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O. Introduction 

Let / '  ~ R a be a Jordan curve. The problem of finding surfaces of constant 
mean curvature spanned b y / '  has been extensively studied, with a lengthy litera- 
ture, including [2, 7, 8, 9, 18, 21, 22, 23, 26, 28, 29]. In particular, if / ' (  BR 
--a  ball of radius R--with R < 1, it is known that there exist surfaces of mean 
curvature one spanned by _P. Here, we deal only with surfaces Z' parametrized on 
the unit disk 

s  Ep~2;x  2 + y 2 <  1}, 

and thus Z = u(~) where u : a'~---~ R, 3 satisfies, 

ZIU = 2Ux A Uy on ,(2, 

(0.1) l u l l  = - [uy l  ~ - -  Ux.U~ = o o n  n ,  

u ( a n )  = v .  

In this paper we investigate the behavior of such surfaces as /'---~ 0. Let (/'n) 
be a sequence of Jordan curves such that /'~ ~ 0, that is /'~ (Bn~(0) and 

Rn ~ O. Let Z~ denote a surface of constant mean curvature one spanned by 
/"~. It has been suggested by Professor J. SERRIN (private communication; see 
also [18]) that under appropriate assumptions Z'n should converge to a sphere of 
radius one. Our main results are the following. 

Theorem 0.1. Assume that the areas of  the surfaces Z ,  remain bounded. Then 
a subsequence o f  the S n converges to (0} or to a finite (connected) union o f  spheres 
o f  radius one, such that at least one of  them contains O. 

In general, we do not have more precise information about the limiting 
configuration. Indeed, it would be interesting to determine whether an arbitrary 
configuration of spheres may be achieved as a limit of (Zn), for some appropriate 
sequence (Fn). 
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F i g .  1 

However, we do have a more refined conclusion when the Z'n's are chosen in a 
special way. We recall that if R <~ 1 and F ( BR, there exists a "small" sur- 
face Z', Z' ( B R ,  of constant mean curvature one, spanned by F (see HILDE- 

BRANOT [8]). Another surface Z', Z' @ _Z', of  constant mean curvature one, spanned 
by F,  has been constructed by the authors in [2] (see also [23] and [22]); we call 
it a "large" solution of (0.1). For such special solutions we have the following 

Theorem 0.2. Assume that l~n ~ O. Let ~ be a large solution corresponding 

to Fn, obtained through the construction o f  [2]. Then a subsequence o f  the ~ con- 
verges to a single sphere of  radius one containing O. 

A similar conclusion for the volume constrained Plateau problem has been 
obtained earlier by H. WENTE [28]. 

Such geometric problems are closely related to this question. Let u~: ~- -*  R 3 
be a solution of  the system 

n A u " = 2 u  nAuy on 12 

(0.2) u ~ = ~n on ~O. 

Suppose that 7 n ~ 0. What can be said about the sequence (u ~) ? 
Our approach relies on a kind of "blow-up" analysis. After the "blow-up" 

has been performed we are led to an equation on all of R 2. Our next lemma 
plays an important role since it provides a complete description of the solutions 
on all of p~2. 

Lemma 0.1. Let co E L~oc(R2; R3) be such that 

(0.3) d m = 2 t o x A t o  e o n R  2, flVtol2<~. 
R2 

Then o~ has precisely the form 

(0.4) to(z) = zt \Q(z)]  + C, z = (x, y) = x q- iy, 

where z~ : C ~ S 2 denotes stereographic projection, P, Q are polynomials and C 
is a constant. In addition f I Vo~ [2 = 8~ Max {deg P, deg a}. 

R2 

Note that (0.3) is invariant under translation and dilation. Thus, if co satisfies 
(0.3) and if we set 

�9 - -  a 
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where a E 12 and en-+ 0, then u n satisfies (0.2). Moreover  if o~(e,~)= 0, then 
X ' -+  0. 

Our main result asserts that  if (u n) is any sequence bounded in H ~ and satisfy- 
ing (0.2) with 7n-~  0, then (u n) behaves essentially like a finite superposition o f  
terms o f  the form (0.5). More  precisely we have 

Theorem 0.3. Suppose (u n) satisfies (0.2) with X" -~ 0 in 
f IVu"? <= c. Then there exist 

~2 

(i) a finite number o f  solutions ~o 1, to 2 . . . .  ~o p 
(ii) sequences (a~), (a]) . . . . .  (a p) in s and 

(iii) sequences (e~), (e~) . . . .  (e~) with e, > 0 
such that, for  a subsequence o f  the u n, 

(0.6) 

and 

(0.7) 

HI/2(c%Q; R 3) and 

o f  (0.3), 

(u Vn) 

El IL - -  0 

P 

f IVu"? = 2; f Iv 'l + o0). 
D i = 1  R z 

= 0(u and lim e n 
n--~ oo 

Comments. I. A variant  of  Theorem 0.3 (see Theorem 3) asserts that  if  (u')  
satisfies (0.2) with Xn-+ 0 in L~(8-Q;R 3) and f IVunl 2 =< C, then there exist 
to i, (a/) and (e/) as in Theorem 0.3 such that  

El 
This proper ty  is of  course very useful for  geometrical applications. 

2. Under  the assumptions of  Theorem0 .3  it follows that  (1/8~)f lVunI 2 
converges to some integer. We deduce in particular that  

(a) if f l V u n [  2 9 8 z - 8  for  some 5 > 0 ,  then f l V u ' l  2 - + 0 ;  

(b) if f [Vu"l 2 = 8z + o(1), there is exactly one non constant  solution co 
of  (0.3) such that  

�9 _ _  a n 

This is precisely what  happens when we choose u n to be the " large"  solution o f  
(0.1) constructed in [2]. 

3. Theorem 0.3 says that  the functions (u n) "concent ra te"  around a finite 
~ In case a i " number  of  points a t = l imn-~  an. 4: a J, then the functions 

, / - a q  

have essentially "disjoint  supports" .  However,  it could happen that  a i - -  a j 

i a ,  j ~= a. In such a case we prove that  en/en and i ~ j ,  say for example if a n ~  i j 
t J tends to 0 or cx~ as n ~ co. This means that  the functions (oJ~) and (o9~) concentrate  

at the same point,  but  the "speeds of  concentra t ion"  are very different�9 For  a 
detailed analysis of  the general case, see Theorem 2. 
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4. The conclusion of Theorem 0.3 still holds if we replace (0.2) by 

A u " = 2 u ~ A u ~ + . f "  on Q 

(0.8) u ~ = 0 on ~.Q, 

and f~---~ 0 in H -1. 
This has some implications for the Palais-Smale condition. Consider, for 

example the functional on H01(z'2;R 3) given by 

e(u) = f IVul 2 + f u. ux A u, 
~2 O 

(critical points of E correspond to solutions of Au = 2ux/x uy). Let (u n) be a 
sequence in H01 such that 

E(u ~) -+ c, E'(u ~) ~ 0 in H -1 . 

In general (u ~) need not be relatively compact in Hd (that is, the (PS) condition 
is not satisfied). However the conclusion of Theorem 0.3 still holds and it follows 
that c : (8Jr/3) k where k ~ 0 is an integer. Theorem 0.3 implies in particular 
that u"-+ 0 strongly in H11or \ W {ai}). A similar phenomenon had been ob- 
served for the first time by SACKS & UHLENBECK [17] in the context of harmonic 
maps; subsequently their technique was used by MEEKs-YAu [15] and by 
SIu-YAu [19]. The general method of  concentration compactness due to P. L. 
LIONS [14] could also be used in our problem. It would show that, under the 

assumptions of Theorem 0.3, I Vu"l 2 converges in the sense of measures on ~ to 
a finite sum of  Dirac masses, S o~ ~d with 0q ~ 8~r. Our conclusion is more 
precise and leads for example to oq ---- 8Jrkt where k~ is a integer. However, our 
proof  is inspired by the method of concentration compactness and we introduce 
(as in [13], [14]) the concentration functions Q~(t) = Max f [Vu"l 2 (presum- 

z ~  z+t~ 

ably, one could also use the same compactness device as in [4], [12]). 
Related questions have been considered by C. TAUBES [25] for the Yang- 

Mills equations in dimension four and (independently of our work) by 
M. STRUWE [24] for the problem: 

--Au,, = lu,~f -1 u,, + f , ,  on .Q Q R  N 

un = 0 on 0s 

where f ,  ~ 0 on H -1 and p = (N + 2 ) / ( N -  2)--except that the analogue of 
Lemma 0.1 is still missing (i.e., there is no precise description of the set of solutions 
of  --AoJ = I~of-lco in R u and f IVr co; however all solutions ~o with 
constant sign are known, see [5]). 

