
Relatório parcial de estágio pós doutoral

Este relatório descreve os resultado obtidos e os estudos em progresso relativos aos trabalhos
por mim, Abiel Costa Macedo, realizados em parceria com o Professor João Marcos Bezerra do
Ó durante o meu estágio pós doutoral. Neste o estágio obtivemos relevantes avanços nos projetos
que foram propostos dentre os quais destacamos os seguintes resultados:

• Relativo ao projeto 1 produzimos o trabalho intitulado “Adams inequalities and extremal
functions on unbounded domains”, em anexo, e outro em fase de produção. Faremos agora
uma breve explanação sobre os resultados obtidos.

Para n > m ≥ 2 inteiros e

Φ(t) := et −
jm,n−2∑
j=0

tj

j!
, (1)

onde jm,n := min{j ∈ N : j ≥ n
m}, provamos a seguinte desigualdade do tipo Adams da

forma escalar invariante: Dado β ∈ (0, β0) existe Cβ,m,n = C(β,m, n) tal que∫
Rn

Φ

(
β

(
|u|

‖∇mu‖n/m

)n/(n−m)
)

dx ≤ Cβ,m,n
‖u‖n/mn/m

‖∇mu‖n/mn/m

, ∀ u ∈Wm,n/m
rad (Rn), (2)

onde β0 é a melhor constante de Adams. Provamos ainda a existência de extremais para o
seguinte problema variacional associado à desigualdade (2)

µβ,n,m := sup
u∈Wm,n/m

rad (Rn)
‖∇mu‖ n

m
=1

1

‖u‖n/mn/m

∫
Rn

Φ
(
β (|u|)n/(n−m)

)
dx.

Usando a desigualdade (2) provamos que a seguinte desigualdade do tipo Adams provado por
B. Ruf, F. Sani [8] e N. Lam, G. Lu [4]

Teorema A ( B. Ruf and F. Sani, 2013) Seja m um inteiro positivo e par, i.e., m = 2k
para algum k ∈ N. Então existe uma constante Cm,n > 0 tal que

sup
u∈Wm,n/m

0 (Ω)
‖(−∆+I)ku‖n/m≤1

∫
Ω

Φ(β0|u|n/(n−m)) dx ≤ Cm,n, (3)

para todo domı́nio Ω ⊂ Rn. Mais ainda, o supremo acima se torna infinito se β0 for trocado
por β > β0.

Teorema B (N. Lam and G. Lu, 2012) Seja m um inteiro positivo e impar, i.e., m =
2k + 1 para algum k ∈ N. Então existe uma constante Cm,n > 0 tal que

sup
u∈Wm,n/m

0 (Ω)

‖∇(−∆+I)ku‖n/m
n/m

+‖(−∆+I)ku‖n/m
n/m

≤1

∫
Ω

Φ(β0|u|n/(n−m)) dx ≤ Cm,n, (4)

para todo domı́nio Ω ⊂ Rn. Mais ainda, o supremo acima se torna infinito se β0 for trocado
por β > β0.

não possui extremais para Ω = Rn no caso subcŕıtico como n/m = 2.

Para mais detalhes ver o artigo em anexo.

No segundo trabalho provamos a existência de extremais para as desigualdades (3) e (4)
no caso cŕıtico para m = 2 com Ω = R2.



• Relativo ao projeto 2 temos dois trabalhos em produção “Weighted Sobolev inequalities and
critical equations for the high order elliptic operator” e “Adams inequalities for weighted
Sobolev spaces”. No que segue daremos uma pequena explanação, em inglês, sobre o assunto
dos artigos.

Let AC1
loc(0, R] be set of the all functions locally absolutely continuous u : (0, R] → R such

that u′ is still locally absolutely continuous. For 0 < R < ∞, p ≥ 1, α, β ≥ −1, we set
X2,p
R (α, β) the space of u ∈ AC1

loc(0, R] such that u(R) = u′(R) = 0 and∫ R

0

|∆αu|prβdr < +∞, with ∆α = r−α(rαu′)′.

Then X2,p
R (α, β) is a Banach space under the norm

‖u‖X2,p
R

=

(∫ R

0

|∆αu|prβdr

) 1
p

.

The X2,p
R (α, β) spaces have interesting properties which turn out be appropriated for study

of the following class of equations

∆2
αu := ∆α(∆αu) = f(u) on (0, R] and u(R) = u′(R) = 0. (5)

Let q ≥ 1 and γ > −1. Let R be such that 0 < R <∞. Denote by Lqγ = Lq(0, R) the Banach
space of Lebesgue measurable functions u : (0, R)→ R such that

‖u‖Lqγ :=

(∫ R

0

|u|qrγdr

)1/q

<∞.

Accordingly, we can derive the following embeddings for X2,p
R (α, β) spaces.

Theorem 1 Let p ≥ 1, α, β, ν > −1 be real numbers. Suppose β − 2p+ 1 > 0, then hold the
following continuous embeddings

X2,p
R ↪→ Lqν , 1 ≤ q ≤ p∗

where

p∗ = p∗(ν, p, β) =
(ν + 1)p

β − 2p+ 1
.

Moreover, if q < p∗holds then these embeddings are compact.

We study the problem (5) for the critical case. We also generalized the concept of the space
X2,p
R (α, β) for any arbitrary order Xm,p

R (α, β), extend the Theorem 1 and prove an Adams
tipo inequality for this space.
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Abstract

In this paper we establish a sharp Adams type inequality of the scaling invariant form and prove the existence
of maximizer for the associated variational problem. Using this scaling invariant inequality we prove that
the Adams type inequality proved by B. Ruf, F. Sani [32] and N. Lam, G. Lu [21] has no extremal functions
in the subcritical case on W m,2(R2m), for m ≥ 2. Moreover, in line with the Concentration Compactness
Principle due to P.-L. Lions [25], we will obtain an improvement for Adams’ exponent in certain class of
sequences in W m,n/m

0 (Ω), for any domain Ω⊂ Rn, n > 2.

Keywords: Trudinger-Moser inequality, Adams’ inequality, Exponential growth, Concentration
compactness principle, Extremal functions.
2000 MSC: 35J60, 35B33, 35J91, 35J30

1. Introduction

This paper is concerned on the problem of finding optimal Sobolev inequalities and the attainability to
the associated variational problem for the borderline case known nowadays as Trudinger-Moser case. These
inequalities play an important role in the geometric analysis, partial differential equations and have been a
source of inspiration of many research works in recent years. In order to motivate our work, let us introduce
now a brief history of some results on these class of problems.

Let Ω⊂ Rn(n≥ 2) be a smooth bounded domain and W 1,p
0 (Ω) the closure of C∞

0 (Ω) in W 1,p(Ω) under
the usual Sobolev norm. It is well known that the Sobolev embedding W 1,p(Ω) ↪→ Ls(Ω) holds for any
1 ≤ s ≤ p∗ = np/(n− p) if 1 ≤ p < n. For the limiting case p = n, formally p∗ = +∞ and it was proved
by V. Yudovich [41], S. Pohozaev [29], J. Peetre [28], N. Trudinger [39] and J. Moser [30] that the optimal
embedding of the Sobolev space W 1,n

0 (Ω) is into an Orlicz space, that we state as follows:

sup
u∈W 1,n

0 (Ω)
‖∇u‖n≤1

∫
Ω

eα|u|n/(n−1)
dx

{
< ∞ for α ≤ αn,

= ∞ for α > αn,
(1.1)
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CNPq.
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where αn := nω
1/(n−1)
n−1 and ωn−1 is the area of the surface of the unit n-ball in Rn, for ‖ · ‖n denoting the

standard norm in the Lebesgue space Ln(Ω). Later P.-L. Lions [25] proved that the exponent αn can be
improved along certain sequences. More precisely, if (ui) ⊂W 1,n

