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Abstract

Singular elliptic problems has been extensively studied and it has attracted the attention of

many research in various contexts and applications. The purpose of this thesis is to study

singular elliptic problems in riemannian manifolds. We investigate a semilinear elliptic

problem involving singular nonlinearities and advection and we prove the existence of a

parameter λ∗ > 0 such that for λ ∈ (0, λ∗) there exists a minimal classical solution which

is semi-stable and for λ > λ∗ there are no solutions of any kind. Futhermore we obtain Lp

estimates for minimal solutions uniformly in λ and determine the critical dimension for

this class of problems. As an application, we prove that the extremal solution is classical

whenever the dimension of the riemannian manifold is below the critical dimension. We

analyse the branch of minimal solutions and we prove multiplicity of solutions close to

extremal parameter. We also prove symmetry and monotonicity properties for the class

of semi-stable solutions and we obtain L∞ estimates for the extremal solution. Moreover,

we study a class of problems involving the p−Laplace Beltrami operator in a geodesic ball

of a riemannian model and we establish L∞ and W 1,p estimates for semi-stable, radially

symmetric and decreasing solutions. As an application we prove regularity results for

extremal solution of a quasilinear elliptic problem with Dirichlet boundary conditions. In

the last chapter we study an elliptic system and we prove the existence of a curve which

splits the positive quadrant of the plane into two disjoint sets, where there is classical

solution while in the other there is no solution. We establish upper and lower estimates

for the critical curve and regularity results for solutions on this curve.

Keywords: Nonlinear elliptic problems. Quasilinear elliptic problems. Nonlinear elliptic

systems. Gelfand-Liouville problems. MEMS problems. Extremal solution. Singular

solution. Stability. Advection. Semi-stable solutions. Regularity.



Resumo

Problemas eĺıpticos singulares têm sido extensivamente estudados nas últimas décadas.

Nesta tese, abordamos classes de problemas não lineares modelados em variedades

riemannianas. Investigamos inicialmente um problema eĺıptico semilinear envolvendo

não linearidades singulares e advecção e provamos resultados de existência do parâmetro

extremal λ∗ > 0 tal que para λ ∈ (0, λ∗) existe uma solução minimal clássica a qual é

semiestável e para λ > λ∗ não existem soluções de nenhum tipo. Além disso, obtivemos

estimativas Lp para as soluções minimais que são uniformes em λ e determinamos as

dimensões cŕıticas para esta classe de problemas. Como uma aplicação, provamos a

regularidade da solução extremal quando a dimensão da variedade riemanniana está

abaixo da dimensão cŕıtica. Analisamos o ramo das soluções minimais e provamos

multiplicidade de soluções próximo do λ∗. Provamos também simetria e monotonicidade

para a classe das soluções semiestáveis e provamos estimativas L∞ para a solução

extremal. Estudamos também uma classe de equações envolvendo o operador p−Laplace

Beltrami em uma bola geodésica de uma variedade Riemanniana modelo e estabelecemos

estimativas L∞ e W 1,p para soluções semiestáveis, radialmente simétricas e decrescentes.

Como aplicação, provamos resultados de regularidade para soluções extremais para

um problema quasilinear com condição de fronteira de Dirichlet. No último caṕıtulo,

estudamos um sistema eĺıptico e provamos a existência de uma curva que divide o

primeiro quadrante do plano em dois conjuntos disjuntos, um dos quais existe solução

clássica enquanto que no outro não existe solução. Estabelecemos estimativas superiores

e inferiores para tal curva e resultados de regularidade para soluções sobre a curva.

Palavras-chave: Problemas eĺıpticos não lineares. Problemas eĺıpticos quasilineares.

Sistemas eĺıpticos não lineares. Problemas tipo Gelfand-Liouville. Problemas tipo MEMS.

Solução extremal. Solução singular. Estabilidade. Advecção. Soluções semiestáveis.

Regularidade.
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1 Introduction

Singular elliptic problems of the form

−∆u = λg(u) (1)

defined on smooth bounded domain Ω of RN with zero Dirichlet boundary condition where

g is smooth, increasing, convex with g(0) = 1 and satisfying

lim
u→+∞

g(u)

u
= +∞ (H1)

or

lim
u→+∞

g(u) = +∞ (H2)

has been extensively studied and it has attracted the attention of many research in various

contexts and applications (1, 2, 3, 4, 5, 6, 7). For example, Liouville (8) consider this

equation when g(u) = eu, or more commonly Gelfand’s problem (9), in connection to

surfaces with constant Gauss curvature. In physics, the exponencial nonlinearity appears

in connection with the structure of stars and equilibrium of gas spheres (10, 11, 12).

A general objective concerning equation (1) with zero Dirichlet boundary condition

for nonlinearities of the form (H1) and (H2) is to study the existence and qualitative

properties of singular solutions. A basic result shared by these problems is that there

exist a critical parameter λ∗ > 0 such that (1) admits positive solutions for 0 < λ < λ∗,

while no positive solutions exist for λ > λ∗. We call λ∗ the extremal parameter. Later, H.

Brezis and J. L. Vazquez (3) treated the delicate issue of regularity of solutions of (1) at

λ = λ∗. In particular, for the nonlinearities mentioned above, the solutions at the critical

parameter λ∗ are uniformly bounded in lower dimensions, while in higher dimensions they

are unbounded.

For more general nonlinearities g(s) satisfying (H1), regularity of solutions of (1) at

λ = λ∗ has been established by G. Nedev (13). Precisely, he proved that the extremal

solution belongs to L∞(Ω) if N ≤ 3, while it belongs to H1
0 (Ω) if N ≤ 5, for every bounded

domain Ω. After that X. Cabré (14) proved regularity when N ≤ 4 assuming conditions

contained in (H1) for convex and bounded domain Ω. Under the same assumptions, X.

Cabré and M. Sanchón (15) completed the analysis of regularity for dimensions 5 ≤ N ≤ 9.

We have to call attention that in (14, 15) they make no assumption of convexity on the

nonlinearity, but in contrast with Nedev’s result, they assume Ω to be convex.
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Note that in MEMS case, i.e. when g(u) = 1/(1 − u2), it is sufficient in view of

standard elliptic regularity theory to show that supu∗ < 1. Some results related to this

question in a bounded domain of RN was obtain by N. Ghoussoub and Y. Guo (16),

where they proved regularity for the extremal solution when N ≤ 7. Here we give some

historical background on the MEMs problems, for a complete study on this subject we

refer the reader to (17, 18). Micro-electromechanical systems (MEMS) are often used to

combine electronics with microsize mechanical devices in the design of various types of

microscopic machinery. MEMS devices have therefore become key components of many

commercial systems, including accelerometers for airbag deployment in automobiles, ink

jet printer heads, optical switches and chemical sensors.

Consider now the quasilinear elliptic problem with p > 1−∆pu =λf(u) in Ω,

u = 0 on ∂Ω.
(2)

In (19, 20), I. Peral, J. Puel and J. Garćıa-Azorero obtained optimal bounds for the

extremal solution for g(u) = eu when p > 1. In (21), using certain assumptions on f , the

authors proved that every semi-stable solution is bounded for a explicit exponent which is

optimal for the boundedness of semi-stable solutions and, in particular, it is bigger than

the critical Sobolev exponent p∗ − 1. For general f and p > 1 the interested reader can

consult (4, 22, 23, 24, 25) for more regularity results about the extremal solution. In

(22), X. Cabré, A. Capella and M. Sanchón treated the delicate issue about regularity

of extremal solutions u∗ of (2) at λ = λ∗ when Ω is the unit ball of RN . Among other

results, they established pointwise, Lq and W 1,q estimates which are optimal and do not

depend on the nonlinearity f namely,

(i) If N < p+ 4p/(p− 1) then u∗ ∈ L∞.

(ii) If N = p+ 4p/(p− 1) then u∗ ∈ Lq for all q < +∞.

(iii) If q < Np/(N − 2
√

(N − 1)/(p− 1)) then u∗ ∈ W 1,q(B1).

When Ω is a smooth domain of a Riemannian manifold (M, g), a recent work due

D. Castorina and M. Sanchón (26) proved qualitative properties for semi-stable solutions

and they established L∞, Lq and W 1,q estimates which do not depends on the nonlinearity

g. Futhermore, the authors established regularity results for the extremal solution for
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exponencial and power nonlinearities. A similar setting has been considered, in the

case p = 2, by E. Berchio, A. Ferrero and G. Grillo (27) in order to study qualitative

properties of radial solutions when g(u) = |u|m−1u with m > 1 on certain classes of

Cartan–Hadamard manifolds and by (28) that studied existence and uniqueness of positive

radial solutions of ∆gu+ λu+ up = 0 in A,

u = 0 on ∂A,

with λ < 0, A being an annular domain in a certain class of Riemannian manifold M and

∆g denotes the Laplace-Beltrami operator.

A natural generalization of problem (1) is to consider the presence of advection term.

In engineering and physics, advection is a conserved property by a fluid due to the

fluid’s motion or a transport mechanism of a substance. The fluid’s motion is described

mathematically as a vector field and the transported material is described by a scalar field

giving its distribution over space. For more informations about advection and applications

to partial differential equations the interested reader can consult (29). In Chapter 3 we

study the following class of semilinear elliptic problems with singular nonlinearities and

advection L(u) := −∆gu+ A(x) · ∇gu =λf(u) in Ω,

u = 0 on ∂Ω,
(Pλ)

on a smooth bounded domain Ω of a complete Riemannian manifold (M, g) with zero

Dirichlet boundary condition, where A is a smooth vector field. We prove the existence

of λ∗ = λ∗(N,Ω, A) > 0 such that for λ ∈ (0, λ∗) there exists a minimal classical solution

uλ which is semi-stable, and for λ > λ∗ there are no solutions of any kind. Furthermore,

we obtain Lp-estimates for uλ uniformly in λ, and we determine the critical dimensions

for this class of problems for singular nonlinearities of type MEMS, Gelfand and power

case. As an application, we prove that the extremal solution u∗ := limλ↗λ∗ uλ is classical

whenever the dimension of M is below the critical dimension. Moreover, we analyze the

branch of minimal solutions and we prove multiplicity of solutions when λ ∈ (λ∗ − δ, λ∗)

for some δ > 0 and uniqueness at λ∗. In particular, when M is a Riemannian model

and Ω is a geodesic ball of M, we establish symmetry and monotonicity for the class of

semi-stable solutions and we also prove L∞-estimates for u∗.

The Chapter 4 is devoted to study the reaction-diffusion equation involving the p-
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Laplace Beltrami operator on Riemannian manifolds of the form

− div(|∇gu|p−2∇gu) = h(u) in B1 \ {O} (3)

where 1 < p < +∞, B1 is a geodesic ball of a Riemannian model M with radius 1, O is a

pole and h is a locally Lipschitz positive nonlinearity. In this way, we establish L∞ and

W 1,p estimates for semi-stable, radially symmetric, and decreasing solutions of (3). Our

result do not depend on the specific form of the nonlinearity, precisely, our L∞ and W 1,p

estimates hold for every locally Lipschitz nonlinearity h. This may regarded as a result

on removable singularities because u may be unbounded at the pole O.

As an application of our estimates, we prove regularity results for the following

quasilinear elliptic problem with Dirichlet boundary condition
−div(|∇gu|p−2∇gu) =λf(u) in B1,

u > 0 in B1,

u = 0 on ∂B1,

where λ > 0 and f is an increasing C1 function with f(0) > 0 and

lim
t→+∞

f(t)

tp−1
= +∞.

In Chapter 5, we analyse the Lane-Emden system

−∆u =
λf(x)

(1− v)2
in Ω

−∆v =
µg(x)

(1− u)2
in Ω

0 ≤ u, v < 1 in Ω

u = v = 0 on ∂Ω

(Sλ,µ)

where λ and µ are positive parameters and Ω is a smooth bounded domain of RN (N ≥ 1).

We prove the existence of a critical curve Γ which splits the positive quadrant of the (λ, µ)-

plane into two disjoint sets O1 and O2 such that the problem (Sλ,µ) has a smooth minimal

stable solution (uλ, vµ) in O1, while for (λ, µ) ∈ O2 there are no solutions of any kind. We

also establish upper and lower estimates for the critical curve Γ and regularity results on

this curve if N ≤ 5. Our proof is based on a delicate combination involving Lp estimates

for semi-stable solutions of (Sλ,µ).



2 Preliminaries 14

2 Preliminaries

This section is devoted to present some basic facts used along the text. We start

introducing the notions of smooth and Riemannian manifolds and Riemannian measure.

For more details the interested reader can consult (30). Here after we use Einstein

summation convention that implies summation over a set of index terms in a formula.

2.1 Riemannian manifolds

Definition 2.1. Let M a topological space. A N -dimensional chart on M is any couple

(U,ϕ) where U is an open subset of M and ϕ is a homeomorphism of U onto an open

subset of RN .

Definition 2.2. A manifold of dimension N is a Hausdorff topological space M with a

countable base such that any point of M belongs to a N -dimensional chart.

Let M be a manifold of dimension N . For any chart (U,ϕ) on M, the local coordinate

system x1, ..., xN is defined in U by taking the ϕ-pullback of the cartesian coordinate

system in RN .

A family A of charts on a manifold is called a Ck-atlas if the charts from A covers all

M and the change of coordinates in the intersection of any two charts from A is given by

Ck-functions. Two Ck-atlases are said to be compatible if their union is again a Ck-atlas.

The union of all compatible Ck-atlases determines a Ck-structure on M.

Definition 2.3. A smooth manifold is a manifold endowed with a C∞-structure.

Hereafter we always consider a manifold M as a smooth manifold.

Definition 2.4. A mapping ξ : C∞(M) → R is called an R-differentiation at a point

x0 ∈M if ξ is linear and

ξ(fg) = ξ(f)g(x0) + ξ(g)f(x0),

for all f, g ∈ C∞(M).

The set of all R-differentiations at x0 is denoted by Tx0M. The linear space Tx0M is

called the tangent space of M at x0.
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Theorem 2.1. If M is a smooth manifold of dimension N then the tangent space Tx0M

is a linear space of the same dimension N .

A vector field on a smooth manifold M is a family {v(x)}x∈M of tangent vectors such

that v(x) ∈ TxM for any x ∈ M. In local coordinates, x1, ..., xN it can be represented in

the form

v(x) = vi(x)
∂

∂xi
.

The vector field v(x) is called smooth if all the functions vi(x) are smooth in any chart.

Let M be a smooth N -dimensional manifold. A Riemannian metric on M is a family

g = {g(x)}x∈M such that g(x) is a symmetric, positive definite, bilinear form on the

tangent space TxM smoothly depending on x ∈M.

Using the metric tensor, ones defines an inner product 〈·, ·〉g in any tangent space TxM

by

〈ξ, η〉g ≡ g(x)(ξ, η),

for all tangent vectors ξ, η ∈ TxM. In the local coordinates x1, ..., xN the inner product

in TxM has the form

〈ξ, η〉g = gi,j(x)ξiηj, (4)

where (gi,j(x))Ni,j=1 is a symmetric positive definite N×N matrix. It follows from (4) that

gi,j = 〈 ∂
∂xi

,
∂

∂xj
〉g.

Definition 2.5. A Riemannian manifold is a couple (M, g) where g is a Riemannian

metric on a smooth manifold M.

Let (M, g) be a Riemannian manifold. The metric tensor g provides a canonical way

of identifying the tangent space TxM with the cotangent space T ∗xM. Observe that if

ξ 6= 0 then g(x)ξ is also non-zero as covector. Therefore, the mapping

g(x) : TxM→ T ∗xM

is bijective. Consequently, it has the inverse mapping

g−1(x) : T ∗xM→ TxM,

whose components are denoted by (gi,j) so that(
gi,j
)

= (gi,j)
−1 .
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Hence, for any covector w ∈ T ∗xM, g−1(x)w is a vector whose components are given by

wi :=
(
g−1(x)w

)i
= gi,jwj.

Obviously, g−1 can be considered as an inner product in T ∗xM. It follows that, in the local

coordinates

〈v, w〉g−1 = gi,jviwj

for all v, w ∈ T ∗xM.

Definition 2.6. For any smooth function f ∈ C∞(M), define its gradient ∇gf(x) at a

point x ∈M by

∇gf(x) = g−1(x)df(x)

that is, ∇gf(x) is a covector version of df(x).

Remark 2.1. In the local coordinates x1, ..., xN we obtain

(∇gf)i = gi,j
∂f

∂xj
.

Let M be a smooth manifold of dimension N . Let B(M) be the smallest σ-algebra

containing all open sets in M. The elements of B(M) are called Borel sets. We say that

a set E ⊂M is measurable if for any chart U , the set ϕ(E ∩U) is a Lebesgue measurable

set in ϕ(U). Obviously, the family of all measurable sets in M forms a σ-algebra and

we will denote by Λ(M). We now show that any Riemannian manifold (M, g) features a

canonical measure ν defined on Λ(M) which is called Riemannian measure.

Theorem 2.2. For any Riemannian manifold (M, g) there exists a unique measure ν on

Λ(M) such that in any chart U ,

dν =
√

det gdλ

where g = (gi,j) is the matrix of the Riemannian metric g in U and λ is the Lebesgue

measure in U . Furthermore, the measure ν is complete, ν(K) < ∞ for any compact set

K ⊂ M, ν(Ω) > 0 for any non-empty open set Ω ⊂ M and ν is regular in the following

sense: for any set A ∈ Λ(M)

ν(A) = sup {ν(K) : K ⊂ A,K compact}

and

ν(A) = inf {ν(U) : A ⊂ U,U open} .
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For any smooth vector field v(x) on a Riemannian manifold (M, g), its divergence

divv(x) is a smooth function on M defined by the following statement.

