last line reverts back to the original scheme. Here the \pushtabs
command stores the current tabbing scheme and removes it so that a new tabbing scheme
can be set up; and the \poptabs commands reactivates the original scheme. These com-
mands can be nested.

VIL.1.3. More commands

There are some more useful commands available in the tabbing environment. The \+
command given at the end of a line makes every subsequent line start at the first tab;
with \+\+ at the end of a line, all subsequent lines start at the second tab and so on.
The effect of each \+ can be neutralized by one \- command at the end of a line. The

vil.1. KEEPING TABS 61

command \< at the beginning of a line neutralizes the effect of one \+ command for that
particular line.

The command * (left quote) puts the text following flush right against the right
margin. Naturally we cannot use a \= or \> after this in a line.

Another interesting command is \’ (right quote). Within the tabbing environment
an input of the form left_text\’right_text puts the right_text at the current tab and
the 1eft_text just before this tab with a bit of spacing (preassigned by the parameter
\tabbingsep).

The example below illustrates all the tabbing commands we’ve discussed

\begin{tabbing}
Row 1 Column 1\hspace{2cm}
\= Row 1 Column 2\\[5pt]

\> Row 2 Column 2\hspace{l.5cm}\=Row 2 Column 3\+\+\\[5pt]
Row 3 CoTumn 3\-\\[5pt]
Row 4 Column 2 \>Row 4 Column 3\\[5pt]
\< Row 5 Column 1 \> Row 5 Column 2 \>Row 5 Column 3\\[5pt]
Row 6 Column 2 \>Row 6 Column 3\-\\[5pt]
Row 7 Column 1 \> Row 7 Column 2 \>Row 7 Column 3\\[5pt]
Row 8 Column 1 \ ‘Right\\[5pt]
Row 9 Column 1 \> and\’Row 9 Column 2\\[5pt]
\pushtabs

\quad\= Row 10 New Column 1\hspace{2.5cm}\= Row 10 New Column 2\\[5pt]
\> Row 11 New Column 2 \> Row 11 New Column 2\\[5pt]
\poptabs
Row 12 01d Column 1\> Row 12 01d Column 2\>Row 12 01d Column 3
\end{tabbing}

It produces the following output

Row 1 Column 1

Row 5 Column 1

Row 1 Column 2

Row 2 Column 2

Row 4 Column 2

Row 5 Column 2

Row 2 Column 3
Row 3 Columnj
Row 4 Column 3

Row 5 Column 3

Row 6 Column 2 Row 6 Column 3

Row 7 Column 1 Row 7 Column 2 Row 7 Column 3

Row 8 Column 1 Right

Row 9 Column 1 and Row 9 Column 2

Row 10 New Column 1 Row 10 New Column 2

Row 11 New Column 2 Row 11 New Column 2

Row 12 Old Column 1 Row 12 Old Column 2 Row 12 Old Column 3

Recall that the commands \=. * and \’ are used for various accents outside the
tabbing environment. If these are needed within the tabbing environment, they can be
produced with the commands \a=. \a* or \a’ commands.

One final word. You might’ve noted in the examples above that we give a sort of

62 vil. Rows AND COLUMNS

‘formatting’ to the sources also. This is not really necessary from the point of view of
BTEX since the output of the last example is he same even if we input

\begin{tabbing}

Row 1 Column 1\hspace{2cm}\=Row 1 CoTumn 2\\[5pt]

\>Row 2 Column 2\hspace{l.5cm}\=Row 2 Column 3\+\+\\[5pt]

Row 3 CoTumn3\-\\[5pt]

Row 4 Column 2\>Row 4 Column 3\\[5pt]

\<Row 5 Column\>Row 5 Column 2\>Row 5 Column 3\\[5pt]

Row 6 Column 2\>Row 6 Column 3\-\\[5pt]

Row 7 Column 1\>Row 7 Column 2\>Row 7 CoTumn 3\\[5pt]

Row 8 Column 1\ ‘\textbf{Flush right}\\[5pt]

Row 9 Column 1\>and\’Row 9 CoTumn 2\\[5pt]

\pushtabs

Row 10 New Column 1\hspace{2.5cm}\=Row 10 New CoTumn 2\\[5pt]
Row 11 New Column 2\>Row 11 New CoTumn 2\\[5pt]

\poptabs

Row 12 01d Column 1\>Row 12 01d Column 2\>Row 12 01d Column 3
\end{tabbing}
IETEX can make sense out of this, but we humans cannot. And such a jumble makes
editing a hopeless task. The moral? Keep the source (humanly) readable.