0 (Ω) with ‖∇ui‖n = 1 and ui ⇀ u0 in
W 1,n

0 (Ω), then

sup
i

∫
Ω

eγα|ui|n/(n−1)
dx < ∞, for any γ < 1/(1−‖∇u∗0‖n

n)
1/(n−1),

where u∗0 is the spherically symmetric decreasing rearrangement of u0, see section 5.
The Trudinger-Moser inequality for unbounded domains were proposed by D. M. Cao [8], for the case

n = 2, J. M. do Ó [15], R. Panda [27] and S. Adachi and K. Tanaka [1], for the general case n ≥ 2, which
we state now its scaling invariant form: Given α ∈ (0,αn) there exists a constant Cα,n depending only on α

and n such that ∫
Rn

Ψ

(
α

(
|u|
‖∇u‖n

)n/(n−1)
)

dx≤Cα,n
‖u‖n

n

‖∇u‖n
n
, ∀ u ∈W 1,n(Rn)\{0}, (1.2)

where

Ψ(t) := et −
n−2

∑
j=0

t j

j!
.

Moreover, inequality (1.2) fail for α ≥ αn. All these results treated the subcritical case 0 < α < αn. Later
B. Ruf [31], for the case n = 2, and Y. Li, B. Ruf [23], for the general case n ≥ 2, studied the critical case
α = αn and proved that the result of J. Moser can be fully extended to unbounded domains if the Dirichlet
norm ‖∇u‖n is replaced by the full norm (‖∇u‖n

n +‖u‖n
n)

1/n. More precisely, they proved that

sup
u∈W 1,n(Rn)
‖∇u‖nn+‖u‖nn≤1

∫
Rn

Ψ(α|u|n/(n−1)) dx <+∞, ∀ α ≤ αn. (1.3)

Moreover, inequality (1.3) became infinite if α > αn.
Another interesting question about Trudinger-Moser inequalities is whether extremal function exists, or

not. The first result in this direction belongs to L. Carleson and A. Chang [9] who proved that if Ω ⊂ Rn

is the ball B1(0), then the supremum in (1.1) is achieved when α ≤ αn. Later, M. Struwe [34] studied the
existence of extremal functions for a class of nonsymmetric domains. He obtained a sufficient condition
for these class of domains in R2 using blow-up analysis. M. Flucher [17] introduced another method, the
conformal rearrangement, and derived an isoperimetric inequality, which implies the existence of extremal
functions to any smooth bounded domain in R2. At last, K. Lin [24] generalized the existence of extremal
function to any smooth bounded domain in Rn(n≥ 2). It should be mentioned that the existence of extremal
for (1.1) correspond to the existence of solutions to an associated Euler-Lagrange equation involving critical
growth. Thus, these class of problems is harder or more difficult than subcritical ones and the lack of
compactness makes the proofs more involved, as one can see in very intricate analysis given in the papers
[9], [17], [34]. For works related to (1.1) and applications, we refer to [5, 10, 11, 35] and references
therein. At this point we mention that existence of extremal for (1.3) were first analyzed in [31, 23] and
complemented by M. Ishiwata [18]. Recently M. Ishiwata [19] obtained an weighted Trudinger-Moser type
inequality of the scaling invariant form and studied the existence of extremal for the associated variational
problem.
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In the case of Sobolev spaces with higher order derivatives W m,p
0 (Ω), D. Adams (cf. [2]) obtained the

following version of the Trudinger-Moser inequality (1.1).

Theorem A (D. Adams, 1988). Let Ω ⊂ Rn be a bounded smooth domain and m a positive integer with
m < n. Then there exists a constant Cm,n such that

sup
u∈W m,n/m

0 (Ω),
‖∇mu‖n/m≤1

∫
Ω

eβ |u|n/(n−m)
dx≤Cm,n|Ω|, β ≤ β0, (1.4)

where

β0 = β0(m,n) =


n

ωn−1

[
π

n
2 2mΓ(m+1

2 )
Γ( n−m+1

2 )

]n/(n−m)

, m odd,

n
ωn−1

[
π

n
2 2mΓ(m

2 )
Γ( n−m

2 )

]n/(n−m)

, m even,
(1.5)

and β0 is sharp, i.e., the supremum in (1.4) is +∞ if β > β0.

Here we are denoting ∇mu by the mth gradient of u, i.e.,

∇
mu =

{
∆m/2u, m = 2,4,6, ...
∇∆(m−1)/2u, m = 1,3,5, ...

This inequality was extended by C. Tarsi [37, Theorem 4] to a more large space given by

W m,p
N (Ω) := {u ∈W m,p(Ω) : u|∂Ω

= ∆
ju|∂Ω

= 0 in the sense of trace,1≤ j < m/2},

Theorem B. Let Ω⊂Rn be a bounded domain and m < n an integer. Then there exists a constant Cm,n > 0
such that

sup
u∈W m,n/m

N (Ω)
‖∇mu‖n/m≤1

∫
Ω

eβ |u|n/(n−m)
dx≤Cm,n|Ω|, ∀ 0≤ β ≤ β0,

where β0 was defined in (1.5). Moreover, β0 is sharp, i.e., the supremum above is +∞ if β > β0

Recently B. Ruf, F. Sani [32] and N. Lam, G. Lu [21] have obtained a version of the Adams inequality
(1.4) for domain not necessarily bounded. Let

Φ(t) := et −
jm,n−2

∑
j=0

t j

j!
, jm,n := min{ j ∈ N : j ≥ n/m}, (1.6)

be a Young function.

Theorem C ( B. Ruf and F. Sani, 2013). Let m be an even positive integer, i.e., m = 2k for some k ∈N. Then
there exists a constant Cm,n > 0 such that

sup
u∈W m,n/m

0 (Ω)
‖(−∆+I)ku‖n/m≤1

∫
Ω

Φ(β0|u|n/(n−m)) dx≤Cm,n, (1.7)

for any domain Ω⊂ Rn. Moreover, the supremum became infinite if β0 is replaced for β > β0.
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Theorem D (N. Lam and G. Lu, 2012). Let m be an odd positive integer, i.e., m = 2k+1 for some k ∈ N.
Then there exists a constant Cm,n > 0 such that

sup
u∈W m,n/m

0 (Ω)

‖∇(−∆+I)ku‖n/m
n/m+‖(−∆+I)ku‖n/m

n/m≤1

∫
Ω

Φ(β0|u|n/(n−m)) dx≤Cm,n, (1.8)

for any domain Ω⊂ Rn. Moreover, the supremum became infinite if β0 is replaced for β > β0.

The main purpose of this paper is three-fold: First we obtain a scaling invariant inequality for the higher
order Sobolev space of radially symmetric functions and prove the existence of extremal to the associated
variacional problem. Secondly we prove a result about nonexistence of extremals for Adams type inequality
(1.7) and (1.8) in the Hilbert case. Thirdly, in line with the Concentration Compactness Principle due to
P.-L. Lions [25], we will obtain an improvement for Adams exponent in certain classes of sequence on
W m,n/m

0 (Ω), for any arbitrary domain.
First we establish the following Adams type inequality of the scaling invariant form.

