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Abstract

Quasilinear elliptic equations in R
2 of second order with critical exponential growth are

considered. By using a change of variable, the quasilinear equations are reduced to semilinear
equations, whose respective associated functionals are well defined in H1(R2) and satisfy the
geometric hypotheses of the mountain pass theorem. Using this fact, we obtain a Cerami
sequence converging weakly to a solution v. In the proof that v is nontrivial, the main tool
is the concentration-compactness principle [14] combined with test functions connected with
optimal Trudinger-Moser inequality.

2000 Mathematics Subject Classifications: 35J10, 35J20, 35B33 and 35J60.

Key words and phrases: Trudinger-Moser inequality, elliptic equations, critical exponents
and variational methods.

1 Introduction

Recently, there has been growing interest in the study of quasilinear elliptic equations of the
form

−∆u+ V (x)u− (∆(|u|2))u = h(u) in R
N . (1.1)

These equations are related to existence of standing wave solutions for quasilinear Schrödinger
equations of the form

izt = −∆z + V (x)z − h(|z|2)z − κ∆g(|z|2)g′(|z|2)z in R
N , (1.2)

where V is a given potential, κ is a real constant, and g and h are real functions. The related
semilinear equations for κ = 0 have been intensively studied (see e.g. [2], [6], [7], [10], [11], [12],
[19], [22], as well as their references). Quasilinear equations such as (1.1) have been accepted as
a models of several physical phenomena corresponding to various types of g. We refer the reader
to the Introduction in [15] and the references therein for a discussion on the subject. Recent
mathematical studies have focused on the existence of solutions for (1.1) with h(s) = |s|p−1s,
with 4 ≤ p + 1 < 4N/(N − 2), N ≥ 3, for example, in [15], [16], and [18]. The existence of a
positive ground state solution has been proved by Poppenberg, Schmitt and Wang [18] and Liu
and Wang [16] by using a constrained minimization argument, which gives a solution of (1.1)
with an unknown Lagrange multiplier λ in front of the nonlinear term. In [15], by a change of
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variable the quasilinear problem was reduced to a semilinear one and an Orlicz space framework
was used to prove the existence of a positive solution of (1.1) for every positive λ via mountain
pass theorem. In [8], Colin and Jeanjean also made use a change of variable in order to reduce
the equation (1.1) to semilinear one. By using the Sobolev space H1(RN ), they proved the
existence of solutions from classical results given by Berestycki and Lions [6] when N = 1 or
N ≥ 3, and Berestycki, Gallouët and Kavian [5] when N = 2.

Although considerable research has been devoted to the case N ≥ 3 rather less attention
has been paid to the case N = 2. In [15], the authors established the existence of solutions
for (1.1) in R

2 when the potential function V is radially symmetric and h(s) = |s|p−1s, with
4 ≤ p + 1 < ∞. In [8], Colin and Jeanjean treated, among other situations, the case where h
satisfies the assumption: for any α > 0 there exists positive constant Cα such that

|h(s)| ≤ Cαe
αs2 ∀s ≥ 0. (1.3)

In the literature [1, 9, 11, 23], the assumption (1.3) says that h has subcritical growth. We
recall that h satisfies the critical growth condition if there exists α0 > 0 such that

lim
s→∞

|h(s)|
exp(αs2)

=
{
0 ∀α > α0,
+∞ ∀α < α0.

We note that such notion is motivated by Trudinger-Moser estimates [17, 24] which provide

exp(α|u|2) ∈ L1(Ω), ∀u ∈ H1
0 (Ω), ∀α > 0, (1.4)

and
sup

‖u‖
H1

0
≤1

∫
Ω
exp(α|u|2) dx ≤ C, ∀α ≤ 4π, (1.5)

where Ω ⊂ R
2 is a bounded smooth domain. Subsequently, Cao [7] proved a version of Trudinger-

Moser inequality in whole space, which was improved by do Ó [11], namely,

exp(α|u|2)− 1 ∈ L1(R2), ∀u ∈ H1(R2), ∀α > 0. (1.6)

Moreover, if α < 4π and |u|L2(R2) ≤ C, there exists a constant C2 = C2(C,α) such that

sup
‖∇u‖L2(R2)≤1

∫
R2

(exp(α|u|2)− 1) dx ≤ C2. (1.7)

The main purpose of the present paper is to obtain standing wave solutions for quasilinear
Schrödinger type problems (1.1) when N = 2 and h satisfies the new critical growth condition:

(c)α0 There exists α0 > 0 such that lim
s→∞

|h(s)|
exp(αs4)

=
{
0 ∀α > α0,
+∞ ∀α < α0.

We believe that the exponential growth above is the critical growth for this kind of problem
when N = 2, according to the case N ≥ 3 whose the critical exponent is 22∗ = 4N/(N − 2) (see
[15]).

In this article, we study the existence of solutions for (1.1) assuming that V : R
2 → R is a

continuous function bounded from below away from zero, that is there exists V0 > 0 such that

(V1) V (x) ≥ V0 > 0, ∀x ∈ R
2,

and satisfying the asymptotic condition

(V2) V (x) ≤ lim
|x|→∞

V (x) .= V∞ < ∞,

with V (x) 
= V∞, and h ∈ C(R,R) satisfies
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(h1) lim
s→0

h(s)
s

= 0.

