Relatério parcial de estagio pos doutoral

Este relatdrio descreve os resultado obtidos e os estudos em progresso relativos aos trabalhos
por mim, Abiel Costa Macedo, realizados em parceria com o Professor Jodo Marcos Bezerra do
O durante o meu estagio pds doutoral. Neste o estagio obtivemos relevantes avancos nos projetos
que foram propostos dentre os quais destacamos os seguintes resultados:

e Relativo ao projeto 1 produzimos o trabalho intitulado “Adams inequalities and extremal
functions on unbounded domains”, em anexo, e outro em fase de produgao. Faremos agora
uma breve explanacao sobre os resultados obtidos.
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onde jp,, := min{j € N : j > 2} provamos a seguinte desigualdade do tipo Adams da
forma escalar invariante: Dado 8 € (0, By) existe Cg m.n = C(8,m,n) tal que
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onde 3y é a melhor constante de Adams. Provamos ainda a existéncia de extremais para o
seguinte problema variacional associado & desigualdade (2)
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Usando a desigualdade (2) provamos que a seguinte desigualdade do tipo Adams provado por
B. Ruf, F. Sani [8] e N. Lam, G. Lu [4]

Teorema A ( B. Ruf and F. Sani, 2013) Seja m um inteiro positivo e par, i.e., m = 2k
para algum k € N. Entdo existe uma constante Cp, , > 0 tal que

sup / O(Bolu|™ ™)) da < Cyn, (3)
wewm /™) /2

I(=a+Dk <1

Ullp/m <
para todo dominio 0 C R™. Mais ainda, o supremo acima se torna infinito se By for trocado

por B > [y.

Teorema B (N. Lam and G. Lu, 2012) Seja m um inteiro positivo e impar, i.e., m =
2k + 1 para algum k € N. Entdo existe uma constante C, , > 0 tal que

sup / O(Bolu[*/ ™)) da < Cy, (4)
weW™ "™ (Q) Q
1V (=a+Dkull )+ (—~a+DFul ) <1

para todo dominio Q0 C R™. Mais ainda, o supremo acima se torna infinito se By for trocado
por 3> fo.

nao possui extremais para 2 = R™ no caso subcritico como n/m = 2.
Para mais detalhes ver o artigo em anexo.

No segundo trabalho provamos a existéncia de extremais para as desigualdades (3) e (4)
no caso critico para m = 2 com Q = R2.



e Relativo ao projeto 2 temos dois trabalhos em producao “Weighted Sobolev inequalities and
critical equations for the high order elliptic operator” e “Adams inequalities for weighted
Sobolev spaces”. No que segue daremos uma pequena explanacao, em inglés, sobre o assunto
dos artigos.

Let AC} (0, R] be set of the all functions locally absolutely continuous u : (0, R] — R such
that u' is still locally absolutely continuous. For 0 < R < oo, p > 1, a, 8 > —1, we set
X3P (e, B) the space of u € ACL (0, R] such that u(R) = v/(R) = 0 and

loc
R

/ |Aqu|Prfdr < 400, with A, =r~%(ru’).
0

Then X?—i’p(a, B) is a Banach space under the norm

R v
||'U/||X12?p = (/0 |Aauprﬁdr> .

The X%’p (a, B) spaces have interesting properties which turn out be appropriated for study
of the following class of equations

A2u:=Ay(Aqu) = f(u) on (0,R] and wu(R)=u'(R)=0. (5)
Let ¢ > 1 and v > —1. Let R be such that 0 < R < oo. Denote by L4 = L9(0, R) the Banach
space of Lebesgue measurable functions u : (0, R) — R such that

1/q
R
lullzs == (/O |uqr7dr> < .

Accordingly, we can derive the following embeddings for X}é’p (a, B) spaces.

Theorem 1 Letp > 1, o, B,v > —1 be real numbers. Suppose 3 —2p+1 > 0, then hold the
following continuous embeddings

XpP e L1, 1<q<p*

where
_ (w+bp
B—2p+1

Moreover, if ¢ < p*holds then these embeddings are compact.

P =p"(v,p,B)

We study the problem (5) for the critical case. We also generalized the concept of the space
XIQ%”’ (o, B) for any arbitrary order X" (a, ), extend the Theorem 1 and prove an Adams
tipo inequality for this space.
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Abstract

In this paper we establish a sharp Adams type inequality of the scaling invariant form and prove the existence
of maximizer for the associated variational problem. Using this scaling invariant inequality we prove that
the Adams type inequality proved by B. Ruf, F. Sani [32] and N. Lam, G. Lu [21] has no extremal functions
in the subcritical case on W™-2(R?"), for m > 2. Moreover, in line with the Concentration Compactness
Principle due to P.-L. Lions [25], we will obtain an improvement for Adams’ exponent in certain class of
sequences in W' /™ (Q), for any domain Q C R”, n > 2.

Keywords: Trudinger-Moser inequality, Adams’ inequality, Exponential growth, Concentration
compactness principle, Extremal functions.
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1. Introduction

This paper is concerned on the problem of finding optimal Sobolev inequalities and the attainability to
the associated variational problem for the borderline case known nowadays as Trudinger-Moser case. These
inequalities play an important role in the geometric analysis, partial differential equations and have been a
source of inspiration of many research works in recent years. In order to motivate our work, let us introduce
now a brief history of some results on these class of problems.