The paper is organized as follows: 
In Section 1 we prove Theorem 0.3. 
In Section 2 we describe some additional properties dealing with the "speeds 

of  concentration". 
In Section 3 we establish convergence in the L ~ norm. 
In Section 4 we discuss geometrical applications. 
The Appendix contains the proof  o fLemma 0.1, as well as some technical facts. 
The results of this paper were earlier announced in reference [3]. 
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1. Strong convergence in H I 

Let (u") be a sequence in Ho t [=  HOt(O; R3)] satisfying 

(1) 

with 

(2) 

and 

(3) 

A u " = 2 u ~ , ^ u ~ , + f "  on 12 

u" = 0 on a.Q, 

f"---~ 0 strongly in H -1 

f IVu"l= ~ c .  
D 

We claim that u n ~ 0 weakly in Ho t; indeed suppose that u" --~ u weakly in Hot. 
We deduce from Lemma A.9 in [2] that u~/x u~--~ Ux A uy in ~ ' ,  and thus u 
satisfies 

[ Au = 2Ux/x uy on $2 
(4) / u = 0 on al2. 

On the other hand, from a result of WENTE [27] we know that u = 0 is the only 
solution of (4). 

In general (u ") does not converge to 0 strongly in HOt. Thus our purpose is to 
obtain a more precise analysis of the behavior of  (u") as n - +  oo. Our method 
involves a "blow-up" analysis near some singular points. This leads in a natural 
way to the consideration of functions toe L~o~(R2;B?) satisfying 

(5) 
Ato : 2to x ^ coy on R 2 

f ivtol2 < oo. 
R2 

The solutions of  (5) are smooth (see [26]) and they are completely described in 
Lemma A.1 in the Appendix. In particular they are bounded, to(oo) = lim to(z) 

Izl-+oo 
exists, and 

(6) f I Vto I s = 8~k 
R2 

where k => 0 is an integer. The main result of Section 1 is the following 

T h e o r e m l .  Assume (uO satisfies (1), (2), (3) and that f lVu~l  2 does not 
tend to O. Then there exist  a 

(i) a f inite number o f  non constant solutions to1, toz . . . .  top o f  (5) with 
toi(oo) = 0 (Vi), 

(ii) sequences (a~), (a 2) . . . .  (a~) in O, and 
i i = 0 (Vi), (iii) sequences (e~), (e 2) . . . .  (e~) with en > 0 (u u  and lim e, 

n---~- o o  
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such that, for a subsequence of  the u" (still denoted by (u")) 

( )L - -  O0 i " - - a t  - -  O ,  

i=1  T x n"-~ ~ 1 7 6  

P 

(8) f iVu"l z = Z f Iwo'l 2 + o(1), 
-O i=1  R a 

1 �9 i 
( 9 )  8n n ' - * .  o o  - "  

_-7- dlst  (a~,, 0/2) - -  o0 (u  

(7) 

As an immedia te  consequence o f  Theorem 1 we have 

Corol la ry  1. Let (u ~) be a sequence in H ~ satisfying 

Au" = 2u~ /x u~ on /2, u" ~- ~" on 0/2, 

with 

(10) 

and 

(11) 0 < ~  fLVu"l~<=c. 

Then the conclusion of  Theorem I holds. 

Proof of Corol la ry  1. Let  h" be the solut ion o f  

Ah" = 0 on 12, h ~ = y" on 0/2, 

and  set v = = u" -- h'. Then v ~ satisfies 

A v " = 2 v ~ A v ~ + F o n  /2 

v ~ = 0 on 0D,  

where f "  = 2[(h~ A v~) + (v~ A h~) + (h~ A h~)], and  f " - ->  0 s t rongly in H -1 
by  L e m m a A . 1  in [2] (since h" - ->0  in H1). Therefore  we are  reduced  to  the  
s i tuat ion o f  Theorem 1. 

Proof of Theorem 1. We may  always assume in add i t ion  tha t  

(12) Ilu"llLOO =< C. 

Indeed  let ~o"E H~ be the solut ion o f  

Aq) ~ = f ~  on /2, ~v ~ =  0 on 0/2, 

so tha t  ~ " - - ~ 0  i n H d .  Set v ~ = u  ~ - ~ 0 " ;  we have 

Av~=2v~,^V~v+g ~ on /2 

v ~ = 0 on &Q, 
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where g" = 2(v~ A q~ + q~ A v~ + 9~, A 9~). I t  follows from Lemma A.1 in [2] 
that  [[v'l[Loo =< C and g'---~ 0 in H -1. Therefore  (v n) satisfies the assumptions 
of  Theorem 1 and (v') is bounded  in L ~. 

In what  follows we assume systematically that  (u") satisfies (12), and we extend 
u" by 0 outside g2. The main ingredient in the p roof  of  Theorem 1 is the follow- 
ing 

Lemma 1. Assume that (uO satisfies (1), (2), (3), (12) and 

(13) f 17u"l z ~ o~ > 0. 

Then, there exist 
(i) a non constant solution w of  (5), 

(ii) a sequence (a,) in g2, and 
(iii) a sequence (e,) with en > 0 and l ime,,  = 0, 

n---~ o o  

sueh that (for some subsequence still denoted by (u")) 

(14) 

(15) 

and in addition 

(16) 

fin(z) = u'(e,z + a,) -+ co(z) for a.e. z E R 2 

Vh n---~ V o  weakly in Lz(R 2) 

1 
- -  dist (a,, at2) ~ oo.  
gn 

The p roo f  o f  Lemma 1 uses the basic inequality Lemma A.8 o f  [2], which 
we recall here. 

L e m m a  2. There is a constant Co such that 

i f  -<_ IIV,,ll : vuc ss'(s s-g(s IlVullL: U A v.,, Co 

In the p roo f  o f  Lemma 1 we shall also use the following convergence result. 

Lemma 3. Let (u') be a sequence in L~176163 A H1(s and let uE L~163 HI(~) .  
Assume that 

(17) 

(18) 

(19) 

(20) 

A u" = 2u~ A u~ -k g, on $2, 

II Vu"IIL2(O) ~/ . to  -~ o(1) with 2Co/to < 1, 

u n-~ u weakly in HI(s 

g ' -+O strongly in H-1(s 

Then u ' -+ u strongly in H1(s ') for all s ~ s 

Proof .  Step 1. We first reduce to the case where u = 0. Set v" = u n - -  u; 
then we have 

Av n = 2v~ A V~ + 2(Ux A V~ + V~ ̂  Uy) + g" on s 
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Let ~o" be the solution of the problem 

A~o"=2(UxAV~+V~AUy) on s 

~o" = 0 o n  8 s  

We claim that ~o ~-+ 0 strongly in H~. Indeed from Lemma A.1 in [2] we know 
that 

I[~0"llLoo < c IlVul[L, IlVv"llv < c 

IlV,:"lk2 < CllVullL= llVv"llv < c .  

On the other hand, 

- -  f I v~0"l: = 2 f ~:". (Ux ^ v~ + v~, ^ uy), 
D g~ 

and (for some subsequence) both 7,"A ux and ~0"A uy converge strongly in 
L 2 by dominated convergence. Since v~, and v~ converge weakly to 0 in L 2 it 
follows that f ]V,p"]2---> 0. Finally we have 

t2 

A v" = 2v2 A V~ + h" on s 

for some sequence h"---> 0 strongly in H - ' ,  and moreover 

f [vv"l 2 = f IVu"l 2 - f ]Vul 2 + o(1) __<#0 2 + o ( 1 ) .  

Step 2. We assume now that u ---- 0. Fix (E :9(s By (17) 

- f Vu". V(r -- 2 f r u~ :, u~ + o(1). 

Therefore, using (19) we find that 

- f I V(~ugl:  = 2 f  u". (r ^ (r + o(1). 