(h2) There exists µ > 4 such that 0 < µH(s) ≤ h(s)s, for all s > 0, with H(s) =
∫ s
0 h(t) dt.

(h3) There exists β0 > 0 such that

lim inf
s→+∞

sh(s)
exp (α0s4)

≥ β0 > 0,

where α0 is given by condition (c)α0 .

Our main result is:

Theorem 1.1 Suppose V (x) verifies (V1)− (V2) and h(s) satisfies (h1)− (h3) and (c)α0 . Then
problem (1.1), with N = 2, possesses a positive solution.

Remark 1.2 We observe that typical and motivating examples for the study of problem (1.1)
are given in the following problems, where the nonlinearities satisfy the assumptions (h1)− (h3)
and (c)α0 with α0 = 4π:

−∆u+ V (x)u− (∆(|u|2))u = exp(4πu4)− 1 in R
2

and
−∆u+ V (x)u− (∆(|u|2))u = h(u) in R

2,

where the nonlinear term is given by h(u) = H ′(u) and H(u) := u7 exp(4πu4).

In order to prove Theorem 1.1, motivated by the argument used in [8] and [15], we also
use a change of variable to reformulate the problem obtaining a semilinear problem which has
an associated functional well defined in the Sobolev space H1(R2) and satisfies the geometric
hypotheses of the mountain pass theorem (see [3]). Using this fact, we obtain a Cerami sequence
converging weakly to a solution v. In order to prove that v is nontrivial, we combine Lions’s
compactness lemma with test functions connected with optimal Trudinger-Moser inequality
to establish that the Cerami sequence has a non-vanishing behavior. Finally, arguing by
contradiction that v = 0, a translated Cerami sequence converges to a nonzero critical point of
an associated functional at infinity. Then, this critical point is used to construct a path related
to mountain pass theorem to find a contradiction with definition the mountain pass critical
value. Since we deal with exponential case, some difficulties appear mainly due to the lack of
homogeneity of the nonlinearity. In addition, in the critical exponential case, the Trudinger-
Moser inequality has a restricted use.

Notation: In the rest of the paper we will make use of the following notations:
∫

R2 f(x)dx and∫
D g(x)dx will be denoted by

∫
f and

∫
D g respectively; |.|p denotes the norm in Lp(D) spaces;

C denotes (possibly different) positive constants.

The organization of this paper is as follows: In Section 2, we introduce the variational
framework associated with (1.1). In Section 3, we verify the geometric conditions of the mountain
pass theorem. In Section 4, the existence of the solution for (1.1) is established.
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2 Adjust of the variational setting

Observing that u ≡ 0 is a (trivial) solution of (1.1), our objective in this article is to apply
minimax methods to study the existence on nontrivial solution for (1.1). However, it should be
pointed out that we may not apply directly such methods since the natural associated functional,
namely

J(u) =
1
2

∫
(1 + u2)|∇u|2 + 1

2

∫
V (x)u2 −

∫
H(u)

where H(s) =
∫ s
0 h(t) dt is not well defined in general, for instance, in H1(R2). To overcome

this difficulty, we employ an argument developed by Liu, Wang and Wang in [15] (see also [8,
Lemma 2.1]). We make the change of variables v = f−1(u), where f is defined by

f ′(t) =
1√

1 + 2f2(t)

on [0,+∞), f(0) = 0, and f(−t) = −f(t) on (−∞, 0]. Also f satisfies

(f0) |f ′(t)| ≤ 1 ∀ t ∈ R,

(f1)
f(t)
t → 1 as t → 0,

(f2)
f(t)√

t
→ 21/4 as t → ∞,

(f3) 1
2f(t) ≤ t√

1+2f2(t)
≤ f(t), ∀ t ∈ R.

Thus, we can write J(u) as

I(v) =
1
2

∫
|∇v|2 + 1

2

∫
V (x)f2(v) −

∫
H(f(v)).

From these properties of f , the funtional I is well defined and I ∈ C1(H1(R2),R). In fact,
by definition of f and from (f2), (h1), (h2) together with a version of the Trudinger and Moser
inequality ([7], [11]) it follows that∫

H(f(v)) < ∞ and
∫

f ′(v)h(f(v))w < ∞, ∀ v,w ∈ H1(R2).

As in [8], we observe that if v ∈ H1(R2) ∩C2(R2) is a critical point of I, that is, I ′(v)w = 0
for every w ∈ H1(R2), where

I ′(v)w =
∫

∇v · ∇w +
∫

f ′(v)(V (x)f(v)w − h(f(v))w),

then v is a solution of problem
−∆v = g(x, v) in R

2,

where
g(x, s) .=

1√
1 + 2f2(s)

(−V (x)f(s) + h(f(s))) , ∀x ∈ R
2, s ∈ R. (2.1)

Then, setting u = f(v) (v = f−1(u)) and since (f−1)′(t) = 1
f ′(f−1(t))

=
√
1 + 2t2 we conclude

that u is a nonnegative solution of problem

−∆u+ V (x)u−∆(u2)u = h(u) in R
2.
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From (V1) and (V2), we have

g1(s) ≤ g(x, s) ≤ g2(s) ∀x ∈ R
2, ∀ s ∈ R

where

g1(s) = f ′(s) (−V∞f(s) + h(f(s))) and g2(s) = f ′(s) (−V0f(s) + h(f(s))) .