Theorem 1.1. Let n > m≥ 2 be integers. Then given β ∈ (0,β0) there exists Cβ ,m,n =C(β ,m,n) depending
only on β , m and n such that

∫
Rn

Φ

(
β

(
|u|

‖∇mu‖n/m

)n/(n−m)
)

dx≤Cβ ,m,n

‖u‖n/m
n/m

‖∇mu‖n/m
n/m

, ∀ u ∈W m,n/m
rad (Rn)\{0}, (1.9)

where Φ was defined in (1.6), β0 was given in (1.5) and W m,n/m
rad (Rn) denote the space of the radial

W m,n/m(Rn)-functions. Moreover, for β ∈ [β0,∞) inequality (1.9) fail, i.e., there exists (ui) ⊂W m,n/m
rad (Rn)

such that
‖∇mui‖n/m

n/m

‖ui‖n/m
n/m

∫
Rn

Φ

(
β

(
|ui|

‖∇mui‖n/m

)n/(n−m)
)

dx→ ∞. (1.10)

We also study the existence of extremal associated to the scaling invariant Adams type inequality (1.9)
in the following sense. Let

µβ ,n,m := sup
u∈W m,n/m

rad (Rn)\{0}
‖∇mu‖ n

m
=1

1

‖u‖n/m
n/m

∫
Rn

Φ

(
β (|u|)n/(n−m)

)
dx.

By Theorem 1.1,we have that µβ ,n,m < ∞ for β ∈ (0,β0) and µβ ,n,m = ∞ for β ∈ [β0,∞). Under this notation
we obtain

Theorem 1.2. µβ ,n,m is attained for all β ∈ (0,β0), i.e., there exists u ∈W m,n/m
rad (Rn) such that ‖∇mu‖ n

m
= 1

and
µβ ,n,m =

1

‖u‖n/m
n/m

∫
Rn

Φ

(
β (|u|)n/(n−m)

)
dx.

4



Secondly, we will consider the Adams type inequality proved in Theorems C and D for Ω = Rn. For
n,m≥ 2 integers and 1 < q < ∞ a real number, we consider the Sobolev space W m,q(Rn) endowed with the
norm

‖u‖q
m,n,q =


‖∇(−∆+ I)ku‖q

q +‖(−∆+ I)ku‖q
q, for m = 2k+1;

‖(−∆+ I)ku‖q
q, for m = 2k,

(1.11)

which is equivalent to the usual Sobolev norm in W m,q(Rn). Now we denote the extremal constant for the
Adams type inequalities (1.7) and (1.8) by

ηβ ,n,m := sup
u∈W m, n

m (Rn)
‖u‖m,n, n

m
≤1

∫
Rn

Φ(β |u|n/(n−m)) dx. (1.12)

By Theorems C and D, we know that ηβ ,n,m is bounded for β ≤ β0 and infinite for β > β0. We will prove
that in the Hilbert case, n/m = 2, there is not extremal function for ηβ ,n,m provided that β is sufficiently
small. Note that in the Hilbert case β0 = β0(m,2m) = (4π)mm!. So we prove the following theorem

Theorem 1.3. ηβ ,n,m is not attained when n/m = 2 and 0 < β � (4π)mm!.

Our strategy to prove Theorem 1.3 is reduce the study of attainability of the supremum (1.12) to the
radial case and so apply inequality (1.9). This reduction follows as an corollary of the following result

Theorem 1.4. Given any u ∈W m,n/m(Rn) we can find v ∈W m,n/m
rad (Rn) such that ‖v‖m,n, n

m
≤ ‖u‖m,n, n

m
and

u∗ ≤ v.

Then, using this result we can prove the following corollary.

Corollary 1.5. The supremum in (1.12) can be taken on radially symmetric functions, i.e.,

ηβ ,n,m = sup
u∈W m,n/m

rad (Rn)
‖u‖m,n, n

m
≤1

∫
Rn

Φ(β |u|n/(n−m)) dx, ∀β > 0,

Moreover, if ηβ ,n,m is attained then we can take a radially symmetric function as an extremal.

This result is important not only in the study here present but in the general analysis of the attainability
of the optimal constant ηβ ,n,m.

In the last direction, we will prove that the Adams exponent β0 in the inequalities (1.7) and (1.8) can be
improved in the case of sequence which the weak limit is not an identically zero function in W m,n/m

0 (Ω), for
any domain Ω⊂ Rn. More precisely,

Theorem 1.6. Let Ω⊂Rn be any arbitrary domain. Assume that ui,u ∈W m,n/m
0 (Ω), ‖ui‖m,n ≤ 1, u 6= 0 and

ui ⇀ u in W m,n/m
0 (Ω). Then, given γ ∈ [1,η), there exists a constant C =C(γ,Ω)> 0 such that

sup
i

∫
Ω

Φ

(
β0 γ |ui|n/(n−m)

)
dx≤C,

where η = ηm,n(u) :=
(

1−
∥∥(I−∆)ku

∥∥n/m
n/m

)−m/(n−m)
if m = 2k+1 or m = 2k for some k ∈ N.
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This result has important consequence in the study of nonlinear elliptic problems involving exponential
critical growth and even in the study of existence of extremal for Adams type inequalities (1.7) and (1.8)
in the critical case. The proof of Theorem 1.6 is based on the application of comparison result proved in
section 5. We observe that we can use the same idea in the proof of Proposition 5.2 to derive a similar
comparison result on bounded domains. Thus, using this comparison result we can get rid of the restriction
on p in the concentration-compactness result proved in [16, Theorem 1.1].

This paper is organized as follows: In section 2, we present some preliminaries results that we will
need throughout the paper. In the section 3, we will obtain a scaling invariant Adams type inequality,
Theorem 1.1. In section 4, we will prove the existence of extremal for the variacional problem associated to
the scaling invariant Adams type inequality, Theorem 1.2. In section 5, we will prove a comparison result
and Theorem 1.4. In section 6, we will prove the nonexistence result, Theorem 1.3. In section 7, we will
prove Theorem 1.6.

2. Preliminaries

In this section we will discuss on some questions involving the Sobolev space W m,q(Rn) and some
equivalent norms, for q ∈ (1,∞). First we consider the Bessel potential Gm defined by

Gm(x) =
1

(4π)m/2

1
(k−1)!

∫
∞

0
e−π|x|2/δ e−δ/4π

δ
(−n+m)/2 dδ

δ
.

It is well known that Gm satisfies the following conditions (see [33])

• Gm ∈ L1(Rn)

• Given q ∈ (1,∞), then u ∈W m,q(Rn) if and only if u = Gm ∗ f for some f ∈ Lq(Rn).

Moreover, it is easy to see that,

Lemma 2.1. Given k ∈ N, then the operator Lk : Lq(Rn)→W 2k,q(Rn) given by

Lk( f ) := G2k ∗ f ,

is an isometric isomorphism onto W 2k,q(Rn) endowed with the norm ‖·‖2k,n,q. Furthermore, if f ∈W 1,q(Rn)
then Lk( f )∈W 2k+1,q(Rn) and Lk is an isometric isomorphism from W 1,q(Rn) onto W 2k,q(Rn), endowed with
the norm ‖ · ‖2k+1,n,q.

Now we discuss about some norm on W m,q(Rn), for q∈ (1,∞). First, note that in the Hilbert case, q = 2,
we have

‖u‖2
m,n,2 =

m

∑
r=0

(
m
r

)
‖∇ru‖2

2. (2.1)

In fact, given u ∈W m,2(Rn), for m = 2k, we have

(−∆+ I)ku =
k

∑
i=1

(−1)k−i
(

k
i

)
∆

k−iu,
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from this follows that

‖u‖2
m,n,2 =

∫
Rn
|(−∆+ I)ku|2 dx

=
∫
Rn

∑
0≤i, j≤k

(−1)k−i(−1)k− j
(

k
i

)(
k
j

)
∆

k−iu∆
k− ju dx

=
∫
Rn

2k

∑
s=0

∑
i+ j=s

(−1)2k−s
(

k
i

)(
k
j

)
∆

k−iu∆
k− ju dx

=
∫
Rn

2k

∑
s=0

∑
i+ j=s

(
k
i

)(
k
j

)
|∇2k−su|2 dx

=
∫
Rn

m

∑
s=0

(
m
s

)
|∇2k−su|2 dx

where we have used the elementary fact

∑
i+ j=s

(
k
i

)(
k
j

)
=

(
2k
s

)
.