We deduce from Lemma 2 and (18) that 

f [V((un)l 2 ~ 2Co IlVunlIV IIVffun)ll~ + o(1) 

2Co/*o IIV((u")[l~, + o(1). 
Hence 

f r iVu.l~ __ o ( 1 ) .  

Proof of Lemma 1. As in [13] and [14] we introduce the concentration 
functions 

Q,(t)--Sup f IVu"[ 2 for t-->0. 
zER2 z+tf2 

Each function Q,(t) is continuous and non-decreasing in t, and Q , (0 )=  0, 
Q.(1) = Q.(oo) = f IVu, I ~ __> ~,. 

~9 

We fix a constant *, such that 

(21) 0 < v < Min (1/4~, ix}. 
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There exists some 0 < e. < 1 such that  Q . ( e . ) =  v and there exists some 
I 

a. E 2-2 such that  

a.(~. )  = f IVu"l = = ~. 
a. + s .~  

Set fi~(z) = u"(e.z + a.);  by (3) and (12) we have 

(22) f IVfi"[2 = f [7u"12 < c 
R 2 R 2 

(23) II~nlIL~(R=) = Ilu"IIL~R=~ =< C. 

Therefore we may assume that 1 

(24) fi"---~ o) a.e. on 1% 2 

(25) Vfi"~-. Vo) weakly in L2(R2). 

Let  O.  = (l/e")(22 --  a.), so that  22.--~ U. We now distinguish several cases. 

Case (a). e. ~ l > O, 
Case (b). e. --~ 0 and (1/e.) dist (a., ~22) -+  m < e~, so that  U is a half-plane, 
Case (c). e. -+ 0 and (1/r.) dist (a., ~22) -+  cx~, so that  U = R 2. 

We shall establish that  cases (a) and (b) cannot  occur (a similar phenomenon  
appears in [1]). 

Let  0" be the solution o f  

AO" = f "  on 22, O" = 0 on OO, 

so that  0" -+  0 in Hd(22). We have 

A(u" - -  0") = 2 4 ^ u~ on 22, 

and thus 

(26) A(fi" --  0") = 2fi~" A fi~ 

where 0"(z) = O"(e.z + a.). Note  that  

f IVo"l z = f lV0" l~=  o(1). 
a.  a 

Hence passing to the limit in (26) we obtain 

(27) Aco = 2o~ x ^ oJy on U 

and moreover  

(28) to = 0 on 0U. 

on 22., 

1 This is valid only for a subsequence; we shall however often extract subsequences 
without explicitly mentioning this fact. 
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Suppose that we are in Case (a). We recall that u n- ' -  0 weakly in Hd(g2); 
thus u" ~ 0 strongly in L2(-Q) and f I fi,12 __~ 0. We claim that 

a n 

(29) V~" -+ 0 

This is impossible, however, since 

flV~"12= 
a 

and thus Case (a) is excluded. 

strongly in L2(R2). 

f IVu"12= v > 0, 
an+~n a 

In order to establish (29) it suffices to prove that 

(30) f ~2 IV~"l ~ = o(1) 

for all ~ C ~ ( R  2) with supp ~" Q z + ~Q for some z E R z. Fix such a ~. Multi- 
plying (26) through by ~2fi, we find 

(31) f tV((fi")l 2 = - 2  f fi". (r A (r + o(1). 
a n a n 

We deduce from Lemma 2 and (31) that 

v-" I s f ]V( ( f i" ) l  ~2Co II u IlL2<z+a) f l V ( ~ " )  + o(1) 
an an 

< 2Co 1/; f IV(~")7 + o(1). 
a n 

Since 2Co ]/~ < 1 we obtain (30), and hence Case (a) is excluded. 

Suppose that we are in Case (b). We deduce from (27) and (28) that co = 0; 
this is WENTE'S result [27] (WENTE considers the case where U is a disk, but the 
case where U is a half-plane may be deduced from the case of  a disk by a conformal 
diffeomorphism). Therefore using (24) and (25) we have 

fi"--~ 0 a.e. on R 2 

V~ ~--~ 0 weakly in L2(B2). 

Exactly as in Case (a) we can prove that 

(32) Vt]n-+ 0 strongly in L2oc(R2). 

However this is impossible since 

flvh"l z :  f IVu"12=~>0. 
a an+ena 

Therefore Case (b) is excluded. 

Hence the only case which occurs is Case (c). In order to conclude the proof  of  
Lemma 1 we have only to show that ~o is not a constant. We claim that 

(33) Vfi"-+ Vo~ strongly in L2oc(R2). 
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Since on the other hand, we know that 

Q 

it follows that f [Vtol 2 ----v > 0; therefore to is not a constant. 
a 

It remains to prove (33). Fix any zE1%2; since we are in Case(c), we 
have (z -+- Q) ~ Qn for n large enough. Therefore we may apply Lemma 3 
to the sequence (fi") restricted to (z + s It follows that fi"---~ to strongly in 
Hlloc({z + .Q}) and therefore Vhn---~ V(.O strongly in L2oc(R2). 

The proof  of Theorem 1 consists of iterating the construction of Lemma 1. 
Our next lemma explains how to carry out this iteration. 

Lemma 4. A s s u m e  (u n) and to, (an), (en), are as in L e m m a  1. Se t  

ton(z) = co ( z - -  a__..~i 
\ en I 

and let h n be the solution o f  

A h  n = 0 on Y2 

h n = t o n  on ~$'2. 

Se t  v n = u n - -  ton + h". Then v n satisf ies 

{ Avn = 2v~ A vy + k n on 12 

(34) v" = 0 on Of  2 

with 

(35) 

(36) 

k " - +  0 s trongly  in H - l ( g 2 )  

fDvv"12 = flVu"I ~ -  f lv toh  ~ + o(1) 
~2 R 2 

(37) ]L v"llL~) =< C 

It is now clear how to prove Theorem 1 with the help ofLemma 1 and Lemma 4, 
namely: 

Proof of Theorem 1 concluded. First note that if (u") satisfies (1), (2), (12), and 
in addition 

(38) f I Vu"l ~ < c < 8z~ Vn, 

then, in fact 

(39) f IXTu" I z = o(1). 
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[Indeed if (39) fails, then (13) holds for some o~ ~ 0. Applying Lemma 1 and 
Lemma 4 we see that 

0 < f IVv"l ~ = f IVu"l ~ - f IVcoI = + o(1) < c - 8~ + o(1), 
D D R a 

which is impossible.] 

Suppose now that (u0 satisfies (1), (2), (12) and 

f IVu"] ~ > 8~  + o(1) .  

We iterate the constructions of Lemma 1 and Lemma 4 until the iterated func- 
tion satisfies (38). This requires only a finite number of steps--in fact at most 
sup (1 /8x) f  ]7u"]2--and leads to the results 

n 

i=1 \ e i  ] -]- i=1  n l - -  0 
(40) 

and 

(41) f IVu"] 2 
a 

Finally from Lemma A.2 in the Appendix 

II h? - -  co'(~)II1t, -+  0 

and so from (40) follows 

p 

= Z f Ivco'l z § o(1). 
i=1 R 2 

Vi,  

' co;(oo) \ e~ I + ~  ~ o .  i=1 i=1  [H x 

The conclusion of Theorem 1 follows if we replace coi by co i -- coi(cx 0. It remains 
therefore only to prove Lemma 4: 

Proof of Lemma 4. First we recall from Lemma A.2 in the Appendix that 

[I h" - -  c o ( ~ ) I l n , c ~ - +  0 ,  

and in particular f 17h"l 2 = o(l). Next, we have 

d r "  = 2u~ A u 7 + f "  - -  2co~ A co 7 

= 20" + co" - -  hn)x A ( V  n d V con - -  hOy -k f "  - -  2co'], A co7 

~2v~  ,xv 7 + f " +  A~0" + A~o", 

where ~0" and ~p" are respectively the solutions of 

~0"  = 2[(u~" - co~") A o,~ + co~" A (u; - co7)] on ~9 
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and 

av," = - 2 0 "  ^ v~ + v~ ,, h~ - h~ ~ h~) 

~p~ = 0 on 0s 

Using Lemma A.1 from [2] we see that 

on Q 

(42) IlVv:ll~, ~ c llVh"IIL~ (IIV:IIL' + IlVhn[[L,) : o(1). 