For i ∈ {1, 2}, the functions gi satisfy:
(g0) g ∈ C(R,R) and g(0) = 0,

(g1) There exists ν < 0 such that lim
s→0

g(s)
s

= ν.

(g2) Given α > α0 and β ≥ 4
√
2α, there exist positive constants C and R such that

|g(s)| ≤ C(exp (βs2)− 1), ∀ |s| > R.

Moreover,

(g3) There exists s0 > 0 such that G1(s0) > 0, where G1(s) =
∫ s
0 g1(t)dt.

The property (g0) is obvious, while condition (g1) follows from the limit (f1) and (g2) is a
consequence of (c)α0 and (f2). Finally, in order to verify (g3), fix α ∈ (0, α0). From (c)α0 , there
exists s∗ > 0 such that

h(s)
exp(αs4)− 1 ≥ 1, ∀ s ≥ s∗. (2.2)

From (2.2), (V2), and the continuity of f and h, there exists a constant m such that

G1(s) ≥ m+
∫ s

s∗
[−V∞ f(t)√

1 + 2f2(t)
+
exp (αf4(t))− 1√

1 + 2f2(t)
]dt

≥ m− V∞
∫ s

s∗

f(t)√
1 + 2f2(t)

dt +
∫ s

s∗

αf2(t)√
1 + 2f2(t)

dt

= m− V∞
∫ f(s)

f(s∗)
udu+

∫ f(s)

f(s∗)
αu2du

= m− V∞(f(s)2 − f(s∗)2)
2

+
f(s)3 − f(s∗)3

3α
.

Then, from (f2), there exists s0 > 0 sufficiently large such that G1(s0) > 0.

3 Mountain pass geometry

In section we establish the geometric hypotheses of the mountain pass theorem.

Proposition 3.1 The functional I : H1(R2) −→ R satisfies

(1.) There exist positive constant b and ρ such that I(v) ≥ b, ‖v‖ = ρ, where ‖ · ‖ denotes the
usual norm in H1(R2).

(2.) There exists a path γ ∈ C([0, 1],H1(R2)) verifying γ(0) = 0, γ(1) 
= 0 with I(γ(1)) < 0.
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Proof. First, we show that I satisfies (1.). We claim that given α > α0, there exists C > 0
such that

G(x, s) ≤ −V0

4
s2 + C[exp (αs2)− 1]s3, ∀ s ≥ 0 and ∀x ∈ R

2, (3.1)

where G(x, s) =
∫ s
0 g(x, t) dt. In fact, since g(x, s) ≤ g2(s) and g2 satisfies (g0) − (g2), given

α > α0, there exist δ > 0 and C > 0 independent of x such that

g(x, s) ≤ −V0

2
s+ C exp(αs2)s4.

Then, to obtain (3.1), it suffices to note that∫ s

0
t4 exp (αt2)dt =

1
2α

s3 exp (αs2)−
∫ s

0

3
2α

t2 exp (αt2)dt

=
1
2α

s3(exp (αs2)− 1) + s3

2α
−

∫ s

0

3
2α

t2 exp (αt2)dt

≤ 1
2α

s3(exp (αs2)− 1),

because

µ(s) =
s3

2α
−

∫ s

0

3
2α

t2 exp (αt2)dt

satisfies µ(0) = 0 and µ′(s) ≤ 0.

Consequently, from (3.1), we obtain

I(v) =
1
2

∫
|∇v|2 −

∫
G(x, v)

≥ 1
2

∫
|∇v|2 + V0

4

∫
v2 − C

∫
v3(exp (αv2)− 1)

≥ C1||v||2 − C2||v||3, ∀ v ∈ H1(R2),

where the last inequality we made use of the following estimate (see [11] for a proof):∫
v3(exp (αv2)− 1) ≤ C||v||3, where C = C(α) > 0,

provided v ∈ H1(R2), ‖v‖ = ρ, for ρ > 0 sufficiently small.
Hence, we can choose positive constants ρ and b such that

I(v) ≥ b > 0, ∀ v ∈ H1(R2), ||v|| = ρ.

To prove the second part of Proposition 3.1, we start arguing as in [6]. Let R > 1 and define

wR(x) =




s0 if |x| ≤ R
s0(R+ 1− |x|) if |x| ∈ [R,R+ 1)
0 if |x| ≥ R+ 1,

where s0 is given by (g3). Let

wt(x) =
{

wR(xt ) if t > 0
0 if t = 0,



João M. B. do Ó, Oĺımpio H. Miyagaki & Sérgio H. M. Soares 7

then ∫ |∇wt|2 =
∫ |∇wR|2 and

∫
G1(wt) = t2

∫
G1(wR).