Definition 2.7. For any C∞-vector field v(x) on a Riemannian manifold M, there exists

a unique smooth function on M denoted by divv such that the following identity holds∫
M

(divv)u dν = −
∫
M

〈v,∇gu〉g dν

for all u ∈ C∞0 (M).

We can see that the divergence in local coordinates can be defined by

divv =
1√

det g

∂

∂xk

(√
det gvk

)
.

Having defined gradient and divergence, we can define the Laplace-Beltrami operator on

any Riemannian manifold (M, g) as follows

∆g = div ◦ ∇g.

In local coordinates we have

∆g =
1√

det g

∂

∂xi

(√
det ggi,j

∂

∂xj

)
,

where g = (gi,j).

Theorem 2.3 (Green formula). If u and v are smooth functions on a Riemannian

manifold M and one of then has a compact support then∫
M

u∆gv dν = −
∫
M

∇gu · ∇gv dν =

∫
M

v∆gu dν.

2.2 Polar coordinates and Model manifolds

In RN , N ≥ 2, every point x 6= 0 can be represented in the polar coordinates as a

couple (r, ϑ) where r := |x| > 0 is the polar radius and ϑ = x
|x| ∈ SN is the polar angle.

We already know that the canonical Euclidean metric gRN has the following representation

in polar coordinates:

gRN = dr2 + r2gSN−1 ,

where gSN−1 is the canonical spherical metric.
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For sphere, we consider now the polar coordinates on SN . Let p be the north pole

and q be the south pole of SN . We can use the stereographic projection to prove that the

canonical spherical metric gSN has the following representation in polar coordinates:

gSN = dr2 + sin2 rgSN−1 .

The hyperbolic space HN , N ≥ 2, is defined as follows. Consider in RN+1 a hyperboloid

H given by the equation (xN+1)2− (x′)2 = 1, where x′ = (x1, ..., xN) ∈ RN and xN+1 > 0.

This implies that HN is a submanifold of RN+1 of dimension N . Consider in RN+1 the

Minkowski metric

gMink = (dx1)2 + ...+ (dxN)2 − (dxN+1)2

which is a bilinear symmetric form but not positive definite. Let gHN be the restriction

of the tensor gMink to H. With this, (H, gHN ) is a Riemannian manifold and gHN is

called the canonical hyperbolic metric, which has the following representation in the polar

coordinates:

gHN = dr2 + sinh2 rgSN−1 .

Definition 2.8. An N -dimensional Riemannian manifold (M, g) is called a Riemannian

model if:

(i) There is a chart on M that covers all M, and the image of this chart in RN is a ball

Br0 :=
{
x ∈ RN : |x| < r0

}
of radius r0 ∈ (0,+∞].

(ii) The metric g in the polar coordinates (r, ϑ) in the above chart has the form

g = dr2 + ψ2(r)gSN−1 ,

where ψ(r) is a smooth positive funtion on (0, r0).

Remark 2.2. The number r0 is called the radius of the model M.

Lemma 2.1. On a model manifold (M, g), the Riemannian measure ν is given in the

polar coordinates by

dν = ψN−1drdϑ,

where dϑ stands for the Riemannian measure on SN−1, and the Laplace operator on (M, g)

has a form

∆g =
∂2

∂r2
+

(
d

dr
logψN−1

)
d

dr
+

1

ψ2(r)
∆SN−1 .
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2.3 Geodesic distance

Definition 2.9. Let M be a smooth manifold. A path on M is any continuous mapping

γ : (a, b)→M where −∞ ≤ a < b ≤ +∞.

Definition 2.10. For any smooth path γ(t), its velocity γ′(t) is an R-differentiation at

the point γ(t) defined by

γ′(t)(f) = (f ◦ γ)′(t) for all f ∈ C∞(M).

Recall that the the lenght of a tangent vector ξ ∈ TxM is defined by |ξ| =
√
〈ξ, ξ〉g.

For any smooth path γ : (a, b)→M, its lenght l(γ) is defined by

l(γ) =

∫ b

a

|γ′(t)|dt.

We use the paths to define a distance function on the manifold (M, g). We say that

a path γ : [a, b] → M connects points x and y if γ(a) = x and γ(b) = y. The geodesic

distance d(x, y) between points x, y ∈M is defined by

d(x, y) = inf
γ
l(γ),

where the infimum is taken over all smooth paths connecting x and y. If the infimum is

attained on a path γ then γ is called a shortest (or a minimizing) geodesic between x and

y.

Clain: The geodesic distance satisfies the following properties.

(i) d(x, y) ∈ [0,+∞] and d(x, x) = 0.

(ii) d(x, y) = d(y, x).

(iii) d(x, y) ≤ d(x, z) + d(y, z).

This implies that the geometric distance is a metric on M. Futhermore, the topology of

the metric space (M, d) coincides with the original topology of the smooth manifold M.

2.4 Sobolev spaces on manifolds

For any manifold M, define the space of test functions D(M) as C∞0 (M) with the

following convergence: φk → φ if
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(i) In any chart U and for any multiindex α, ∂αφk converges uniformly to ∂αφ in U .

(ii) All supports suppφk are contained in a compact subset of M.

A distribution is a continuous linear functional on D(M). The set of all distributions

D′(M) is a linear space. The convergence in D′(M) is defined as follows: uk → u if

(uk, φ)→ (u, φ) for all φ ∈ D(M).

We would like to identify a function on M as a distribution and for this we need

a measure on M. Assume that (M, g, µ) is a Riemannian manifold endowed with the

measure µ. The notion of measurable and integrable functions are defined as well as the

Lebesgue function space Lp(M) = Lp(M, µ), 1 ≤ p ≤ +∞. Note that Lp(M) are Banach

spaces and L2(M) is a Hilbert space. We also know that if 1 ≤ p < +∞ then Lp(M) is

separable and D(M) is dense in Lp(M).

Let
−→
D(M) be the space of all smooth vector fields on M with compact supports

endowed with the convergence similar to that in D(M). The elements of the dual space
−→
D′(M) are called distributional vector fields. The convergence in

−→
D′(M) is defined in the

same way as in D′(M).

A vector field v on M is called measurable if all its components in any chart are

measurable functions. By definition, the space
−→
Lp(M) consists of (the equivalence class

of) measurable vector fields v such that |v| ∈ Lp(M) (where |v| = 〈v, v〉1/2g is the lenght of

v). The norm in
−→
Lp(M) is defined by ‖v‖−→

Lp
:= ‖|v|‖Lp . The space

−→
Lp are also complete.

For any distribution u ∈ D′(M), define its distributional gradient ∇gu ∈
−→
D(M) by

means of the identity

(∇u, ψ) = −(u, divµψ) for all ψ ∈
−→
D(M).

Define the following Sobolev space

W 1,p(M) = W 1,p(M, g, µ) :=
{
u ∈ Lp(M) : ∇u ∈

−→
Lp(M)

}
.

It is easy to see that W 1,p is a linear normed space endowed with the norm

‖u‖W 1,p = ‖u‖Lp + ‖∇u‖−→
Lp
.

We are going to define Sobolev spaces of integer order on a Riemannian manifold. In

general, higher order Sobolev Spaces W k cannot be defined in the same way as in RN

because the partial derivatives of higher order are not well-defined on M. For Sobolev

spaces on the open sets of Euclidean space RN we recommend the book (31).
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Definition 2.11. Let (M, g) be a smooth Riemannian manifold of dimension N . For

a real function φ belonging to Ck (M), k a non-negative integer and α = (α1, ..., αk) a

multi-index with order less than or equal to k. We define

|∇kφ|2 = ∇α1∇α2 · · · ∇αkφ∇α1∇α2 · · · ∇αkφ.

In particular, |∇0φ| = |φ|, |∇1φ|2 = |∇φ|2. The notation∇kφ will mean any k-th covariant

derivative of φ.

Let us consider the vector space Ck,p of C∞ functions φ such that |∇lφ| ∈ Lp(M) for

all l ∈ Z with 0 ≤ l ≤ k and p ≥ 1 is a real number.

Definition 2.12. The Sobolev space W k,p(M) is the completion of Ck,p with respect to

the norm

‖φ‖Wk,p =
k∑
l=0

‖∇lφ‖p.

It is possible to consider some other norms which are equivalent, for instance, we could

use [
k∑
l=0

‖∇lφ‖pp

] 1
p

.

Using partition of unity we can obtain all results about Sobolev embeddings for a

compact manifold M. The interested reader should consult (32, 33).

Theorem 2.4. Let M be a smooth compact manifold of dimension N .

(i) If 1
r
≥ 1

p
− k

N
then W k,p(M) is continuous embedded in Lr(M).

(ii) The above immersion is compact if 1
r
> 1

p
− k

N
.

(iii) If α ∈ (0, 1) and 1
p
≤ k−α

N
then W k,p(M) is continuous embedded in Cα(M).

(iv) If 1
s
≥ 1

N−1

(
N
p
− k
)

then W k,p(M) is continuous embedded in Ls(∂M).

(v) The above immersion is compact if 1
s
> 1

N−1

(
N
p
− k
)

.

2.5 Maximum principle and Regularity results

We use a Comparison Principle for weak solutions of quasilinear elliptic differential

equation in divergence form on complete Riemannian manifold. We need a simple version

of Theorem 3.3 found in (34).
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Proposition 2.1 (Maximum Principle). Let A a smooth vector field over Ω and w be a

weak supersolution of the problem −∆gu+ A · ∇u = 0, that is,

−∆w + A · ∇w ≥ 0.

If w ≥ 0 on ∂Ω, then w ≥ 0 in Ω.

For the sake of completeness, we prove the Sub and Supersolution result in Proposition

2.2 using the Monotone Iteration Method. In this way, T. Kura (35) has proved many

results about the existence of a solution between sub and supersolutions for quasilinear

problems.

Proposition 2.2 (The sub- and super-solution method). Let u and u weak subsolution

and weak supersolution respectively of−∆gu+ A(x) · ∇gu =λf(u) in Ω,

u = 0 on ∂Ω,
(Pλ)

that satisfies u ≤ u a.e. in Ω. Then problem (Pλ) has a weak solution u such that

u ≤ u ≤ u a.e. in Ω.

Proof. Denote by u0 = u. We define a sequence (un) inductively where each un is the

unique weak solution of the problem−∆gun + A · ∇gun + cun =λf(un−1) + cun−1 in Ω,

un = 0 on ∂Ω.
(5)

This sequence satisfies u ≤ un−1 ≤ un ≤ u. In fact, consider (5) where n = 1. We

have u1 ∈ W 1,2
0 (Ω) and by Maximum Principle follows u ≤ u1 ≤ u. In the same way

u2 ∈ W 1,2
0 (Ω) and satisfies u ≤ u1 ≤ u2 ≤ u. By induction we have the result i.e.,

u ≤ un−1 ≤ un ≤ u. Now, observe that (un) is bounded in W 1,2
0 (Ω) and has a subsequence

that converges weakly to u ∈ W 1,2
0 (Ω). Taking the limit in the equation follows that u is

a weak solution of the problem−∆gu+ A · ∇gu =λf(u) in Ω,

u = 0 on ∂Ω.



2 Preliminaries 23

We also have a version of Hodge-Helmholtz decomposition in order to deal with general

vector fields A. This decomposition of vector fields is one of the fundamental theorem in

fluid dynamics. It describes a vector field in terms of its divergence-free and rotation-free

components. For more results in this subject we refer the reader to (36).

Lemma 2.2. Any vector field A ∈ C∞(Ω, TM) can be decomposed as A = −∇ga + C

where a is a smooth scalar function and C is a smooth bounded vector field such that

div(eaC) = 0.

Proof. Let ν the unit outer normal on ∂Ω. Using Krein-Rutman theorem, we can find a

positive solution w of ∆gw + div(wA) =µw in Ω,

(∇gw + wA) · ν = 0 on ∂Ω.
(6)

for a constant µ ∈ R. Integrating the equation over Ω one sees that µ = 0. By the

maximum principle (Theorem 3.3 in (34)), w is positive up to the boundary. Now define

a := log(w) and C := A+∇ga. Observe that

div (eaC) = ea∇ga · C + eadivC

= ea∇ga · (A+∇ga) + eadiv (A+∇ga)

= ea∇ga · A+ ea|∇ga|2 + eadivA+ eadiv (∇ga)

= ea∇g · A+ ea|∇g|2 + eadivA+ ea∇ga.

Since ea = elnw = w, ∇ga = 1/w∇gw and ∆ga = −1/w2|∇gw|2 + 1/w∆gw we can use the

above calculations to obtain

div (eaC) =∇gw · A+ 1/w|∇gw|2 + wdivA+ w
(
−1/w|∇gw|2 + 1/w∆gw

)
= ∆g + wdivA+∇gw · A

= ∆gw + div (wA) = 0.

Regularity results on manifolds are similar to the more traditional ones expressed in

the Euclidean case, because regularity is a local notion. The regularity result we will

mostly use is the following: if f ∈ W k,p(M) for some k ∈ N and p > 1, then a weak

solution u to the equation

L(u) = f
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is in W k+2,p(M). In particular, it follows from Sobolev embedding theorem that when f is

smooth then u is also smooth. About regularity theory, a classical reference is Appendix

B in (37) and also Gilbarg-Trudinger (38).

We recall some general facts for the p-Laplace Beltrami operator that are extensions,

to a quasilinear setting, of some results of spectral theory. The reader may consult

(39, 40, 41, 42, 43, 57, 58, 59). The basic technical material that is necessary for our

purpose about regularity is summarized in the following.

Theorem 2.5. Let Ω ⊂ M be a relatively compact open domain with C1,α boundary

for some 0 < α < 1. Let 1 < p < +∞, h ∈ L∞(Ω), ξ ∈ C1,α(∂Ω) and suppose that

u ∈ W 1,p(Ω) is a solution of −∆pu =h in Ω,

u = ξ on ∂Ω.
(7)

Then

(i) [Boundedness] We have u ∈ L∞loc(Ω) and for any relatively compact open domains

Ω′ b Ω′′ b Ω there exists a positive constant C = C(p, h,N, ξ,Ω, ‖u‖Lp(Ω′′)) such

that

‖u‖L∞(Ω′) ≤ C. (8)

If ξ ∈ C2,α(∂Ω), C can be chosen globally on Ω, and thus u ∈ L∞(Ω).

(ii) [C1,β-regularity] When u ∈ L∞(Ω) there exists β ∈ (0, 1) depending on p,N, h, α

and on upper bounds for ‖u‖L∞ , ‖h‖L∞ , ‖ξ‖C1,α on Ω such that

‖u‖C1,β(Ω) ≤ C (9)

for some constant C depending on α, p, the geometry of Ω and upper bounds for

‖u‖L∞ , ‖h‖L∞ , ‖ξ‖C1,α on Ω.

(iii) [Harnack inequality] For any relatively compact open sets Ω′ b Ω′′ b Ω there exists

C = C(p,N,Ω′,Ω′′) > 0 such that u ∈ W 1,p(Ω) nonnegative solution of −∆pu = 0

on Ω,

sup
Ω′
u ≤ C inf

Ω′′
u. (10)

In particular, either u > 0 on Ω or u ≡ 0 on Ω.
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(iv) [Hopf lemma] Suppose that ξ ≥ 0, g ≥ 0 and let u ∈ C1(Ω) be a nonnegative

solution of (7) which is not identically zero. If x ∈ ∂Ω is such that u(x) = ξ(x) = 0

then we have 〈∇u, ν〉 > 0, where ν is the inward unit normal vector to ∂Ω at x.

The interested reader can verify the next remarks:

(a) The local boundedness of u (8) is a particular case of Serrin’s theorem (44) and does

not need the boundary condition. The global boundedness of (8) can be reached

via reflection technique described at (39) and (45, 46) when ξ ∈ C2,α(∂Ω).

(b) The C1,β-regularity (9) is a global version (60), of a local regularity result in (46)

and (47).

(c) The Harnack inequality (10) is due to J. Serrin (44).

(d) The Hopf lemma can be found in (48).

2.6 Krein-Rutman theorem

The Krein-Rutman theorem is a important tool in nonlinear partial differential

equations, as it provides the abstract basis for the proof of the existence of various principal

eigenvalues, which are crucial in topological degree calculations and bifurcation theory.

The interested reader can consult (49).

Definition 2.13. Let X be a Banach space. By a cone K ⊂ X we mean a closed convex

set such that λK ⊂ K for all λ ≥ 0 and K ∩ (−K) = {0}.

It is clear that a cone K in X induces a partial ordering ≤ by the rule: u ≤ v if and

only if v − u ∈ K. A Banach space with such an ordering is usually called a partially

ordered Banach space and the cone generating the partial ordering is called the positive

cone of the space X. We write u > v if u− v ∈ K \ {0} and u� v if u− v ∈ int(K).

Definition 2.14. Let K ⊂ X be a cone in a Banach space X. If K −K = X then K is

called a total cone. If K −K = X then K is called a reproducing cone. If a cone K has

nonempty interior then it is called a solid cone.