On the other hand, the q: term can be treated by applying Lemma A.3 in the 
Appendix. Note here that ~" = u" -- e~" satisfies 

~ n ( z )  = ocn(Sn Z -~  an) : ~ln(Z) - -  O)(Z) ~ 0 

and thus 

(43) f I V~:l 2 = o(1). 
g~ 

Hence ( : )  satisfies (34) and (35). 

a.e. on R 2 

Finally we prove (36); indeed we have 

f l V : l  ~ = f lVu"l  ~ - 2 f V u " W :  + f IVo: l  ~ + o(1) 
D ~ D 

= f lVun l  ~ - 2  f v ~ : v o ~ +  flWol= + o(1) 
D .O n .O n 

: f IVun[ 2 -  f IVo~t 2 + o(1) 
.o  tl, a 

since Vfi ~-~ Vw weakly in L2(R 2) by (15). This completes the proof. 

Remark 1. Given ~0 E L~176 with Vtp E L2(R 2) we set 

Q(~) = f ~ . ~ ^ ~, .  
R2 

Similarly if ~o E L~(I2) A H~(J2) we also set 

Q(~) = f ~ . ~ A r ,  
D 

(When q~ E Hol(g2) (and ~0 ~ L~176 it still makes sense to consider Q(~0); the 
precise meaning of Q is explained in [2]). We claim that under the assumptions 
of Theorem 1 we have 

P 

(44) Q(u n) = ~] Q(o9/) + o(1). 
I = l  

This has the following implication for the functional E defined on Ho 1 by 

E(u) : f [ Vu [2 -t- 4 Q(u). 
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Suppose that (u0 is a sequence in/-/ol which satisfies the (PS) condition, namely 

(45) E'(uO-*  0 in H - t  , 

(46) E(u") ~ c, 

Then c = 8z~k/3 for some integer k > 0. 
Indeed we deduce from (45) that 

Au" = 2u~. A U~, + f "  on Q 

with i f - +  0 in H -1. Moreover 

- f lVu"l  ~ = 2Q(u") + <fn.u"> 
D 

and thus 

/ ( u " ) - -  f lVu"l  = +-}Q(u")= ~ f l V u ,  I = = ~,r, u"', -- -# \ s ,  / = e + o(1). 
D 

Hence f I fu" l  = =< C. Applying (8) and (44) we obtain 

P P p 

E(u") = Z f I%;I = + ~ ~ Q(oJ) + o(1) = ~- Z f IV~'I = + o(1). 
i ~ l  R ~ i=1 i= l  R a 

Using (6) and (46) we see that c = 8~k/3 for some integer k ~ 0. 

Proof of (44). Using the notation of Lemma 4, we claim that 

(47) Q(v0 = Q(u" - to" + hO = Q(uO - Q(~o) + o(1). 

Indeed we write (see Lemma A.11 in [2]): 

Q(vO = Q(uO + Q ( - a #  + hO + 3 f u"" ( - - ~  + h~,) A (--~O"v + h~,) 

+ 3  f ( - - to"+h") .U~ ,AU~.  
a 

By Lemma A.2 in the Appendix we have 

II h" -- ~o(oo)IIn,~) -+ 0. 

Using also the fact 

we see easily that 

II hn - o.)(oo)[[LCQ(..Q) ~ O, 

Q(- to"  + h") = -Q(oJ) + o(1), 

fu ' . ( - -o~7,-+-hy, )A(--a ,~+h~,)= f fi"-~Ox ̂ %  + o(1) 
a a,  

= f o ~ . O O x m % + o ( l )  
R2 
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and 
f ( - - to" + h") . uy, A u; = - -  f to . "" n n U x A ~ + 0(1) 

: -- f t o "  tox Atov + 0(1). 

This completes the proof of (47), and (44) is an easy consequence of (47). 

2.  An additional property of  the speeds of  concentration 

In case Theorem 1 leads to more than one to the following additional informa- 
tion is very useful. 

Theorem 2. Assume (u"), toi, (ai), (e~) are as in Theorem 1. Then we have 

l (48) Max -~: i ,  t --~-~--oo V i ~ j .  

Remark 2. Property (48) can be understood by considering two extreme cases. 
Suppose first that a~ ~ a i and a~ ~ -  a j with a i ~ a J; then (48) clearly 
holds. This means that the functions 

�9 / .  - aA 

concentrate at two different points and thus their supports become "'essentially dis- 
joint".  On the other extreme, suppose that a~ ~ a~ ~-a.  From (48) either 
ein/e~ ~ - .  oo or e~/ei~ ~ - .  oo. This means that the functions to~ and col con- 
centrate at the same point, but the speeds o f  concentration are very different. 

i and to~ Remark 3. It follows easily from (48) that if i ~ j the functions to n 
are "almost orthogonal" in H ~. More precisely we have 

fltos + flvtos [vto~l = o(1) v i = k j .  

Remark 4. The "converse" of Theorems 1 and 2 holds. Namely, let f.O I, (,0 2 . . . .  O~ 
be a finite number of solutions of (5), let (a~), (~), . . .  (a~ n) be sequences in O, 
and let (e~), (e 2) . . . .  (e~) be sequences with e~ > 0 (u Yn) and lim e~ = 0 (Vi). 
Assume that (48) holds and set ,,-.oo 

u . =  o .  
,=t ~ ~,  1 + 

with on-+  0 strongly in H 1. Then u" satisfies 

A u " - - - - 2 u ~ ^ u ~ + f "  on G2 

with f"--> 0 strongly in H -1. This may be proved easily with the help of Lemma A.3 
from the Appendix. 
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The proof of Theorem 2 relies on the following 

Lemma 5. Let  <o and to,, e~2 . . . .  o~ k be a finite number o f  solutions o f  (5). 
Assume that 

k 

(49) ~o = ~ ~o s. 
i = l  

Then 

k 

(50) flveol2=< ~, f 17~,12. 
R 2 t=I  R 2 

Moreover i f  equality holds in (50), that is, i f  

k 

(51) f IVo*l ~=  Z f IVo~,l 2, 
R 2 i ~  1 1% 2 

then each ~oi is a constant, with the possible exception o f  one o f  them. 

Proof. We write (see Lemma A.1 in the Appendix) 

,o = ~r + C ~ "~ + C, r = :r + C~ ~ ~i  + C~. 

Thus by (49) 

where ~-'= ~ G - - C .  
i 

and thus 

k 

i = 1  

On the other hand (see the proof of Lemma A.1) 

- A ~ = ~ I V ~ [  2 on 1% 2 

- - A ~  z = ~ t l v ~ i l  2 o n R  2 Wi, 

k 

Iv~l  2 = E ~,  Iv~,l 2. 
t = 1  

Forming the scalar product with ~ and using the fact that [U[ = 1, we obtain 

k 

f l V ~ l  2 =  Z f ~ ' ~ , l W ,  I 2- 
1% ~ i - - I  R 2 

But 

~"  ~i = 1 - �89 I~ - oSd z 

and hence we find 

k 

(52) 

(since I~1 = I~,1 = 1), 

k 

f IV~l ~ = ~ f Iv~,L = - �89 f ~ I~ - ~1 = IV~d =. 
R ~ i = 1  R 2 E ~ i - - I  
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This proves (50). Suppose now that (51) holds. For each i we have (using (52)) 

I~ - -  bS,[ [ V ~ , I  ---- 0 a .e .  

If  ~ is not a constant, then V~ i =4= 0 everywhere except possibly at a finite 
number of points (see the proof of Lemma A.1); thus ~i = ~. This implies the 
conclusion of Lemma 5. 

P r o o f  o f  Theorem 2. We introduce the following equivalence relation on the 
integers 1 <--i~_p, l:<j_--<p, namely 

I/~. a, -- ~ 1 [  remains bounded as n -+ oo. i ~ j  if and only if Max e~ I i i ~ i l ,~  ,~,, ~ n + ~ /  
Denote the corresponding equivalence classes by I , , /2  . . . .  It. We shall prove that 
each equivalence class contains precisely one element, which is exactly the asser- 
tion of Theorem 2. We break the proof into four steps. 