By taking γ(t) ≡ wt(·), that is, γ(t)(x) = wt(x), we have

I(γ(t)) =
∫

|∇wt|2 −
∫

G(x,wt)

≤
∫

|∇wt|2 −
∫

G1(wt)

=
∫

|∇wR|2 − t2
∫

G1(wR) → −∞, as t → +∞,

because ∫
G1(wR) = G1(s0)|BR|+

∫
BR+1\BR

G1(wR)

≥ G1(so)πR2 − |BR+1 \BR| max
s∈[0,so]

G1(wR)

≥ G1(so)πR2 − 3πR max
s∈[0,so]

G1(wR) > 0,

for R suficiently large. Hence, there exists L > 0 such that I(γ(L)) < 0 and γ(L) 
= 0. Therefore,
after a suitable scale change in t, we obtain desired path γ. This proves Proposition 3.1.

4 Existence

In consequence of Proposition 3.1 and of a version of Ambrosetti-Rabinowitz Mountain Pass
Theorem [3], see also [4, 20, 21], for the constant

c0 = inf
γ∈Γ

sup
t∈[0,1]

I(γ(t)) > 0,

where
Γ = {γ ∈ C([0, 1],H1(R2)); γ(0) = 0, γ(1) 
= 0, I(γ(1)) < 0},

there exists a Cerami sequence (vn) in H1(R2) at the level c0, that is

I(vn)→ c0 and (1 + ‖vn‖)‖I ′(vn)‖ → 0, as n → ∞.

Lemma 4.1 The sequence (vn) is bounded in H1(R2).

Proof. Since (vn) satisfies

I(vn) =
1
2

∫
|∇vn|2 + 1

2

∫
V (x)f2(vn)−

∫
H(f(vn))→ c0 as n → ∞, (4.1)

and, for every w ∈ H1(R2),

(1 + ‖vn‖)I ′(vn)w =
∫

∇vn · ∇w +
∫

f ′(vn)(V (x)f(vn)w − h(f(vn))w)

= εn‖w‖, (4.2)



8

where εn → 0 as n → ∞, by choosing w = wn ≡ f(vn)/f ′(vn) and inserting in (4.2) we obtain

(1 + ‖vn‖)I ′(vn)wn

=
∫
(1 +

2f2(vn)
1 + 2f2(vn)

)|∇vn|2 +
∫
(V (x)f2(vn)− h(f(vn))f(vn))

= εn‖wn‖. (4.3)

Notice that wn verifies

|wn|2 ≤ C|vn|2, |∇wn| ≤ 2|∇vn|, and ||wn|| ≤ C||vn||.
In consequence,

I ′(vn)wn

=
∫
(1 +

2f2(vn)
1 + 2f2(vn)

)|∇vn|2 +
∫

V (x)f2(vn)− h(f(vn))f(vn))

= εn. (4.4)

Combining (4.1), (4.4) and (h2), we infer that∫
(
1
2
− 1

µ
(1 +

2f2(vn)
1 + 2f2(vn)

))|∇vn|2 + 1
4

∫
V (x)f2(vn) ≤ c0 + δn + εn,

where δn is given by (4.1).
Since µ > 4, we can conclude that the term∫

(|∇vn|2 + V (x)f2(vn))

is bounded. Then, to conclude that (vn) is bounded in H1(R2), it remains to show that (vn) is
bounded in L2(R). To verify this we start splitting∫

v2
n =

∫
{x:|vn(x)|≤1}

v2
n +

∫
{x:|vn(x)|>1}

v2
n.

Notice that there exists C > 0 such that H(s) ≥ Cs4, for every s ≥ 1. Then, from (f2) we have
H(f(s)) ≥ Cs2, for every s ≥ 1. Therefore∫

{x:|vn(x)|>1}
v2
n ≤ 1

C

∫
{x:|vn(x)|>1}

H(f(vn)) ≤ 1
C

∫
H(f(vn)).

By using that f(s) ≥ Cs, for some C > 0, we have∫
{x:|vn(x)|≤1}

v2
n ≤ 1

C

∫
{x:|vn(x)|≤1}

f2(vn) ≤ 1
C

∫
f2(vn).

Hence vn is bounded in L2(R2). This proves Lemma 4.1.

From Lemma 4.1, there exists v ∈ H1(R2) such that vn ⇀ v weakly inH1(R2) and I ′(v)φ = 0
for every φ ∈ C∞

o (R
2), that is, v is a weak solution. In fact, recalling the definition of the function

g given by (2.1), it suffices to prove that∫
R2

g(x, vn)φ −→
∫

R2

g(x, v)φ, ∀φ ∈ C∞
o (R

2).
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In order to verify this convergence, given φ ∈ C∞
o (R

2), we denote by Ω the support set of φ.
Since (vn) is bounded in H1(R2), we may take a subsequence denoted again by (vn) such that

vn ⇀ v in H1(R2); vn → v in Lq(Ω), ∀ q ≥ 1; vn(x)→ v(x) a.e. in Ω.