Let X∗ denote the dual space of X. The set K∗ := {l ∈ X∗ : l(x) ≥ 0 ∀x ∈ K} is

called the dual cone of K. It is easy to check that K∗ is closed and convex and λK∗ ⊂ K∗

for any λ ≥ 0.
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Theorem 2.6 (Krein-Rutman Theorem). Let X be a Banach space, K ⊂ X a total

cone and T : X → X a compact linear operator that is positive, i.e., T (K) ⊂ K with

positive spectral radius r(T ). Then r(T ) is an eigenvalue with an eigenvector u ∈ K \{0}.

Moreover, r(T ∗) = r(T ) is an eigenvalue of T ∗ with an eigenvector u∗ ∈ K.

Using the Krein-Rutman Theorem 2.6 we can obtain the following useful result.

Theorem 2.7. Let X be a Banach space, K ⊂ X a solid cone and T : X → X a compact

linear operator which is strongly positive, i.e., Tu� 0 if u > 0. Then

(i) r(T ) > 0 and r(T ) is a simple eigenvalue with an eigenvector v ∈ int(K). Moreover,

there is no other eigenvalue with a positive eigenvector.

(ii) |λ| < r(T ) for all eigenvalues λ 6= r(T ).
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3 Singular elliptic problems on manifolds

In this chapter we investigate the following class of nonlinear elliptic differential

equations involving singular nonlinearities and advection
−∆gu+ A(x) · ∇gu =λf(u) in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

(Pλ)

where A is a smooth vector field over Ω and Ω is a smooth bounded domain of a complete

Riemannian manifold (M, g) with dimension N . We analyse (Pλ) for the following types

of nonlinearities and we are assuming the following values for s0 ∈ (0,+∞]

Nonlinearity s0 Type

f(u) = 1/(1− u)2 1 MEMS

f(u) = eu +∞ Gelfand

f(u) = (1 + u)m +∞ Power

where m > 1. Along this chapter we deal with many types of solutions. To avoid

confusion, we prefer to state all this definitions here.

Definition 3.1.

Classical solution: u ∈ C2(Ω) ∩ C(Ω) is a classical solution of (Pλ) if it solves (Pλ) in

the classical sense (i.e. using the classical notion of derivative).

Weak solution: u ∈ W 1,2
0 (Ω) is a weak solution of (Pλ) if 0 ≤ u < s0 almost everywhere

in Ω and u = s0 in a subset with measure zero such that f(u) ∈ L2(Ω) and∫
Ω

(∇gu · ∇gφ+ φA · ∇gu) dvg = λ

∫
Ω

f(u)φ dvg, ∀φ ∈ W 1,2
0 (Ω).

Weak subsolution: u ∈ W 1,2
0 (Ω) is a weak subsolution of (Pλ) if 0 ≤ u < s0 almost

everywhere in Ω and u = s0 in a subset with measure zero such that f(u) ∈ L2(Ω) and∫
Ω

(∇gu · ∇gφ+ φA · ∇gu) dvg ≤ λ

∫
Ω

f(u)φ dvg, ∀φ ∈ W 1,2
0 (Ω) with φ ≥ 0.

Weak supersolution: Analogously one defines weak supersolution of (Pλ) by reversing

the above inequality.
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Minimal solution: For problem (Pλ), we say that a weak solution u ∈ W 1,2
0 (Ω) is a

minimal solution if u ≤ v, almost everywhere, for all v supersolution. We denote minimal

solution of (Pλ) by uλ.

Regular solution: We say that a weak solution u of (Pλ) is a regular solution if

sup
x∈Ω

u(x) < s0.

Semi-stable solution: We say that a classical solution u of (Pλ) is semi-stable solution

when ∫
Ω

(
|∇gξ|2 + ξA(x) · ∇gξ

)
dvg ≥

∫
Ω

λf ′(u)ξ2dvg, ∀ξ ∈ C1
0(Ω). (11)

Analogously one defines stable solution when we have the strict inequality in (11). We

say that a classical solution u of (Pλ) is unstable when u is not semi-stable.

We will study the minimal branch and regularity properties for minimal solutions of

(Pλ). We first prove that there exists some positive finite critical paramater λ∗ such that

for all 0 < λ < λ∗ the problem (Pλ) has a smooth minimal stable solution uλ while for

λ > λ∗ there are no solutions of (Pλ) in any sense (cf. Theorems 3.1). We determine

the critical dimension N∗ for this class of problems, precisely we prove that the extremal

solution (see section 3.3) of (Pλ) is regular for N < N∗ and it is singular for N ≥ N∗. We

see that the critical dimension depends only on the nonlinearity f and does not depend of

the Manifold M (cf. Theorem 3.2 and Table 1). Furthermore, we establish L∞ estimates,

which are crucial to obtain our regularity results on the extremal solutions. We also

prove multiplicity of solutions near the extremal parameter λ∗ and uniqueness on it (cf.

Theorem 3.5 and Theorem 3.7).

Remark 3.1. If we cover M by coordinate neighborhoods and consider a partition of

unity subordinate to this cover, we can use elliptic estimates to see that any regular

solution u of (Pλ) belongs to C1,α(Ω). Moreover, using Schauder estimates it is easy

to prove that u ∈ C2,α(Ω) and consequently any regular solution of (Pλ) is a classical

solution.

Remark 3.2. The class of semi-stable solutions includes local minimizers, minimal

solutions, extremal solutions and certain class of solutions found between a sub and a

supersolution.
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3.1 Existence Results

We can construct a supersolution for the problem (Pλ) when λ is sufficient small.

Lemma 3.1. Let w ∈ W 1,2
0 (Ω) be a weak solution of the problem−∆gw + A · ∇gw = 1 in Ω,

w = 0 on ∂Ω.
(12)

There exists β > 0 such that βw is a supersolution of (Pλ) for λ sufficient small.

Proof. For a large c > 0, let L̃w = −∆gw + A · ∇gw + cw and consider the problem L̃w = f in Ω,

w = 0 on ∂Ω.
(13)

If we write w = L̃−1(1 + cw) = N(w) we can use Schauder Fixed Point Theorem to find

a solution w of (12). By elliptic estimates w ∈ C1(Ω) so we can take β > 0 such that

βmaxΩ w < s0. If λ ≤ β/f(βmaxΩ w) we have∫
Ω

(∇g(βw)∇gφ+ φA · ∇g(βw)) dvg = β

∫
Ω

φ ≥
∫

Ω

λφf(βw) dvg,

for all φ ∈ W 1,2
0 (Ω) with φ ≥ 0 ,i.e., βw is a supersolution of (Pλ).

Let us define

Λ := {λ ≥ 0 : (Pλ) has a classical solution}.

Remark 3.3. Using Sub and Supersolution Method (Proposition 2.2) we can find a

regular solution between 0 and βw. With this, sup Λ > 0.

Lemma 3.2. The interval Λ is bounded.

Proof. Suppose that exists a classical solution u of (Pλ), for λ sufficiently large. We

can suppose that λ > λ1, where λ1 is the first eigenvalue associate to the operator

L = −∆g + A · ∇g. Let v1 the eigenfunction associated to λ1, i.e.,−∆gv1 + A · ∇gv1 =λ1v1 in Ω,

v1 = 0 on ∂Ω.

By regularity theory, it follows that v1 ∈ C1,α(Ω). By homogeneity, we can suppose

‖v1‖∞ < 1. So v1 and u satisfies

−∆gv1 + A · ∇gv1 = λ1v1 < λf(u) = −∆gu+ A · ∇gu.
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By Maximum Principle follows that v1 ≤ u. Now, given ε > 0, we take v2 a solution of−∆gv2 + A · ∇gv2 = (λ1 + ε)v1 in Ω,

v2 = 0 on ∂Ω.

As above, v1 ≤ v2 ≤ u. By induction, we have solutions vn such that−∆gvn + A · ∇gvn = (λ1 + ε)vn−1 in Ω,

vn = 0 on ∂Ω,

with v1 ≤ ... ≤ vn−1 ≤ vn ≤ u in C1,α(Ω). Thus vn ⇀ v in W 1,2
0 (Ω). It follows that v

satisfies −∆gv + A · ∇gv = (λ1 + ε)v in Ω,

v = 0 on ∂Ω.

This is impossible since the first eigenvalue is isolated.

Since Λ is bounded, we can define the extremal parameter

λ∗ = sup Λ.

Remark 3.4. Clearly, there are no classical solution of (Pλ) for λ > λ∗.

Lemma 3.3. The set Λ is an interval.

Proof. Initially, we prove that Λ does not consist of just λ = 0. Let u be a classical solution

for problem (Pλ) with λ < λ∗. Observe that u0 = 0 and u are sub and supersolution,

respectively, for the problem (Pλ). Using the Sub and Supersolution Method (see

Proposition 2.2), there exist a weak solution v ∈ W 1,2
0 (Ω) such that u0 ≤ v < u < s0.

By Remark 3.1, v is a classical solution. This solution is a supersolution for (Pµ) when

µ ∈ (0, λ). Again, there exist a classical solution for the problem (Pµ). Thus, Λ is an

interval.

3.2 Minimal solutions

Lemma 3.4. For each λ < λ∗, there exists a unique minimal solution uλ for the problem

(Pλ). Therefore, for all x ∈ Ω, the map λ→ uλ is strictly increasing.

Proof. Consider the weak solution u given by Proposition 2.2. By the maximum principle

(see Proposition 2.1), all supersolutions v of (Pλ) satisfies u ≤ v. Thus u is minimal. The

uniqueness follows by minimality of u. In this way, we define u := uλ. Therefore, if λ < µ,

we have that uµ is a supersolution of (Pλ). Thus, uλ < uµ.
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Let u be a semi-stable solution of (Pλ), and let us consider the following eigenvalue

problem involving the linearized operator −∆g + A · ∇g − λf ′(u) at u,Lu,λφ =µφ in Ω

u = 0 on ∂Ω.

It is well known that there exists a smallest positive eigenvalue µ, which we denote by

µ1,λ, and an associated eigenfunction φ1,λ > 0 in Ω, and µ1,λ is a simple eigenvalue and

has the following variational characterization

µ1,λ = inf

{
〈Lu,λφ, φ〉L2(Ω) : φ ∈ W 1,2

0 (Ω),

∫
Ω

φ2 dvg = 1

}
.

Lemma 3.5. If 0 ≤ λ < λ∗, the minimal solutions are semi-stable.

Proof. Let uλ be the minimal solution of (Pλ). Suppose that uλ is not semi-stable i.e., the

first eigenvalue µ1,λ of operator Lu,λ is negative. Consider the function ψε = uλ − εψ ∈

W 1,2
0 (Ω), where ψ ∈ W 1,2

0 (Ω) is the first positive eigenvector of −∆g + A · ∇g − λf ′(uλ).

Using Taylor’s formula, for ‖ξ‖W 1,2
0 (Ω) sufficiently small we have

−∆gψε + A · ∇gψε − λf(ψε) = −ελf(ψ) + λf(uλ)− εκψ − ελf ′(uλ)ψ

= −εκψ − λε2f ′′(ξ)ψ2 ≥ 0,

for ε sufficiently small, because κ < 0. Thus ψε is a supersolution of (Pλ) and, by

minimality of uλ we have a contradiction.

Theorem 3.1. There exists a critical parameter λ∗ ∈ R, λ∗ > 0 such that

1. For all λ ∈ (0, λ∗) problem (Pλ) possesses an unique minimal classical solution uλ

which is positive and semi-stable, and the map λ → uλ is increasing on (0, λ∗) for

each x ∈ Ω.

2. The following estimates hold

β(1− βmax
Ω

w)2 ≤ λ∗ ≤ λ1,

where w and β are given in Lemma 3.1 and λ1 is the first eigenvalue of −∆g +A ·∇g

with zero Dirichlet boundary condition.

3. For λ > λ∗ there are no solutions, even in weak sense.
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4. semi-stable solutions of (Pλ) are necessarily minimal solutions.

Proof of Theorem 3.1. (1) The existence of λ∗ follows from Lemma 3.2. By Lemmas 3.4

and 3.5, there exists uλ minimal solution of (Pλ) which is semi-stable and the function

λ→ uλ(x) is strictly increasing.

(2) Note that since u0 = 0 is a subsolution of (Pλ), uλ is non negative. In the same way,

since a classical solution of (Pλ) is also a supersolution, it follows that uλ is a classical

solution. The estimate is a consequence of Lemma 3.1 and Lemma 3.2.

(3) Let uµ be a weak solution of (Pµ) with λ∗ < µ. Observe that w = (1− ε)uµ is a weak

solution of −∆gw + A · ∇gw = (1− ε)µf(uµ), that is,∫
Ω

(∇gw · ∇gφ+ φA · ∇gw) dvg = (1− ε)µ
∫

Ω

φf(uµ) dvg.

An easy calculation shows that w is a supersolution for (P(1−ε)µ). Thus there exist a weak

solution v ≤ w. Since v ≤ w < uµ, it follows that v is a classical solution of (P(1−ε)µ).

If ε is sufficiently small, λ∗ < (1 − ε)µ. Furthermore, since u∗ is a monotone limit of

measurable functions, it is also measurable.

(4) Now, to prove that a semi-stable solution of (Pλ) is minimal, let u and v a semi-stable

solution and a supersolution of (Pλ) respectively. For ϑ ∈ [0, 1] and 0 ≤ φ ∈ W 1,2
0 (Ω), we

have

Iϑ,φ :=

∫
Ω

(∇g(ϑu+ (1− ϑ)v) · ∇gφ+ φA · ∇g(ϑu+ (1− ϑ)v)) dvg (14)

−λ
∫

Ω

φf(ϑu+ (1− ϑ)v) dvg ≥ 0, (15)

due to the convexity of function s → f(s). Since I1,φ = 0, the derivative of Iϑ,φ at ϑ = 1

is non positive, that is∫
Ω

(∇g(u− v) · ∇gφ+ φA · ∇g(u− v)) dvg −
∫

Ω

λ(u− v)φf ′(u) dvg ≤ 0, ∀φ ≥ 0.

Testing φ = (u− v)+ and using that u is semi-stable we get that∫
Ω

(
|∇g(u− v)+|2 + (u− v)+A · ∇g(u− v)

)
dvg −

∫
Ω

λ(u− v)(u− v)+f ′(u) dvg = 0,

for all φ ≥ 0. Since Iϑ,(u−v)+ ≥ 0 for any ϑ ∈ [0, 1] and I1,(u−v)+ = ∂ϑI1,(u−v)+ = 0, we have

∂2
ϑϑI1,(u−v)+ = −

∫
Ω

λ(u− v)2(u− v)+f ′′(u) dvg ≥ 0.

Clearly we have (u−v)+ = 0 a.e. in Ω and therefore
∫

Ω
|∇g(u−v)+|2 dvg = 0, from which

we conclude that u ≤ v a.e. in Ω.
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3.3 Determining the Critical Dimension

In view of item 1 of Theorem 3.1, we can define

u∗(x) := lim
λ↗λ∗

uλ(x),

which is a measurable function. If u∗ is a weak solution of (Pλ) with λ = λ∗ it will be

called extremal solution.

An important question which has attracted a lot of attention is whether the extremal

function solution u∗ is a classical solution. Here we are going to prove regularity of

the extremal solution u∗ when the dimension of M is below the critical dimension N∗.

C. Cowan and N. Ghoussoub in (50) proved regularity results for the extremal solution

of (Pλ) when f(u) = 1/(1 − u)2 or f(u) = eu and Ω is a bounded domain of RN . Their

result hold for a general class of advection term, which it is not necessarily incompressible.

For that they used an argument based on a class of Hardy inequality (51). We could not

use a similar argument here because our problem is defined in a domain of a Riemannian

manifold. It is known that the existence of Hardy or Gagliardo-Nirenberg or Caffarelli-

Kohn-Nirenberg inequality implies qualitative properties on the Riemannian manifold.

Precisely, it was shown that if (M, g) is a complete Riemannian manifold with nonnegative

Ricci curvature in which a Hardy or Gagliardo-Nirenberg or Caffarelli-Kohn-Nirenberg

type inequalities holds then M is close to Euclidean space in some suitable sense (52). In

this section we want to prove the following theorem:

Theorem 3.2. If 1 ≤ N < N∗ then u∗ is a classical solution of (Pλ∗).

For the MEMS case, the next lemma is the principal estimate, which was already

behind the proof of the regularity of semi-stable solutions in dimensions lower than 7 (see

Lemma 3.6).

When A = −∇ga+ C the problem (Pλ) can be rewritten as

−divg(e
a∇gu) + eaC · ∇gu =

λea

(1− u)2
.

Thus the semi-stability and weak solution conditions becomes, respectively∫
Ω

(
ea|∇gη|2 + eaηC · ∇gη

)
dvg ≥

∫
Ω

2λea

(1− u)3
η2 dvg, ∀η ∈ C1

0(Ω).

and ∫
Ω

(ea∇gu · ∇gφ+ eaφC · ∇gu) dvg =

∫
Ω

λeaφ

(1− u)2
dvg, ∀φ ∈ W 1,2

0 (Ω).
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Lemma 3.6. If u is a semi-stable solution of (Pλ) with 0 < λ < λ∗, f(u) = 1/(1 − u)2

and 0 < t < 2 +
√

6, holds the following estimate

‖e2a/(2t+3)(1− u)−2‖Lt+3/2 ≤
[

4(2t+ 1)

2 + 4t− t2

]2/t

C1‖Ω‖2/(2t+3).