Step 1. We claim that 

(53) 

Indeed 

(54) 

where 

f IVto/nl IVto,J[ ---- o(1) 
R2 

if i and j are not equivalent. 

f IV~o'.l IVo~ZI = f Ivo'l ~" 
1% 2 i%' 

Step 2. When i ,,o] we introduce the expressions 

lij : limooen/eni ~ and Pu : limoo(ai,--ai,)/eJ,. 

For each equivalence class I we f ix  some i E I and set 

(~l(Z) = ~ 09J(loZ -}- Pi j ) ,  Z 6 R z �9 
]El 

Since i and j are not equivalent we may assume that either 

~/~  n - - ~  0 
or  

et,/e,J n--~-~-~ l with 0 < I <  oo and lai, -- aJ, I / enJ~-~oo .  

The sequence (~0 n) is bounded in L2(R 2) and moreover (in both cases) ~0"--> 0 
a.e. Therefore tp" -,- 0 weakly in L 2. The required conclusion thus follows from 
(54). 

e. V~ j e~.z 
r = " �9 
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We claim that for each equivalence class 

Indeed 

sl ' + '  
e .  . a n 

: VoJ(z)+ ~] 77V~ 
~ I j~t,j+t e, e~. 

~--a~ 
where s  " " 7 - - ,  and also 

8n 

Vtoj e~z + am,. 
Sn ~n J 

strongly in L2(R2). Thus (55) holds. 

.-:-~-" tu VtoJ(t~iz + pi~) 

Step 3. We claim that toz satisfies (5) for each equivalence class L Set 

P 
o "  = u n - E to'~ on R2 

j = l  

(recall that u" has been extended by 0 outside O), so that 

f lVO"[  2 = o(1) and [IO"llLoo < c .  
R2 

Fix i6  1 as in Step2 and set 

( ' a~) (56) ~'(z) = u~(~z + a'~) = oJ(~) + ~. toJ ~-~z + ~ - J. ,  ~ + (9"(z) 

where O"(z) = O"(eiz + ai). As in the proof  of Lemma 1 we have 

~"(z) --~ to(z) a.e. on B z 

V~--~ Vto weakly in L2(Rz), 

and of  course to satisfies (5). On the other hand 

f Iv~"[ 2 = o(1) and [IO"IIL~ =< C 
R2 

and thus O" ~ C a.e. on R 2, where C is a constant. Finally we observe that if 
j ~ L then 

t o y  Z - ~ -  a n - -  a -'-: -+ Cij a.e. on R 2 

for some constant C U. 
Passing to the limit in (56), we obtain to = e,I + C where C is a constant. 

Hence tol satisfies (5). 
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Step 4. Proo f  o f  Theorem 2 concluded. We deduce from Lemma 5 and Step 3 
that for each equivalence class I we have 

(57) f IW~ = ~ Z flVo~Jl2- 
R '  j ~ l  R ~ 

Moreover equality holds if and only if I is reduced to a single element (recall that 
each to i is nonconstant). We deduce from Step 1 that 

f IVunl 2= Z WOJ. +0(1), 
�9 Q q = l  

and using (55) we find 
! 

(58) f Vu"l 2 = Y~ f[v~O,ql 2 q- o(1). 
D q = l  R 2 

On the other hand, by (8), 

P 

(59) f l w " l  2 = ~] flvo, ' l  ~ + o(1). 
-Q / = I  B, a 

Combining (57), (58) and (59) we see that equality holds in (57) for each equi- 
valence class L 

3. Convergence in the L ~ norm 

The main result of Section 3 is the following 

Theorem 3. Let  (u") be a sequence in H 1 satisfying 

(60) 

with 

(61) 

and 

(62) 

{ Au" = 2uT, ̂  u~ on s 

u" = yn on OF2, 

f IVu"l 2 __< c.  
.Q 

Then either IlunllLo~) n ~  0 or there exist co i (ai~), (ei~) as in Theorem 1 such 
that 

(63) u n __ t~ i �9 --  a~ ~. O. 
i = 1  L ~ 1 7 6  n - + c o  

Moreover (9)  and (48) hold. 
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(64) 

Proof. Let u" denote the "small" solution of the problem 

A u" = 2u~" A u" _ - _y o n  /2  

( u" = y" o n  0 / 2 ,  

so that (see [2] or [8]) we have 

(65) 

From (61), (62) and the construction of u] it follows that Ilunlln~ ~ c .  Set 
v " : u " - u "  so that v"EHd and 

(66) 
A v" = 2(v~, + u~) A (v~ + u~) -- 2u~ A u~ 

=_ 2v~ A v~, W f " ,  

= " u n A 5)"  We claim that fn._+ 0 in H -1. Indeed let ~0" where f "  2(v~ A uj; + _x 
be the solution of 

A~0" = f "  on Q, ~ " =  0 on aQ. 

Using Lemma A.4 in [2], we have 

and thus 

- f Iv~-I 2 
t2 

= f f " . q ~ " =  2 f U " . ( V ~ A q ~ , + c p ~ , A V ~ , ) ,  
t2 t2 

f IVqjn[ 2 = o(1). 
O 

Theorem 1 applied to the sequence (v") asserts that either f IVtYl 2 ,-.oo-" 0 or 
there exist o9*, (a~) and (e~,) such that 

�9 _ _  a i 

i = l  f O i  - - n  

In the first case, we deduce from (66) and Lemma A.1 in [2] that 

IIv"llL~ =< C liVv"ll~= + C IlVvnllL, IlVunllL2 = o(1), 

and therefore Ilu"llL~-~ O. 
P 

In the second case we set R " : v  " -  ~ w ~  so that 
i = l  

(67) 

We claim that 

(68) 

n - - . . ~  IIg I1~1 .-,oo 0. 

II g"l[Lo~ ~--~=-- 0 

(the relation (68) clearly implies (63) and so will complete the proof). Indeed 
we write 

[ , A R n 2 v~ A v~, -q- Vx ^ uj  q- _x (og~)x t, (o9 

=-- An -q- B" + C",  
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where 

y x 

B" ----- 2 Z _xU"/x (tO~)y + (t.~)~ A u~, 
i 

c n  -~ Z i j i (O)n) x A (Oknly + (tDJn)x A ((Dn)y. 
i+j 

Introduce U', V" and W" respeetively as the solutions of  the problems 

A U n = A "  on ~Q, U" = 0 on 0.Q, 

A V" = B n on ~Q, V" = 0 on 0.Q, 

A W " =  C" on D, I4,"---- 0 on 0g2. 

From (67) and Lemma A.1 in [2] 

/ \ 
tB v"k= <_- c LiVR"k,/ILVR"it,2 + llVu"k2 + Z itv %i 

\ l / 

Also from (65) and Lemma A.3 in the Appendix 

l[ WIlL ~~ ---- o(1). 

Using Lemma A.3 again we see that 

I[ W'IIL ~~ = o(1). 

Indeed observe that if i @ j then by Theorem 2 

j i �9 leinZ + a~n - -  aYn.] 
~,.(e.z + d.) = o~J [- ~ ]" -+ Co 

e'. 

Finally note that 

A ( R ' - -  U n -  V ' - -  W n ) - - 0  o n . Q  

R " - -  U ' - -  V " - -  W n =  - - ~ t o i ~  on c~f2, 

and thus 

iiR" U" V ' - -  W'llLO%m < ~ i _ _ = [l~,llLoO<0~). 
i 

Therefore we have 

a.e. on R 2. 

= o ( ] ) .  

We now consider a spec ia l  case  of  Theorem 3. Suppose that u" is a large solu- 
tion of (60) obtained through the construction of [2]. To describe this construction 

[I R"li,=<~) < I[ V"l[Lo~<~> + [[ V"lL,oo~) + i[ W" Ik~o<~) + Y~ / It~0.1[LO%0~) = O(1) 
i 

(recall that (1/e~) dist (an, c%Q) ~ - ' -  oo and that oj(cx~) = 0). This concludes 
the proof  of  (68) and completes the proof  of Theorem 3. 



42 H. BREZIS & J. M. CORON 

method,  let 2/E HI/2(tg,-Q)/') L~176 be such that  

I[~,l[Loo(0a) < 1 but  ~' is not  constant .  

We consider the problem 

Au ---- 2ux ^ uy on .(2 
(69) 

u ---- 7 on OQ 

and denote by u the small solution o f  (69) obtained by HILDEBRANDT [8] (or 
[9]). We look for  a second solution o f  (69) o f  the form 

so that v satisfies 

u = u - - v ,  v ~ O  

j .~v ~ - -Av  + 2(Ux ^ vy + Vx ^ 3 )  = 2Vx ^ vy on f2 
(70) 

v = 0 on OD. 