Moreover, from (4.2), the sequence (
∫
g(x, vn)φvn) is bounded. Then, invoking Lemma 2.1 [9],

we have ∫
R2

g(x, vn)φ =
∫

Ω
g(x, vn)φ −→

∫
Ω
g(x, v)φ =

∫
R2

g(x, v)φ.

Hence, v is a weak solution of (1.1).

In order to complete the proof of Theorem 1.1, we must show v is nontrivial. The proof
of this fact will be carried out in a series of steps. First, we suppose, by contradiction, that
v ≡ 0. In consequence, we prove that the Cerami sequence (vn) is a Palais-Smale sequence of an
associated functional at infinity, I∞, and it has a non-vanishing behavior. After a translation,
this sequence converge weakly to a nonzero critical point of I∞. Finally, we use this critical point
to construct a path which allows us to obtain a contradiction with the definition of mountain
pass level c0.

We start introducing some notations and facts. Let V∞ given by condition (V2). Consider
the Sobolev space H1(R2) endowed with the equivalent norm

‖v‖ =
(∫

|∇v|2 + V∞|v|2
)1/2

, ∀ v ∈ H1(R2).

Define the functional J∞ : H1(R2)→ R given by

J∞(v) =
1
2

∫
(|∇v|2 + V∞v2)−

∫
H(f(v)).

Working with the analogue of I, the functional J∞ is well defined and belongs to C1(H1(R2),R).
Now, take β0 given by (h3) and let r > 0 be such that

β0 >
8

α0r2
· (4.5)

We consider the Moser sequence [17] defined by

M̃n(x, r) ≡ M̃n =
1√
2π



(logn)1/2 if |x| ≤ r

n ,

(log(r/|x|)/(logn)1/2 if r
n ≤ |x| ≤ r,

0 if |x| > r,

which satisfies

M̃n ∈ H1(R2) and ||M̃n||2 = 1 +O((logn)−1) as n → ∞.
Also we have M2

n(x, r) ≡ M2
n = (2π)

−1/2logn+ dn, where Mn = M̃n/||M̃n|| and dn is a bounded
real sequence.

Thus we have the following estimate, whose the proof is based on the argument used in [11,
Lemma 5].

Proposition 4.1 Suppose h(s) satisfies (c)α0 and (h3). Then, for every σ > 4
√
2, there exists

n ∈ N such that
max{J∞(tMn) : t ≥ 0} < C∗ ≡ 4πµ0

α0rσ4
,

where µ0 = (µ− 4)/2µ and µ is given by (h2).
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Proof. Suppose, by contradiction, that for all n we have

max{J∞(tMn) : t ≥ 0} ≥ C∗.

Thus, there exists tn > 0 such that

J∞(tnMn) = max{J∞(tMn) : t ≥ 0}.
Then,

J∞(tnMn) =
t2n
2

−
∫

H(f(tnMn)) ≥ C∗,

that is
t2n ≥ 2C∗. (4.6)

Since d
dtJ∞(tMn) = 0 at t = tn, it follows that

t2n =
∫
|x|≤r

tnMnh(f(tnMn))f ′(tnMn). (4.7)

From (h3), given ε > 0 there exists Rε > 0 such that for all s ≥ Rε and for all |x| ≤ r,

sh(s) ≥ (β0 − ε) exp (α0s
4) and Mn(x) ≥ Rε. (4.8)

Combining (f3) with (4.7) − (4.8), for large n, we obtain

t2n ≥ (β0 − ε)
2

∫
|x|≤ r

n

exp (α0(f(tnMn)4)

≥ (β0 − ε)
2

∫
|x|≤ r

n

exp (α0(tnMn)2)

≥ (β0 − ε)
2

π(
r

n
)2 exp

(
α0t

2
n(2π)

−1logn+ α0t
2
ndn

)
,

where we used (f2) and (f3).
Thus

1 ≥ (β0 − ε)
2

πr2 exp (α0t
2
n(2π)

−1logn+ α0t
2
ndn − 2logn− 2logtn)

which implies that tn is bounded.
By (4.6) and

t2n ≥ (β0 − ε)
2

πr2 exp ((α0t
2
n(2π)

−1 − 2)logn+ α0t
2
ndn)

it follows that
t2n −→ 4π

α0
. (4.9)

Now consider the sets

An = {x : tnMn ≥ Rε, |x| ≤ r} and Bn = {x : tnMn < Rε, |x| ≤ r}.
From (4.7) and (4.8) we achieve

t2n ≥ (β0 − ε)
2

∫
|x|≤r

exp (α0(tnMn)2)

− (β0 − ε)
2

∫
Bn

exp (α0(tnMn)2) +
∫
Bn

tnMnh(f(tnMn)f ′(tnMn)
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Arguing once more as in [11], by using (4.9) we conclude that

4π
α0

≥ (β0 − ε)πr2

2
,

which implies that

β0 ≤ 8
α0r2

,

contrary to (4.5). Thus Proposition 4.1 is proved.