VIl.2. TABLES

Another way to format text into columns and rows is to use the tabular environment.
Let’s see it in action by means of an example.

The table below shows the sizes of the planets of our solar system.

Planet Diameter(km)
Mercury 4878
Venus 12104
Earth 12756
Mars 6794
Jupiter 142984
Saturn 120536
Uranus SITI8
Neptune 49532
Pluto 2274

As can be seen, Pluto is the smallest and Jupiter the largest

Now look at the source of this output
The table below shows the sizes of the planets of our solar system.
\begin{center}

\begin{tabular}{1r}
Planet & Diameter(Ckm)\\[5pt]
Mercury & 4878\\
Venus & 12104\\
Earth & 12756\\
Mars & 6794\\
Jupiter & 142984\\
Saturn & 120536\

VII.2. TABLES 63

Uranus & 51118\\
Neptune & 49532\\
Pluto & 2274
\end{tabular}
\end{center}
As can be seen, Pluto is the smallest and Jupiter the Targest

The \begin{center} ... \end{center} commands centralize the table. The table itself is
produced by the \begin{tabular} ...\end{tabular} commands. The {1r} specification
immediately after the \begin{tabular} indicates there are two columns in the table with
the entries in the first column aligned on the left and the entries in the second column
aligned on the right. The entries in each column are separated by the & symbol and the
terminatio of each row is signalled by the \\ symbol. The \\[5pt] after the first row
specifies as usual, an additional vertical space of 5§ points after this row in the output.

In addition to the column specifiers 1 and r we also have a specifier ¢ which makes
the entries in the corresponding column cenirally aligned. For example the input

\begin{center}
\begin{tabular}{cr}
Planet & Diameter(Ckm)\\[5pt]
Mercury & 4878\\
Venus & 12104\\
Earth & 12756\\
Mars & 6794\\
Jupiter & 142984\\
Saturn & 120536\\
Uranus & 51118\\
Neptune & 49532\\
Pluto & 2274
\end{tabular}
\end{center}

produces the output below

Planet Diameter(km)

Mercury 4878
Venus 12104
Earth 12756
Mars 6794
Jupiter 142984
Saturn 120536
Uranus STITI8

Neptune 49532
Pluto 2274

There’s yet another column specifier p which allows us to set column entries in a box

of specified width (technically a “parbox”—see Chapter X). Suppose you want something
like this

64 VII. ROwS AND COLUMNS

Planet Features

Mercury Lunar like crust, crustal faulting, small magnetic fields.

Venus Shrouded in clouds, undulating surface with highlands, plains, lowlands
and craters.

Earth Ocens of water filling lowlands between continents, unique in supporting
life, magnetic field.

Mars Cratered uplands, lowland plains, volcanic regions.

Jupiter Covered by clouds, dark ring of dust, magnetic field.

Saturn Several cloud layers, magnetic field, thousands of rings.

Uranus Layers of cloud and mist, magentic field, some rings.
Neptune Unable to detect from earth.
Pluto Unable to detect from earth

It is produced from the input
\begin{center}
\begin{tabular}{1p{.8\1inewidth}}
Planet & Features\\[5pt]
Mercury & Lunar 1ike crust, crustal faulting, small magnetic
fields.\\

Venus & Shrouded in clouds, undulating surface with highlands,
plains, Towlands and craters.\\

Earth & Ocens of water filling lowlands between continents,
unique 1in supporting Tife, magnetic field.\\

Mars & Cratered uplands, Towland plains, volcanic regions.\\

Jupiter & Covered by clouds, dark ring of dust, magnetic field.\\

Saturn & Several cloud layers, magnetic field, thousands
of rings.\\

Uranus & Layers of cloud and mist, magentic field, some rings.\\

Neptune & Unable to detect from earth.\\

Pluto & Unable to detect from earth

\end{tabular}
\end{center}

Here the specification p{6cm} shows that in a “paragraph box” of width 6 cm. In a p-type
column, if a \raggedright or \centering is given, then we can induce explicit line breaks
within that column by the \\ command. If such commands are used in the last column
of a row, then the command \tabularnewline should be used to terminate that row as in
this example:
\begin{center}
\begin{tabular}{1p{6cm}}
PTanet & Features\tabularnewline[8pt]
Mercury & \raggedright Lunar Tike crust\\
Crustal faulting\\
Small magnetic fiels\tabularnewline[3pt]
Venus & \raggedright Shrouded in clouds\\
Undulating surface\tabularnewline[3pt]
Earth & \raggedright Ocens of water\\
Unique in supporting 1ife\\
Magnetic field\tabularnewline[3pt]
Mars & \raggedright Cratered uplands\\