Note  that  

(~v,v)= flVvlZ +4 f u.vxAvy VvEHd. 
In [2] we have established that  

(71) J = Inf  (-~'v, v) < S ~ (32n) I/3 
vEHIo 
Q(v)= 1 

and that  the infimum in (71) is achieved by some v ~ satisfying 

~ v  ~  ~  ~ on ~. 

Therefore  fi = u _ -  ( . / /2)v ~ provides another  solution of  (69); fi is called a 
" la rge"  solution of  (69). 

Theorem 4. Let (7") be a sequence in Hll2(off2) A L~176 such that y" is not 
a constant and 

(72) [17"[[LOO(O~) ~-~-~-~ 0. 

Let ~' be a large solution o f  the problem 

{ Au-- - -2ux^uy  o n . Q  

(73) Y" u on &Q. 

Then there exist 

(i) a solution o~ o f  (5) with w(oo) = 0 and f lVo)[ 2 = 8~r, 
(ii) a sequence (an) in Q, and R~ 

(iii) a sequence (en) with en > 0 V n and lim e~ = 0, 

such that 
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a n d  

1 
- -  dist (a., ~f2) - ~ - ~  o o .  
e. 

Proof, Let u" be the "small" solution of (5). Set 

(.~'.v,v)= flVvl2+4 fff".vx^vy Vv~H3 
and 

Jn = Inf  (.t~. v, v). 
v ~ H  1 

Q(v )  = 1 

Let v ~ be some point where the infimum is achieved, so that 

~n=u. ~.,0 
-- - -  2 [ 'n" 

Since I[u"[I/:o : o(1) we have 

(,,~OnV , V) ~ ( 1  - -  o(1)) f IV~l ~ Vv~ I/o', 

and thus 

J~ __> (1 -- o(1)) S; 

here we have used the inequality IQ(v)l 2/3<: ( l / s ) f  IVvl2u H01 which is a 
consequence of a classical isoperimetric inequality (see [2]). 

On the other hand from (71) we have J .  < S and therefore 

(74) J .  ---- S q-  o(1). 

Set v" : -fi" - -  u" : - - ( J . / 2 )  v ~ Then 

(75) f h Vv"l ~ "1~" s3 ---- ~ - f  Iqv.~ 2 -- ~"  -k o(1) : 8zc + o(1) 

since f ]Vv]l 2 = J .  + o(1) -- S +  o(1). 
The proof of Theorem 3 shows that there exist o,  (an), (e.) satisfying (i), (ii), 

(iii), such that 

and 

(76) 

there is exactly one co i since in general 

flVv"12 = ~ flVco'l 2 + 0(1), 
D i R 2 

while here we have f IVv"[ 2 = 8~ -F o(1). Since I l u n l l :  = o(1) the conclusion 
D 

of Theorem 4 now follows from (76). 



44 H. BREZlS & J. M. CORON 

A similar result holds for the Plateau problem 

(77) 

A u = 2ux A uo, on 12 

luxl2 - lu, l~ = u~. u, = O on ~Q 

u(0t2) = r ,  

where 1" is a given Jordan curve (more precisely P = ~(aQ) for some 
0~ E C(~I2; R 3) A H1 /2 (~ ;  R 3) which is one to one). We know that if /~ ~ BR and 
R < 1 there exists a "small" solution ue of (77) (see [8]) and a "large" solution 
m e of (77) (see [2]). 

Corollary 2. Let (In) be a sequence of  Jordan curves such that 

(78) 1,n ~ 0 

(that is, F n (BRn(O) and Rn--~ 0). Let -u~ be a large solution o f  the Plateau 

problem (77) corresponding to 1" = In, obtained via the construction of  [2]. Then 
there exist o~, (an), (en) as in Theorem 4, such that 

and 

II 0 -o ~  .0 
O0 n---} o o  

1 
- -  dist (an, OQ) ~-~-~-" O. 
en 

Proof. The construction used in [2] shows that the "large" solution ~ of  
the Plateau problem coincides with the "large" solution of the Dirichlet problem 
(73) for some appropriate ),n : 80__> p3 such that 7 n E C(80) A HII2(OO) and 
y"(a~2) : 1"~. Therefore llT'~]lzo~aa)---~ 0 and we may use Theorem 4. 

4. Geometrical applications 

Consider again a solution u of the Plateau problem (77). The surface 27 = u(12) 
has mean curvature one and is spanned by F. 

We study the behavior of  a sequence of surfaces Z' n = un(Q) corresponding 
to a sequence 1"n such that F ,  --> 0. As a direct consequence of Corollary 2 we 
obtain 

Corollary 3. Let (Pn) be a sequence o f  Jordan curves such that Fn--~ O. Let 
Sn : 7~(~2), where 7t~ is a large solution of  (77) corresponding to 1" = Fn, 
obtained via the construction of  [2]. 

Then a subsequence of  the surfaces ~n converges to a sphere of  radius one con- 
taining O. 
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There  are possibly other  solutions of  (77)? We now consider the behavior  

of  a sequence of  surfaces Z', = u"(~2) where u ~ is any solution of  (77) corres-  
ponding  to / '  = / ' , .  Our  main  result is the following 

Theorem 5. Let  ( I n )  be a sequence o f  Jordan curves such that Fn--> O. Let  

Z .  = u~(g2), where u ~ is any solution of(77)  corresponding to F : 1" n. We  assume 
that 

�89 f 17u"[ z = area ('~n) ~ C. 
t /  

Then a subsequence o f  the surfaces S,= converges to 0 or to a finite (connected) 
union o f  spheres o f  radius one, and such that at least one o f  them contains O. 

Proof .  We consider an order  relation on the sequences of  positive numbers  
tending to O. Let  o~ ---- (o~.) and fl = (/3.) be two such sequences. We say tha t  

o~ <- fl if  lim/3./o~. < cx~. 
n---~ o o  

Without  explicit ment ion we shall systematically extract  subsequences, so tha t  
we may  agree tha t  every sequence of  positive numbers  has a limit in [0, + ~ ] .  
Strictly speaking this relation is not  an order  relation since oc < / 3  and /3 < o~ 
do not  imply o~ = / 3 ;  however  they imply tha t  ~ , ~ / 3  in the sense tha t  
0 < lim ~,//3. < oo. This order  relation is total,  that  is, given o~ and /3 then at  
least one of  the relat ions o~ ~ / 3  or  /3 ~ 0~ holds. 

Applying Theo rem 3 to the sequence (u") we obtain the to ~ and the sequences 
(a~,) and (e~,). We order  the sequences (e~) in such a way tha t  (e~) < (e 2) ~ . . .  
. . . ~ ( e ~ ) .  Then  for  i < j  

0 < lim j = en/8  n < 0 0 .  e~/e n < oo and 0 < l im i j : 
n---~ o o  n . - ~  o o  

We define for  i @ j 

(78) 
p o  = (a~ - a b l d  

if  0 < lira ~ j ~./e. =< oo 

i f  l im ; ~ e . / e .  = 0 .  
n---~ o o  

I f  0 < l im i j en/en < oo it follows f rom Theorem 2 that  
n - - ~  o o  

l im (a i --  a~)/e~ = oo. 
n---~ o o  

Here  l im (a~ -- a~)/e~ is unders tood  to be in R 2 W {co}, which is identified as S 2. 
ii--~- o o  

For  each integer i, 1 <-- i --< p we consider the sphere 

(79) Si ---- to'(R 2 U {co}) -t- ~ o)J(po). 
j # i  

It  would be very interesting to determine if and when there exist solutions of  (77) 
which are different from the ones constructed in [2]. 
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I f  i < j, then P0 = oo and thus r  0. It  follows that  

(80) Si = coi(R 2 k) (oo}) + y, t0J(p#). 
j<i 

In particular S, = ~oa(R 2 U {oo}) contains 0. We shall prove that 

p 

(81) u"(.Q) -+ kJ  Si. 
i= l  

The proof  is divided into two steps. 

p 

S t e p  1. For  each 0~ 6 k.J Si we construct a sequence (~.) in ~9 such that 
i= l  

p 

u"(~) ~ oc. Clearly it suffices to perform this construction for each o~ 6 t~/ Si, 

except for a finite number of  points. 
Given 0q we may write, for some i and some z 6 R 2, 

Set 

~, = ,o'(z) + 2s ,oJ(po). 
J<l  

As a consequence of  (9) note that ~. 6 ~9 for n large enough. Applying Theorem 3 
we obtain 

( (82) u"(~.) = ,o'(z) + ~ ,oJ ~.z + a. - ~,i  e-~ + o(1). 