Remark 4.2 We observe that Proposition 4.1 implies that c0 < 4πµ0/α0rσ
4. Indeed, from (f0),

(V2), and mean value theorem, we have I(v) ≤ J∞(v) for every v ∈ H1(R2). Then, applying
Proposition 4.1 we conclude this estimate.

The following lemma shows that the Cerami sequence (vn) has a “non-vanishing” behavior.

Lemma 4.3 There exist positive constants a and R, and a sequence (yn) ⊂ R
2 such that

lim
n→∞

∫
BR(yn)

f2(vn) ≥ a > 0, (4.10)

where BR(z) denotes a ball of radius R centered at the point z.

Proof. Suppose by contradiction that (4.10) does not occur. Then

lim
n→∞ sup

y∈R2

∫
BR(y)

f2(vn) = 0, (4.11)

From (4.11) and applying a Lions compactness Lemma ([14]) we obtain as n → ∞,

f(vn)→ 0, in Lq(R2), ∀ q ∈ (2,∞). (4.12)

Then, we can show the crucial part of this proof, which is the following:∫
h(f(vn))f(vn)→ 0, as n → ∞. (4.13)

To prove such convergence, we start arguing as in the proof of Lemma 4.1, making w =
f(vn)

√
1 + 2f2(vn)) in (4.2). Thus, given η > 0 we take n0 such that

|∇vn|22 ≤ (1 + η)
c0
µ0

∀n ≥ n0, (4.14)

where µ0 = (µ− 4)/2µ.
From (f2), there exist σ > 4

√
2 and R > 0 such that

f(s) < σ
√
s, ∀ s > R. (4.15)

Now, we take α > α0. From (h1) and (c)α0 , given ε > 0, there exists a positive constant
C = C(ε, α, q) such that

h(s) ≤ εs+ C(exp (αs4)− 1)s3, ∀ s ≥ 0. (4.16)
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Thus, using (4.14)-(4.16), we get for every n ≥ n0

0 ≤
∫

h(f(vn))f(vn)

≤ ε

∫
f2(vn) + C

∫
(exp (αf4(vn))− 1)f(vn)4

= ε

∫
f2(vn) + C{

∫
{x;|vn(x)|≤R}

+
∫
{x;|vn(x)|≥R}

}(exp (αf4(vn))− 1)f(vn)4

≤ ε

∫
f2(vn) + C̃

∫
f4(vn) +C(

∫
(exp (α rf4(vn))− 1))1/r(

∫
f(vn)4r

′
)1/r

′

≤ ε

∫
f2(vn) + C̃

∫
f4(vn) +C(

∫
[exp (αrσ4(1 + η)

c0
µ0
(

vn
|∇vn|2 )

2)− 1])1/r(
∫

f(vn)4r
′
)1/r

′
,

where r satisfies (4.5) and 1/r + 1/r′ = 1. By Proposition 4.1 (see also Remark 4.2), we may
take α > α0 and η > 0 such that αr σ4 (1 + η)c0 < 4πµ0. Then, from (1.7), the last integral is
bounded uniformly. Hence, from (4.12), we conclude that (4.13) holds.

Now, we are ready to conclude the proof of Lemma 4.3. Taking again wn = f(vn)/f ′(vn) in
the equation (4.2) we have

o(1) = I ′(vn)wn

=
∫
(1 +

2f2(vn)
1 + 2f2(vn)

)|∇vn|2 +
∫
(V (x)f2(vn)− h(f(vn))f(vn))

≥
∫

|∇vn|2 +
∫
(V (x)f2(vn)− h(f(vn))f(vn)).

Then from (4.13), we conclude that∫
|∇vn|2 +

∫
V (x)f2(vn)→ 0, as n → ∞. (4.17)

By combining (h2) and (4.13) we obtain∫
H(f(vn))→ 0, as n → ∞. (4.18)

By using (4.17) and (4.18) in (4.1), we reach a contradiction because

0 < c0 = lim
n→∞ I(vn) = 0.

The proof of Lemma 4.3 is completed.

In the following we consider the functional at infinity I∞ associated with I. We define
I∞ : H1(R2)→ R by

I∞(v) =
1
2

∫
|∇v|2 + 1

2

∫
V∞f2(v) −

∫
H(f(v)).

Lemma 4.4 The Cerami sequence {vn} is a Palais-Smale sequence for I∞ at level c0.

Proof. From (V2), given ε > 0 there exists R > 0 such that

|V (x)− V∞| < ε, ∀ |x| ≥ R.
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Thus,

|I∞(vn)− I(vn)|
=

1
2

∫
BR(0)

|V∞ − V (x)|f2(vn) +
1
2

∫
R2\BR(0)

|V∞ − V (x)|f2(vn)

≤ 1
2
|V∞ − V (x)|∞

∫
BR(0)

f2(vn) +
1
2
ε

∫
R2\BR(0)

f2(vn)

≤ o(1), as n → ∞,

where in the last inequality we made use that∫
BR(0)

f2(vn)→ 0, as n → ∞,

since f(vn) ∈ H1(R2) and the embedding H1(R2) into Lq(R2), q > 1, is locally compact and
vn ⇀ v ≡ 0 weakly in H1(R2).
Therefore,

I∞(vn)→ c0, as n → ∞.