Let Q C R"(n > 2) be a smooth bounded domain and WO1 (Q) the closure of CJ(Q) in W!7(Q) under
the usual Sobolev norm. It is well known that the Sobolev embedding W' (Q) — L(Q) holds for any
1 <s<p*=np/(n—p)if 1 <p < n. For the limiting case p = n, formally p* = 40 and it was proved
by V. Yudovich [41], S. Pohozaev [29], J. Peetre [28], N. Trudinger [39] and J. Moser [30] that the optimal
embedding of the Sobolev space Wol’”(Q) is into an Orlicz space, that we state as follows:

n/(n—1) < o0 for o S (04
sup [ el gy " (1.1)
uewi (@) Q = for o> oy,
[Vuln<1

*Research partially supported by the National Institute of Science and Technology of Mathematics INCT-Mat, CAPES and
CNPq.
*Corresponding author
Email addresses: jmbo@pq.cnpq.br (Jodo Marcos do O), abielcosta@gmail.com ( Abiel Costa Macedo)

Preprint submitted to Elsevier September 27, 2014



where o, 1= na);i (1;171) and @,_ is the area of the surface of the unit n-ball in R”, for || - ||, denoting the
standard norm in the Lebesgue space L"(2). Later P-L. Lions [25] proved that the exponent o, can be
improved along certain sequences. More precisely, if (u;) C WO1 Q) with ||[Vu]|, =1 and u; — up in

W, " (), then
sup [ e de <o, forany < 1/(1~ Vi )/,
i Q

where uy is the spherically symmetric decreasing rearrangement of u, see section 5.

The Trudinger-Moser inequality for unbounded domains were proposed by D. M. Cao [8], for the case
n=2,J.M.do O [15], R. Panda [27] and S. Adachi and K. Tanaka [1], for the general case n > 2, which
we state now its scaling invariant form: Given o € (0, ¢,) there exists a constant Cy, depending only on &
and n such that

' ju N\ [l
/ ‘P(a( > >dx<ca,n ny e WHY(R™)\ {0}, (1.2)
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Moreover, inequality (1.2) fail for oc > a,. All these results treated the subcritical case 0 < o < ,. Later
B. Ruf [31], for the case n = 2, and Y. Li, B. Ruf [23], for the general case n > 2, studied the critical case
a = oy, and proved that the result of J. Moser can be fully extended to unbounded domains if the Dirichlet
norm ||Vul|, is replaced by the full norm (|| Vu||} + HuHﬁ)l/ ". More precisely, they proved that

sup Y(au” ") dx < 4oo, V< o (1.3)
uewln(Rn) R”
Vel + <1
Moreover, inequality (1.3) became infinite if o > ;.

Another interesting question about Trudinger-Moser inequalities is whether extremal function exists, or
not. The first result in this direction belongs to L. Carleson and A. Chang [9] who proved that if Q C R"
is the ball B;(0), then the supremum in (1.1) is achieved when a < o,. Later, M. Struwe [34] studied the
existence of extremal functions for a class of nonsymmetric domains. He obtained a sufficient condition
for these class of domains in R? using blow-up analysis. M. Flucher [17] introduced another method, the
conformal rearrangement, and derived an isoperimetric inequality, which implies the existence of extremal
functions to any smooth bounded domain in R?. At last, K. Lin [24] generalized the existence of extremal
function to any smooth bounded domain in R"(n > 2). It should be mentioned that the existence of extremal
for (1.1) correspond to the existence of solutions to an associated Euler-Lagrange equation involving critical
growth. Thus, these class of problems is harder or more difficult than subcritical ones and the lack of
compactness makes the proofs more involved, as one can see in very intricate analysis given in the papers
[9], [17], [34]. For works related to (1.1) and applications, we refer to [5, 10, 11, 35] and references
therein. At this point we mention that existence of extremal for (1.3) were first analyzed in [31, 23] and
complemented by M. Ishiwata [18]. Recently M. Ishiwata [19] obtained an weighted Trudinger-Moser type
inequality of the scaling invariant form and studied the existence of extremal for the associated variational
problem.



(Q), D. Adams (cf. [2]) obtained the

In the case of Sobolev spaces with higher order derivatives W,

following version of the Trudinger-Moser inequality (1.1)
Theorem A (D. Adams, 1988). Let Q C R” be a bounded smooth domain and m a positive integer with

m < n. Then there exists a constant Cy, ,, such that
n/(n—m)
sup [ P av< il BB (14)
6Wm n/m
9 /ms1
where
7172 2”T n/(n—m)
a): '5 } , modd,
Bo = Bo(m,n) = wr(z) ] (1.5)
L |:71722 (>2 ] m even
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and By is sharp, i.e., the supremum in (1.4) is +o0 if B >

Here we are denoting V"'u by the mth gradient of u, i.e
m=2,4,6,...

m/2
vy, A"y,
VA=D1 m=1,35,...

This inequality was extended by C. Tarsi [37, Theorem 4] to a more large space given by
WP(Q) = {u e W"P(Q) : u),, = Aluj,, = 0 in the sense of trace,1 < j < m/2}
Theorem B. Let Q C R" be a bounded domain and m < n an integer. Then there exists a constant Cy,, , > 0

such that
sup / P dx < CualQl, YO < B < o,

uGWm n/m
uvmuu,,/m,

where By was defined in (1.5). Moreover, By is sharp, i.e., the supremum above is +o0 if B > By
Recently B. Ruf, F. Sani [32] and N. Lam, G. Lu [21] have obtained a version of the Adams inequality
(1.6)

(1.4) for domain not necessarily bounded. Let
.jm,n_z l,]
— Jmp:=min{j €N : j>n/m},

be a Young function.
Theorem C ( B. Ruf and F. Sani, 2013). Let m be an even positive integer, i.e., m = 2k for some k € N. Then
(1.7)

there exists a constant Cy, , > 0 such that

sup
EWm n/m (.Q)
[(=a+1) an/”771

[ @Bolul? ") dx < Gy,

for any domain Q C R". Moreover, the supremum became infinite if By is replaced for B > o



Theorem D (N. Lam and G. Lu, 2012). Let m be an odd positive integer, i.e., m = 2k + 1 for some k € N.
Then there exists a constant Cy, , > 0 such that

sup /q)(l}o‘u|n/(nﬂn))dxgcm7m (18)
uew""™(Q) Q

for any domain Q C R". Moreover, the supremum became infinite if By is replaced for > Po.