Proof. Let 0 < t < 2 +
√

6 and u semi-stable solution of (Pλ). Define η := (1− u)−t − 1

and φ := (1− u)−2t−1 − 1. Testing η in the semistability condition we have

0 ≤
∫

Ω

ea{t2(1− u)−2t−2|∇gu|2 − 2λ(1− u)−3
[
(1− u)−t − 1

]2}dvg
=

∫
Ω

ea{t2(1− u)−2t−2|∇gu|2 − 2λ(1− u)−2t−3 + 4λ(1− u)−t−3 − 2λ(1− u)−3}dvg

≤
∫

Ω

{
eat2(1− u)−2t−2|∇gu|2 − 2λea(1− u)−2t−3 + 4λea(1− u)−t−3

}
dvg.

Due to this choice of η we have
∫

Ω
eaηC · ∇gη dvg = 0. It follows that

−
∫

Ω

ea(1−u)−2t−2|∇gu|2dvg ≤ −
2λ

t2

∫
Ω

ea(1−u)−2t−3dvg +
4λ

t2

∫
Ω

ea(1−u)−t−3dvg. (16)

Testing φ in the weak solution condition we obtain∫
Ω

ea|∇gu|2(2t+ 1)(1− u)−2t−2dvg =

∫
Ω

{
λea(1− u)−2t−3 − λea(1− u)−2

}
dvg

≤
∫

Ω

λea(1− u)−2t−3dvg.

(17)

With this choice of φ we can check that
∫

Ω
eaφC · ∇gu dvg = 0. Using (17) and (16) we

have

− 1

2t+ 1

∫
Ω

ea(1− u)−2t−3dvg ≤ −
2

t2

∫
Ω

ea(1− u)−2t−3dvg +
4

t2

∫
Ω

ea(1− u)−t−3dvg

and it follows that(
2

t2
− 1

2t+ 1

)∫
Ω

ea(1− u)−2t−3dvg ≤
4

t2

∫
Ω

ea(1− u)−t−3dvg.

Using Hölder inequality with conjugate exponents (2t+ 3)/(t+ 3) and (2t+ 3)/t, we have(
2

t2
− 1

2t+ 1

)∫
Ω

ea(1− u)−2t−3dvg

≤ 4

t2
‖Ω‖t/(2t+3)

[∫
Ω

ea(2t+3)/(t+3)(1− u)−2t−3dvg

](t+3)/(2t+3)

≤ 4C1

t2
‖Ω‖t/(2t+3)

[∫
Ω

ea(1− u)−2t−3dvg

](t+3)/(2t+3)

,
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where C1 =

[
sup

Ω

eat/(t+3)

](t+3)/(2t+3)

. Thus,

(
2

t2
− 1

2t+ 1

)[∫
Ω

ea(1− u)−2t−3dvg

]t/(2t+3)

≤ 4C1

t2
‖Ω‖t/(2t+3)

and therefore

‖ e2a/(2t+3)(1− u)−2 ‖Lt+3/2≤
[

4(2t+ 1)

2 + 4t− t2

]2/t

C1‖Ω‖2/(2t+3),

this is the desired estimate.

Remark 3.5. In the above estimate we used that 2(2t+ 1) > t2 which is an immediately

consequence of our assumption 0 < t < 2 +
√

6.

Remark 3.6. By the above estimate, ea(1− uλ)−2 is bounded uniformly in λ over Lp(Ω)

for all p < p0 := 7/2 +
√

6. By elliptic estimates, uλ is bounded in W 1,p
0 (Ω) uniformly in

λ. Thus u∗ is a weak solution of (Pλ∗). If we take the limit λ↗ λ∗ in the inequality given

by Lemma 3.6, we obtain the same Lp estimate to extremal solution u∗.

Proposition 3.1. If 1 ≤ N ≤ 7 and f(u) = 1/(1 − u)2 then u∗ is a classical solution of

(Pλ∗).

Proof. Note that ea(1−u∗)−2 ∈ L3N/4(Ω). By elliptic regularity we have u∗ ∈ W 2,3N/4
0 (Ω)

and by Sobolev immersion u∗ ∈ C0,2/3(Ω). If we suppose that ‖u∗‖∞ = 1, there exist a

element x0 ∈ Ω such that u∗(x0) = 1. Since |1− u∗(x)| ≤ C dist(x, x0)2/3 we have,

ea/2

1− u∗(x)
≥ ea/2

C dist(x, x0)2/3
,

and hence

∞ >

∫
Ω

e3Na/4

((1− u∗)2)3N/4
dvg ≥ C inf

x∈Ω
{ea/2}

∫
Ω

1

dist(x, x0)N
dvg =∞.

This is a contradiction. Thus ea(1 − u∗)−2 ∈ L∞(Ω) and u∗ is a classical solution of

(Pλ∗).

With a slight variation of the above arguments, the same approach works on the

Gelfand and Power-type cases.

Lemma 3.7. If u is a semi-stable solution of (Pλ) with 0 < λ < λ∗, f(u) = eu and

0 < t < 2, holds the following estimate

‖ e1/(2t+1)a+u ‖L2t+1≤
[

2t

2t− t2

]1/t

C1‖Ω‖1/(2t+1).
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Proof. Let 0 < t < 2 and u semi-stable solution of (Pλ). Define η := etu − 1 and

φ := e2tu − 1. Testing η in the semistability condition we have

0 ≤
∫

Ω

t2ea+2tu|∇gu|2 − λea+(2t+1)u + 2λea+(t+1)udvg.

With this choice of η we have
∫

Ω
eaηC∇gη dvg = 0. It follows that

−
∫

Ω

ea+2tu|∇gu|2dvg ≤ −
λ

t2

∫
Ω

ea+(2t+1)udvg +
2λ

t2

∫
Ω

ea+(t+1)udvg. (18)

Testing φ in the weak solution condition we obtain

2t

∫
Ω

ea+2tu|∇gu|2dvg ≤ λ

∫
Ω

ea+(2t+1)udvg. (19)

With this choice of φ we can check that
∫

Ω
eaφC · ∇gu dvg = 0. Using (18) and (19) we

have (
1

t2
− 1

2t

)∫
Ω

ea+(2t+1)udvg ≤
2

t2

∫
Ω

ea+(t+1)udvg.

We remark that we can apply Hölder inequality with conjugate exponents (2t+ 1)/(t+ 1)

and (2t+ 1)/t, we have(
1

t2
− 1

2t

)∫
Ω

ea+(2t+1)udvg ≤
2C1

t2

[∫
Ω

ea+(2t+1)u

](t+1)/(2t+1)

‖Ω‖t/(2t+1)dvg,

where C1 =

[
sup

Ω

et/(t+1)a

](t+1)/(2t+1)

. Therefore

‖ e1/(2t+1)a+u ‖L2t+1≤
[

2t

2t− t2

]1/t

C1‖Ω‖1/(2t+1).

Remark 3.7. In the above estimate we used that 1/t2 − 1/(2t) > 0 which is an

immediately consequence of our assumption 0 < t < 2.

Remark 3.8. The above estimate says that ea+u is bounded uniformly in λ over Lp(Ω)

for all p < p0 := 4 + 1 = 5 . By elliptic estimates, uλ is uniformly bounded in W 1,p
0 (Ω).

Thus u∗ is a weak solution of (Pλ∗). Taking the limit in λ, we obtain the same Lp estimate

above to extremal solution u∗.

Proposition 3.2. If 1 ≤ N ≤ 9 and f(u) = eu then u∗ is a classical solution of (Pλ∗).

Proof. Note that ea+u ∈ Lp(Ω) with p < 5. By elliptic regularity we have u∗ ∈ W 2,p
0 (Ω)

and by Sobolev immersion u∗ ∈ C0,α(Ω) when N < 10. Thus u∗ is a classical solution of

(Pλ∗).
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Lemma 3.8. If u is a semi-stable solution of (Pλ) with 0 < λ < λ∗, f(u) = (1 + u)m,

b > 0 and m
b
−
√
m(m−1)

b
< t < m

b
+

√
m(m−1)

b
, holds the following estimate

‖ eam/[2bt+m−1](1 + u)m ‖L[2bt+m−1]/m≤
(

1− b2t2

m[2bt− 1]

)−1/[tb]

C1‖Ω‖1/[(2t+1)b].

Proof. Define η := (1 + u)bt − 1 and φ := (1 + u)2bt−1 − 1 where b > 0. Testing η in the

semistability condition we have∫
Ω

b2t2ea(1 + u)2bt−2|∇gu|2dvg ≥ λm

∫
Ω

ea(1 + u)(m−1)
[
(1 + u)2bt − 2(1 + u)bt

]
dvg.

With this choice of η we have
∫

Ω
eaηC∇gη dvg = 0. Testing φ in the weak solution condition

we obtain

(2bt− 1)

∫
Ω

ea(1 + u)2bt−2|∇gu|2dvg ≤ λ

∫
Ω

ea(1 + u)2bt+m−1dvg.

With this choice of φ we can check that
∫

Ω
eaφC∇gu dvg = 0. It follows that(

1− b2t2

m[2bt− 1]

)∫
Ω

ea(1 + u)2bt+m−1dvg ≤ 2

∫
Ω

ea(1 + u)bt+m−1dvg.

Using Hölder inequality with conjugate exponents 2bt+m−1
bt+m−1

and 2bt+m−1
bt

, we have(
1− b2t2

m[2bt− 1]

)∫
Ω

ea(1 + u)2bt+m−1dvg ≤ 2C1

[∫
Ω

ea(1 + u)2bt+m−1

] bt+m−1
2bt+m−1

dvg,

where C1 =

[
sup

Ω

eat/(t+1)

]t/(2t+1)

· ‖Ω‖
bt

2bt+m−1 . Therefore

‖ eam/[2bt+m−1](1 + u)m ‖L[2bt+m−1]/m≤
(

1− b2t2

m[2bt− 1]

)−1/[tb]

C1‖Ω‖1/[(2t+1)b].

Remark 3.9. The above estimate said that ea(1 + u)m is bounded uniformly in λ over

Lp(Ω) for all p < 3− 1
m

+ 2
m

√
m(m− 1). By elliptic estimates, uλ is uniformly bounded

in W 1,p
0 (Ω). Thus u∗ is a weak solution of (Pλ∗). Taking the limit in λ, we obtain the

same Lp estimate above to extremal solution u∗.

Proposition 3.3. If 1 ≤ N ≤ 10 and f(u) = (1 + u)m with m > 1 then u∗ is a classical

solution of (Pλ∗).

Proof. Since ea(1 + u∗)m ∈ Lp(Ω) with p < 3 − 1
m

+ 2
m

√
m(m− 1), we can use elliptic

regularity to obtain u∗ ∈ W 2,p
0 (Ω) and by Sobolev immersion u∗ is a classical solution

when N < 6 + 4
m−1

(√
m(m− 1) + 1

)
. Observe that

√
m(m−1)+1

m−1
> 1 An immediate

consequence is that when m > 1 and N ≤ 10, u∗ is a classical solution of (Pλ∗).
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Proof of Theorem 3.2. The proof follows immediately from Propositions 3.1, 3.2, 3.3

Here we stress the fact that the critical dimension depends only on the nonlinearity f

and does not depend of the manifold M, which is given precisely in next table

Nonlinearity Critical dimension N∗

f(u) = 1/(1− u)2 8

f(u) = eu 10

f(u) = (1 + u)m 11

Table 1: Critical dimensions

3.4 Symmetry and Monotonicity

We prove radial symmetry and monotonicity for semi-stable solutions of (Pλ) when

Ω = BR is a geodesic ball of a Riemannian model M (cf. Theorem 3.3). The class of

Riemannian model (M, g) includes the classical space forms. Precisely, a manifold M of

dimension N ≥ 2 admitting a pole O and whose metric g is given, in polar coordinates

around O, by

ds2 = dr2 + ψ(r)2dϑ2 for r ∈ (0, R) and ϑ ∈ SN−1, (20)

where r is by construction the Riemannian distance between the point P = (r, ϑ) to the

pole O, ψ is a smooth positive function in (0, R) and dϑ2 is the canonical metric on the

unit sphere SN−1. Note that our results apply to the important case of space forms, i.e.,

the unique complete and simply connected Riemannian manifold of constant sectional

curvature Kψ corresponding to the choice of ψ namely,

Space form ψ(r) Kψ

Hyperbolic space HN sinh r −1

Euclidean space RN r 0

Elliptic space SN sin r 1

In the proof of Theorem 3.3 the radial symmetry relies on the fact that any angular

derivative of u would be either a sign changing first eigenfunction of linearized operator
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at u or identically zero, thanks to the semistability condition. The monotonicity is due

the positivity of the nonlinearity.

Theorem 3.3. If u ∈ C2(BR) is a classical stable solution of (Pλ) with a radial vector

field A, then u is radially symmetric and decreasing.

Proof of Theorem 3.3. Let u ∈ C2(BR) a stable solution of (Pλ). The stability condition

(3.1) is equivalent to the positivity of the first eigenvalue of Lu,λ in BR, i.e.,

µ1,λ = inf
ξ∈W 1,2

0 (BR)\{0}

∫
BR
{|∇gξ|2 + ξA · ∇gξ − λf ′(u)ξ2}dvg∫

BR
ξ2dvg

> 0.

Now, consider uϑ = ∂u
∂ϑ

any angular derivative of u. By the fact u ∈ C2(BR), we have∫
BR

|∇guϑ|2dvg <∞.

Moreover, the regularity up the boundary of u and the fact that u = 0 on ∂BR give that

uϑ = 0 on ∂BR. Hence, uϑ ∈ W 1,2
0 (BR). Differentiate the problem (Pλ) we obtain that

uϑ weakly satisfies −∆guϑ + A · ∇guϑ =λf ′(u)uϑ in BR,

uϑ = 0 on ∂BR.

Multiplying the above equation by uϑ and integrating by parts we have∫
BR

{|∇guϑ|2 + uϑA · ∇guϑ − λf ′(u)u2
ϑ}dvg = 0.

It follows that either |uϑ| is the first eigenvalue of linearized operator at u or uϑ = 0.

But the first alternative can not occur because µ1,λ > 0. it follows that uϑ = 0 for all

ϑ ∈ SN−1. Thus u is radial. On the other hand, in spherical coordinates given by (20),

the Laplacian operator of u = u(r, ϑ1, ..., ϑN−1) is given by

∆gu =
1

ψN−1
(ψN−1ur)r +

1

ψ2
∆SN−1u,

where ∆SN−1 is the Laplacian on the unit sphere SN−1. To prove the monotonicity, note

that since u = u(r) and A = A(r), the equation (Pλ) becomes∫ s

0

∫ 2π

0

ea(ψN−1ur)r dr dϑ =

∫ s

0

∫ 2π

0

−eaψN−1f(u) dr dϑ.

Therefore, ur < 0.
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3.5 Regularity in the Radial Case

In view of the previous section, we can write the problem (Pλ) for radial solutions

u ∈ C2(BR) and for a radial vector field A as


−(eaψN−1ur)r + eaψN−1C(r)ur =λeaψN−1f(u) em (0, R),

u > 0 em (0, R),

ur(0) = u(R) = 0.

(Rλ)

In the same way, the semistability and weak solution condition becomes, respectively∫ R

0

eaψN−1ξ2
r + eaψN−1C(r)ξξr dr ≥

∫ R

0

λeaψN−1f ′(u)ξ2 dr

and ∫ R

0

eaψN−1urφr + eaψN−1C(r)urφ dr =

∫ R

0

λeaψN−1f(u)φ dr.

In radial case, we obtain a more precise information about the L∞ norm of the extremal

solution. Again, we will start with MEMS case.

Lemma 3.9. If u is a classical semi-stable solution of (Rλ) with f(u) = 1/(1− u)2, then

for all 0 < t < 2 +
√

6 we have

‖e2a/(2t+3)ψ2(N−1)/(2t+3)(1− u)−2‖Lt+3/2 ≤
[

4(2t+ 1)

2 + 4t− t2

]2/t

C2R
2/(2t+3).

Proof. We follow the proof of Lemma 3.6. Let 0 < t < 2 +
√

6 and u semi-stable classical

solution of (Rλ). Define η := (1− u)−t − 1 and φ := (1− u)−2t−1 − 1. Applying η in the

semistablity condition we have

−
∫ R

0

eaψN−1(1−u)−2t−2u2
rdr ≤

2

t2

∫ R

0

eaψN−1(1−u)−2t−3dr+
4

t2

∫ R

0

eaψN−1(1−u)−t−3dr.

(21)

Applying φ in the weak solution condition it follows that∫ R

0

eaψN−1u2
r(2t+ 1)(1− u)−2t−2dr ≤

∫ R

0

eaψN−1(1− u)−2t−3dr. (22)

Using (21) and (22) we obtain(
2

t2
− 1

2t+ 1

)∫ R

0

eaψN−1(1− u)−2t−3dr ≤ 4

t2

∫ R

0

eaψN−1(1− u)−t−3dr.

Using Hölder inequality with conjugate exponents (2t+ 3)/(t+ 3) and (2t+ 3)/t,(
2

t2
− 1

2t+ 1

)∫ R

0

eaψN−1(1− u)−2t−3dr

≤ 4

t2
Rt/(2t+3)C2(t, ψ)

[∫ R

0

eaψN−1(1− u)−2t−3 dr

](t+3)/(2t+3)

,



3 Singular elliptic problems on manifolds 41

where C2 :=

[
sup
[0,R]

eat/(t+3)ψ(N−1)t/(t+3)

](t+3)/(2t+3)

. Thus,

(
2

t2
− 1

2t+ 1

)[∫ R

0

eaψN−1(1− u)−2t−3

]t/(2t+3)

≤ 4

t2
C2R

t/(2t+3)

and therefore

‖ e2a/(2t+3)ψ2(N−1)/(2t+3)(1− u)−2 ‖Lt+3/2≤
[

4(2t+ 1)

2 + 4t− t2

]2/t

C2R
2/(2t+3).