VII.2. TABLES

LowTand plains\\
Volcanic regions\tabularnewline[3pt]

Jupiter & \raggedright Covered by clouds\\

Dark ring of dust\\
Magnetic field\tabularnewline[3pt]

Saturn & \raggedright Several cloud layers Magnetic field\\
Thousands of rings\tabularnewline[3pt]
Uranus & \raggedright Layers of cloud and mist\\
Magentic field\\
Some rings\tabularnewline[3pt]
Neptune & Unable to detect
from earth\tabularnewline[3pt]
Pluto & Unable to detect
from earth\tabularnewline[3pt]
\end{tabular}
\end{center}

This produces the output below

Planet

Mercury

Venus

Earth

Mars

Jupiter

Saturn

Uranus

Neptune
Pluto

Features

Lunar like crust

Crustal faulting

Small magnetic fiels
Shrouded in clouds
Undulating surface
Ocens of water

Unique in supporting life
Magnetic field

Cratered uplands

Lowland plains
Volcanic regions

Covered by clouds
Dark ring of dust
Magnetic field

Several cloud layers
Magnetic field
Thousands of rings

Layers of cloud and mist
Magentic field
Some rings

Unable to detect from earth
Unable to detect from earth

Note that the last two lines don’t need a \raggedright command, since there are no

explicit linebreaks in them.

A table usually contains horizonntal and vertical lines separating the rows and
columns. These can also be produced in the tabular environment. For example, the

first table we saw above can be typeset as

66 vil. Rows AND COLUMNS

Planet Diameter(km)
Mercury 4878
Venus 12104
Earth 12756
Mars 6794
Jupiter 142984
Saturn 120536
Uranus SITI8
Neptune 49532
Pluto 2274
by the input
\begin{center}
\begin{tabular}{|1|r|}

\hTine

Planet & Diameter(km)\\

\hTine

Mercury & 4878\\
Pluto & 2274\\
\hTine
\end{tabular}
\end{center}

Do you see what produced the vertical and horizontal lines? Instead of the specification
{1r} used earlier, we now have {|1|r|} The character | causes a vertical line to be drawn
at the specified location, running down the entire height of the table. (Two |’s in succes-
sion produce a double vertical lines.) An \h1ine command after a row draws a horizontal
line after that row, running along the entire width of the table. (Again, two \h1ine’s in
succession producea double horizontal line.) Note also that because of the last \hline ,
we should give a line termination command \\ at the end of the last row also.

Now suppose we want to produce something like this

Planet Distance from sun (km)
Maximum Minimum
Mercury 69400000 46800000
Venus 109000000 107600000
Earth 152600000 147400000
Mars 249200000 207300000
Jupiter 817400000 741600000
Saturn 1512000000 1346000000
Uranus 3011000000 2740000000

Here, there are three columns and the entry Distance from the sun (km) is to span the
the last two columns below it. The command \multicolumn does the trick as shown

below

\begin{center}
\begin{tabular}{lrr}

Planet & \multicolumn{2}{c]|}{Distance from sun (Ckm)}\\

& Maximum & Minimum\\

VII.2. TABLES 67

Mercury & 69400000 & 46800000\\
Venus & 109000000 & 107600000\\
Earth & 152600000 & 147400000\\
Mars & 249200000 & 207300000\\
Jupiter & 817400000 & 741600000\\
Saturn & 1512000000 & 1346000000\\
Uranus & 3011000000 & 2740000000\\
\end{tabular}
\end{center}

The entry \multicolumn{2}{c}{Distance from sun (km)} indicates that the iterz within
the last set of braces is to span two columns as specified by the 2 within the first set of
braces. The entry c within the second set of bracesindicates that this text is to be centered
within the column. Thus the general form of the command is

\multicolumn{num}{pos}}item}

where num is the number of columns to be spanned, pos is the position of the item within
the column and item is the text of the item. Note also that the input for the second row
starts with an & character. This is because there is no entry in the first column of the
second row.

Now what if you want

Planet Distance from sun (km)
Maximum Minimum
Mercury 69400000 46800000
Venus 109000000 107600000
Earth 152600000 147400000
Mars 249200000 207300000
Jupiter 817400000 741600000
Saturn I5I2000000 | I346000000
Uranus 3011000000 | 2740000000
Neptune | 4543000000 | 4466000000
Pluto 7346000000 | 4461000000

Here the first few lines and the last lines of the input are as below (the other lines are the
same as in the previous example).
\begin{center}
\begin{tabular}{|T1|r|r|}
\hTine
Planet & \multicolumn{2}{c|}{Distance from sun (Ckm)3}\\
\cline{2-3}
& Maximum
\hline

& Minimum\\

\hTine
\end{tabular}
\end{center}

Note that the position specifier in the \multicolumn command here is c|. This has to
do with the way the environment splits the column specification into various columns.