The main purpose of this paper is three-fold: First we obtain a scaling invariant inequality for the higher
order Sobolev space of radially symmetric functions and prove the existence of extremal to the associated
variacional problem. Secondly we prove a result about nonexistence of extremals for Adams type inequality
(1.7) and (1.8) in the Hilbert case. Thirdly, in line with the Concentration Compactness Principle due to
P.-L. Lions [25], we will obtain an improvement for Adams exponent in certain classes of sequence on
W(;”’"/ "(Q), for any arbitrary domain.

First we establish the following Adams type inequality of the scaling invariant form.

Theorem 1.1. Let n > m > 2 be integers. Then given B € (0,Bo) there exists Cg ,, , = C(B,m,n) depending
only on B, m and n such that

n/m
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where ® was defined in (1.6), By was given in (1.5) and W:Z;ln/ "(R") denote the space of the radial

W/ (R")-functions. Moreover, for B € [Bo, ) inequality (1.9) fail, i.e., there exists (u;) C W:Z;in/m(R”)
such that

V™uy; n/m i n/(n=m)
””/m/ o B(“t) dx s eo. (1.10)
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We also study the existence of extremal associated to the scaling invariant Adams type inequality (1.9)
in the following sense. Let

1 n/(n—m
Hpumi=  sup L@ (BUu) ) ax
uew s/ @\ (o} 1]}, R
V™l n =1

By Theorem 1.1,we have that ug ,, ,, < oo for B € (0, o) and pg ,, ,, = oo for B € [Bo, o). Under this notation
we obtain

Theorem 1.2. ug , ,, is attained for all B € (0, o), i.e., there exists u € W:Zl’jn/m(R") such that ||V"ul[» =1
and

g = [ @ (Bl ax

Jull?



Secondly, we will consider the Adams type inequality proved in Theorems C and D for Q = R”. For
n,m > 2 integers and 1 < ¢ < oo a real number, we consider the Sobolev space W"4(R") endowed with the
norm

IV(=A+D*ul|d+[[(=A+D*u||d, for m=2k+1;
[l on.q = (L.11)
(—A+I)kul|d, for m =2k,
which is equivalent to the usual Sobolev norm in W”+4(R"). Now we denote the extremal constant for the
Adams type inequalities (1.7) and (1.8) by

Npum =  SUP /cb(mu\"/("*’"))dx. (1.12)
uew™ i (Rny /R

I, 2. <1

By Theorems C and D, we know that 7g ,, ,, is bounded for § < By and infinite for 8 > By. We will prove
that in the Hilbert case, n/m = 2, there is not extremal function for ng , ,, provided that f8 is sufficiently
small. Note that in the Hilbert case By = Bo(m,2m) = (47)"m!. So we prove the following theorem

Theorem 1.3. ng ,, , is not attained when n/m =2 and 0 < B < (47)"m!.

Our strategy to prove Theorem 1.3 is reduce the study of attainability of the supremum (1.12) to the
radial case and so apply inequality (1.9). This reduction follows as an corollary of the following result

Theorem 1.4. Given any u € W""/"™(R") we can find v € Wr’ZL’in/m(R") such that [|V||nn,2 < |[ul|, 2 and
ut <w.
Then, using this result we can prove the following corollary.

Corollary 1.5. The supremum in (1.12) can be taken on radially symmetric functions, i.e.,

Mpam=  SUp / (B lu” ") dx, VB >0,
ueWm‘n/m (R”) n

rad

il g, 2 <1

Moreover, if Ng . is attained then we can take a radially symmetric function as an extremal.

This result is important not only in the study here present but in the general analysis of the attainability
of the optimal constant 7g ,, -
In the last direction, we will prove that the Adams exponent f3y in the inequalities (1.7) and (1.8) can be

improved in the case of sequence which the weak limit is not an identically zero function in W' "m(Q), for
any domain Q C R". More precisely,

Theorem 1.6. Let Q C R" be any arbitrary domain. Assume that u;,u € W(;n’n/m(Q), Uillmn <1, u# 0 and
up —uin W(;n’n/m(Q). Then, given v € [1,M), there exists a constant C = C(7,Q) > 0 such that

sup [ & (Bolu/ ") ax<c.

n/m) m/(nm

n/m

where 1) = Ny (u) 1= (1 - H(I—A)kuH ) if m=2k+1 or m =2k for some k € N.



This result has important consequence in the study of nonlinear elliptic problems involving exponential
critical growth and even in the study of existence of extremal for Adams type inequalities (1.7) and (1.8)
in the critical case. The proof of Theorem 1.6 is based on the application of comparison result proved in
section 5. We observe that we can use the same idea in the proof of Proposition 5.2 to derive a similar
comparison result on bounded domains. Thus, using this comparison result we can get rid of the restriction
on p in the concentration-compactness result proved in [16, Theorem 1.1].

This paper is organized as follows: In section 2, we present some preliminaries results that we will
need throughout the paper. In the section 3, we will obtain a scaling invariant Adams type inequality,
Theorem 1.1. In section 4, we will prove the existence of extremal for the variacional problem associated to
the scaling invariant Adams type inequality, Theorem 1.2. In section 5, we will prove a comparison result
and Theorem 1.4. In section 6, we will prove the nonexistence result, Theorem 1.3. In section 7, we will
prove Theorem 1.6.