For m = 2k+1, we have

∇(−∆+ I)ku =
k

∑
i=1

(−1)k−i
(

k
i

)
∇∆

k−iu,

and thus

‖u‖2
m,n,2 =

∫
Rn
|∇(−∆+ I)ku|2 dx+

∫
Rn
|(−∆+ I)ku|2 dx

=
∫
Rn

∑
0≤i, j≤k

(−1)2k−i− j
(

k
i

)(
k
j

)(
∇∆

k−iu∇∆
k− ju+∆

k−iu∆
k− ju

)
dx

=
∫
Rn

2k

∑
s=0

(
2k
s

)(
|∇2k−s+1u|2 + |∇2k−su|2

)
dx

=
∫
Rn

m

∑
j=0

(
m
j

)
|∇ ju|2 dx.

We also will consider the following norm on the Sobolev space W m,q(Rn):(
‖u‖q

q +‖∇mu‖q
q
)1/q

, ∀ u ∈W m,q(Rn). (2.2)

This norm is equivalent to the usual Sobolev norm. This equivalence is a direct consequence of [3, Theorem
5.2] and the Riesz Potential, which we state in the following lemmas.

Lemma 2.2. Let n,m≥ 2 be positive integers and q > 1. Then there exists K = K(m,n,q) such that

|u|qj,q ≤ K(|u|qm,q + |u|
q
0,q),
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for all 0≤ j < m and u ∈W m,q(Rn), where

|u|qj,q = ∑
|α|= j
‖Dαu‖q

q.

Lemma 2.3. There exists a constant K̃ = K̃(m,n,q) such that

|w|qm,q ≤ K̃‖∇mw‖q
q, ∀ w ∈W m,q(Rn).

From this equivalence we have the following characterization of the dual space of W m,q(Rn).

Lemma 2.4. For every L ∈ (W m,q(Rn))′ there exists (w,v) ∈ Lq′(Rn)×Lq′
(
(Rn)r(m)

)
such that

L(u) =
∫
Rn

u w dx+
∫
Rn

∇
mu v dx, ∀ u ∈W m,q(Rn),

where q′ = q/(q − 1) and Lq′
(
(Rn)r(m)

)
= Lq′(Rn) for m even and Lq′

(
(Rn)r(m)

)
= Lq′ ((Rn)n) =

∏
n
j=1 Lq′(Rn) for m odd.

Proof: To prove this lemma we consider P : W m,q(Rn)→ Lq(Rn)×Lq
(
(Rn)r(m)

)
given by

P(u) = (u,∇mu),

with Lq(Rn)× Lq
(
(Rn)r(m)

)
endowed we the product norm, which is an isometric isomorphism onto

W = P(W m,q(Rn)) ⊂ Lq(Rn)×Lq
(
(Rn)r(m)

)
, for W m,q(Rn) endowed with the norm (2.2) for m even and

with the norm
(
‖u‖q

q +∑
n
j=1 ‖∂x j ∆

ku‖q
q
)1/q for m odd, m = 2k+ 1. Thus given L ∈ (W m,q(Rn))′, we have

that the linear functional L̃ given by
L̃(Pu) = L(u),

is continuous, i.e, L̃ ∈ W ′ and ‖L̃;W ′‖ =
∥∥L;(W m,q(Rn))′

∥∥. Note that, by Hahn Banach Theorem, there
exists a preserving norm extension L̂ ∈

(
Lq(Rn)×Lq

(
(Rn)r(m)

))′
of the functional L̃. Therefore, there

exists (w,v) ∈ Lq′(Rn)×Lq′
(
(Rn)r(m)

)
such that

L(u) = L̃(Pu) = L̂(Pu) =
∫
Rn

u w dx+
∫
Rn

∇
mu v dx, ∀ u ∈W m,q(Rn).

�

In view of the Lemma 2.1, we can consider another important characterization.

Lemma 2.5. For every L ∈ (W m,q(Rn))′ there exist w ∈ Lq′(Rn) and (z,v) ∈ Lq′(Rn)×Lq′ ((Rn)n) such that

L(u) =
∫
Rn
(I−∆)ku w dx, ∀ u ∈W m,q(Rn),

if m = 2k, for some k ∈ N, and

L(u) =
∫
Rn
(I−∆)ku z dx+

∫
Rn

∇(I−∆)ku v dx, ∀ u ∈W m,q(Rn),

if m = 2k+1, for some k ∈ N.
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Proof: The proof follows by the same argument used in the previous lemma, we only need to consider the
operators P1 : W 2k,q(Rn)→ Lq(Rn) given by P1(u) = (I−∆)ku and P2 : W 2k,q(Rn)→ Lq

(
(Rn)n+1

)
given by

P2(u) =
(
(I−∆)ku,∇(I−∆)ku

)
. �

Another important result that we want to mention is a Radial Lemma that can be easily extended from
[20], Lemma 1.1, Chapter 6, which will be useful in our analysis.

Lemma 2.6. If u ∈W m,q
rad (R

n), for 1 < q < ∞, then

|u(x)| ≤ ω
−1/q
n−1 q

1
|x|(n−1)q ‖u‖W m,q a.e in Rn.

3. Proof of the scaling invariant Adams type inequality

In this section we will prove Theorem 1.1. Before start the proof, we define two operators in W m,n/m(Rn).
Let t,s > 0 be real numbers. We define It ,Js : W m,n/m(Rn)→W m,n/m(Rn) given by

It(u)(x) := tm/nu(t1/nx) (3.1)

and
Js(u)(x) := u(s1/nx).

The norms of It(u) and Js(u) satisfy the following properties

‖It(u)‖n/m = ‖u‖n/m, and ‖∇mIt(u)‖n/m = tm/n‖∇mu‖n/m, ∀ t > 0,

and
‖Js(u)‖n/m = s−m/n‖u‖n/m, and ‖∇mJs(u)‖n/m = ‖∇mu‖n/m, ∀ s > 0.

Moreover,

‖Js ◦ It(u)‖n/m = s−m/n‖u‖n/m, and ‖∇mJs ◦ It(u)‖n/m = tm/n‖∇mu‖n/m, ∀ t,s > 0.

Now, using these two operators, we can write inequality (1.9) in the following equivalent form:

sup
u∈W m,n/m

rad (Rn)
‖u‖n/m=1, ‖∇mu‖n/m=1

∫
Rn

Φ

(
β |u|n/(n−m)

)
dx≤Cβ ,m,n, β ∈ (0,β0), (3.2)

for some constant Cβ ,m,n = C(β ,m,n) depending only on β , m and n. In fact, given u ∈W m,n/m
rad (Rn)\{0}

we take t = ‖∇mu‖−n/m
n/m and s = ‖u‖n/m

n/m which imply

‖Js ◦ It(u)‖n/m = 1, and ‖∇mJs ◦ It(u)‖n/m = 1.

Then applying the inequality (3.2) to Js ◦ It(u) and the definition of It and Js we have

‖∇mu‖n/m
n/m

‖u‖n/m
n/m

∫
Rn

Φ

(
β

(
|u|

‖∇mu‖n/m

)n/(n−m)
)

dx =
∫
Rn

Φ

(
β |Js ◦ It(u)|n/(n−m)

)
dx≤Cβ ,m,n,
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which gives inequality (1.9). The reciprocal is immediate.
Henceforth we will prove inequality (3.2). Let us consider

M := {u ∈W m,n/m
rad (Rn) : ‖u‖n/m = 1 and ‖∇mu‖n/m = 1}.