I f  i < j we have e i t h e r  

0 < lira fl./e, j < oo, and then lim (aJ. - -  aJ.)[e~. = o o ,  
n -'-~ o o  n - ) - ~  

o r  

lim i j -- e./e. - -  0 %  and then lim ( f l . z  + ai. - -  aJ.)/eJ. = o o ,  
n---~ o o  n---~ o o  

except, possibly, for one value of  z (indeed, suppose that for some Zo 61% 2 we 
have 

14Zo + a~ - aJ.I/d < c; 
then 

d 14~ + ,~ - a.Jl > --,z zol e.~' 
m 

e.' 

On the other hand if j < i we have e i t h e r  

C-g~-~ c~ if z # z o ) .  

o r  

0 < lira ~ j e. /e ' .  < o o  and then lim (a'. - -  aJ.)/eJ. = o o  = p q  
n - - ~  n --)" ~ o  

lira i j _  e . / e .  - -  0 and then lira (a~. - -  aJ.)/eJ. = P u .  
n - + O o  n - ) -  o o  
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Combining all these cases with (82) we see that  

u"(~n) : coi(z) + ~u coJ(Po) -[- o(1) = or + o(1). 
j < i  

Step 2. Let  (~,) be any sequence in ft .  We claim that  (modulo a subsequence) 
P 

u"(~,)-+ o~ for some o~ E ~J Si. Indeed set 
i = 1  

I = {j'; 1 ~ j ~ p and (~, - -  aS,)/e~ remains bounded  as n ~ oo}. 

We distinguish two cases. 

Case (a). I = 0, that  is lim (~, - -  aS,)/e s, = e~ Vj. 
n--~  o o  

Then using Theorem 3, 

s [ ~ .  - a.' \ u"(~:n) = s ~ .  co ~--'~'--nj ) q - o ( 1 ) =  o(1). 

Case (b). I @ O. Let i denote the largest integer in L We claim that  u"(~,) -+ 0~ 
for some 0~ E Si. Indeed, we have 

Moreover  

(i) / f j  > i we have l ira (~. --  a~)/e~ = ~ (since j q  I ) ,  

(ii) i f .]  < i we write 

~n - -  aSn ~n - -  an a; - -  al 4 

and recall that  

i �9 
a n - -  aYn 

0 < l im i j : e,/e, < cx~. In all possible cases therefore,  
n- -+  o o  

limoo (~,, - -  a~/e~ = Pu YJ =[: i, 

and thus 

u"(~n) : col(z) + ~a coJ(Po) + o(1), 
j4=i 

= - -  a~)/e;,. This concludes the p roo f  o f  Step 2. where z lim (~:~ i i 
n--~- O0 

P 

Finally, the set ~J Si is connected since it is a limit o f  connected sets (u"(O) 
is connected),  i=1 

Appendix 

We start  with the description of  the set o f  solutions of  the problem 

(A. 1) Aco = 2cox ^ coy on R 2 , 

(A.2) f I Vco 12 < oo.  
Ra 
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Lemma A.1.1 Assume co E L~o~(R2; R 3) satisfies (A.1), (A.2). Then co has 
precisely the form 

/e(z) \ 
(A.3) co(z) = ~ [ - Q ~ ]  + c ,  z = (x, y) = x -k iy, 

where P, Q are polynomials, C is a constant and z~ : C ~ S 2 is the stereographic 
projection from the north pole, that is 

2 
: r ( z ) - -  1 + x  2 + y 2  § �9 

Moreover any to given by (A.3) satisfies (A.1), (A.2). In addition 

(A.4) f IVcol z = 8ztk with k =  Max{deg  P, degQ} 
R 2 

provided P/Q is irreducible. 

Proof. We recall (see WENTE [26]) that  if co satisfies (A.1), (A.2) then co is 
smooth and even (real) analytic. We claim that  co(oo) ---- lim co(z) exists and 

Izl-+oo 
that  co o ~--1 is smooth on S 2 (including at the nor th  pole). 

Indeed set (x 
05(x, y) = co x~ + y~,x~ + yi  on \ {0} 

so that  05 E C~(R 2 \ {0}). An easy computa t ion  shows that  

I V 0 5 ( x , y ) ? ,  . - -  (x 2 + y2)Z (Vco) x2 -t- yZ 'xZ  -t- y 

and thus 

also 

f IV05? = f l v c o ? <  oo; 
1t, 2 1t, 2 

--Ac~ = 2t5 x ^ 05y on R 2 \ {0}. 

A standard argument leads to 05 E Hlloc(R 2) and 

--A05 = 205 x ^ 05y in ~ ' (R2) .  

Therefore  05 is smooth  on R z (including 0); going back to co, this implies that  
co o ~--1 is smooth on S 2 (including at the nor th  pole). 

Next  we claim that  co is conformal,  that  is, 

(h.5) I,Oxl 2 - I c o ,  t 2 - - ~ , ~ . c o , = 0  on n~.  

We thank H. WENTE for some useful indications concerning Lemma A.1. 
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Indeed set 

= 1o~12 - l o l l  , - 2 i o ~  . ~  - ~  + i ~ .  

A standard computation based on (A.1) shows that 

q~ = ~y and ~by = - - ~ ,  

and thus q~ is holomorphic on C. We conclude that 9~ ~ - 0  since ~0 E L ' (Rz) .  
From (A.1) and a result in [6] (see Lemma 2.1) it follows that either co ~ C, 

or Vco @ 0 everywhere except at some isolated points which are denoted by 
(zi) (in fact there can be only a finite number of  such points since c9 can be con- 
sidered as defined on SZ). We set 

= R~ \, L/{z~}  
i 

and consider the Gauss map n defined by 

co x A coy o n  ~ .  

n - -  ] coxA coy [ 

Note that n is well defined and smooth on 0 since by (A.5) we have [tax Acoy I 
= �89 [Vco] 2. It  is known (see for example RUH [15] or Josa" [10]) that n is harmonic 
on 0, that is, 

(A.6) - - A n  = n 17n[ 2 on 0,  

a result which can also be verified directly using (A.1) and (A.5). 
We claim that each isolated singularity of  n is removable and thus that n is 

smooth on all of  p~2. Indeed suppose for example that 0 is a singular point of  n, 
that is, Vco(0) = 0. We know from a result of  [6] (see Lemma 2.1 and Lemma 2.2) 
that, in some suitable direct orthonormal basis of R 3, co may be written as 

co = (col, o~2, co3) 

where, up to additive constants, 

co I -}- ico 2 = a z "  + O(]z[ ' '+z) as z - + 0 ,  

(,93 = O(]Z[m§ as z - + 0 ;  

where a ~ 0 is a constant and m ~ 2 is an integer. In such a basis 

a~m 2 I z j2m-' 

and thus for z near 0 (z ~ 0) we have 

, = + O ( I z l ) .  
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It follows that 

(A.7) 

We claim that 

(A.8) 

n is continuous at 0. 

f IVnl 2 < 
B 

where B is some small around 0. Indeed by (A.7) there is some neighborhood U 
of  0 such that 

n(z) .  n(O) ~ �89 for z E U. 

Let B be some ball contained in U and with center at 0. Choose a sequence (~k) 
of functions such that (kE ~ ( U \  {0}), ~k-+ 1 on B, and f IV~k] 2 ~ C. Multi- 
plying (A.6) by n(0) ~2, we find 

and thus 

�89 f (2 ]Vn[2 ~ 2 f l kl lV.I IV~kl 

f (k 2 IVni 2 ~ 16 f IVCkl 2 ~ 16C. 