2. Preliminaries

In this section we will discuss on some questions involving the Sobolev space W™ 4(R") and some
equivalent norms, for ¢ € (1,0). First we consider the Bessel potential G,, defined by

_ LU apss -5 /4 s(—nim) 290
Gn(x) = gy (kl)!/o ¢ ¢ e 5

It is well known that G, satisfies the following conditions (see [33])

e G,cL'(R")

e Given g € (1,0), then u € W™4(R") if and only if u = G,, * f for some f € L1(R").
Moreover, it is easy to see that,

Lemma 2.1. Given k € N, then the operator Ly : L1(R") — W?X4(IR") given by

Li(f) == G * f,

is an isometric isomorphism onto W24 (R") endowed with the norm | - || ok .4 Furthermore, if f € W'4(R")
then Ly (f) € WT14(R") and Ly, is an isometric isomorphism from W14 (R") onto W?k4(R"), endowed with
the norm || - || 2k41 .-

Now we discuss about some norm on W"4(IR"), for g € (1,e0). First, note that in the Hilbert case, g = 2,

we have

O (m

lelfne = X ()17l @
r=0

ot ($)at

In fact, given u € W"2(R"), for m = 2k, we have

(—A+Dfu=

M»



from this follows that
= [ A+ D ul? ds
. I\ [k . .
— Y (== < ) < ) ANy dx
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where we have used the elementary fact

Z6)6)- ()

For m = 2k+ 1, we have

and thus

o= [ IVCA+DfuP ar+ [ |-+ D ul? ds

— / Y (—1yei <ll‘> <k) (VA UV AUt A AT dx

R 0<ij<k J
2k
2k
_ Z( ) (’V2k75+1u’2+|v2kfsu‘2> dx
Rt \ S

_ /Ji) (’;’) Viul? dx.

We also will consider the following norm on the Sobolev space W4 (R"):
(kg 19"ullg) "7, e W@, 22)

This norm is equivalent to the usual Sobolev norm. This equivalence is a direct consequence of [3, Theorem
5.2] and the Riesz Potential, which we state in the following lemmas.

Lemma 2.2. Let n,m > 2 be positive integers and q > 1. Then there exists K = K(m,n,q) such that

Julfg < K(Julf 4+ lulg,),

7



forall0 < j <mandue W™4(R"), where

ulfy =Y D%l

o[ =j
Lemma 2.3. There exists a constant K = K(m,n,q) such that
Wt < I?HV’”WHZ, Vwe WI(R").
From this equivalence we have the following characterization of the dual space of W™4(R").

Lemma 2.4. For every L € (W™4(R"))' there exists (w,v) € LY (R") x LY ((R™)"™)) such that

L(u):/ uwdx+ | V"'uvdx, VueWm"(R"),
n Rn

/!

where ¢ = q/(q—1) and LY ((R”)’(’")) = LY (R") for m even and LY ((]R")’(m)) = L7 (R")") =
1 L7 (R") for m odd.

Proof: To prove this lemma we consider P : W™4(IR") — L(R") x L ((R")" (’”)) given by
P(u) = (u,V"u),
with LY(R") x L1 ((R”)’(’”)) endowed we the product norm, which is an isometric isomorphism onto

W =P(W™4(R")) C LY(R") x LI ((R")"™), for W™4(R") endowed with the norm (2.2) for m even and
with the norm (Hqu—i—Z’z:l ||8xJ.AkuHZ)1/q for m odd, m = 2k + 1. Thus given L € (W™4(R"))’, we have
that the linear functional L given by

L(Pu) = L(u),
is continuous, i.e, L € # and ||L;#'|| = ||L;(W™4(R"))'||. Note that, by Hahn Banach Theorem, there
exists a preserving norm extension L € (LI(R") x L ((R”)’('")))/ of the functional L. Therefore, there
exists (w,v) € LY (R") x LY ((R™)rm) such that

L(u) = L(Pu) = L(Pu) = / uwdx+ [ V"'uvdx, YueW™(R").
n R»

In view of the Lemma 2.1, we can consider another important characterization.

Lemma 2.5. For every L € (W™4(R")) there exist w € LY (R") and (z,v) € LY (R") x L9 ((R")") such that
L(u) = /n(I—A)ku wdx, ¥ueW™(R"),
if m =2k, for some k € N, and
L(u) = /H(I—A)ku zdx+ - V(I—A)ku vdx, YueW™(R"),

ifm=2k+1, for some k € N.



Proof: The proof follows by the same argument used in the previous lemma, we only need to consider the
operators Py : W2*4(R") — L4(R") given by Py (u) = (I — A)*u and P, : W4 (R") — L7 ((R")"!) given by
Py(u) = ((I— A u, V(I — A)fu). |

Another important result that we want to mention is a Radial Lemma that can be easily extended from
[20], Lemma 1.1, Chapter 6, which will be useful in our analysis.

Lemma 2.6. Ifu € W"I(R"), for 1 < q < oo, then

. 1 .
lu(x)| < a)nfl/qq |x|(n—1)qHu”W'"'q a.ein R".

3. Proof of the scaling invariant Adams type inequality

In this section we will prove Theorem 1.1. Before start the proof, we define two operators in W"-"/ "(R").
Let 7,5 > 0 be real numbers. We define I;,J; : W/ (IR") — W™"/™(R") given by

L(u) (x) = " u(t'/x) (3.1)

and
Jo(u) (x) == u(s""x).

The norms of I;(u) and J;(u) satisfy the following properties
1 GOl = el and (V" F (@) g = " IV " sl ¥ >0,

and
HJS(M)”n/m :Sim/nH”Hn/ma and va‘ls(u)”n/m = vaan/m7 Vs>0.