From Lemmas 2.2 and 2.3, we have

‖u‖n/m
W m,n/m ≤ K(‖u‖n/m

n/m +‖∇mu‖n/m
n/m)≤ 2K, ∀ u ∈M. (3.3)

for some constant K = K(m,n)> 0 depending only on m and n, i.e, M is a bounded subset of W m,n/m(Rn).
Now take β ∈ (0,β0) fixed and any arbitrary u ∈M. For any R0 > 0 we have∫

Rn
Φ

(
β |u|n/(n−m)

)
dx =

∫
BR0

Φ

(
β |u|n/(n−m)

)
dx+

∫
Rn\BR0

Φ

(
β |u|n/(n−m)

)
dx

≤
∫

BR0

e(β |u|n/(n−m)) dx+
∫
Rn\BR0

Φ

(
β |u|n/(n−m)

)
dx

= A0 +A1,

where
A0 :=

∫
BR0

e(β |u|n/(n−m)) dx and A1 :=
∫
Rn\BR0

Φ

(
β |u|n/(n−m)

)
dx.

In what follows we will show that it is possible to choose R0 = R0(β ,m,n) fixed such that the integrals
A0 e A1 are bounded by a constant Cβ ,m,n depending only on β , m and n.

Now we estimate A1. By the Radial Lemma 2.6, there exist Cn depending only on n such that

|u(x)|= |u(|x|)| ≤Cn
1

|x|m(n−1)/n
‖u‖W m,n/m ≤ 2KCn

1
|x|m(n−1)/n

, a.e. in Rn,

where in last inequality we have used the inequality (3.3). Then taking R0 > (2KCn)
n/m(n−1) we have

|u(x)|< 1, a.e. in Rn \BR0 .

Thus
A1 =

∫
Rn\BR0

Φ

(
β |u|n/(n−m)

)
dx≤ eβ

∫
Rn\BR0

|u|n/m dx≤ eβ‖u‖n/m
n/m ≤ eβ .

To estimate integral A0, we will construct an auxiliary function w ∈W m,n/m
N (BR0) with ‖∇mw‖n/m = 1

and apply Theorem B. To construct w ∈W m,n/m
N (BR0) we consider the functions

gl(|x|) := |x|2k−2l, ∀x ∈ BR0 ,

for l = 1,2, . . . ,k− 1 where k is the natural number such that m = 2k + 1 or m = 2k. Note that gl ∈
W m,n/m

rad (BR0) and more

∆
jgl(|x|) =

{
c j

l |x|2k−2(l+ j) for j = 1,2, . . . ,k− l,
0 for j = k− l +1, . . . ,k.

∀ x ∈ BR0 ,
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where

c j
l =

j

∏
s=1

[n+2k−2(s+ l)][2k−2(l + s−1)],

for j = 1,2, . . . ,k− l. Now we define

w(|x|) := u(|x|)−
k−1

∑
l=1

algl(|x|)−ak,

where

a0 :=
∆ku(R0)

∆kg0(R0)

al :=
∆k−lu(R0)−∑

l−1
s=0 as∆

k−lgs(R0)

∆k−lgl(R0)
, for l = 1,2, . . . ,k−1,

ak := u(R0)−
k−1

∑
s=0

asgs(R0).

(3.4)

Note that ∇mu = ∇mw and more w ∈W m,n/m
N (BR0). Hence, using the following elementary inequality

(a+b)q ≤ (1+δ )qaq +(1+1/δ )qbq, ∀ δ > 0,

for a,b > 0 and q≥ 1, we have

A0 =
∫

BR0

e(β |u|n/(n−m)) dx =
∫

BR0

e
(

β |w+∑
k−1
l=1 algl(|x|)+ak|n/(n−m)

)
dx

≤ eβ (1+1/δ )n/(n−m)|∑k−1
l=1 algl(|R0|)+ak|n/(n−m)

∫
BR0

e(β (1+δ )n/(n−m)|w|n/(n−m)) dx.

Now, since ‖∇mw‖n/m = ‖∇mu‖n/m = 1, taking δ > 0 sufficiently small such that β (1+δ )n/(n−m) < β0 and
applying Theorem B, we can estimate

A0 ≤ eβ (1+1/δ )n/(n−m)|∑k−1
l=1 algl(|R0|)+ak|n/(n−m)

CR0,m,n.

Furthermore, by Lemma 2.6,

|∆ ju(R0)| ≤Cn
1

Rm(n−1)/n
0

‖u‖W m,n/m ≤ 2KCn
1

Rm(n−1)/n
0

, for 0≤ j ≤ k,

which, together with (3.4), implies that |∑k−1
l=1 algl(|R0|)+ ak| ≤ C̃R0,m,n. Therefore, since R0 is fixed we

conclude that ∫
Rn

Φ

(
β |u|n/(n−m)

)
dx≤ A0 +A1 ≤Cβ ,m,n,

for some constant Cβ ,m,n > 0 depending only on β , m and n.
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Now we will construct a sequence to guarantee the optimality of inequality (1.9). We only need to find
a sequence that satisfies (1.10) for β = β0. The sequence is basically the same sequence used by D. Adams
in [2]. Let Φ(t) ∈C∞[0,1] such that

Φ(0) = Φ
′(0) = · · ·= Φ

(m−1)(0) = 0,

Φ(1) = Φ
′(1) = 1 Φ

′′(1) = Φ
′′′(1) = · · ·= Φ

(m−1)(1) = 0.

For 0 < ε < 1
2 , we define

H(t) =


εΦ( 1

ε
t), if t ≤ ε

t, if ε ≤ t ≤ 1− ε

1− εΦ( 1
ε
(1− t)), se 1− ε ≤ t ≤ 1

1, if 1≤ t,

and

ψi(r) = (log i)(m−n)/n H
(
(log i)−1 log

1
r

)
.

Note that ψi(|x|) ∈W
m, n

m
rad (Rn). More than that, ψi(|x|) = (log i)(m−n)/n for |x| ≤ 1/i and, as proved for D.

Adams in [2], we have
‖∇m

ψi‖n/m = n(m−n)/n
β
(m−n)/n
0 Am/n

i,ε ,

where
Ai,ε ≤

[
1+2ε

(
‖Φ′‖∞ +O

(
(log i)−1))n/m

]
.

By easy calculation we also have
‖ψi‖n/m

n/m = o(1). (3.5)

Now, for each i, we take ε = (log i)−1. Then, since m/(n−m)< 1,

∫
Rn

Φ

β0
ψ

n/(n−m)
i

‖∇mψi‖n/(n−m)
n/m

 dx≥
∫

B(1/i)
Φ

(
n log i

Am/(n−m)
i

)
dx =

ωn−1

n
Φ

(
n log i

Am/(n−m)
i

)
1
in

≥ ωn−1

n
e
−n log i

(
1− 1

1+2(log i)−1(‖Φ′‖∞+O((log i)−1))n/m

)
−

jp−2

∑
j=0

(
n log i

Am/(n−m)
i

) j

e−n log i.