Similarly

sup
||φ||<1

|(I ′∞(vn)− I ′(vn), φ)| = sup
||φ||<1

|
∫

R2

(V∞ − V (x))f(vn)f ′(vn)φ| = o(1), as n → ∞.

Hence I ′∞(vn)→ 0, as n → ∞. This proves Lemma 4.4.
Define

ṽn(x) = vn(x+ yn),

where {yn} is the sequence defined in Lemma 4.3. Then, ṽn is a bounded sequence in H1(R2)
and it verifies, as n → ∞,

I∞(ṽn) = I∞(vn)→ c0 and I ′∞(ṽn)→ 0,

also ṽn ⇀ ṽ and ṽ is a critical point of I∞. Taking an odd extension of h from R
− to R if

necessary, we may replace ṽn by |ṽn|. Thus, we may assume ṽ ≥ 0 in R
2. By elliptic regularity

theory, ṽ is of C2 class. To see that ṽ > 0 in R
2, the strong maximum principle will be employed.

We observe that ṽ is also solution of the problem

−∆v + cv = (h(f(v)) − V∞f(v))f ′(v) + cv in R
2,

where c ≥ 0 is such that the term on the right is nonnegative for x ∈ R
2; the existence of this c

follows from (g0)− (g2). Thus, by strong maximum principle, ṽ > 0.
We also remark that

ṽ(x)→ 0 as |x| → ∞. (4.19)

Effectively, ṽ is a weak solution of

−∆v = g(v), in R
2,

where g(s) .= (h(f(v)) − V∞f(v))f ′(v). By the Sobolev embedding theorem and Trudinger
inequality (1.6), g(ṽ) ∈ Lp(R2) for every p ≥ 2. Thus, we infer by interior elliptic estimates that
ṽ ∈ W 2,p

loc and moreover
‖ṽ‖W 2,p(Ω′) ≤ C(|g(ṽ)|Lp(Ω) + |ṽ|Lp(Ω)),
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where Ω′ ⊂⊂ Ω, Ω is an open bounded set of R
2 and C depends only on the diameter of Ω and

the measure of Ω \Ω′.
Let x0 ∈ R

2 and denote by Br ⊂ R
2 the open ball of radius r > 0 centered at x0. Then,

‖ṽ‖W 2,p(B1) ≤ C(|g(ṽ)|Lp(B2) + |ṽ|Lp(B2)),

where C depends only on the diameter of B2 and the measure of B2 \B1.
Since W 2,p(B2) ⊂ C(B1), because p ≥ 2, we obtain

‖ṽ‖L∞(B1) ≤ C(|g(ṽ)|Lp(B2) + |ṽ|Lp(B2)).

In particular,
|ṽ(x0)| ≤ C(|g(ṽ)|Lp(B2) + |ṽ|Lp(B2))

and since g(ṽ) and ṽ belong to Lp(R2), we have

|g(ṽ)|Lp(B2) + |ṽ|Lp(B2) → 0 as |x0| → ∞
so that |ṽ(x)| → 0 as |x| → ∞ and the verification of (4.19) is complete.

We assert now that
c∞ ≤ I∞(ṽ) ≤ c0, (4.20)

where c∞ is the Mountain Pass level given by

c∞ = inf
γ∈Γ

sup
t∈[0,1]

I∞(γ(t)),

and
Γ∞ = {γ ∈ C([0, 1],H1(R2)); γ(0) = 0, γ(1) 
= 0, I∞(γ(1)) < 0}.

We start the verification of (4.20) showing that I∞(ṽ) ≤ c0. Indeed by (f3):

f2(ṽn)− f(ṽn)f ′(ṽn)ṽn ≥ 0, ∀ n ∈ N. (4.21)

Now, from (f3) again and (h2), we obtain

1
2
h(f(ṽn))f ′(ṽn)ṽn −H(f(ṽn)) ≥ 1

µ
h(f(ṽn))f(ṽn)−H(f(ṽn)) ≥ 0, ∀n ∈ N. (4.22)

Hence by Fatou Lemma combined with (4.21) and (4.22), we have

c0 = lim sup
n→∞

{I∞(ṽn)− 1
2
I ′∞(ṽn)ṽn}

= lim sup
n→∞

∫
{1
2
[(f2(ṽn)− f(ṽn)f ′(ṽn)ṽn)V∞] +

1
2
h(f(ṽn))f ′(ṽn)ṽn −H(f(ṽn))}

≥
∫
1
2
(f2(ṽ)− f(ṽ)f ′(ṽ)ṽ)V∞ +

∫
1
2
h(f(ṽ))f ′(ṽ)ṽ −H(f(ṽ))

= I∞(ṽ)− 1
2
I ′∞(ṽ)ṽ = I∞(ṽ).

