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A RELATION BETWEEN POINTWISE CONVERGENCE
OF FUNCTIONS AND CONVERGENCE OF FUNCTIONALS

HAIM BREZIS AND ELLIOTT LIEB'

ABSTRACT. We show that if {f,} is a sequence of uniformly L”-bounded functions
on a measure space, and if f, — f pointwise a.e., then lim,,_ {ll £, 117 = Il f, — f1I}
=l flI} for all 0 < p < oo. This result is also generalized in Theorem 2 to some
functionals other than the L” norm, namely [|/(f,) —j(f, —f) —j(f)|— 0 for
suitable j: C — C and a suitable sequence {f,}. A brief discussion is given of the
usefulness of this result in variational problems.

1. Introduction. Let (£, =, ) be a measure space and let { f,}°-, be a sequence of
complex valued measurable functions which are uniformly bounded in L7 =
LP(Q, 2, p) for some 0 < p < oo. Suppose that f, — f pointwise almost everywhere
(a.e.). What can be said about || f || ,?

The simplest tool for estimating || f || , is Fatou’s lemma, which yields

Ifllp < liminf{|£,],.
h— 00
The purpose of this note is to point out that much more can be said, namely
. '3 P '3
(1) tim ({1415, =15, = 15} =171

More generally, if j: C — C is a continuous function such that j(0) = 0, then, when
f, — fae and [|j(f(x))]|du(x) < C < oo, it follows that

@) lim [[i(4) = (£ =] = [i])

under suitable conditions on j and /or {f,}.

Heuristically, (2) says the following. If we write f, = f + g, with g, — 0 a.e., then,
for large n, [j(f + g,) decouples into two parts, namely [j( f) and [j(g,).

Equation (1) is not merely an idle exercise, but it is actually useful in the calculus
of variations to prove the existence of maximizing (resp. minimizing) functions in
some cases in which compactness is not available. In fact (1) was first used by one of
us (E. Lieb), but with a different notion of convergence than pointwise convergence
of f, > f, to solve a variational problem [1]. Later, it was also used in another
variational problem [2]. At the end of this note we shall give a brief account of how
(1) can be used.
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Two theorems will be stated: (i) the L” case (0 < p < o0), (ii) the general case (2).
Although (i) is a corollary of (ii) we state it separately because it is an important
special case and because the assumptions are especially transparent.

E. Lieb is most grateful to the Institute for Advanced Study for its support and
hospitality. Both authors thank the Summer Research Institute for bringing them
together in Melbourne, Australia, where this note had its origin.

2. The L7 case (0 < p < o0).

THEOREM 1. Suppose f, - f a.e. and |||l ,< C < oo for all n and for some
0 < p < 0. Then the limit in (1) exists and the equality in (1) holds.

REMARKS. (i) By Fatou’s lemma, f € L?.

(ii) In case 0 < p < 1, and if we assume that f € L”, then we do not need the
hypothesis that || f,Il, is uniformly bounded. [This follows from the inequality
[1 £, P —|f, — fIP|<|f]P and the dominated convergence theorem.] However, when
1 < p < oo, the hypothesis that || £, | , is uniformly bounded is really necessary (even
if we assume that f € L?) as a simple counterexample shows.

(iii) When 1 < p < oo, the hypotheses of Theorem 1 imply that f, — f weakly in
L?. [By the Banach-Alaoglu theorem, for some subsequence, f, converges weakly to
some g; but g = f since f, — f a.e.] However, weak convergence in L? is insufficient
to conclude that (1) holds, except in the case p = 2. When p # 2 it is easy to
construct counterexamples to (1) under the assumption only of weak convergence.
When p = 2 the proof of (1) is trivial under the assumption of weak convergence.

3. The general case. In order to prove (2), some conditions are needed on the
function j and the sequence { f,}. To make this point clear we shall later give an
example for which (2) fails. On the other hand, we shall not attempt to find the most
general conditions for which (2) holds but shall, instead, content ourselves here with
conditions which are reasonably simple, yet general enough to cover many examples.

Let j: C — C be a continuous function with j(0) = 0. In addition let j satisfy the
following hypothesis:

For every sufficiently small ¢ > 0 there exist two continuous, nonnegative func-
tions @, and , such that

(3) li(a + b) — j(a)| < epla) + ¢(b)
for all a, b € C.