Therefore, passing the limit we have

lim
i→∞

∫
Rn

Φ

β0
ψ

n/(n−m)
i

‖∇mψi‖n/(n−m)
n/m

 dx≥ ωn−1

n
e−2n‖Φ′‖∞ ,

which, together with (3.5), proves that (ψi) satisfies (1.10) for β = β0.
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4. Existence of extremal for the scaling invariant Adams type inequality

In this section we will prove Theorem 1.2. Given β ∈ (0,β0), from (3.2), we have that

µβ ,n,m = sup
u∈W m,n/m

rad (Rn)
‖u‖n/m=1, ‖∇mu‖n/m=1

∫
Rn

Φ

(
β |u|n/(n−m)

)
dx (4.1)

Then, we can take a sequence (ui)⊂W m,n/m
rad (Rn) such that ‖ui‖n/m = 1, ‖∇mui‖n/m = 1, for all i ∈ N, and

lim
i→∞

∫
Rn

Φ

(
β |ui|n/(n−m)

)
dx = µβ ,n,m. (4.2)

From Lemmas 2.2 and 2.3, we have that (ui) is bounded in W m,n/m
rad (Rn). Thus, there exist u ∈W m,n/m

rad (Rn)
such that

ui ⇀ u in W m,n/m
rad (Rn)

ui→ u in Lq(Rn), for n
m < q < ∞,

ui(x)→ u(x) a.e. in Rn.

Moreover, by Lemma 2.4 and the compact embedding ui ⇀ u and ∇mui ⇀ ∇mu in Ln/m(Rn) which implies
that ‖u‖n/m ≤ 1 and ‖∇mu‖n/m ≤ 1.

We will prove that u 6≡ 0 and that u is an extremal function to µβ ,n,m. In order to prove that, we will
divide in two parts.

Part 1: n/m 6∈ N.
Since n j/(n−m) > n/m for j ∈ { jm,n − 1, jm,n, jm,n + 1, jm,n + 2, . . .}, Vitali Convergence Theorem

yields ∫
Rn

Φ(β |ui|n/(n−m)) dx =
∞

∑
j:= jm,n−1

β j

j!
‖ui‖n j/(n−m)

n j/(n−m)→
∫
Rn

Φ(β |u|n/(n−m)) dx, ∀ β ∈ (0,β0).

Then, by (4.2), we have u 6≡ 0 and

µβ ,n,m =
∫
Rn

Φ

(
β |u|n/(n−m)

)
dx =

∞

∑
j:= jm,n−1

β j

j!
‖u‖n j/(n−m)

n j/(n−m)

≤ 1

‖u‖n/m
n/m

∞

∑
j:= jm,n−1

β j

j!

‖u‖n j/(n−m)
n j/(n−m)

‖∇mu‖n j/(n−m)−n/m
n/m

=
‖∇mu‖n/m

n/m

‖u‖n/m
n/m

∫
Rn

Φ

(
β

∣∣∣∣ u
‖∇mu‖n/m

∣∣∣∣n/(n−m)
)

dx,

which implies that ‖u‖n/m = 1 and ‖∇mu‖n/m = 1. Therefore, u is an extremal function to µβ ,n,m.

Part 2: n/m ∈ N.
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By Vitali Convergence Theorem we have that

lim
i→∞

∫
Rn

Φ(β |ui|n/(n−m)) dx =
∫
Rn

Φ(β |u|n/(n−m)) dx−
∫
Rn

β (n−m)/m

((n−m)/m)!
|u|n/m dx+

β (n−m)/m

((n−m)/m)!
, (4.3)

for all β ∈ (0,β0).
First we suppose that u 6≡ 0. Since ‖∇mu‖n/m ≤ 1 we have

µβ ,n,m ≥
‖∇mu‖n/m

n/m

‖u‖n/m
n/m

∫
Rn

Φ

(
β

∣∣∣∣ u
‖∇mu‖n/m

∣∣∣∣n/(n−m)
)

dx≥ 1

‖u‖n/m
n/m

∫
Rn

Φ

(
β |u|n/(n−m)

)
dx

and, using (4.3),

µβ ,n,m ≥
∫
Rn

Φ

(
β |u|n/(n−m)

)
dx−

∫
Rn

β (n−m)/m

((n−m)/m)!
|u|n/m dx+

β (n−m)/m

((n−m)/m)!

+

 1

‖u‖n/m
n/m

−1

(∫
Rn

Φ

(
β |u|n/(n−m)

)
dx−

∫
Rn

β (n−m)/m

((n−m)/m)!
|u|n/m dx

)

= lim
i→∞

∫
Rn

Φ

(
β |ui|n/(n−m)

)
dx

+

 1

‖u‖n/m
n/m

−1

(∫
Rn

Φ

(
β |u|n/(n−m)

)
dx−

∫
Rn

β (n−m)/m

((n−m)/m)!
|u|n/m dx

)

= µβ ,n,m +

 1

‖u‖n/m
n/m

−1

(∫
Rn

Φ

(
β |u|n/(n−m)

)
dx−

∫
Rn

β (n−m)/m

((n−m)/m)!
|u|n/m dx

)

Thus, since ‖u‖n/m
n/m ≤ 1, we have that ‖u‖n/m

n/m = 1. Then,

lim
i→∞

∫
Rn

Φ(β |ui|n/(n−m)) dx =
∫
Rn

Φ(β |u|n/(n−m)) dx,

and,

µβ ,n,m =
∫
Rn

Φ

(
β |u|n/(n−m)

)
dx≤ ‖∇mu‖n/m

n/m

∫
Rn

Φ

(
β

∣∣∣∣ u
‖∇mu‖n/m

∣∣∣∣n/(n−m)
)

dx,

which implies that ‖∇mu‖n/m = 1 and u is an extremal function to µβ ,n,m.
Now we will prove that u 6≡ 0. If u≡ 0, by (4.3), we have that

lim
i→∞

∫
Rn

Φ(β |ui|n/(n−m)) dx =
β (n−m)/m

((n−m)/m)!
.

But, given v ∈W m,n/m
rad (Rn) with ‖v‖n/m = 1 and ‖∇mv‖n/m = 1

µβ ,n,m ≥
∫
Rn

Φ(β |v|n/(n−m)) dx =
∞

∑
j:=n/m

β j

j!
‖v‖n j/(n−m)

n j/(n−m)+
β (n−m)/m

((n−m)/m)!
>

β (n−m)/m

((n−m)/m)!
,

which is a contradiction with (4.1). Therefore u 6≡ 0.
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5. Comparison result

On this section we will prove Theorem 1.4 and Corollary 1.5. For this purpose we consider the Schwarz
rearrangement. Given A ⊂ Rn any open set. In case that |A| < ∞, we denote by A∗ the ball of radio R > 0
centered at the origin in Rn such that |A∗| = |A|. Otherwise, we consider A∗ = Rn. Let u : A→ R be a
measurable function. We denote by

µ(t) = |{x ∈ A : |u(x)|> t}|

and
u#(s) := inf{t ≥ 0 : µ(t)< s} ∀s ∈ [0, |A|],

the distribution function and the decreasing rearrangement of u, respectively, and by

u∗(x) := u#(ωn−1|x|n) ∀x ∈ A∗,

the spherically symmetric decreasing rearrangement of u. A comparison result was proved by G. Trombetti,
J. L. Vazquez [38] which gave a powerful tool on the study of elliptic partial differential equations, which
we enunciated here for easy reference.

Theorem E. Let BR⊂Rn be a ball of radio R> 0 centered in the origin. Let f ∈ Lp(BR), with p≥ 2n/(n+2)
and u ∈W 2,p

N (BR), the unique strong solution of{
u−∆u = f in BR

u = 0 in ∂BR.

Let, f ∗ ∈ Lp(BR) and u∗ be the spherically symmetric decreasing rearrangement of f and u, respectively,
and v ∈W 2,p

N (BR) the unique strong solution of{
v−∆v = f ∗ in BR

v = 0 in ∂BR.

Then u∗ ≤ v a.e in BR.

This result was extended for an operator of high order derivative by B. Ruf and F. Sani in [32]. We will
enunciate this result and give the proof for completeness.