Moreover,
1y 2@l = 5"l and [V 0L (0) o = "IVl ¥ 15> 0.

Now, using these two operators, we can write inequality (1.9) in the following equivalent form:

sp [ @ (Bl dv < Cpppe B (0.B). (3:2)
m,n/m Rz
ueW, /" (R?)

il =1 197 =1

for some constant Cg ,, , = C(8,m,n) depending only on 8, m and n. In fact, given u € W:Zt’i"/ "(R")\ {0}
n/m

n/m

—n/m

we take 1 = ||V"ul|
n/m

and s = ||u|| /, which imply
HJSOIt(u)Hn/m =1, and vaJSOII(”)Hn/m =1.
Then applying the inequality (3.2) to J; o I;(u) and the definition of /; and J; we have

vauHZ?Z ’u| n/(n—m) o
W/R,,CD B (HVm”Hn/m> dx:/an)(szoI,(u)’ /( )) dx < Cp s



which gives inequality (1.9). The reciprocal is immediate.
Henceforth we will prove inequality (3.2). Let us consider

M= {u e W (R 2 |[ue]lyjm = 1 and |[V"ull/m = 1},

rad

From Lemmas 2.2 and 2.3, we have

o < Kl + V" ll) < 2K, ¥ € M. (33)

for some constant K = K (m,n) > 0 depending only on m and n, i.e, M is a bounded subset of W”-"/"(R").
Now take f € (0, ) fixed and any arbitrary u € M. For any Ry > 0 we have

L@ (Bla=m) ax— / . @(B\ur"/<n—m>) dxt R\ ) <I><ﬁ!u|"/(”"")) dx

BRO R™\Bg,
=Ap+Ay,

where

AO::/ e(ﬁ\u|"/("_'"))dx and A ;:/ ¢(B|u|n/(n—m)> do.
BRO R"\BRO

In what follows we will show that it is possible to choose Ry = Ry(f3,m,n) fixed such that the integrals
Ag e A; are bounded by a constant Cg ,, , depending only on 3, m and n.
Now we estimate A;. By the Radial Lemma 2.6, there exist C, depending only on 7 such that

1 1 .
]u(x)] = ’M(’X’)’ S C W"M”wmn/m < 2KC W, a.c. 1n Rn,

where in last inequality we have used the inequality (3.3). Then taking Ry > (2KCn)”/ mn=1) we have
lu(x)| <1, ae.in R"\Bg,.
Thus
D= [, BEW) < [ i as < A7 <
R"\Bg, R"\Bg,

To estimate integral Ao, we will construct an auxiliary function w € W'}’ nfm (Br,) with [|[V™"w|,,, = 1

and apply Theorem B. To construct w € Wm n/m (Bg,) we consider the functions

gi(|x]) == x|, Vx € Bg,,
for [ =1,2,...,k— 1 where k is the natural number such that m = 2k + 1 or m = 2k. Note that g; €
mn/m
W' (Bg,) and more

c{|x|2k*2(l+j) for j=1,2,....,k—1,

V)CEBRO,
0 for j=k—I1+1,... k.

Alg(|x[) :{
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where
J

= [IIn+2k—2(s+D)][2k—2(I +s—1)],

s=1

for j=1,2,...,k— 1. Now we define

w(|x]) == u(|x[) — Zazgz (|x) — a,
=1
where

A*u(Ro)

ap .= VN R
A*go(Ro)
ANu(Ro) = X1 asA g4 (Ro)

= = forl=1,2,....k—1
aj Akilgl(RO) 9 or <~y 9 bl (34)

ax = u(Ro) — Zasgs Ro).

Note that V" = V"w and more w € W'y’ nfm (Bg,). Hence, using the following elementary inequality
(a+b) < (1+8)0a?+(1+1/8)9, ¥&>0,

for a,b > 0 and ¢ > 1, we have
' n/(n—m
Ao= [P gy (Bt aga vl ")

<e B(1+1/5) n/(n m ’21 lalgl(|RO| +ak’”/” m) / e(ﬁ(1+5)n/(n—m)‘Wln/(n—m)) dx.
Bg,

Now, since ||V"'W|[,,/m = [[V"u|/m = 1, taking 6 > 0 sufficiently small such that (1 + 8)/(n=m) < By and
applying Theorem B, we can estimate

e n/(n—m)
Ag < e B(1+1/8)" = | Y5 aygy(1Ro|)+a | Romn-

Furthermore, by Lemma 2.6,
1

WH”HWWW < 2KG, W’

|A'u(Ro)| < G, for 0 < j <k,

which, together with (3.4), implies that |Zk L a1g8i1(|Ro|) +ax| < C‘Ro,m,n. Therefore, since Ry is fixed we
conclude that

/nq)(ﬁ|u|n/(n7m)> deA()-f-Al S CB,mmv

for some constant Cg ,, , > 0 depending only on 3, m and n.
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Now we will construct a sequence to guarantee the optimality of inequality (1.9). We only need to find
a sequence that satisfies (1.10) for B = By. The sequence is basically the same sequence used by D. Adams
in [2]. Let ®(¢) € C*|0, 1] such that

®(0) = D' (0) = --- ="~ (0) =0,
(1) =d'(1)=1 @"(1)="(1)=---=d" 1 (1)=0.

For0 < e < %, we define

ed(1r), if r<e

t, if e<t<l-—¢
H(t) = 1

1—ed(i(1—1), se 1-e<i<]1

1, it 1<t

and

1
v (r) = (logi)(mfn)/"H <(logi)_1 log r) .