Lemma 3.10. Let u be a radially decreasing and semi-stable classical solution of (Rλ)

with f(u) = 1/(1− u)2. If 1 < p <∞, we have the estimate

u(0) ≥ u(r) ≥ u(0)− C3‖ea/pψ(N−1)/p(1− u)−2‖pr.

Proof. By the Mean value theorem, there exists c ∈ (0, r) such that

− u(r) + u(0) = −u′(c)r (23)

Integrating the equation (Rλ) from 0 to c we obtain

−ea(c)ψN−1(c)u′(c) =

∫ c

0

eaψN−1(1− u)−2

≤
[∫ R

0

eaψ(N−1)(1− u)−2p

]1/p [∫ R

0

ea(1−1/p)ψ(N−1)(1−1/p)dr

]p/(p−1)

.

Using (23) we conclude the proof because

−u(r) + u(0) ≤ C3 ‖ ea/pψ(N−1)/p(1− u)−2 ‖Lp r

where C3 = e−a(c)ψ1−N(c)
[∫ R

0
ea(1−1/p)ψ(N−1)(1−1/p)dr

]p/(p−1)

.

Lemma 3.11. Let u a radially decreasing and semi-stable classical solution of (Rλ) with

1 ≤ N ≤ 7. Then, for all 0 < t < 2 +
√

6, we have∫ r

0

eaψN−1

D2(r)2t+3
dr ≤

(
4(2t+ 1)

4t+ 2− t2

)(2t+3)/t

,

where D2(r) := 1− ‖u‖∞ + C4 (4(2t+ 1)/(2 + 4t− t2))
2/t
R1/pr.

Proof. Take p = t+ 3/2. By Lemma 3.10,

1− u(r) ≤ 1− u(0) + C3 ‖ ea/pψ(N−1)/p(1− u)−2 ‖Lp r.
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Multiplying some positive terms and using Lemma 3.9, it follows that

e−aψ−(N−1)(1− u(r))2t+3 ≤ e−aψ−(N−1)(1− u(0) + C1C3

(
4(2t+ 1)

2 + 4t− t2

)2/t

R1/pr)2t+3.

We have ∫ R

0

eaψN−1dr

D2(r)2t+3
≤
∫ R

0

eaψN−1dr

(1− u(r))2t+3 .

where C4 := C1C3. Thus,∫ R

0

eaψN−1dr

D2(r)2t+3
≤
(

4(2t+ 1)

2 + 4t− t2

)(2t+3)/t

R1/p.

We can improve the result of Theorem 3.2 giving an estimate for the radial case.

Theorem 3.4. Let u be the extremal solution of (Pλ∗) on a geodesic ball Br of a

Riemannian model with 2 ≤ N < N∗. Then u∗ is a classical solution and

‖u∗‖∞ ≤ c,

where c > 0 is a constant which does not depends of λ. We emphasize that, for the case

f(u) = 1/(1− u)2 we have c < 1.

We split the proof of Theorem 3.4 in three cases, namely, MEMS, Gelfand and Power

cases.

Proof of Theorem 3.4 (MEMS case). Using the Lemma 3.11, we have∫ R

0

eaψN−1

D2(r)2t+3
dr ≤

(
4(2t+ 1)

4t+ 2− t2

)(2t+3)/t

R1/p. (24)

Calculating the integral in the left-hand side, we have∫ R

0

eaψN−1

D2(r)2t+3
dr =

∫ R
0

eaψN−1 dr

D2(R)2t+3
+ (2t+ 4)

∫ R

0

D′2
∫ R

0
eaψN−1 dr

D2t+4
2

dr

≥
∫ R

0
eaψN−1 dr

D2(R)2t+3
.

(25)

Applying (25) in (24), it follows that∫ R
0

eaψN−1 dr

D2(R)2t+3
≤
(

4(2t+ 1)

4t+ 2− t2

)(2t+3)/t

R1/p. (26)

Calculating the equation (26) and taking λ↗ λ∗ we have

‖u∗‖∞ ≤ 1− C,



3 Singular elliptic problems on manifolds 43

where

C :=

[∫ R

0

eaψN−1 dr

]1/(2t+3) (
4(2t+ 1)/(4t+ 2− t2)

)−1/t
R1/p2

− C4

(
4(2t+ 1)/(2 + 4t− t2)

)2/t
R1+1/p.

With a slight variation of the above arguments, the same approach works for the

Gelfand problem with advection.

Lemma 3.12. Let u a radially decreasing and semi-stable classical solution of (Rλ) with

f(u) = eu. If 1 < p <∞, we have the estimate

u(0) ≥ u(r) ≥ u(0)− C3‖ea/p+uψ(N−1)/p‖pr.

Proof. There exists c ∈ (0, r) such that

− u(r) + u(0) = −u′(c)r. (27)

Integrating the equation (Rλ) from 0 to c we obtain

−ea(c)ψN−1(c)u′(c) =

∫ c

0

ea+uψN−1

≤
[∫ R

0

ea+upψN−1

]1/p [∫ R

0

ea(1−1/p)ψ(N−1)(1−1/p)dr

]p/(p−1)

.

Using (27) we obtain

−u(r) + u(0) ≤ C3 ‖ ea/p+uψ(N−1)/p ‖Lp r

where C3 = e−a(c)ψ1−N(c)
[∫ R

0
ea(1−1/p)ψ(N−1)(1−1/p)dr

]p/(p−1)

.

Proof of Theorem 3.4 (Gelfand case). Take p = 2t+1. By Lemma 3.12 and using Lemma

3.7 it follows that

−u(r) ≤ −u(0) + C1C3

(
(2t)/(2t− t2)

)1/t
R1/pr.

Multiplying some positive terms we have

eaψ(N−1)e−u(2t+1) ≤ eaψ(N−1)e(−u(0)+C1C3(4(2t)/(2t−t2))
1/t
R1/pr)(2t+1).

Thus, ∫ R

0

eaψ(N−1)e(u(0)−C4(4(2t)/(2t−t2))
1/t
R1/pr)(2t+1) ≤ C1

(
2t

2t− t2

)(2t+1)/t

R1/p,
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where C4 := C1C3. Calculating the left-hand side above, we have

e(u(0)−C4(4(2t)/(2t−t2))
1/t
R1/pr)(2t+1)

∫ R

0

eaψ(N−1) dr ≤ C4

(
2t

2t− t2

)(2t+1)/t

R1/p.

Taking the limit λ↗ λ∗ we have

‖ u∗ ‖∞≤
ln
(
C1R

1/p
(

2t
2t−t2

)(2t+1)/t
)

(2t+ 1)
+ C4

(
4(2t)/(2t− t2)

)1/t
R1+1/p.

Lemma 3.13. Let u a radially decreasing and semi-stable classical solution of (Rλ) with

f(u) = (1 + u)m. If 1 ≤ p <∞, we have the estimate

u(0) ≥ u(r) ≥ u(0)− C3 ‖ ea/pψ(N−1)/p(1 + u)m ‖Lp r.

Proof. There exists c ∈ (0, r) such that

− u(r) + u(0) = −u′(c)r. (28)

Integrating the equation (Rλ) from 0 to c we obtain

−ea(c)ψN−1(c)u′(c) =

∫ c

0

eaψN−1(1 + u)m

≤
[∫ R

0

eaψ(N−1)(1 + u)mp dr

]1/p [∫ R

0

ea(1−1/p)p′ψ(N−1)(1−1/p)p′dr

]1/p′

.

Using (28) we obtain

−u(r) + u(0) ≤ C3 ‖ ea/pψ(N−1)/p(1 + u)m ‖Lp r.

where C3 = e−a(c)ψ1−N(c)
[∫ r

0
ea(1−1/p)ψ(N−1)(1−1/p)dr

]p/(p−1)
.

Proof of Theorem 3.4 (Power case). Take p = (2bt + m − 1)/m. By Lemma 3.13 and

using Lemma 3.8 it follows that∫ R

0

ea/pψ(N−1)/p(1 + u(0))mdr ≤∫ R

0

ea/pψ(N−1)/p

(
1 + u(r) + C

(
1− b2t2

m[2bt− 1]

)−1/[tb]

R1/(2bt+b)r

)m

dr.

Thus, we have

‖u‖m ≤ 2mC

(
1− b2t2

m[2bt− 1]

)− 1
tb

R
1

2bt+b +
2mCm

m+ 1

(
1− b2t2

m[2bt− 1]

)−m
tb

R
m

2bt+b rm+1.

Using the above inequality and taking the limit λ↗ λ∗, it follows that

‖u∗‖m ≤ 2mC

(
1− b2t2

m[2bt− 1]

)− 1
tb

R
1

2bt+b +
2mCm

m+ 1

(
1− b2t2

m[2bt− 1]

)−m
tb

R
m

2bt+b rm+1.
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3.6 Branch of minimal solutions

In this section we prove multiplicity of solutions near the extremal parameter and

uniqueness on it for the problem
−∆gu+ A(x) · ∇gu =λf(u) in Ω,

u > 0 in Ω,

u = 0 on ∂Ω.

(Pλ)

Let u be a semi-stable solution of (Pλ), and let us consider the following eigenvalue

problem involving the linearized operator −∆g + A · ∇g − λf ′(u) at u,Lu,λφ =µφ in Ω

u = 0 on ∂Ω.

It is well known that there exists a smallest positive eigenvalue µ, which we denote by

µ1,λ, and an associated eigenfunction φ1,λ > 0 in Ω, and µ1,λ is a simple eigenvalue and

has the following variational characterization

µ1,λ = inf

{
〈Lu,λφ, φ〉L2(Ω) : φ ∈ W 1,2

0 (Ω),

∫
Ω

φ2 dvg = 1

}
.

We start with the following lemma:

Lemma 3.14. Let u and v be a weak solution and a weak supersolution, respectively, of

(Pλ).

(i) If µ1(λ, u) > 0, then u ≤ v a.e. in Ω.

(ii) If u is a regular solution of (Pλ) and µ1(λ, u) = 0, then u = v a.e. in Ω.

Proof. Let ϑ ∈ [0, 1] and 0 ≤ φ ∈ W 1,2
0 (Ω). By convexity of s→ f(s) we have

Iϑ,φ :=

∫
Ω

(∇g(ϑu+ (1− ϑ)v) · ∇gφ+ φA · ∇g(ϑu+ (1− ϑ)v)) dvg

−
∫

Ω

λf(ϑu+ (1− ϑ)v)φ dvg

≥ λ

∫
Ω

(ϑf(u) + (1− ϑ)f(v)− f(ϑu− (1− ϑ)v))φ dvg ≥ 0.

Since I1,φ = 0, the derivative of Iϑ,φ at ϑ = 1 is nonpositive. If µ1(λ, u) > 0 using the

maximum principle (Theorem 3.3 in (34)) clearly u ≤ v. We shall prove that this holds

true if µ1(λ, u) ≥ 0. Indeed, we have∫
Ω

(∇g(u− v) · ∇gφ+ φA · ∇g(u− v)) dvg −
∫

Ω

λf ′(u)(u− v)φ dvg = 0. (29)
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Since Iϑ,φ ≥ 0 for any ϑ ∈ [0, 1] and I1,φ = ∂ϑI1,φ = 0, we have

∂2
ϑϑI1,φ = −

∫
Ω

λf ′′(u)(u− v)2φ dvg ≥ 0.

Take φ = (u − v)+. We have (u − v)+ = 0 in Ω and we get
∫

Ω
|∇g(u − v)+|2 dvg = 0. It

follows that u ≤ v a.e. in Ω as claimed. Now, if µ1,λ(u) = 0 let ψ1,λ the first eigenfunction

of Lu,λ. Observe that ψ1,λ is in the kernel of the linearized operator Lu,λ, and (29) is valid

when we replace u− v with u− v − tψ1,λ. We have∫
Ω

(
|∇g(u− v − tψ1,λ)

+|2 + (u− v − tψ1,λ)
+A · ∇g(u− v − tψ1,λ)

+
)

dvg

−
∫

Ω

λf(u)((u− v − tψ1,λ)
+)2 dvg = 0.

We claim that if u < v − tψ1,λ on a set Ω′ of positive measure, then there exists ε > 0

such that u < v − tψ1,λ a.e. in Ω for any t ≤ t < t + ε. Since we have a variational

characterization of ψ1,λ we get that (u − v − tψ1,λ)
+ = βψ1,λ a.e. in Ω for some β ∈ R.

We can find, by assumption, a set Ω′ ⊂ Ω of positive measure such that u < v− tψ1,λ− δ

for δ > 0 and consequently, for some ε > 0 sufficient small that u < v − tψ1,λ in Ω′

for any t ≤ t ≤ t + ε. Hence βψ1,λ = 0 a.e. in Ω′. Since ψ1,λ > 0 in Ω we have

β = 0 and u < v + tψ1,λ a.e. in Ω for any t ≤ t ≤ t + ε and this finishes the proof of

claim. Now, by contradiction, assume that u is not equal to v a.e. in Ω. Since u ≤ v,

we find a set Ω′ of positive measure so that u < v in Ω′. Applying the above claim

with t = 0 we get some ε > 0, u < v − tψ1,λ a.e. in Ω for any 0 ≤ t < ε. Set now

t0 = sup{t > 0 : u < v − tψ1,λ a.e. in Ω}. Clearly, u ≤ v − t0ψ1,λ a.e. in Ω. The

claim and maximal property of t0 imply that necessarily u = v − t0ψ1,λ a.e. in Ω since

(29) holds for any 0 ≤ φ ∈ W 1,2
0 (Ω). Taking φ = v − u and arguing as before we have∫

Ω
|∇g(u − v)|2 dvg = 0 contradicting the assumption that u < v on a set of positive

measure.

Theorem 3.5. For dimension 1 ≤ N < N∗, u∗ is the unique classical solution of (Pλ∗)

among all weak solutions.

Proof of Theorem 3.5. Using Theorem 3.2, we have that u∗ exists as a classical solution.

On the other hand, we have that µ1,λ∗ ≥ 0. If we suppose that µ1,λ∗ > 0, then the Implicit

Function Theorem could be applied to the operator Lu∗,λ∗ to allow for the continuation

of the minimal branch λ↗ uλ beyond λ∗, which is a contradiction. Therefore µ1,λ∗ = 0.

The uniqueness of u∗ in the class of weak solutions follows from the Lemma 3.14.
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Proposition 3.4. If 0 < λ < λ∗, the minimal solutions are stable.

Proof. Define

λ∗∗ = sup{λ > 0 : uλ is a stable solution for (Pλ)}.

Obviously λ∗∗ satisfies λ∗∗ ≤ λ∗. If λ∗∗ < λ∗, then uλ∗∗ is a minimal solution of (Pλ∗∗).

For λ ≤ λ∗∗, we have that limλ↗λ∗∗ uλ ≤ uλ∗∗ . Since u∗∗ is solution of (Pλ∗∗) and by

minimality follows that limλ↗λ∗∗ uλ = uλ∗∗ and µ1,λ∗∗ ≥ 0. If we suppose that µ1,λ∗∗ = 0,

we get that uλ∗∗ = uλ for any λ∗∗ < λ < λ∗. But this is a contradiction, which proves that

λ∗∗ = λ∗.

Proposition 3.5. For each x ∈ Ω, the function λ → uλ(x) is differentiable and strictly

increasing on (0, λ∗).

Proof. Since uλ is stable, the linearized operator Luλ,λ at uλ is invertible for any

0 < λ < λ∗. By the Implicit Function Theorem λ → uλ(x) is differentiable in λ. By

monotonicity,
duλ
dλ

(x) ≥ 0 for all x ∈ Ω. Finally, by differentiating (Pλ) with respect to λ

we get that
duλ
dλ

(x) > 0, for all x ∈ Ω.

It is standard to show the existence of a second branch of solutions near λ∗ (18). We

make use of Mountain Pass Theorem to provide a variational characterization for this

solutions. To apply the Mountain Pass Theorem we will need to truncate the singular

nonlinearity into a subcritical case, that is, we consider a regularized C1 nonlinearity

gε(u), 0 < ε < 1 of the following form for MEMS case

gε(u) =


1

(1− u)2
if u < 1− ε

1

ε2
− 2(1− ε)

pε3
+

2up

pε3(1− ε)p−1
if u ≥ 1− ε

(30)

and for Gelfand or Power-type

gε(u) =


f(u) if u < t0 − ε

f(s0 − ε)−
f ′(s0 − ε)(s0 − ε)

p
+
f ′(s0 − ε)up

p(s0 − ε)p−1
if u ≥ t0 − ε

(31)

where p > 1 if N = 1, 2 and 1 < p < (N + 2)/(N − 2) if 3 ≤ N ≤ N∗. For λ ∈ (0, λ∗) and

A = ∇ga, we associate the elliptic problem−div
(
e−a∇gu

)
=λe−agε(u) in Ω,

u = 0 on ∂Ω,
(Sλ)
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We can define a energy functional on W 1,2
0 (Ω) associated to (Sλ) given by

Jε,λ(u) =
1

2

∫
Ω

e−a|∇gu|2 dvg − λ
∫

Ω

e−aGε(u) dvg,

where Gε(u) =
∫ u
−∞ gε(s) ds. We can fix 0 < ε < 1−‖u∗‖∞

2
for MEMS case or 0 < ε <

t0−‖u∗‖∞
2

for Gelfand and Power-type, and observe that for λ close enough to λ∗, the

minimal solution uλ of (Pλ) is also a solution of (Sλ) that satisfies µ1,λ(−div(e−a∇g) −

λg′ε(uλ)) > 0.