Thus I∞(ṽ) ≤ c0. Now, in order to show c∞ ≤ I∞(ṽ), we slightly modify an argument used in
[13] to get a path γ : [0, 1]→ H1(R2) such that


γ(0) = 0, I∞(γ(1)) < 0, ṽ ∈ γ([0, 1]),
γ(t)(x) > 0 ∀x ∈ R

2, t ∈ (0, 1],
max
t∈[0,1]

I∞(γ(t)) = I∞(ṽ).
(4.23)
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Indeed, define

ṽt(x) =
{

ṽ(x/t) if t > 0,
0 if t = 0.

Choose three points to ∈ (0, 1), t1 ∈ (1,∞) and θ1 > t1 such that the path γ defined by three
pieces, namely, γ1 : [0, 1] → H1(R2), γ1(θ) = θṽto , γ2 : [to, t1] → H1(R2), γ2(t) = ṽt, and
γ3 : [1, θ1]→ H1(R2), γ3(θ) = θṽt1 , it is desired path. Effectively, because of ṽ is a critical point
of I∞, the function ṽ is a weak positive solution of

−∆ṽ = g(ṽ), in R
2.

Then ∫
g(ṽ)ṽ = ||∇ṽ||2 > 0,

where g(s) = (h(f(s))− V∞f(s))f ′(s). Thus, there exists θ1 > 0 such that∫
g(θṽ)ṽ > 0, ∀ θ ∈ [1, θ1]. (4.24)

Let Φ(s) = g(s)
s for s > 0. By (4.24) we infer that∫

Φ(θṽ)ṽ2 > 0, ∀ θ ∈ [1, θ1]. (4.25)

On the other hand, from

d

dθ
I∞(θṽt) = θ

(
||∇ṽ||22 − t2

∫
Φ(θvt)v2

)

there exists to ∈ (0, 1) such that

||∇ṽ||22 − t2o

∫
Φ(θṽt)ṽ2 > 0, ∀ θ ∈ [0, 1]. (4.26)

From (4.25) there exists t1 > 1 such that

||∇ṽ||22 − t21

∫
Φ(θṽt)ṽ2 <

−2
θ2
1 − 1

‖∇ṽ‖2
2, ∀ θ ∈ [1, θ1]. (4.27)

From (4.26), by along of the path γ1, I∞(θṽto) decreases and it takes its maximum value at
θ = 1. Since

∫
G(ṽ) = 0, by Pohozaev identity we obtain

I∞(ṽt) = I∞(ṽ) =
1
2
‖∇ṽ‖2

2

along the path γ2. From (4.27), I∞(θṽt1) decreases along the path γ3. Thus,

I∞(γ1(t)) ≤ I∞(ṽt) = I∞(ṽ),

on the other hand
I∞(ṽ) = I∞(ṽt) ≥ I∞(θṽt1), ∀ θ ∈ [0, θ1].

Therefore
max

t∈[0,θ1]
I∞(γ(t)) = I∞(ṽ).
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Moreover, from (4.27) and the fact I∞(θṽt1) decreases along γ3 we have

I∞(θ1ṽt1) = I∞(ṽt1) +
∫ θ1

1

d

dθ
I∞(θṽt1) dθ

≤ 1
2
‖∇ṽ‖2

2 −
∫ θ1

1

2θ
θ2
1 − 1

‖∇ṽ‖2
2 dθ

= −1
2
‖∇ṽ‖2

2 < 0.

Hence we obtain the desired path (4.23).
The path (4.23) together with the definition of c∞ imply that

c∞ ≤ max
t∈[0,1]

I∞(γ(t)) = I∞(ṽ).

Thus, c∞ ≤ I∞(ṽ) and the verification of (4.20) is complete.
Finally, we may conclude the proof of Theorem 1.1. Take again the path γ given by (4.23).

Since γ ∈ Γ∞ ⊂ Γ, γ(t)(x) > 0, and V (x) ≤ V∞, with V 
= V∞, from (4.20) we obtain

c0 ≤ sup
t∈[0,1]

I(γ(t)) = I(γ(t))

< I∞(γ(t̄) ≤ max
t∈[0,1]

I∞(γ(t))

= I∞(ṽ) ≤ c0,

which is contradiction. Therefore, v is nontrivial. Theorem 1.1 is proved.

Remark 4.5 1. By a similar argument we can prove a version of Theorem 1.1 in the
asymptotic case to a periodic function Vp, that is, when V satisfies

Vp(x)
.= lim

|x|→∞
V (x), Vp(x+ 1) = Vp(x), ∀x ∈ R

2, and

V (x) ≤ Vp(x), ∀x ∈ R
2,

where the last inequality is strict on a positive Lebesgue measure set of R
2.

2. We can establish Theorem 1.1, in the compact-coercive case, that is, when lim|x|→∞ V (x) =
+∞, and its proof follows easily because the map v → f(v) from H1(R2) into Lq(R2) is
compact for 2 ≤ q < ∞. (See [19] also [15]).

3. Theorem 1.1 still holds in the radially symmetric case, namely V (x) = V (|x|), ∀x ∈ R
2.

The proof can be handled as above by using that the map v → f(v) from H1(R2) into
Lq(R2) is compact for 2 < q < ∞. (See [22] also [15]).
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Oĺımpio H. Miyagaki
Departamento de Matemática,
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