Note that y;(|x|) € W i (R"). More than that, ;(|x|) = (logi)™ /" for |x| < 1/i and, as proved for D.

rad
Adams in [2], we have

IV il = 0B AT
where
Are < [14+2¢ (|9l +0 ((10g) )"

By easy calculation we also have
il = 0(1). (35)
Now, for each i, we take € = (logi)~!. Then, since m/(n—m) < 1,
l[/-n/(" m) nlogi Wy nlogi 1
/ O3] ’— dx > / S| ————— | dx= o) —
T\ P T sasy \ AP0 no \ gl )

n/m i i

—nlogi| 1— 1 ip=2 i J
> wn—le < 1+2<logf>1(|d>’m+o(<logi>‘))"/”’) _ Z _nlogi e Mogi

n /=)

Jj=0 i

Therefore, passing the limit we have

—m)
tim [ @ (p— Y ) s Ot e
i JRn va 1”2%1 m) ~ n

which, together with (3.5), proves that (y;) satisfies (1.10) for § = By.
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4. Existence of extremal for the scaling invariant Adams type inequality

In this section we will prove Theorem 1.2. Given 8 € (0, y), from (3.2), we have that

UB nm = sup /n P <ﬁ|u|ﬂ/(n—m)> dx “4.1)
uew™/m gy R

llelly =1, 197"

n/m VL/m:l

Then, we can take a sequence (u;) C W' n/m(]R”) such that [|u;]|,, /s = 1, [|V"i|,/m = 1, forall i € N, and

rad

lim [ & (Blu"/ ") dx = pig (42)

1—o JRn

From Lemmas 2.2 and 2.3, we have that (1;) is bounded in Wy #/m (RN, Thus, there exist u € w" d"/ "(R™)
such that

U —u in W:Zd”/m(R”)
Ui —u in L1(R™), for = <q<oo,

ui(x) — u(x) ae.in R"

Moreover, by Lemma 2.4 and the compact embedding u; — u and V"u; — V"u in L*/"(R") which implies
that [Jul,, < 1 and [[V"ull , < 1.

We will prove that u # 0 and that u is an extremal function to {g , ,,. In order to prove that, we will
divide in two parts.

Part 1: n/m ¢ N.
Since nj/(n—m) > n/m for j € {jmn— 1, jmns jmn + 1, jmn +2,...}, Vitali Convergence Theorem
yields

oo

[l ac= ¥ B o [ oo v e o)
Ji=Jmn— 1

Then, by (4.2), we have u = 0 and

oo

_ n/(n—m) _ nj/(n
g = [ @ (Blup ) ax r J,H (R
nJ/n m)

1 i L m>

n/m ‘) j! ||Vm ”n]/n m)—n/m

a2
vauH";m / u n/(n—m)

= V@ B’ dx,
I ||”/’" Rr [N Py

which implies that [ul[,,/,, = 1 and |[V"ul|,,/,, = 1. Therefore, u is an extremal function to g , .

Part 2: n/m € N.

13



By Vitali Convergence Theorem we have that
ﬁ(n m)/m

im gy BT
™ et oy

n—m)/m
lim [ ®(Blu ™) dx = /q>/3|u\"/"m ) dx— /7
. (n—m)/m

e )!

for all B € (0, Bo).
First we suppose that u # 0. Since ||V"ul|,,/,, < 1 we have

[\ UG
n/m n/(nfm)
”ﬁ,n,mz n/m / i ﬁ‘m dx > nm/ ﬁ’u| dx
e S 1Vt [ d )
and, using (4.3),
(n—m)/m
> n/(n—m) B n/m .B
pom > [, @ (Bluf!"") ax= o (=mm 1 S Gy )1

(u% )
= lim @WW"m)

1—roo R”
n/(n—m dx—/ anm " n/deC
( H:% ﬁ|u| ) re ((n—m)/m)! il

= Ugnm+ ( ||”/m 1) (/HCI)([;M"/(n—m)) dx_/R m‘u’n/m dx>

n/m

n/(n—m _ ﬁ(nfm)/m u n/m
<W¢BH ) dx ‘ﬂwzmmﬂ' dx
dx

Thus, since ||u H"/m <1, we have that ||lu H"/m 1. Then,

tim [ ®(Bluf" ") dv= [ S(Blu/) dx,

1—o JR

n/(n—m m. | \n/m u
g = [ @ (B ) ax< v uuném/Rﬂ’(ﬁ!m

which implies that ||V™ul|,, ;,, = 1 and u is an extremal function to g , .
Now we will prove that u # 0. If u = 0, by (4.3), we have that

and,

n/(n—-m)
dx,

i ® n)(nm dee B(n—m)/m
fim [, PPl ) (n—m)/m)!"

But, given v e W "/m(R”) with [|v|],,/,, = 1 and [[V"V]],,/, = 1

. (n—m)/m (n—m)/m
.uBnm—/ OB de= Y 7|| [ ((f_m)/m)! ~ ((5—m)/m)!’

ji=n/m J

which is a contradiction with (4.1). Therefore u # 0.
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5. Comparison result

On this section we will prove Theorem 1.4 and Corollary 1.5. For this purpose we consider the Schwarz
rearrangement. Given A C R” any open set. In case that |A| < oo, we denote by A* the ball of radio R > 0
centered at the origin in R” such that |A*| = |A|. Otherwise, we consider A* = R". Letu:A — R be a
measurable function. We denote by

w(t) = {x €A u()] > 1}

and
u®(s) :=inf{r > 0:u(t) <s} Vsec|0,/Al]

the distribution function and the decreasing rearrangement of u, respectively, and by
u* (x) := u (0,1 |x|")  Vx €AY,

the spherically symmetric decreasing rearrangement of u. A comparison result was proved by G. Trombetti,
J. L. Vazquez [38] which gave a powerful tool on the study of elliptic partial differential equations, which
we enunciated here for easy reference.