68 vil. Rows AND COLUMNS

For example, the specification |[1|r|r| in this exaple is split into |1, r| and r| and
the \multicolumn{2} command resets the last two columns. In particular, the final | gets
reset and we’ll have to explicitly supply it in the position specification of the \multicolumn
command as c|.

Note also the command \cline{2-3} after the first row. This draws a horizontal
line from the second to the third column. In general the command \cline{i-j} draws a
horizontal line from the i column to the /™ column.

Another feature of the \multicolumn command is that with \multicolumn{1} we can
override the position specification of any column set at the beginning of the environment.
For example, consider the input below

\begin{center}
\begin{tabular}{|[1|r|r|}

\h1ine

& \multicolumn{2}{p{3.5cm}|}%

{\centering Distance from sun \\ (million km)}\\

\cline{2-3}
\multicolumn{1}{|c|}{PTanet}

& \multicolumn{1}{c|}{Maximum}

& \muTticoTumn{1}{c|}{Minimum}\\

\hTine
Mercury & 69.4
Venus & 109.0

46.8\\
107.6\\

&

&
Earth & 152.6 & 147.4\\
Mars & 249.2 & 207.3\\
Jupiter & 817.4 & 741.6\\
Saturn & 1512.0 & 1346.0\\
Uranus & 3011.0 & 2740.0\\
Neptune & 4543.0 & 4466.0\\
Pluto & 7346.0 & 4461.0\\
\hTine

\end{tabular}
\end{center}

It produces the output below

Distance from sun
(million km)

Planet Maximum | Minimum
Mercury 69.4 46.8
Venus 109.0 107.6
Earth 152.6 147.4
Mars 249.2 207.3
Jupiter 817.4 741.6
Saturn 1512.0 1346.0
Uranus 3011.0 2740.0
Neptune 4543.0 4466.0
Pluto 7346.0 4461.0

Note that even though \centering is used in the last column of the first row, no \tabularnewline
is required to terminate this row, since the scope of the \centering is limited by the
\multicolumn.

VIl.2. TABLES 69

By the way, do you feel that the tables we’ve been produced look a bit cramped? A
bit crowded vertically? Well, you can create a bit more room between rows by redefining
the value of \arraystretch. By default, it’s value is 1 and if you set it to a number k,
then the interrow space is increased k-fold. Thus the input of the last example with the
command

\renewcommand{\arraystretch}{1.2}

after the \begin{center} produces

Distance from sun
(million km)

Planet Maximum | Minimum
Mercury 69.4 46.8
Venus 109.0 107.6
Earth 152.6 147.4
Mars 249.2 207.3
Jupiter 817.4 741.6
Saturn 1§12.0 1346.0
Uranus 30I1.0 2740.0
Neptune 4543.0 4466.0
Pluto 7346.0 4461.0

Next let’s see how we produce a table like the one below

Height | Ideal weight

(cm) (kg)
155 | 53-5-64
160 56—67
165 59-71
170 62.5-75.5
175 66-79
180 70—-83.5
185 71.5-86.5
190 78—92.5

Here we want all the dashes in the second column to be vertically aligned, so that we must
set them in a separate column; but then there should be no space between the numbers
and the dashes connecting them. In such cases we can use the @ command in the column
specification as below
\begin{center}
\begin{tabular}{|c|r@{--}11}

\h1ine

Height & \multicolumn{2}{c|}{Ideal weight}\\

(cm) & \multicolumn{2}{c|3}{Ckg) }\\

\hTine

155 & 53.5 & 64\\

160 & 56 & 67\\

190 & 78 & 92.5\\

70 ViI. ROWS AND COLUMNS

\hTine
\end{tabular}
\end{center}

Here the specification r@{--}1 indicates that there should be a right aligned column and
a left aligned column with a — in between each pair of entries in these columns without
the intercolumn space the tabular environment leaves by default between every pair of
columns. Note that this incidently saves us the trouble of repeatedly typing --. You
can also add some space producing commands within the braces after the @ command to
produce that much space between the columns on either side of it.

VIl.2.1. Enhancements to the tabular

There are many packages which provide further facilities in forming tables. We’ll discuss
a couple of such packages here.