Lemma 3.15. If 1 ≤ N < N∗ and if λ is close enough to λ∗, then the minimal solution

uλ of (Sλ) is a strict local minimum of Jε,λ on W 1,2
0 (Ω).

Proof. We first show that the minimal solution uλ is a local minimum in C1(Ω). Indeed,

since µ1,λ((−div(e−a∇g)− λg′ε(uλ)) > 0 and uλ < 1− ε, we have the inequality∫
Ω

e−a|∇gφ|2 dvg − 2λ

∫
Ω

e−aφ2

(1− uλ)3
dvg ≥ µ1,λ

∫
Ω

φ2 dvg,

for any φ ∈ W 1,2
0 (Ω). Now take φ ∈ W 1,2

0 (Ω) ∩ C1(Ω) satisfying uλ + φ ≤ 1− ε and such

that ‖φ‖C1 ≤ δλ. Thus we have

Jε,λ(uλ + φ)− Jε,λ(uλ) =

1

2

∫
Ω

e−a|∇gφ|2 dvg +

∫
Ω

e−a∇guλ · ∇gφ dvg − λ
∫

Ω

e−a
(

1

1− uλ − φ
− 1

1− uλ

)
dvg

≥ µ1,λ

2

∫
Ω

φ2 dvg − λ‖e−a‖∞
∫

Ω

(
1

1− uλ − φ
− 1

1− uλ
− φ

(1− uλ)2
− φ2

(1− uλ)3

)
dvg.

For some C > 0 we have∣∣∣∣ 1

1− uλ − φ
− 1

1− uλ
− φ

(1− uλ)2
− φ2

(1− uλ)3

∣∣∣∣ ≤ C|φ|3

and this implies

Jε,λ(uλ + φ)− Jε,λ(uλ) ≥
(µ1,λ

2
− Cλ‖e−a‖∞δλ

)∫
Ω

φ2 dvg > 0

provided δλ is small enough. This proves that uλ is a local minimum of Jε,λ in the C1

topology. We can apply Theorem 2.1 of (53) and get that uλ is a local minimum of

Jε,λ in W 1,2
0 (Ω). For Gelfand and Power cases we take φ ∈ W 1,2

0 (Ω) ∩ C1(Ω) such that

uλ + φ ≤ t0 − ε and ‖φ‖C1 ≤ δλ. With similar arguments we conclude that uλ is a local

minimum of Jε,λ in W 1,2
0 (Ω).
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Now we proof the existence of a second solution for (Sλ). We need a version of

mountain pass theorem (54).

Theorem 3.6 (Critical point of Mountain pass type). Let J be a C1 functional defined

on a Banach space E that satisfies the Palais-Smale condition, that is, any sequence in E

such that (J(un))n is bounded and J ′(un)→ 0 in E∗ is relatively compact in E. Assume

the following conditions:

(i) There exists a neighborhood B of some u in E and a constant σ > 0 such that

J(v) ≥ J(u) + σ for all v ∈ ∂B.

(ii) There exists w 6∈ B such that J(w) ≤ J(u).

Defining

Γ = {y ∈ C([0, 1], E) : γ(0) = u, γ(1) = w}

then there exists u ∈ E such that J ′(u) = 0 and J(u) = c, where

c = inf
γ∈Γ

max
0≤t≤1

{J(γ(t)) : t ∈ (0, 1)}.

Lemma 3.16. Assume that {wn} ⊂ W 1,2
0 (Ω) satisfies

Jε,λn(wn) ≤ C, J ′ε,λn → 0 in W−1,2
0 (Ω),

for λn → λ > 0. The sequence (wn) then admits a convergent subsequence in W 1,2
0 (Ω).

Proof. By (3.16) we have as n→ +∞∫
Ω

e−a|∇gwn|2 dvg − λn
∫

Ω

e−agε(wn)wn dvg = o(‖wn‖W 1,2
0

).

We have the inequality

ϑGε(u) ≤ ugε(u) for u ≥Mε

for some Mε > 0 large and ϑ > 2. We obtain

C ≥ 1

2

∫
Ω

e−a|∇gwn|2 dvg − λn
∫

Ω

e−aGε(wn) dvg

=

(
1

2
− 1

ϑ

)∫
Ω

e−a|∇gwn|2 dvg + λn

∫
Ω

e−a
(

1

ϑ
wngε(wn)−Gε(wn)

)
dvg

+ o
(
‖wn‖W 1,2

0 (Ω)

)
≥
(

1

2
− 1

ϑ

)∫
Ω

e−a|∇gwn|2 dvg + o
(
‖wn‖W 1,2

0 (Ω)

)
− Cε.
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It follows that supn∈N ‖wn‖W 1,2
0 (Ω) < +∞. We have the compactness of embedding

W 1,2
0 (Ω) ↪→ Lp+1(Ω) and thus, up to a subsequence, wn ⇀ w weakly in W 1,2

0 (Ω) and

strongly in Lp+1(Ω) for some w ∈ W 1,2
0 (Ω). It follows that∫

Ω

e−a|∇gw|2 dvg = λ

∫
Ω

gε(w)w dvg

and we deduce that∫
Ω

e−a|∇g(wn − w)|2 dvg =

∫
Ω

e−a|∇gwn|2 dvg −
∫

Ω

e−a|∇gw|2 dvg + o(1)

= λn

∫
Ω

gε(wn)wn dvg − λ
∫

Ω

gε(w)w dvg + o(1)→ 0.

as n→ +∞, and the lemma is proved.

Theorem 3.7. Let 1 ≤ N < N∗ and A = ∇ga. There exists δ > 0 such that for any

λ ∈ (λ∗ − δ, λ∗) we have a second branch of solutions Uλ given by mountain pass for Jε,λ

on W 1,2
0 (Ω).

Proof of Theorem 3.7. We first show that Jε,λ has a mountain pass geometry in W 1,2
0 (Ω).

Since uλ is a local minimum for Jε,λ for λ↗ λ∗, condition (i) of Theorem 3.6 is satisfied.

Consider r > 0 such that B2r ⊂ Ω and a cutoff function χ so that χ = 1 on Br and χ = 0

outside B2r. Let wε = (1− ε)χ ∈ W 1,2
0 (Ω). In MEMS case, we have

Jε,λ(wε) ≤
(1− ε)2

2

∫
Ω

e−a|∇χ|2 dvg −
λ

ε2

∫
Br

e−a dvg → −∞

as ε → 0 and uniformly for λ bounded away from 0. With a similar argument we can

prove the same result for Gelfand and Power cases. Thus we have

Jε,λ(uλ)→ Jε,λ∗(uλ∗) as λ→ λ∗.

We get for ε > 0 sufficiently small that

Jε,λ(wε) < Jε,λ(uλ)

holds for λ close to λ∗. It follows by Lemma 3.16 that the functional Jε,λ satisfies the

Palais-Smale condition on W 1,2
0 (Ω). We fix ε > 0 small enough and for λ close to λ∗ we

define

cε,λ = inf
γ∈Γ

max
u∈γ

Jε,λ(u).

We can use the mountain pass theorem to get a solution Uε,λ of (Sλ) for λ close to λ∗.

A similar proof as in Lemma 3.14 shows that the convexity of gε ensures that problem
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(Sλ) has a unique solution at λ = λ∗, which is u∗. By elliptic regularity theory we get

that Uε,λ → u∗ uniformly in C(Ω). Thus Uε,λ ≤ t0 − ε for λ close to λ∗. Therefore, Uε,λ

is a second solution for (Pλ) bifurcating from u∗, that we denote by Uλ. Since Uλ is a

mountain pass solution, Uλ is not a minimal solution. Thus Uλ is unstable solution of

(Pλ).
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4 Quasilinear problems on manifolds

In this chapter we consider the following reaction-diffusion equation involving the

p-Laplace Beltrami operator on Riemannian manifolds,

− div(|∇gu|p−2∇gu) = h(u) in B1 \ {O} (32)

where 1 < p < +∞, B1 is a geodesic ball of a Riemannian model M with radius 1 and h is

a locally Lipschitz positive nonlinearity. In this way, we establish L∞ and W 1,p estimates

for semi-stable, radially symmetric, and decreasing solutions of (32). Our results do not

depend on the specific form of the nonlinearity, precisely, our L∞ and W 1,p estimates hold

for every positive locally Lipschitz nonlinearity h. This may be regarded as a result on

removable singularities because u may be unbounded at the pole O.

As an application of our estimates, we prove regularity results for the following

quasilinear elliptic problem with Dirichlet boundary condition
−div(|∇gu|p−2∇gu) =λf(u) in B1,

u > 0 in B1,

u = 0 on ∂B1,

(Qλ)

where λ > 0 and f is an increasing C1 function with f(0) > 0 and

lim
t→+∞

f(t)

tp−1
= +∞. (33)

The study of the above nonlinear problem (Qλ) requires to extend the classical results

of Crandall, Rabinowitz, Brezis, et. al. (2, 5) for the Euclidean setting to the general case

of Riemannian manifolds, precisely, since we have a comparison principle for−∆p (because

it is uniformly elliptic) and the first eigenvalue (as well the corresponding eigenfunction)

of −∆p on Ω is positive, it is standard to prove that there exists a parameter λ∗ ∈ (0,+∞)

such that if 0 < λ < λ∗ then (Qλ) admits a minimal smooth solution uλ and for λ > λ∗

problem (Qλ) admits no solution. Moreover, for every 0 < λ < λ∗ the minimal solution

uλ is semi-stable and we can define the limit

u∗ = lim
λ↗λ∗

uλ.

When we can establish that u∗ is a weak solution of (Pλ∗), it is called the extremal solution.
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Hereafter we will consider the problem (32) posed in B1 with radius 1 of a Riemannian

model, precisely, a manifold M of dimension N ≥ 2 admitting a pole O and whose metric

g is given, in polar coordinates around O, by

ds2 = dr2 + ψ(r)2dϑ2 for r ∈ (0, R) and ϑ ∈ SN−1,

where r is by construction the Riemannian distance between the point P = (r, ϑ) to the

pole O, ψ is a smooth positive function in (0, R) and dϑ2 is the canonical metric on the

unit sphere SN−1. We need to assume some hypotheses on the Riemannian metric g to

obtain some results. Suppose that ψ satisfies

0 < τ := inf
[0,1]

−ψ′′ψ + (ψ′)2

(ψ′)2
. (H1)

and

there exists ψ ∈ L∞(0, 1) such that ψ(r) ≤ rψ(r) a.e. in (0, 1). (H2)

Observe that hypotheses (H1) and (H2) holds for the space forms (see Remark 4.1).

As discussed in (55, 56), we need to assume

ψ(0) = φ′′(0) = 0 and ψ′(0) = 1. (H3)

These assumptions are sufficient to extend in a C2 manner the metric ds2 to the whole

RN . An important consequence of (H3) is that on geodesic balls of M the p-Laplace

Beltrani operator ∆p is uniformly elliptic.

Remark 4.1. Note that our results apply to the important case of space forms, i.e.,

the unique complete and simply connected Riemannian manifold of constant sectional

curvature Kψ corresponding to the choice of ψ namely,

Space form ψ(r) Kψ τ

Hyperbolic space HN sinh r −1 inf
[0,1]

1

cosh2 r

Euclidean space RN r 0 1

Elliptic space SN sin r 1 inf
[0,1]

1

cos2 r
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4.1 Key-ingredients

We recall some general facts for the p-Laplace Beltrami operator that are extensions,

to a quasilinear setting, of some results of spectral theory. The reader may consult

(39, 40, 41, 42, 43, 57, 58, 59). The basic technical material that is necessary for our

purpose about regularity is summarized in the following:

Theorem 4.1. Let Ω ⊂ M be a relatively compact open domain with C1,α boundary

for some 0 < α < 1. Let 1 < p < +∞, g ∈ L∞(Ω), ξ ∈ C1,α(∂Ω) and suppose that

u ∈ W 1,p(Ω) is a solution of −∆pu = g in Ω,

u = ξ on ∂Ω.
(34)

Then

Boundedness: We have u ∈ L∞loc(Ω) and for any relatively compact open domains

Ω′ b Ω′′ b Ω there exists a positive constant C = C(p, g,N, ξ,Ω, ‖u‖Lp(Ω′′)) such

that

‖u‖L∞(Ω′) ≤ C.

If ξ ∈ C2,α(∂Ω), C can be chosen globally on Ω, and thus u ∈ L∞(Ω).

C1,β-regularity: When u ∈ L∞(Ω) there exists β ∈ (0, 1) depending on p,N, g, α and on

upper bounds for ‖u‖L∞ , ‖g‖L∞ , ‖ξ‖C1,α on Ω such that

‖u‖C1,β(Ω) ≤ C

for some constant C depending on α, p, the geometry of Ω and upper bounds for

‖u‖L∞ , ‖g‖L∞ , ‖ξ‖C1,α on Ω.

Harnack inequality: For any relatively compact open sets Ω′ b Ω′′ b Ω there exists

C = C(p,N,Ω′,Ω′′) > 0 such that u ∈ W 1,p(Ω) nonnegative solution of −∆pu = 0

on Ω,

sup
Ω′
u ≤ C inf

Ω′′
u.

In particular, either u > 0 on Ω or u ≡ 0 on Ω.

Hopf lemma: Suppose that ξ ≥ 0, g ≥ 0 and let u ∈ C1(Ω) be a solution of (34) with

u ≥ 0, u 6= 0. If x ∈ ∂Ω is such that u(x) = ξ(x) = 0 then we have 〈∇gu, ν〉 > 0,

where ν is the inward unit normal vector to ∂Ω at x.
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The local boundedness of u is a particular case of Serrin’s theorem (44) and does

not need the boundary condition. The global boundedness can be reached via reflection

technique described at (39), check also (45, 46), when ξ ∈ C2,α(∂Ω). The C1,β-regularity is

a global version (60), of a local regularity result in (46) and (47). The Harnack inequality

is due to J. Serrin (44). The Hopf lemma can be found in (48).

Remark 4.2. We do not assume the Dirichlet boundary condition or any other boundary

condition to obtain our L∞ and W 1,p estimates for semi-stable, radially symmetric, and

decreasing solutions of (32). Since u ∈ W 1,p is radially decreasing, we can use the Sobolev

embedding to obtain u ∈ L∞loc(B1\O). Using know regularity results for degenerate elliptic

equations (60), we have that u ∈ C1,α
loc (B1 \ O) for some α ∈ (0, 1).

4.2 Estimates for semi-stable solutions

In this section we prove the principal estimate (see Lemma 4.1), which was already behind

of the regularity of the semi-stable solutions in Theorem 4.3. Before we state our main

results we recall some standard notation and definitions related with problem (32).

Definition 4.1. We say that u ∈ W 1,p(B1) is radially symmetric and decreasing when

u(x) = u(r) and ur(r) < 0 for all r ∈ (0, 1) where r = dist(x,O) and ur denotes the radial

derivative.

Consider the energy functional

J(u) :=
1

p

∫
B1

|∇gu|p dvg −
∫
B1

F (u) dvg.

Definition 4.2. Let u ∈ W 1,p(B1) be a radially symmetric solution in B1 of (32) with

ur(r) < 0 for all r ∈ (0, 1). We say that u is semi-stable when the second variation of

energy functional at u satisfies

Q(ξ) :=

∫
B1

(p− 1)|ur|p−2|ξr|2 − h′(u)ξ2 dvg ≥ 0 (35)

for every radially symmetric function ξ ∈ C1
c (B1 \ O).

We can write the problem (32) for radial solutions u ∈ W 1,p(B1) as

− 1

ψN−1

∂

∂r

(
ψN−1|ur|p−2ur

)
= h(u) for r ∈ (0, 1).
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The above expression is equivalent to

− (p− 1)|ur|p−2urr −
(N − 1)ψ′

ψ
|ur|p−2ur = h(u) with r ∈ (0, 1). (36)

In the next lemma, we prove that for a suitable choice of test functions we can rewrite

the semistability condition without the term h′(u). This is the reason why our main

theorems do not depend on nonlinearity f .

Lemma 4.1. Let u ∈ W 1,p(B1) be a radial solution in B1 \ O of (32) with ur(r) < 0 for

all r ∈ (0, 1) and Q be the quadratic form defined in (35). Then, taking ξ = urη in (35)

we have

Q(urη) =

∫
B1

|ur|p
[
(p− 1)|ηr|2 +

∂

∂r

(
(N − 1)ψ′

ψ

)
η2

]
dvg.

Proof. Let η ∈ C1
c (B1 \ O) be a radial function with compact support in B1 \ O and

ζ ∈ C1(B1 \ O) be a radial function. We can take ξ = ζη ∈ C1
c (B1 \ O) in (35) to obtain

Q(ζη) =

∫
B1

(p− 1)|ur|p−2|∇g(ζη)|2 − h′(u)ζ2η2 dvg

=

∫
B1

(p− 1)|ur|p−2ζ2|∇gη|2 + (p− 1)|ur|p−2∇g(η
2ζ)∇gζ − h′(u)ζ2η2 dvg.