Theorem E. Let By C R" be a ball of radio R > 0 centered in the origin. Let f € LP(Bg), with p >2n/(n+2)
and u € Wi’/p (BR), the unique strong solution of

u—Au=f in Bpg

u=>0 in 0dBg.

Let, f* € LP(Bg) and u* be the spherically symmetric decreasing rearrangement of f and u, respectively,
andv € Wi/p (Bg) the unique strong solution of

v—Av=f* in Bg
v=0 in 0dBg.
Then u* <va.e in Bg.

This result was extended for an operator of high order derivative by B. Ruf and F. Sani in [32]. We will
enunciate this result and give the proof for completeness.

Proposition 5.1. Let p > 2n/(n+2) and Bg the ball of radio R centered in the origin. If f € LP(Bg) and
ue Wjﬁ’p (BR) is the unique strong solution of

I-Afu=f in B
( . ) u f n R> (51)
Nu=u=0 in 0Bg, j=12,....k—1.

andv € Wjﬁ’p (BR) is the unique strong solution of
I-AY=f" in B
(. )V f l.n R, . (52)
ANv=v=0 in dBg, j=1,2,....,k—1.

Then u* <va.e. in Bg.
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Proof: When k = 1 the proposition is exactly the the Theorem E. Thus, for k£ > 2, we can rewrite the
problems (5.1) and (5.2) in the following system form

—Aup=f in Q —Avi=f* in QF

u =0 in dQ. vy =0 in JdQ*.

—Aui = Uj—1 in Q —Avi =Vi—1 in QF

u;=0 in dQ. v, =0 in JQ*.
Fori=2,...,k. Note that u; = u, vy = v. Thus applying iteratively the Theorem E, together with Maximum
Principle, we have u; <v; a.e. in Bg for i =2, ...,k. Therefore u* <v a.e. in Bg. [ |

Now we will extend this comparison result for functions defined in the whole euclidean space.

Proposition 5.2. Let u € WP (R") for some k € N and p > 1. Now, let f := (I — A)*u and v € WP (R")
given by
vi=Gyx f*,

where Gy, is the Bessel potential. Then u* <v a.e. in R".

Proof: In the first way, by density we can take u; € C(R") such that u; — u in W??(R") and suppu; C Bg,,
the ball of radio R; centered in the origin, with R; — oo as i — oo. We set f; = (I — A)*u;, with supp f; C Bg..
Now, we take i; € Wj’ﬁ’p (Bg,) and v; € WP (R") given by

(I—A)*a; = f; in By,
@ =ANid;=0 in 0JBg, 1<j<k-—1.

and
Vi = sz * fl*
Note also that, since supp f; C Bg,, we have f; = ( fil BR-) . Thus, applying the Proposition 5.1,
u; <ii; ae.inBpg,.

Moreover, since (I —A)*v; = (I — A)ki; = f in Bg, and v;(x),A/v;(x) > 0 for all x € R", for 1 < j <k—1,
we can apply the Maximum Principal iteratively to get that
I/t;K < ﬁi < Vi a.e. in BR,-' (53)

Now, as u; — u in W57 (R") we have that uf — u* and f* — f*, from which follows that v; — v in
W2kP(R"). Therefore, from (5.3) we have

w' <v ae inR”",
which conclude the proof. u

Now we are in position to prove the Theorem 1.4.
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Proof of Theorem 1.4. Given u € W""/"(R"), when m = 2k + 1 or m = 2k for some k € N, we set
f:=(I—A)*u and take v € Wrzal;’"/ "(R™) such that

V= G2k*f*.

By Proposition 5.3 we have that v satisfies u* < v. Note that, when m = 2k + 1 by Lemma 2.1 we have that
v € Wmn/m(R"). Furthermore, for m = 2k we have

el 2 = 12 =AY ttlljn = 11T =AY ) pin = 1Vl 2

and for m = 2k + 1, by Pélya-Szego inequality, we have

il s = IV (=A+Dkullm + (| (=A+ Dkl

m,n, n/m n/m
> V(= A) ) [+ (=AY ) [ = v

Corollary 1.5 follows immediately form the Theorem 1.4.
Remark 5.3. The use of comparison results related to the technique of rearrangement was intensively used
in the study of solutions to partial differential equations. Some references related to this subject can be fond
in [36, 38, 40, 12, 7].
6. Proof of the nonexistence of extremals

In this sections we will prove Theorem 1.3. By Corollary 1.5 we only need to look at the radially
symmetric functions. So let n > 2 and m > 2 integers such that n/m = 2. Given B € (0, (47)"m!) and
u € W™ (R"), we define the following functional

rad
p(u) = /n (em”'z - 1) dx,

and A :={uc Wr’Z&z(R”) :|[te]|mpn2 = 1}, for ||ue||m,n 2 given as in (1.11). Thus, in this notation we have

NB.nm = SUP fﬁ (M)
uce M

Now, given u € .4 we also define f, g : (0,0) — R given by

fup®)i= s ().

m,n,2

where I; was defined in (3.1). If u € ./ is an function that attains 1g , ,, then = 1 will be a critical point
of f,p.ie. f, _ﬁ(l) = 0. Therefore we only need to prove that for  sufficiently small f; ﬁ(l) = 0 for all
u € . In order to derive f, g we look at the norms of I; (u) and of their derivatives

' 2j . .
: —1[, 112
HIt(”)sz = /]R" ‘tl/zu(tl/”x)‘ dx =1’ 1||”sz'§

IV = |
]Rn

2
t(n+2r)/2n(vru)(t1/nx)‘ dx = t2r/n||VrMH%‘
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Hence we can write f, () as follows:

_ (Y B @I
fup(t) =I5 <|;1t(u)um,n,z) =R
_yF £ |3
; I (M IV (w)]3)!
B/ = ull3]

I
B

I (e () vrulB)

where we have consider the form (2.1). Then we will calculate and estimate f; B (1), that is,

5 Bz (F (MY U D ER VB (T ()39
D= (ZO’V ”2> (0 () V7alE)

and, since

5 (7)1l = lulfn =1 ana n=2m

r=0

/ . m& U o L g ru2
Fip 0= X Syl <J ) (Z( )1 Hz))

we have

> Bl
<Y ~lu ul 350 — 1= jlIV"ull3)
=
<iﬂfj( — 1) lull3} = BIIV"ull3ull3
> | 2[ull2-
=
Now, using that
Zj (= Dlull3] Z J*l (| sz<2 Hullzj,
we obtain that ),
> B! [y
frp(1) < BIV"ull3]lul3 —1]. (6.1)
“ﬁ L G 1)1 [Vl al

Now to conclude the proof we will use the Proposition 1.1 and the fact that ||V"ul|3 < 1 to estimate the
positive term of the right hand side of inequality (6.1). Applying Proposition 1.1 to some fixed f < (47)"m!

we have . 5
Bi ully; / (B(“ ) ) ] |3 m2
——_< SNIVIT) 1) dx < Cp , VueW, (R
JUvm)F T Jre Pt V|3 i ()
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for all j € N. Thus, by inequality (6.1) and || V"ul|3 < 1, we have

2j 2j
||”||2§ H“sz J!

< : <=Cz. . YueW™ (R") and j=23,....
IV a3 ull3 = vmu 20Dz ~ B P rad

Then, for all B > 0 such that 8/ < 1/2 we have
/ 2 2 I ¢ 1 o
g < BIV Bl (5 i (5) Cpaa=1 ).
]:

_ , -1
Therefore for B < min { (l/ﬁZ Y7, (1/2)7! C57m,n> ,ﬁ/Z}, we obtain

fip(1) <0, Yued,

which, as we said before, guarantees that no u € W;Zf (R™) such that |[u|;n.»,2 = 1 can be an extremal function
10 Mg n.m-

7. Proof of the Theorem 1.6

The argument used here to prove the Theorem 1.6 follows the ideas used to prove a similar result for a
bounded domain in [16]. To proceed with the proof we enunciate the Lemma 2 proved in [16] that describe
a relation between weak convergence sequences and spherically symmetric decreasing rearrangement.

Lemma 7.1. Let f;, f € LY(R") such that f; — f weakly in L1(R"), ¢ > 1. Then, up to a subsequence,
[ — g almost everywhere for some g € LY(R") such that ||g||; > || f*|l4-

In what follows we prove Theorem 1.6. Let u;,u € W(;W’/m(ﬂ) such that [[u;]|n,,» <1,u# 0and u; — u
in W(;"’"/m(ﬂ). Let k € N such that m = 2k + 1 or m = 2k . We take i;,ii € W™"/™(R") given by

i(x), forxeQ , forxeQ
() = ui(x), forx | and  (x) = u(x), forx |
0, otherwise 0, otherwise

and f;, f given by fi(x) = (I — A)¥ii;(x) and f(x) = (I — A)¥ii. Note that, when m is odd f;, f € W!/™(R™).
By Lemma 2.5, since u; — u in W(;"’n/m(Q), we have that f; — f in L"/"(R"), for m even, and in W'/ (R"),
for m odd.

Now we take v; € W/ (R™), given by

rad
vi= Gy *fi,
where f;* is the spherically symmetric decreasing rearrangement of f;. Thus, from Proposition 5.2,

/ eﬁoy‘ui‘n/(n—m) dic — eﬁoy‘ﬁi‘n/(n—m) dic — eﬁoy(ﬁf)n/(n—m) dx < eﬁoy‘};l/(n—m) dx
Q R~ R R~
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Hence, by Lemma 7.1, f; — g almost everywhere in R" and ||gl,./m = [|/*ln/m = ||(I — A)*ul[,,/- Then, if
we consider | - || the norm in L/ (R") for m even and in W'*/"(R") for m odd, by Brezis-Lieb’s Lemma,

i —gll = c<1—]lgll.
Hence, as 7y satisfies

n/m —m/(n—m) n/m\y—m/(n—m
) < (1= g/,

n/m

v< (1= -2yl

for v € W™"/™(R") given by v = Gy * g we have that

n/(n—m)
@ j dx
/l\%” (ﬁo ’}/Vl )
: /]R D (B 7 (14 8)"/ 0= (v — )/ =) 4 By (1 1/8)/ -0 g

1/q

1 Vi—V n/(n—m) -1 1-1/q
< - / @ | Bo % dx _|_L / d (ﬁquvn/(n—m)> dx 7
n n/ nnm) q R~

(
il

for i sufficiently large and some 8 > 0, ¢ > 1, with § = ¢/(1+41/8)"/"=")n/m. Then applying Theorem C
and Theorem D the result follows.

Remark 7.2. Here we indicated some important open questions related with the Adams type inequality on
unbounded domains:

i) Does the nonexistence of extremal result hold for inequalities (1.7) and (1.8) when p #2 and Q =R"?
Should be mentioned that if p # 2 inequality (1.3) has always an extremal function, including the
subcritical case.

ii) Based in Theorem 1.6 the inequalities (1.7) and (1.8) can be improved in sense of the result due to
Adimurthi and O. Druet [4]? (see also [13] and [26])
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