Vil.2.2. The array package

Look at the tables below

Planet Mean distance Mean distance
from sun Planet from sun
(km) (km)

Mercury 58100000 Mercury 58100000
Venus 108300000 Venus 108300000
Earth T 50000000 Earth T 50000000
Mars 228250000 Mars 228250000
Jupiter 779500000 Jupiter 779500000
Saturn 1429000000 Saturn 1429000000
Uranus 2439000000 Uranus 2439000000
Neptune 4504500000 Neptune 4504500000
Pluto §903 500000 Pluto §903 500000

The one on the right looks nicer, doesn’t it? It was produced using the column specifier m
available in the array package. To produce this table, we must first load the array package
by the ususl \usepackage{array} in the preamble and then type

\begin{tabular}{|1]|r|}
\hTine
\multicolumn{1}{|m{1.5cm}|}{\centering Planet}
&\multicolumn{1}{m{2.3cm}|}%
{\centering Mean distance from sun \\ (km)3}\\
\hTine
Mercury & 58100000\\
Pluto & 5903500000\\
\hTine
\end{tabular}

The m{wd} specifier produces a column of width wd just like the p specifier, but with the
text aligned vertically in the middle unlike the p specifier which aligns the text with the
topline. (The table on the left, incidently, was produced by the same input as above but
with p instead of m).

VII.2. TABLES 71

Another interesting feature of the array package is the >{decl} command which can
be used before a column specifier. It inserts decl directly in front of the column. For
example look at the input below

\begin{center}
\begin{tabular}{|>{\bfseries}1|r|}
\h1ine
\multicolumn{1}{|m{1l.5cm}|}{\centering Planet}
&\muTticoTlumn{1}{m{2.3cm}|}%
{\centering Mean distance from sun \\ (km)3}\\

\hTine

Mercury & 58100000\\
Venus & 108300000\\
Earth & 150000000\\
Mars & 228250000\\
Jupiter & 779500000\\
Saturn & 1429000000\\
Uranus & 2439000000\\

Neptune & 4504500000\\
Pluto & 5903500000\\
\hTine
\end{tabular}
\end{center}

which produces the output

Mean distance
Planet from sun
(km)

Mercury 58100000
Venus 108300000
Earth 150000000
Mars 228250000
Jupiter 779500000
Saturn 1429000000
Uranus 2439000000
Neptune 4504500000
Pluto §903 500000

The array package also has a | command which works just like the @ command, but
whch does not suppress the intercolumn space.

VIl.2.3. The multirow package

Look again at the table in 68. Wouldn’t it be nice if the entry “Planet” in the first column
is vertically aligned with the center of the two rows in the next column as below?

72 ViI. ROWS AND COLUMNS

Distance from sun
Planet (million km)

Maximum Minimum
Mercury 69.4 46.8
Venus 109.0 107.6
Earth 152.6 147.4
Mars 249.2 207.3
Jupiter 817.4 741.6
Saturn 1512.0 1346.0
Uranus 3011.0 2740.0
Neptune 4543.0 4466.0
Pluto 7346.0 4461.0

The package multirow is what we need to do this painlessly. It has a command

\multirow{num}{wd} {item?}

where num is the number of rows to be spanned, wd is the width of this column and item
is the text of the item in this column. This can be used as in the following example

\begin{center}
\begin{tabular}{|1|r|r|}
\hTine
\multirow{3}{1.5cm}{Planet}
& \muTticoTumn{2}{p{3.5cm}|}%
{\centering Distance from sun \\ (million km)}\\
\cline{2-3}
& \multicolumn{1}{c|}{Maximum}
& \muTticolumn{1}{c|}{Minimum}\\
\hTine
Mercury & 69.4
Venus & 109.0
Earth & 152.6 147.4\\
Mars & 249.2 207.3\\

& 46.8\\
&
&
&
Jupiter & 817.4 & 741.6\\
&
&
&
&

107.6\\

Saturn & 1512.0 1346.0\\
Uranus & 3011.0 & 2740.0\\

Neptune & 4543.0 4466.0\\
Pluto & 7346.0 & 4461.0\\
\hTine
\end{tabular}
\end{center}

But this code does not produce the table above, but only

VII.2. TABLES 73

Distance from sun

Planet (million km)

Maximum Minimum
Mercury 69.4 46.8
Venus 109.0 107.6
Earth 152.6 147.4
Mars 249.2 207.3
Jupiter 817.4 741.6
Saturn 1512.0 1346.0
Uranus 3011.0