(37)

Now we multiplying (36) by (η2urψ
N−1)r, integrating and using integration by parts, it

follows that

0 =

∫ 1

0

(p− 1)|ur|p−2urr
(
η2urψ

N−1
)
r

dvg

+

∫ 1

0

[
(N − 1)ψ′

ψ
|ur|p−2ur + h(u)

] (
η2urψ

N−1
)
r

dvg

=

∫ 1

0

(p− 1)|ur|p−2urr(η
2urψ

N−1)r dvg

−
∫ 1

0

[
(N − 1)ψ′

ψ
|ur|p−2ur + h(u)

]
r

η2urψ
N−1 dvg

Observe that ∂r(|ur|p−2ur) = (p− 1)|ur|p−2urr. Using this fact

0 =

∫ 1

0

(p− 1)|ur|p−2urr∂r(η
2urψ

N−1) dr −
∫ 1

0

∂r

(
(N − 1)ψ′

ψ

)
|ur|p−2urη

2urψ
N−1 dr

−
∫ 1

0

(N − 1)ψ′

ψ
(p− 1)|ur|p−2urrη

2urψ
N−1 dr −

∫ 1

0

h′(u)urη
2urψ

N−1.

Thus,

0 =

∫ 1

0

(p− 1)|ur|p−2urr∂r
(
η2ur

)
ψN−1 dr −

∫ 1

0

∂r

(
(N − 1)ψ′

ψ

)
|ur|p−2u2

rη
2ψN−1 dr

−
∫ 1

0

h′(u)η2u2
rψ

N−1 dr.
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It follows that∫
B1

∂r

(
(N − 1)ψ′

ψ

)
|ur|pη2 dvg =

∫
B1

(p− 1)|ur|p−2urr∂r(η
2ur) dvg −

∫
B1

h′(u)η2u2
r dvg.

(38)

Take ζ = ur in (37) and using (38) we have

Q(urη) =

∫
B1

(p− 1)|ur|p−2urru
2
r|∇gη|2 dvg

+

∫
B1

(p− 1)|ur|p−2urr∇g(η
2ur)∇gur − h′(u)u2

rη
2 dvg

=

∫
B1

(p− 1)|ur|purr|∇gη|2 dvg +

∫
B1

∂

∂r

(
(N − 1)ψ′

ψ

)
|ur|pη2 dvg

=

∫
B1

|ur|p
[
(p− 1)|ηr|2 +

∂

∂r

(
(N − 1)ψ′

ψ
η2

)]
dvg.

Using Lemma 4.1 and the semistability assumption, we can establish the following

result. It is an Lp estimate for ur with a weight in B1, for a certain positive exponent α

in terms of W 1,p norm of u. As said before, this is the key estimate behind the proof of

Theorem 4.2. Note that when N < p we have W 1,p(B1) ⊂ L∞(B1) and hence solutions

are bounded.

Lemma 4.2. Assume that (M, g) satisfies (H1), N ≥ p and let u ∈ W 1,p(B1) be a semi-

stable radial solution in B1 \ O of (32) satisfying ur(r) < 0 for r ∈ (0, 1). Let α such

that

1 ≤ α < 1 +

√
τ(N − 1)

p− 1
. (39)

Then ∫
B1

[
(N − 1)[−ψ′′ψ + (ψ′)2]− (p− 1)(ψ′)2(1− α)2

]
|ur|pψ−2α dvg ≤

CN,p,ψ‖∇gu‖pLp(B1)

where CN,p,ψ is a constant depending only on N and p.

Proof. Using the semistability of u and Lemma 4.1 applied with η replaced by ψη we have

that

−
∫
B1

∂

∂r

(
(N − 1)ψ′

ψ

)
ψ2η2|ur|p dvg ≤

∫
B1

|ur|p(p− 1)|(ψηr)|2 dvg.

Thus,

(N − 1)

∫
B1

[
−ψ′′ψ + (ψ′)

2
]
|ur|pη2 dvg ≤ (p− 1)

∫
Ω

|ur|p|(ψη)r|2 dvg (40)
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holds for all η ∈ C1
c (B1 \ {O}). By an approximation argument (21), the inequality (40)

holds for all Lipschitz function η that vanishes on ∂B1 and also in a neighborhood of the

pole O. In fact, this estimate holds for ever radial Lipschitz function vanishing on ∂B1

but not necessarily vanishing in around the pole O. Now, take α satisfying (39), ε ∈ (0, 1)

sufficiently small and

ηε(r) =

ψ−α(ε)− ψ(1) for 0 ≤ r ≤ ε

ψ−α(r)− ψ(1) for ε < r ≤ 1
(41)

a Lipschitz function which vanishes on ∂B1. Taking η = ηε we have

(N − 1)

∫
B1\Bε

[
−ψ′′ψ + (ψ′)

2
] (
ψ−α − ψ(1)

)2 |ur|p dvg +

(N − 1)
(
ψ−α(ε)− ψ(1)

)2
∫
Bε

[
−ψ′′ψ + (ψ′)

2
]
|ur|p dvg ≤

(p− 1)

∫
B1\Bε

|ur|p (ψ′)
2 [

(1− α)ψ−α − ψ(1)
]2

dvg +

(p− 1)
[
ψ−α(ε)− ψ(1)

]2 ∫
Bε

|ur|p (ψ′)
2

dvg

For ε sufficiently small, it follows that

(N − 1)

∫
B1\Bε

[
−ψ′′ψ + (ψ′)

2
] (
ψ−α − ψ(1)

)2 |ur|p dvg ≤

(p− 1)

∫
B1\Bε

|ur|p (ψ′)
2 [

(1− α)ψ−α − ψ(1)
]2

dvg

Developing the squares we have∫
B1\Bε

[
(N − 1)[−ψ′′ψ + (ψ′)2]− (p− 1)(ψ′)2(1− α)2

]
|ur|pψ−2α dvg ≤

2ψ(1)

∫
B1\Bε

[(N − 1)[−ψ′′ψ + (ψ′)2]− (p− 1)(ψ′)2(1− α)]ψ−α|ur|p dvg

+ψ2(1)

∫
B1\Bε

[−(N − 1)[−ψ′′ψ + (ψ′)2] + (p− 1)(ψ′)2]|ur|p dvg

Using Young inequality and some calculations, it follows that

1

2

∫
B1\Bε

[
(N − 1)[−ψ′′ψ + (ψ′)2]− (p− 1)(ψ′)2(1− α)2

]
|ur|pψ−2α dvg ≤

ψ2(1)

∫
B1\Bε

[(N − 1)[−ψ′′ψ + (ψ′)2] + 3(p− 1)(ψ′)2]|ur|p dvg

Taking ε→ 0, it follows that

1

2

∫
B1

[
(N − 1)[−ψ′′ψ + (ψ′)2]− (p− 1)(ψ′)2(1− α)2

]
|ur|pψ−2α dvg ≤

ψ2(1)

∫
B1

[(N − 1)[−ψ′′ψ + (ψ′)2] + 3(p− 1)(ψ′)2]|ur|p dvg
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From this, we can conclude∫
B1

[
(N − 1)[−ψ′′ψ + (ψ′)2]− (p− 1)(ψ′)2(1− α)2

]
|ur|pψ−2α dvg ≤

CN,p,ψ‖∇gu‖pLp(B1)

4.3 Regularity for semi-stable solutions

Our first main result establishes a priori estimates for radial semi-stable classical solutions

of (32). Since the extremal solutions can be obtained as the limit of classical minimal

solutions, this result is useful in order to obtain regularity results about u∗.

Theorem 4.2. Let M is a Riemannian model such that (H1) and (H2) hold, f be a

locally Lipschitz function and u ∈ W 1,p(B1) be a semi-stable radial solution in B1 \ O of

(32) satisfying ur(r) < 0 for all r ∈ (0, 1).

(i) If N < p+ 2 + 2τ
p−1

+ 2
p−1

√
(p2 − 1)τ + τ 2 then u ∈ L∞(B1). Moreover,

‖u‖L∞(B1) ≤ CN,p,ψ‖u‖W 1,p(B1).

(ii) Assume f is nonnegative. Then

‖∇gu‖Lp(B1) ≤ CN,p,ψ

{
‖ (u− u(1))p−1 ‖L1(B1)‖f(u)‖

1
p−1

L1(B1)

}
The proof of Theorem 4.2 relies essentially on the following key estimate∫

B1

[
(N − 1)[−ψ′′ψ + (ψ′)2]− (p− 1)(ψ′)2(1− α)2

]
|ur|pψ−2α dvg ≤

CN,p,ψ‖∇gu‖pLp(B1)

for some range of explicit α (see Lemma 4.2 below). We obtained this estimate using

the radial symmetry of the solution and by choosing a suitable test function in the

semistability condition. With this choice, we have to be careful in the computations

due to the appearance of the Riemannian metric. Remember that in the Euclidean case,

ψ has first and second derivatives identically 1 and 0, respectively.

Proof of Theorem 4.2. Every radial function u ∈ W 1,p(B1) also belongs to the Sobolev

space W 1,p(δ, 1) in one dimension for a given δ ∈ (0, 1). Using the Sobolev embedding in

one dimension, u becomes a continuous function of r = dist(x,O) ∈ [δ, 1] and

|u(1)| ≤ CN,p‖u‖W 1,p(B1)
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In view of this estimate, we can assume that

u > 0 = u(1) in B1.

Note that the caseN < p is very simple and it follows immediately by Sobolev embeddings.

Let α satisfying (39) and 0 < t < 1. For the sake of simplicity, set

γ(r) :=
[
(N − 1)[−ψ′′ψ + (ψ′)2]− (p− 1)(ψ′)2(1− α)2

]
.

Using Hölder inequality, it follows that

u(t) =

∫ 1

t

−urψ
−2α+N−1

p ψ
2α−N+1

p dr

≤ CN,p

[∫
B1

γ(r)|ur|pψ−2αdvg

] 1
p

∫ 1

t

ψ
p′(2α−N+1)

p

[γ(r)]1/p−1
dr

 1
p′

where p′ = p/(p− 1). By Lemma 4.2 and (H2), we have

u(t) ≤ CN,p,ψ‖u‖W 1,p(B1)

∫ 1

t

ψ
p′(2α−N+1)

p

[γ(r)]1/p−1
dr

 1
p′

≤ CN,p,ψ‖u‖W 1,p(B1)

∫ 1

t

r
p′(2α−N+1)

p

[γ(r)]1/p−1
dr

 1
p′

.

(42)

(i) In the case p ≤ N < p+ 2 + 2τ
p−1

+ 2
p−1

√
(p2 − 1)τ + τ 2 we can choose α satisfying

N − p
2

< α < 1 +

√
τ(N − 1)

p− 1
.

In addition, we can assume α ≥ 1. With this, γ(r) > 0 for all r ∈ [0, 1] and∫ 1

t

r
p′(2α−N+1)

p < +∞.

Thus, we have the desired L∞ estimate from (42).

(ii) Using a similar argument as in (22), we can prove that

‖ψN−1|ur|p−1‖L∞(B1) ≤ CN,p‖f(u)‖L1(B1).

To control ‖∇gu‖Lp(B1), we assume first N < p. Then, using (H2) it follows that∫ 1

0

ψN−1|ur|p dr =

∫ 1

0

(
ψN−1|ur|p−1

) p
p−1 ψ−

N−1
p−1 dr

≤ ‖ψN−1|ur|p−1‖
p
p−1

L∞(B1)

∫ 1

0

ψ−
N−1
p−1 dr

≤ CN,p,ψ‖f(u)‖L1(B1).
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This implies

‖∇gu‖Lp(B1) ≤ CN,p,ψ‖f(u)‖L1(B1).

In the case p ≤ N , take α satisfying (39) and using Lemma 39∫
B1

[
(N − 1)[−ψ′′ψ + (ψ′)2]− (p− 1)(ψ′)2(1− α)2

]
|ur|pψ−2α dvg

≤ CN,p,ψ

∫
B1

|ur|p dx

= CN,p,ψ

∫
Br0

|ur|p dx+ CN,p,ψ

∫
B1\Br0

|ur|p dx.

Now, choose r0 such that 2CN,p,ψ ≤ ψ−2α in r0 ∈ (0, r0) to obtain

CN,p,ψ

∫
Br0

|ur|p dx ≤ 1

2

∫
B1

ψ−2α|ur|p dx.

With this, we deduce that

Cψ

∫
B1

|ur|p dx ≤
∫
B1

ψ−2α|ur|p dx ≤ CN,p,ψ

∫
B1\Br0

|ur|p dx.

Since u is decreasing, we have that

u(r0)p−1 ≤ CN,p‖up−1‖L1(Br0 ).

Thus, ∫
B1\Br0

|ur|p dx = CN,ψ

∫ 1

r0

|ur|pψN−1 dr

≤ CN,ψ‖ψN−1|ur|p−1‖L∞(B1)

∫ 1

r0

−ur dr

≤ CN,p,ψ‖f(u)‖L1(B1)‖up−1‖
1
p−1

L1(B1).

We can conclude that∫
B1

|ur|p dx ≤ CN,p,ψ

∫
B1\Br0

|ur|p dx

≤ CN,p,ψ‖f(u)‖L1(B1)‖up−1‖
1
p−1

L1(B1).

4.4 Regularity for extremal solutions

Applying the Theorem 4.2 to minimal solutions uλ of (Qλ) and letting λ ↗ λ∗ we can

prove that u∗ has the same regularity properties as the ones stated in Theorem 4.2. For

this, we need to bound up−1 and f(u) in L1(B1) uniformly in λ. This is possible because we

have the growth condition (33) on f and the radially decreasing property of the minimal

solutions uλ.
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Theorem 4.3. Let M is a Riemannian model such that (H1) and (H2) hold, f be a

positive C1 function in [0,+∞) satisfying (33). For λ ∈ (0, λ∗) let uλ be the minimal

solution of (Qλ). Then u∗ ∈ W 1,p(B1) and

‖up−1
λ ‖L1(B1) + ‖f(uλ)‖L1(B1) ≤ C

Moreover, u∗ is a semi-stable radially symmetric decreasing weak solution of (Qλ). As a

consequence, u∗ has the regularity stated in Theorem 4.2. In particular,

u∗ ∈ L∞(B1) if N < p+ 2 +
2τ

p− 1
+

2

p− 1

√
(p2 − 1)τ + τ 2.

Proof of Theorem 4.3. We can obtain a minimal solution using monotone iteration

starting by u0 = 0 by solving −∆g,puk+1 = λf(uk). With this, the limit uλ, when

k → +∞, is radial. Observe that uλ is decreasing. Indeed, integrating the equation (Qλ)

we get that ∂uλ
∂r

(r) < 0. Now, for λ ∈ (0, λ∗) let ρλ ∈ (1/2, 1) such that mean value

property holds, more precisely,

∂uλ
∂r

(ρλ) =
uλ(1/2)− uλ(1)

1/2
.

With this, [
∂uλ
∂r

(ρλ)

]p−1

= [2uλ(1/2)]p−1 ≤ CN,p,ψ‖up−1
λ ‖L1(B1/2).

By monotonicity, we have

‖ψN−1|∂uλ
∂r
|p−1‖L∞(B1/2) ≤ CN,p,ψ‖up−1

λ ‖L1(B1/2). (43)

If we use a radial test function φ(r) = min 1, (2− 4r)+ and using (43), we obtain

‖λf(uλ)‖L1(B1/4) ≤ CN,p,ψ

∫ 1/2

1/4

ψN−1|∂uλ
∂r
|p−1 dr ≤ CN,p,ψ‖up−1

λ ‖L1(B1/2). (44)

Using the assumption (33), given δ > 0, we have

λf(t) ≥ 1

δ
tp−1 − Cδ

holds for all t > 0 and λ ∈ (λ∗/2, λ∗), where Cδ does not depend on λ. With this

‖up−1
λ ‖L1(B1/4) ≤ CN,p,ψδ‖up−1

λ ‖L1(B1/2) + Cδ. (45)

Since uλ is decreasing, it follows that

‖up−1
λ ‖L1(B1/2\B1/4) ≤ CN,p,ψu

p−1
λ (1/4) ≤ CN,p,ψ‖up−1

λ ‖B1/4
. (46)
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Now, take δ sufficiently small and combine (45) with (46) to obtain

‖up−1
λ ‖L1(B1/4) ≤ C,

where C is a constant independent of λ. Repeating the argument in (46), we are able to

obtain an estimate uniform in λ for ‖up−1
λ ‖L1(B1). Using this in (44) we obtain an estimate

for ‖f(uλ)‖L1(B1/4). Again by monotonicity, we can apply the same arguments used above

to control ‖f(uλ)‖L1(B1) uniformly in λ. Thus,

‖up−1
λ ‖L1(B1) + ‖f(uλ)‖L1(B1) ≤ C

where C is a constant independent of λ. By Theorem 4.2, we deduce a bound for

‖uλ‖W 1,p(B1). Using the compactness and since uλ → u∗ as λ → λ∗, it follows that

u∗ ∈ W 1,p
0 (B1). We can pass to the limit and conclude that u∗ is a weak solution of

(Qλ) for λ = λ∗. It is clear that u∗ is radially symmetric and nonincreasing. Using the

same argument at the beginning of this proof we can obtain that u∗ is decreasing. By

Fatou’s Lemma we obtain that u∗ is semi-stable. Finally, the regularity statement follows

as a consequence of Theorem 4.2.
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5 Systems with singular nonlinearities and

applications to MEMS

In this chapter we deal with Hamiltonian systems of coupled singular elliptic equations

of second-order of the form 

−∆u =
λf(x)

(1− v)2
in Ω,

−∆v =
µg(x)

(1− u)2
in Ω,

0 ≤ u, v < 1 in Ω,

u = v = 0 on ∂Ω,

(Sλ,µ)

where λ and µ are positive parameters, Ω is a smooth bounded domain of RN (N ≥ 1)

and f and g satisfy the following conditions:

f, g ∈ Cα(Ω) for some α ∈ (0, 1], 0 ≤ f, g ≤ 1

f, g > 0 on a subset of Ω of positive measure.
(H)

5.1 Motivation and related results

System (Sλ,µ) can be seen as a Lane-Emden type system with nonlinearities with

negative exponents (11, 61, 62, 63, 64). A lot of work has been devoted to existence and

nonexistence of solutions to elliptic systems with continuous power like nonlinearities,

among which we recall (65, 66, 67, 68, 69, 70, 71, 72) and the survey (73), just recently

Lane-Emden type singular nonlinearities have been considered in (74). Here we address

the problem of studying existence, non-existence and regularity results by means of the

nonlinear eigenvalue problem (Sλ,µ), in which for the sake of clarity we consider a Coulomb

nonlinear source though most results extend to more general situations. Related results

for systems with continuous nonlinearities have been obtained in (75, 76).