Letting k -+ oo yields (A.8). 
From (A.6), (A.8) and a result of SACKS & UHLENBECK ([17], Theorem 3.6) 

it follows that 0 is a removable singularity and thus n is smooth on all of R 2. 
We assert that in fact n is defined and smooth on S 2. Indeed let ~ as above 

and set 

(x x n(x, y) = n 2 jr_ y2, x 2 + y2' on \ {0}. 

An easy computation shows that 

,~x A o3y 

and therefore h is a smooth harmonic map on R 2. Consequently n may be con- 
sidered as a smooth harmonic map from S 2 into S 2. However, all such from S 2 
into S 2 are known (see e.g. SPRINGER [18] or  LEMAIRE [1 1]). More precisely, there 
exist polynomials P and Q such that either 

(A.9) n ( z ) =  [P(z)]  at \Q(z) ] 

o r  

(A.10) 

Next, we claim that 

, (z )= at \Q(.~) ] . 

(A.11) (to -}- n)x = (oJ -}- n)y = 0 on R 2 . 
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It  suffices, o f  course, to  check (A.11) on R 2 \ kJ  {zi}. We consider the basis 
i 

; -- o. /Ioxl,  j - -  0,./1%1, k = i Aj = n 

and set r = [oxl = ]%[.  In  this basis we write 

(!) ( i ) ( ! ) / ; )  CO x = , O)y = , ( O x x  : ~ O,)xy : 

so that  (:;) (Oyy = 2 o .  A % --  Ox, , = 

2 - -  c 

2 o} 0 with respect to x and y yields Differentiating the relation ox - -  = 

(A.12) a = e and b = - -d .  

On the other hand  

rx = cox" O x x / r  = a ,  ry = o x �9 Oxy / r  = d ,  

and 

r2n~ = r  A % + co x A o x y  - -  2(ox A toy) rx / r  

r a t t y  - :  O x y  A O y  -~- O x A (Oyy  - -  2(Ox A COy) r y / r .  

Thus,  using (A.12) we find 

(o:) 1 1 
(A.13) n ~ = - -  , ny = - -  c - - 2 r 2  . 

r r 

Since n is harmonic  f rom S 2 into S z, this gives 

(recall that  nZx - -  n2y - -  2 i n x .  ny  is holomorphic  and belongs to LI(R2)). Hence 

(A.14) f =  0 and c = r 2 . 

Combining (A.13) and (A.14) we obtain (A.11). 
I t  now follows that  there is a constant  C such that  

o + n = C .  

Therefore o is either o f  the form 

(A.15) o(z)  = - - ~  ~,a--~! + c 

o r  

(A.16) o(z)  = {P(~') ] - -  z \ Q ( ~ )  ] + C .  



52 

However 

H. BREZIS c~; J. M. CORON 

--Zl(r = Zff--1/~) for all ~C (3 and thus 

--re ~Q(z)]  = z~ - P ( z ) I "  

Functions to of the form (A.15) satisfy 

--dto = 2to x 

while functions of  the form (A.16) satisfy 

A %  

Ato = 2tox A toy, 

as follows at once from the fact that to(z) = n(z) satisfies Ato = 2tox A % and 
to(z) = n~ )  satisfies - -Ato  = 2tox A % .  

On the other hand, i f f  is any holomorphic function and u satisfies A u  = 

2Ux A uy, then v ---- u o f  also satisfies A v  = 2vx A vy. Hence to is of the form 
(A.3). The last assertion in Lemma A.1 may be found for example in [11]. 

Lemma A.2. Le t  to E L~176 2) with Vto E L2(R 2) and to -+ 0 at  infinity (in 
the usual sense). Se t  

t o " ( z )  : co 
\ e, I 

where (an) is a sequence in Q and (e,) is a sequence o f  posit ive numbers  such that 
e, ~ - .  0 and (1/e,) dist (a,, Og2) ~ - .  co.  Then 

Proof. Given e > 0 we can find some ~ E L~176 2) with compact support 
such that V~ C L2(R 2) and 

[Ito - ~ I I L ~  < e,  llVto - -  V ~ I [ v  < ~ .  

Set 

Then 

Note that ~"---- 

\ e. I 

0 on 0.(2 for n large enough, while 

Ilto ~ - ~ " [ I n m ( 0 o >  ~ I1~" - ~ " l l H , ( m  = Ilto ~ - ~n[[L2(O) + [[ vton --  V~"I[L~(~) 

<_-- C [Ito" - -  ~ " l l L ~ ( m  + I1 v t o "  - -  V t o " l l t , ( m  

"~ C Hto - -  ~n][L~~ -}-[I v t o  - -  V ~ I I L ' ( R ' )  

<: ( C +  1)e, 

which completes the proof. 
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Lemma A.3. Let  (c~ ~) be a sequence in H1(Q) such that 

(A.17) II~"IIL~<~) < C .  

Let  (an) be a sequence in 0 and let (en) be a sequence o f  positive numbers such that 

e. n~oo -~ 0 and 

1 
(A.18) ~ dist (a,, ~/2) ~ - - -  oo. 

8n 

Set  ~ ' (z)  : o~'(e,z + a,) f o r  z E R z (1). 

(A.19) 

where C is a constant. 

Also let co E L~~ 2) 
usual sense). Set  

~,"(z) . ~  ~- .  c 

We assume that 

f o r  a.e. z E R 2 

with Vco E L2(R 2) and co -+ co(~)  at infinity (in the 

(z-a.~ 
o~"(z) = co 

\ en I 

Let  ~" be the solution o f  the problem 

= " Aco; + cox^ A f "  ~x x ocy 

3 " = 0  on ~12. 
(A.20) 

Then 

(A.21) 

and 

(A.22) 

on Q,  

(1) Assumption (A.18) implies that enz + a, E ~ for each z E R 2 and for n large 
enough. 

Proof. Without loss of  generality it can be assumed that C = 0 and that 
o(cx~) = 0. Using Lemma A.1 from [2] and the same device as in the proof  
of  Lemma A.2 it suffices to consider the case where co E ~ ( R  2) (indeed given 
e > 0 we can find some ~ E  ~ ( R  2) such that I[V~o - -  V~I[L~ < e). 
Also, without loss of  generality it can be assumed that each 0~" is defined on all 
of  1% 2 and that 

Supp~"  C Bz(O), Ila'll~, =< c .  

Since ll7~"][z,(~t,) ~ C and s  0 a.e. on R z, it follows by standard argu- 

ments that 

(A.23) ~" --> 0 in L~Voc(R 2) Vp < 00. 

Remark A.1. Assumption (A, 19) obviously holds with C = 0 if II o~'llL~<~)~ 0. 
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We first prove  (A.21). Using (A.20) and  L e m m a  A.4 f rom [2] we see tha t  

f I v 3 . l  2 = - f ~ : .  (,o~ t, 3~ + [3~, ~ ,o~) 
D ga 

and thus 

n V/3"l[L=(a) ----< [[0: V~on]IL=(a) = II~" V• IIL,(f2n ) "--> 0 

where /2, = (Q - -  a,)/e, .  
We now prove  (A.22). Set r = (x  2 + y 2 ) m  and 

1 
1/./n = ~ (log r) * (o~ A ~4 § ,o~ A 0~) on R 2 

SO that  

(A.24) A ~ "  ---- 0~ A a~ + co~ A o~, on B 2 . 

F r o m  (A.20), (A.24) and  the m a x i m u m  principle we obtain  

[13"ll/:~(~) < 2 I[~"l[:o(~,). 

On the other  hand we have  

1 
7*" = ~ (log) �9 [(~" A O~y)x § (O~ A 0:)y] 

= --2z~ * (~" ~ % )  + D-  (~o~ :, o, . 

Therefore  for  p E R z (and z = (x, y)) 

I t  follows that  

(A.25) 

where 

Set 

I~"(p)l ~ (~)  , (l~ lW~ 

= (ip ~__zll~:(z)l Vo,(z- a . ] \  ~. : axay.~. 

1 

$ ---- (~, ~/) and q,, = (p - -  a,,)/e,,. 

1 o- = --, I~"I Iv~[. 
r 

In view of  (A.25) it suffices to prove  that  

(A.26) I[ O" II:~(R2) .-~oo ~ 0. 

But this is clear since l / t E L ~ 1 7 6 2 4 7  L 312 while ll~"lll7o[ ~ 0  in L a and in L 1 
(here we use (A.23) and  the fact  that  e~ has compac t  support) .  
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