Proposition 5.1. Let p ≥ 2n/(n+ 2) and BR the ball of radio R centered in the origin. If f ∈ Lp(BR) and
u ∈W 2k,p

N (BR) is the unique strong solution of{
(I−∆)ku = f in BR,

∆ ju = u = 0 in ∂BR, j = 1,2, . . . ,k−1.
(5.1)

and v ∈W 2k,p
N (BR) is the unique strong solution of{

(I−∆)kv = f ∗ in BR,

∆ jv = v = 0 in ∂BR, j = 1,2, . . . ,k−1.
(5.2)

Then u∗ ≤ v a.e. in BR.
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Proof: When k = 1 the proposition is exactly the the Theorem E. Thus, for k ≥ 2, we can rewrite the
problems (5.1) and (5.2) in the following system form{

−∆u1 = f in Ω

u1 = 0 in ∂Ω.

{
−∆v1 = f ∗ in Ω∗

v1 = 0 in ∂Ω∗.{
−∆ui = ui−1 in Ω

ui = 0 in ∂Ω.

{
−∆vi = vi−1 in Ω∗

vi = 0 in ∂Ω∗.

For i = 2, ...,k. Note that uk = u, vk = v. Thus applying iteratively the Theorem E, together with Maximum
Principle, we have u∗i ≤ vi a.e. in BR for i = 2, ...,k. Therefore u∗ ≤ v a.e. in BR. �

Now we will extend this comparison result for functions defined in the whole euclidean space.

Proposition 5.2. Let u ∈W 2k,p(Rn) for some k ∈ N and p≥ 1. Now, let f := (I−∆)ku and v ∈W 2k,p(Rn)
given by

v := G2k ∗ f ∗,

where G2k is the Bessel potential. Then u∗ ≤ v a.e. in Rn.

Proof: In the first way, by density we can take ui ∈C∞
0 (Rn) such that ui→ u in W 2k,p(Rn) and suppui ⊂ BRi ,

the ball of radio Ri centered in the origin, with Ri→ ∞ as i→ ∞. We set fi = (I−∆)kui, with supp fi ⊂ BRi .
Now, we take ũi ∈W 2k,p

N (BRi) and vi ∈W 2k,p(Rn) given by{
(I−∆)kũi = f ∗i in BRi

ũi = ∆ jũi = 0 in ∂BRi , 1≤ j ≤ k−1.

and
vi = G2k ∗ f ∗i .

Note also that, since supp fi ⊂ BRi , we have f ∗i =
(

fi|BRi

)∗
. Thus, applying the Proposition 5.1,

u∗i ≤ ũi a.e. in BRi .

Moreover, since (I−∆)kvi = (I−∆)kũi = f ∗i in BRi and vi(x),∆ jvi(x)≥ 0 for all x ∈ Rn, for 1≤ j ≤ k−1,
we can apply the Maximum Principal iteratively to get that

u∗i ≤ ũi ≤ vi a.e. in BRi . (5.3)

Now, as ui → u in W 2k,p(Rn) we have that u∗i → u∗ and f ∗i → f ∗, from which follows that vi → v in
W 2k,p(Rn). Therefore, from (5.3) we have

u∗ ≤ v a.e. in Rn,

which conclude the proof. �

Now we are in position to prove the Theorem 1.4.
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Proof of Theorem 1.4. Given u ∈ W m,n/m(Rn), when m = 2k + 1 or m = 2k for some k ∈ N, we set
f := (I−∆)ku and take v ∈W 2k,n/m

rad (Rn) such that

v := G2k ∗ f ∗.

By Proposition 5.3 we have that v satisfies u∗ ≤ v. Note that, when m = 2k+1 by Lemma 2.1 we have that
v ∈W m,n/m(Rn). Furthermore, for m = 2k we have

‖u‖m,n, n
m
= ‖(I−∆)ku‖n/m = ‖((I−∆)ku)∗‖n/m = ‖v‖m,n, n

m
,

and for m = 2k+1, by Pólya-Szegö inequality, we have

‖u‖n/m
m,n, n

m
= ‖∇(−∆+ I)ku‖n/m

n/m +‖(−∆+ I)ku‖n/m
n/m

≥ ‖∇((I−∆)ku)∗‖n/m
n/m +‖((I−∆)ku)∗‖n/m

n/m = ‖v‖n/m
m,n, n

m
,

�

Corollary 1.5 follows immediately form the Theorem 1.4.

Remark 5.3. The use of comparison results related to the technique of rearrangement was intensively used
in the study of solutions to partial differential equations. Some references related to this subject can be fond
in [36, 38, 40, 12, 7].

6. Proof of the nonexistence of extremals

In this sections we will prove Theorem 1.3. By Corollary 1.5 we only need to look at the radially
symmetric functions. So let n > 2 and m ≥ 2 integers such that n/m = 2. Given β ∈ (0,(4π)mm!) and
u ∈W m,2

rad (R
n), we define the following functional

Jβ (u) :=
∫
Rn

(
eβ |u|2−1

)
dx,

and M := {u ∈W m,2
rad (R

n) : ‖u‖m,n,2 = 1}, for ‖u‖m,n,2 given as in (1.11). Thus, in this notation we have

ηβ ,n,m = sup
u∈M

Jβ (u).

Now, given u ∈M we also define fu,β : (0,∞)→ R given by

fu,β (t) := Jβ

(
It(u)

‖It(u)‖m,n,2

)
,

where It was defined in (3.1). If u ∈M is an function that attains ηβ ,n,m then t = 1 will be a critical point
of fu,β , i.e., f ′u,β (1) = 0. Therefore we only need to prove that for β sufficiently small f ′u,β (1) 6= 0 for all
u ∈M . In order to derive fu,β we look at the norms of It(u) and of their derivatives

‖It(u)‖2 j
2 j =

∫
Rn

∣∣∣t1/2u(t1/nx)
∣∣∣2 j

dx = t j−1‖u‖2 j
2 j;

‖∇rIt(u)‖2
2 =

∫
Rn

∣∣∣t(n+2r)/2n(∇ru)(t1/nx)
∣∣∣2 dx = t2r/n‖∇ru‖2

2.
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Hence we can write fu,β (t) as follows:

fu,β (t) = Jβ

(
It(u)

‖It(u)‖m,n,2

)
=

∞

∑
j=1

β j

j!

‖It(u)‖2 j
2 j

‖It(u)‖2 j
m,n,2

=
∞

∑
j=1

β j

j!

t j−1‖u‖2 j
2 j(

∑
m
r=0
(m

r

)
‖∇rIt(u)‖2

2

) j

=
∞

∑
j=1

β j

j!

t j−1‖u‖2 j
2 j(

∑
m
r=0
(m

r

)
t2r/n‖∇ru‖2

2

) j ,

where we have consider the form (2.1). Then we will calculate and estimate f ′u,β (1), that is,

f ′u,β (1) =
∞

∑
j=1

β j

j!
‖u‖2 j

2 j

(
m

∑
r=0

(
m
r

)
‖∇ru‖2

2

) j−1
( j−1)

(
∑

m
r=0
(m

r

)
‖∇ru‖2

2
)
− j
(
∑

m
r=1
(m

r

)2r
n ‖∇

ru‖2
2
)(

∑
m
r=0
(m

r

)
‖∇ru‖2

2

)2 j

and, since
m

∑
r=0

(
m
r

)
‖∇ru‖2

2 = ‖u‖2
m,n,2 = 1 and n = 2m,

we have

f ′u,β (1) =
∞

∑
j=1

β j

j!
‖u‖2 j

2 j

(
( j−1)− j

(
m

∑
r=1

(
m
r

)
2r
n
‖∇ru‖2

2

))

≤
∞

∑
j=1

β j

j!
‖u‖2 j

2 j( j−1− j‖∇mu‖2
2)

≤
∞

∑
j=1

β j

j!
( j−1)‖u‖2 j

2 j−β‖∇mu‖2
2‖u‖2

2.