- THEOREM 2. Let j satisfy the above hypothesis and let f, = f + g, be a sequence of
measurable functions from Q to C such that:

(i) g,—0a.e.

(i) j(f) € L.

(iii) [p(g,(x)) du(x) < C < oo, for some constant C, independent of € and n.

@iv) [y f(x)) du(x) < oo for all € > 0.
Then, as n — oo,

(4) Jli(f + 8,) = i(g,) = j(f)ldu ~ 0.
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REMARKS. (i) It is not assumed that j( f,) or j(g,) are separately in L'.

(ii) Note that the convergence in (4) is in the strong L' topology. This is a stronger
statement than (2).

PROOF OF THEOREM 2. Fix € > 0 and let

W, (x) =[[i(£,(x)) = j(8a(x)) = J(f(x))]| = @ g,(x))] »

where [a], = max(a,0). Asn - o0, W, ,(x) — 0 a.e. On the other hand,

i £) = f(gx) =i (OI=<Li(£) — (&) + i f)]
<ep(g,) +¥(f) +li()]

Therefore, W, <y(f) + |i(f)|E€ L'. By dominated convergence, [W, , du — 0 as
n — oo. However,

17(£) —i(8.) —i(f) < W, , + eo(8,)
and, thus,

1 =[1i0) = i(8,) = i)l < [ [, + en ()] db.

Consequently, limsup,_, [, < &eC. Nowlete - 0. O

EXAMPLES. (a) j(?) =|t[’, 0 <p < oo. Here (3) is satisfied with ¢(¢) =|¢}? and
Y (t) = C,|t]P for some C, sufficiently large. Therefore hypotheses (ii)—(iv) are
simply that f € L” and the {g,} are uniformly bounded in L?. This proves Theorem
1. ‘

(b) Suppose that j is a continuous, convex function from C to R with j(0) = 0.
Choose some number k > 1. Then (3) holds for ek < 1 with

o (1) =j(kt) — kj(t) and y(1) =|j(C)| +|i(—Cr)l,

with 1/C, = e(k — 1). This is proved in Lemma 3 below. Therefore, the hypotheses
of Theorem 2 are satisfied if there is some fixed k > 1 such that [ j(kg,) — kj(g,)] is
uniformly bounded in L', and if j(Mf) is in L' for every real M.

(¢) The condition in example (b) that j(kg,) — kj(g,) is uniformly bounded in L'
for some constant k > 1 can be essential, not only for the hypotheses of Theorem 2
but for the conclusion as well. Let @ =[0,1], j(z) = el —1, dp =dx, f(x) =1,
g,.(x) =1In(1 + n) if 0 <x < 1/n, and g,(x) = 0 otherwise. Then [j( f,) = 2e — 1,
[ji(g,) =1 and [j(f) = e — 1. In this example we see that (2) does not hold even
though j(g,) is uniformly bounded in L' and j(Mf) € L' for all real M. Note that
for this sequence {g,}, j(kg,) is not uniformly bounded when k > 1. However since
Jj(t) is convex, (b) above tells us that the conclusion of Theorem 2 would be valid for
any other sequence g, such that j(kg,) is uniformly bounded in L' for some k > 1.

LeEMMA 3. Let j: C — R be convex and let k > 1. Then

li(a + b) — j(a)| < e[ j(ka) — kj(a)] +]j(C.b)|+ /(= Cpb)|
foralla,be C,0<e<l/kand 1/C,=e(k —1).
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PROOF. Let a =1 — ke, B=¢, y=(k — 1)e. Thena + 8+ y =1 and (a + b)
= aa + B(ka) + v(C.b). By convexity,

j(a+b)<aj(a) + Bj(ka) + vj(C.b).
This implies that

j(a+b) —j(a) <e[j(ka) — kj(a)] +|i(Cb)|.
For the reverse inequality let
a=1/(1+ke), B=¢e/(1+ke), y=e(k—1)/(1+ ke),
whence a = a(a + b) + B(ka) + y(— C.b). Then
J(a) = j(a + b) <& j(ka) — kj(a)] + e(k — 1)j(=Cb). O

4. Applications. In the calculus of variations an oft-met problem is to show that an
infimum or supremum is achieved. We shall outline by two examples how Theorem
1 can be used for this purpose.

(A) If K is the sharp constant in the inequality [ Af ||, < K|l [, where 4 is a
bounded linear operator from L? to L4, can one find f such that equality holds? We
shall assume that o0 > ¢ =p = 1. In fact, the problem in [1] that motivated
Theorem 1 was the Hardy-Littlewood-Sobolev inequality on L?(R", dx). Namely, 4
is the integral kernel A(x, y) =|x —y|[ ", 0<A<nandp'+A/n=1+q"". Let
K =sup{R(f)|f€ L?, f+0)}, where R(f)= NAf1Il,/l fI . The problem we
address here is to prove the existence of a maximizing f, i.e. R( f) = K. Suppose that
an L”-bounded sequence { f,} can be found such that (i) R(f,) = K, (ii) f, — f a.e.,
(iii) f # 0. (For the H.L.S. inequality, this can be done by using a rearrangement
inequality.) The difficulty that one faces is to show R( f) = K. This difficulty can be
overcome by Theorem 1 if we make the additional assumption that Af, — Af a.e.
(This can also be verified for the H.L.S. problem.) With these assumptions we have
that

o AfE AN+ NAg, gy
K? = lim > = lim
= WLI2 " n=ew  {IfI2+llg,l2)

with f, = f+ g, as before. Since p/qg <1 and (a + b)' <a'+ b' for a, b= 0 and
t<1, and since |l4g,ll, <Kllg,ll, (by definition), it follows that K? <
WA 112 /1l £115. Thus fis maximizing, as desired. For further details see [1].‘

(B) This is taken from [2]. Let & C R", n = 3, be a bounded domain. Let A = 0
and let

| VfP=NSP . 2n
||f||f, w1thp——n_

5
The problem is to show that K, = inf{R,(f)|f € Hy(R), f # 0} is achieved.
Suppose that we know that K, < K|, (this is indeed the case for every A > 0 when
n = 4, and for A sufficiently large when n = 3; see [2]); then K, is achieved.
To prove this, let {f,} be a minimizing sequence with || £,Il , = 1. Since f, is
bounded in H'(Q) we may assume that f, — f weakly in H', f, - f strongly in L? and

Rx(f):f
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f, — fae We have

JI9hl =M 147 = Ky + 01),

and since [ | V£, |> = Kyl £,1I2 = K, (by definition of K,), it follows that A [ | f|*> =
K, — K, > 0. Therefore f # 0. On the other hand, let g, = f, — f. We have

JISAF =AU = Kallgl, + o(1),

and since g, — 0 weakly in H', we obtain

J1ofl + [lvgl = M I1F = Killgl; + o(1).

Consequently,

2 2 2 2
SIS+ Kollgall, = A 117 < Kallgl, + o(1).
On the other hand, it follows from Theorem 1 that

ILID =1Als + gl + o(1).

Since p = 2 we deduce that

2 2 2
151, <lfll> +llgall, + o(1).

If K, = 0, we conclude that

2 2 2
KA”fn”p < KA”f”p + KO”gn“p + 0(1)

and, therefore,

J1oil =AfI1* < KAy + o(1),

i.e. f is minimizing, as desired.
If K, <0, we have

2 2 2
SIS = A fIF < Kn+ o) < Kyllflly + o(1)
since || f Il , < 1. Here again, f is minimizing, as desired. For further details see [2].

REFERENCES
1. E. H. Lieb, Sharp constants in the Hardy- Littlewood-Sobolev and related inequalities , Ann. of Math.
(to appear).
2. H. Brezis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev
exponents, Comm. Pure Appl. Math. (to appear).

DEPARTEMENT DE MATHEMATIQUES, UNIVERSITE PARIS VI, 4, pL. JUSSIEU 75230 Paris CEDEX 05,
FRANCE

THE INSTITUTE FOR ADVANCED STUDY, PRINCETON, NEW JERSEY 08540

Permanent address: Departments of Mathematics and Physics, Princeton University, Jadwin Hall,
P.O.B. 708, Princeton, New Jersey 08544