Now, using that
∞

∑
j=1

β j

j!
( j−1)‖u‖2 j

2 j =
∞

∑
j=2

β j

j!
( j−1)‖u‖2 j

2 j ≤
∞

∑
j=2

β j

( j−1)!
‖u‖2 j

2 j,

we obtain that

f ′u,β (1)≤ β‖∇mu‖2
2‖u‖2

2

(
∞

∑
j=2

β j−1

( j−1)!

‖u‖2 j
2 j

‖∇mu‖2
2‖u‖2

2
−1

)
. (6.1)

Now to conclude the proof we will use the Proposition 1.1 and the fact that ‖∇mu‖2
2 ≤ 1 to estimate the

positive term of the right hand side of inequality (6.1). Applying Proposition 1.1 to some fixed β̄ < (4π)mm!,
we have

β̄ j

j!

‖u‖2 j
2 j

‖∇mu‖2 j
2

≤
∫
Rn

(
eβ̄

(
|u|

‖∇mu‖2

)2

−1
)

dx≤C
β̄ ,m,n

‖u‖2
2

‖∇mu‖2
2
, ∀ u ∈W m,2

rad (R
n).
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for all j ∈ N. Thus, by inequality (6.1) and ‖∇mu‖2
2 ≤ 1, we have

‖u‖2 j
2 j

‖∇mu‖2
2‖u‖2

2
≤

‖u‖2 j
2 j

‖∇mu‖2( j−1)
2 ‖u‖2

2

≤ j!
β̄ j

C
β̄ ,m,n, ∀ u ∈W m,2

rad (R
n) and j = 2,3, . . . .

Then, for all β > 0 such that β/β̄ < 1/2 we have

f ′u,β (1)≤ β‖∇mu‖2
2‖u‖2

2

(
β

1
β̄ 2

∞

∑
j=2

j
(

1
2

) j−1

C
β̄ ,m,n−1

)
.

Therefore for β < min
{(

1/β̄ 2
∑

∞
j=2 j (1/2) j−1C

β̄ ,m,n

)−1
, β̄/2

}
, we obtain

f ′u,β (1)< 0, ∀ u ∈M ,

which, as we said before, guarantees that no u∈W m,2
rad (R

n) such that ‖u‖m,n,2 = 1 can be an extremal function
to ηβ ,n,m.

7. Proof of the Theorem 1.6

The argument used here to prove the Theorem 1.6 follows the ideas used to prove a similar result for a
bounded domain in [16]. To proceed with the proof we enunciate the Lemma 2 proved in [16] that describe
a relation between weak convergence sequences and spherically symmetric decreasing rearrangement.

Lemma 7.1. Let fi, f ∈ Lq(Rn) such that fi ⇀ f weakly in Lq(Rn), q > 1. Then, up to a subsequence,
f ∗i → g almost everywhere for some g ∈ Lq(Rn) such that ‖g‖q ≥ ‖ f ∗‖q.

In what follows we prove Theorem 1.6. Let ui,u ∈W m,n/m
0 (Ω) such that ‖ui‖m,n, n

m
≤ 1, u 6= 0 and ui ⇀ u

in W m,n/m
0 (Ω). Let k ∈ N such that m = 2k+1 or m = 2k . We take ũi, ũ ∈W m,n/m(Rn) given by

ũi(x) =

{
ui(x), for x ∈Ω

0, otherwise
and ũ(x) =

{
u(x), for x ∈Ω

0, otherwise

and fi, f given by fi(x) = (I−∆)kũi(x) and f (x) = (I−∆)kũ. Note that, when m is odd fi, f ∈W 1,n/m(Rn).
By Lemma 2.5, since ui ⇀ u in W m,n/m

0 (Ω), we have that fi ⇀ f in Ln/m(Rn), for m even, and in W 1,n/m(Rn),
for m odd.

Now we take vi ∈W m,n/m
rad (Rn), given by

vi = G2k ∗ f ∗i ,

where f ∗i is the spherically symmetric decreasing rearrangement of fi. Thus, from Proposition 5.2,∫
Ω

eβ0 γ |ui|n/(n−m)
dx =

∫
Rn

eβ0 γ |ũi|n/(n−m)
dx =

∫
Rn

eβ0 γ (ũ∗i )
n/(n−m)

dx≤
∫
Rn

eβ0 γ vn/(n−m)
i dx.
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Hence, by Lemma 7.1, f ∗i → g almost everywhere in Rn and ‖g‖n/m ≥ ‖ f ∗‖n/m = ‖(I−∆)ku‖n/m. Then, if
we consider ‖ · ‖ the norm in Ln/m(Rn) for m even and in W 1,n/m(Rn) for m odd, by Brezis-Lieb’s Lemma,

‖ f ∗i −g‖→ c≤ 1−‖g‖.

Hence, as γ satisfies

γ <
(

1−
∥∥(I−∆)ku

∥∥n/m
n/m

)−m/(n−m)
≤ (1−‖g‖n/m)−m/(n−m),

for v ∈W m,n/m(Rn) given by v = G2k ∗g we have that∫
Rn

Φ

(
β0 γ vn/(n−m)

i

)
dx

≤
∫
Rn

Φ

(
β0 γ (1+δ )n/(n−m)(vi− v)n/(n−m)+β0 γ(1+1/δ )n/(n−m)vn/(n−m)

)
dx

≤ 1
q

∫
Rn

Φ

β0
(vi− v)n/(n−m)

‖vi− v‖n/(n−m)
m,n, n

m

 dx

1/q

+
q−1

q

(∫
Rn

Φ

(
β0 γ q̃vn/(n−m)

)
dx
)1−1/q

,

for i sufficiently large and some δ > 0, q > 1, with q̃ = q′(1+1/δ )n/(n−m)n/m. Then applying Theorem C
and Theorem D the result follows.

Remark 7.2. Here we indicated some important open questions related with the Adams type inequality on
unbounded domains:

i) Does the nonexistence of extremal result hold for inequalities (1.7) and (1.8) when p 6= 2 and Ω=Rn?
Should be mentioned that if p 6= 2 inequality (1.3) has always an extremal function, including the
subcritical case.

ii) Based in Theorem 1.6 the inequalities (1.7) and (1.8) can be improved in sense of the result due to
Adimurthi and O. Druet [4]? (see also [13] and [26])
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[10] de Figueiredo, D. G.; do Ó, J. M.; Ruf, B.: On an inequality by N. Trudinger and J. Moser and
related elliptic equations. Comm. Pure Appl. Math. 55, 135–152 (2002).
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Non Linéaire 5, 425–464 (1988).

[35] Struwe, M.: Positive solution of critical semilinear elliptic equations on non-contractible planar
domain. J. Eur. Math. Soc. 2, 100–126 (2000).

[36] Talenti, G.: Elliptic equations and rearrangements. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 3,
697–718 (1976).

22



[37] Tarsi, C.: Adams’ inequality and limiting Sobolev embeddings into Zygmund spaces. Potential
Anal. 37, 353–385 (2012).

[38] Trombetti, G.; Vázquez, J. L.: Ann. Fac. Sci. Toulouse Math. (5) 7 . 2, 137–150 (1985).

[39] Trudinger, N. S.: On imbeddings into Orlicz spaces and some applications. J. Math. Mech. 17,
473–483 (1967).

[40] Weinberger, H.: Symmetrization in uniformly elliptic problems. Studies in Math. Anal, Stanford
Univ. Press, 424–428 (1962).

[41] Yudovich, V. I.: Some estimates connected with integral operators and with solutions of elliptic
equations. Dok. Akad. Nauk SSSR 138, 804–808 (1961) [English translation in Soviet Math.
Doklady 2, 746–749 (1961)].

23