Another important motivation to consider (Sλ,µ) comes from recent works on the study

of the equations that models MEMS
−∆v = λ g(x)

(1−v)2
in Ω,

0 ≤ v < 1 in Ω,

v = 0 on ∂Ω.

(Pλ)
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Micro-electromechanical systems (MEMS) are often used to combine electronics with

microsize mechanical devices in the design of various types of microscopic machinery.

MEMS devices have therefore become key components of many commercial systems,

including accelerometers for airbag deployment in automobiles, ink jet printer heads,

optical switches and chemical sensors.

Nonlinear interaction described in terms of coupling of semilinear elliptic equations has

revealed through the last decades a fundamental tool in studying nonlinear phenomena

(67, 68, 77, 78, 79, 80, 81, 82) and references therein. In all the above contexts the

nonlinearity is fairly represented by a continuous function. More recently, a rigorous

mathematical approach in modeling and designing Micro Electro Mechanical Systems

has demanded the need to consider also nonlinearities which develop singularities. In a

nutshell, one may think of MEMS’ actuation as governed by the dynamic of a micro plate

which deflects towards a fixed plate, under the effect of a Coulomb force, once that a drop

voltage is applied.

In the stationary case, the naive model which describes this device cast into the

following second order elliptic PDE (Pλ), where Ω is a bounded smooth domain in RN

and the positive function g is bounded and related to dielectric properties of the material,

check the survey (18) and also (16, 83, 84) for more technical aspects. The key feature of

the equation in (Pλ) is retained by the discontinuity of the nonlinearity which blows up

as v → 1− and this corresponds in applications to a snap through of the device.

The difficulties arising in studies of such equations are well know. The role of the

positive parameter λ is that of tuning the drop voltage, whence from the PDE point of

view, yields the threshold between existence and non-existence of solutions which exist

up to a maximal value λ∗ in which the following alternative occurs: the extremal solution

does not reach the maximal height (set to be one in (Pλ)) and this is the case in which

the pointwise solution (classical) is smooth or the touch down has occurred and a weaker

notion of solution, which reflect the conservation of energy, shows up; this is referred in

literature as the regularity issue for extremal solutions (18, 85, 86, 87).

The higher order version of (Pλ) has been considered in (88), results further extended

in (89). We mention that singular nonlinearities appear in different contexts also in

(90, 91).

Here we mention some recent papers on semilinear elliptic system of cooperative type
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which are close related with our work. M. Montenegro in (76) studied elliptic systems

of the form ∆u = λf(x, u, v), ∆v = µg(x, u, v) defined in Ω a smooth bounded domain

under homogeneous Dirichlet boundary conditions. Under some suitable assumptions,

which include in particular that the systems are cooperative, it was proved that there

exists a monotone continuous curve Υ in the positive quadrant Q separating this set

into two connected components: U “below” Υ, where there are C1(Ω) minimal positive

solutions, and V “above” Υ, where there is no such solution. For points on Υ there are

weak solutions (in the sense of the weighted Lebesgue space L1
d(Ω) , where d(x) is the

distance to the boundary ∂Ω. Linearized stability of solutions in U is also proved. The

existence proof uses sub- and supersolutions, and the existence of weak solutions is shown

by a limiting argument involving a priori estimates in L1
d(Ω) for classical solutions.

A question that attracted a lot of attention is the regularity of the extremal solution.

C. Cowan (92) considered the particular case of nonlinearities of Gelfand type, that is,

when f(x, u, v) = ev and g(x, u, v) = eu. He studied the regularity of the extremal

solutions on the critical curve, precisely, he proved that if 3 ≤ N ≤ 9 and (N − 2)/8 <

µ∗/λ∗ < 8/(N − 2) then the associated extremal solutions are smooth. This implies that

N = 10 is the critical dimension for the Gelfand systems, because the scalar equation

related with this class of problems may be singular if N ≥ 10. Later, C. Cowan and

M. Fazly in (93) examined the elliptic systems given by

−∆u = λf ′(u)g(v), −∆v = µf(u)g′(v) in Ω, (H1)

and

−∆u = λf(u)g′(v), −∆v = µf ′(u)g(v) in Ω (H2)

with zero Dirichlet boundary condition in a bounded convex domain Ω. They proved

that for a general nonlinearities f and g, the extremal solution associated with (H1)

are bounded when N ≤ 3. For a radial domain, they proved the extremal solution are

bounded provided N < 10. The extremal solution associated with (H2) are bounded in

the case where f is a general nonlinearity and g(v) = (1+v)q for 1 < q < +∞ and N ≤ 3.

For the explicit nonlinearities of the form f(u) = (1 + u)p and g(v) = (1 + v)q certain

regularity results are also obtained in higher dimensions for (H1) and (H2).

The main goal of this chapter is to complement the study of the works (76, 92, 93)

proving similar results for singular nonlinearity in problems of MEMS type. In the next
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section we bring some auxiliary results used in the text. Moreover, we study the existence

of a critical curve, extremal parameter and minimal solutions. We also establish upper and

lower bounds for the critical curve Γ and monotonicity results for the extremal parameter.

In Sect. 5.6 we obtain some estimates and properties for the branch of minimal solutions

that allow us to prove the regularity result about the extremal solution.

5.2 A critical curve: existence of classical solutions

The main goal of this section is to prove Theorems 5.1, 5.2 and 5.3. Precisely, by

the method of sub-super solutions we prove that there exists a non-increasing continuous

function Γ of the parameter λ such that (Sλ,µ) has at least one solution for 0 < µ < Γ(λ)

whereas (Sλ,µ) has no solutions for µ > Γ(λ). In what follows unless otherwise stated, by

solution we mean a classical solution of class C2(Ω).

Lemma 5.1. Let λ and µ be positive parameters such that there exists a classical super

solution (U, V ) for (Sλ,µ), namely, U, V ∈ C2(Ω) satisfying pointwisely the following

system of inequalities 

−∆U ≥ λf(x)

(1− V )2
in Ω,

−∆V ≥ µg(x)

(1− U)2
in Ω,

0 ≤ U, V < 1 in Ω,

U = V = 0 on ∂Ω.

Then there exists a classical solution (u, v) of (Sλ,µ) such that u ≤ U and v ≤ V .

Proof. Setting (u0, v0) = (U, V ) let (u1, v1) be the unique solution of the linear problem

−∆u1 =
λf(x)

(1− v0)2
in Ω,

−∆v1 =
µg(x)

(1− u0)2
in Ω,

0 ≤ u1, v1 < 1 in Ω,

u1 = v1 = 0 on ∂Ω.

By the classical maximum principle we deduce that u1 ≤ u0 and v1 ≤ v0. Defining (un, vn)
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inductively as follows 

−∆un =
λf(x)

(1− vn−1)2
in Ω,

−∆vn =
µg(x)

(1− un−1)2
in Ω,

0 ≤ un, vn < 1 in Ω,

un = vn = 0 on ∂Ω,

by the maximum principle, we have

0 < un ≤ un−1 ≤ . . . u1 ≤ u0 and 0 < vn ≤ vn−1 ≤ . . . v1 ≤ u0.

Thus, there exists (u, v) such that

0 ≤ u = lim
n→∞

un ≤ U < 1 and 0 ≤ v = lim
n→∞

vn ≤ V < 1

and by a standard compactness argument we have that the above convergence holds in

C2,α(Ω) to a solution (u, v) of (Sλ,µ) and in particular different from zero.

We now state and prove a monotonicity result on the coordinates of a solution of

(Sλ,µ), precisely,

Lemma 5.2. Suppose that (u, v) is a smooth solution of (Sλ,µ) where 0 < µ ≤ λ and

f ≡ g ≡ 1. Then
µ

λ
u ≤ v ≤ u a.e in Ω.

Proof. Take the difference of the equations in (Sλ,µ) to obtain

−∆(u− v) =
λ

(1− v)2
− µ

(1− u)2

in Ω and multiplying this equation by (u− v)− and integrating by parts we have∫
Ω

|∇(u− v)−|2 dx =

∫
Ω

(
λ

(1− v)2
− µ

(1− u)2

)
(u− v)− dx.

Since the right hand side is nonpositive and the left hand side is nonnegative, we see that

(u− v)− = 0 a.e. in Ω and so u ≥ v a.e. in Ω. Now, since u ≥ v,

−∆
(
v − µ

λ
u
)

= µ

(
1

(1− u)2
− 1

(1− v)2

)
≥ 0.

Thus, µ
λ
u ≤ v and we finish the proof.
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We are going to prove that (Sλ,µ) has a classical solution for λ and µ sufficiently small.

Let Q be the positive quadrant of the (λ, µ)-plane. The set

Λ(Ω,f,g) = Λ := {(λ, µ) ∈ Q : (Sλ,µ) has at least a classical solution}

has nonempty interior.

Lemma 5.3. There exists λ1 > 0 such that (0, λ1]× (0, λ1] ⊂ Λ.

Proof. Let BR be a ball of radius R such that Ω ⊂ BR and let µ1,R be the first eigenvalue

of the Dirichlet boundary value problem

−∆ϕ = νϕ in BR

ϕ = 0 in ∂Ω

and denote the corresponding eigenfunction by ψ1,R which we may assume to be positive

and also that supBR ψ1,R = 1. Now we show that there exists ϑ > 0 such that ψ = ϑψ1,R is

a super-solution to (Sλ,λ) provided λ > 0 is sufficiently small. Notice that we can choose

ϑ ∈ (0, 1) such that 0 < 1− ϑψ1,R < 1 in B. Thus
−∆ψ =µ1,Rϑψ1,R≥

λf(x)

(1− ψ)2
=

λf(x)

(1− ϑψ1,R)2
in Ω

−∆ψ =µ1,Rϑψ1,R≥
λg(x)

(1− ψ)2
=

λg(x)

(1− ϑψ1,R)2
in Ω

provided

µ1,Rϑψ1,R(1− ϑψ1,R)2 ≥ λmax{f(x), g(x)}, x ∈ Ω.

Notice that s1 := infx∈Ω ϑψ1,R < s2 := supx∈Ω ϑψ1,R < 1, and s1, s2 depend of R. Setting

Z(s) := s(1− s)2, it is easy to see that we can choose λ > 0 sufficiently small such that

µ1,R inf
x∈Ω

Z(ϑψ1,R(x)) ≥ λmax{sup
Ω
g(x), sup

Ω
f(x)}.

Thus, using Lemma 5.1 we conclude that (λ, µ) ∈ Λ, for all λ, µ ∈ (0, λ1].

Lemma 5.4. Λ is bounded.

Proof. Let (λ, µ) ∈ Λ and (u, v) the corresponding solution of (Sλ,µ). Multiplying the

first equation in (Sλ,µ) by ψ1,R and integrating by parts we get

|BR|µ1,R ≥ µ1,R

∫
BR

uψ1,R dx = −
∫
BR

u∆ψ1,R dx

= −
∫
BR

∆uψ1,R dx

=λ

∫
BR

f(x)ψ1,R

(1− v)2
dx
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which implies that

|BR|µ1,R ≥ λ

∫
BR

f(x)ψ1,R dx

Analogously we obtain

|BR|µ1,R ≥ µ

∫
BR

g(x)ψ1,R dx

and therefore Λ is bounded.

Now we state that Λ is a convex set, precisely,

Lemma 5.5. If (λ′, µ′) ∈ Q and λ′ ≤ λ and µ′ ≤ µ for some (λ, µ) ∈ Λ then (λ′, µ′) ∈ Λ.

Proof. It follows from Lemma 5.1. Indeed, the solution associated to the pair (λ, µ) ∈ Λ

turns out to be a super-solution to (Sλ′,µ′).

5.3 Critical curve

For each fixed ϑ > 0 considere the line Lϑ start from (0, 0)

Lϑ = {λ > 0 : (λ, ϑλ) ∈ Λ}.

Observe that Lemma 5.3 and Lemma 5.4 implies that for each ϑ fixed, the line Lϑ is

nonempty and bounded. This allow us to define the curve Γ : (0,+∞)→ Q by

Γ(ϑ) := (λ∗(ϑ), µ∗(ϑ))

where

λ∗(ϑ) := supLϑ and µ∗(ϑ) = ϑλ∗(ϑ)

Our first result deals with the existence of a curve that split the positive quadrant into

two connected components.

Theorem 5.1. Suppose that condition (H) holds. Then, there exists a curve Γ that

separates the positive quadrant Q of the (λ, µ)-plane into two connected components O1

and O2. For (λ, µ) ∈ O1, problem (Sλ,µ) has a positive classical minimal solution (uλ, vλ).

Otherwise, if (λ, µ) ∈ O2, there are no solutions.

Proof of Theorem 5.1. Define O1 = Λ \ Γ. Given (λ1, µ1), (λ2, µ2) ∈ O1, there exist

ϑ1, ϑ2 > 0 such that µ1 = ϑ1λ1 and µ2 = ϑ2λ2. We can define, using the Lemma 5.5,

a path linking (λ1, µ1) to (0, 0) and another path linking (0, 0) to (λ2, µ2). Follows that
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O1 is connected. The Lemma 5.1 implies that for each (λ, µ) ∈ O1 there exists a positive

minimal classical solution (uλ, vµ) for problem (Sλ,µ). Now, define O2 = Q \ {Λ ∪ Γ}.

Let (λ1, µ1), (λ2, µ2) ∈ O2. Take (λmax, µmax) ∈ O2, where λmax = max {λ1, λ2} and

µmax = max {µ1, µ2}. We can take a path linking (λ1, µ1) to (λmax, µmax) and another

path linking (λmax, µmax) to (λ2, µ2). Follows that O2 is connected.

5.4 Upper and lower bounds for the critical curve

The next lemma will be the main tool to obtain the estimates contained in Theorem

5.2.

Lemma 5.6. Assume that Ω = B = BR and f, g are radial, that is, f(x) = f(|x|) and

g(x) = g(|x|), for all x ∈ B. Then

(0, a(f,R,N)]× (0, a(g,R,N)] ⊂ Λ

where

a(f,R,N) := CN
1

supB f(x)

1

R2
, a(g,R,N) := CN

1

supB g(x)

1

R2
.

and

CN = max

{
8N

27
,
6N − 8

9

}
.

Proof. Notice that the function

w(x) :=
1

3

(
1− |x|

2

R2

)
satisfies

−∆w =
2N

3R2
=

2N
(
1− 1

3

)2

3R2

1(
1− 1

3

)2

≥ 8N

27R2 supB f

f(x)[
1− 1

3

(
1− |x|2

R2

)]2

=
8N

27R2 supB f

f(x)

(1− w)2 .

Similarly,

−∆w ≥ 8N

27R2 supB g

g(x)

(1− w)2 .

Thus, for

λ ≤ 8N

27R2 supB f
and µ ≤ 8N

27R2 supB g
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we have that (w,w) is a super-solution of (Sλ,µ) in B. Similarly, we can see that, taking

v(x) := 1−
(
|x|
R

)2/3

,

the pair (v, v) is a super-solution for (Sλ,µ) in B provided that

λ ≤ 6N − 8

9R2 supB f
and µ ≤ 6N − 8

9R2 supB g
,

which completes the proof.

The following results contain upper and lower estimates for the critical curve in

Theorems 5.2 and 5.3 respectively. These estimates depend only on f, g, |Ω| and the

dimension N , namely,

Theorem 5.2. Suppose f, g satisfy (H). Then the region O1 is nonempty, more precisely,

there exist a positive constant CN which depends only of the dimension N such that

(0, a(f,|Ω|,N)]× (0, a(g,|Ω|,N)] ⊂ O1,

where

a(f,|Ω|,N) := CN
1

supΩ f(x)

(
ωN
|Ω|

)2/N

, a(g,R,N) := CN
1

supΩ g(x)

(
ωN
|Ω|

)2/N

and

CN = max

{
8N

27
,
6N − 8

9

}
.

Proof of Theorem 5.2. Since supBR f
] = supΩ f and supBR g

] = supΩ g, setting

R =

(
|Ω|
ωN

)1/N

the proof follows as an applications of Proposition 5.5 and Lemma 5.6.

Proposition 5.1. Assume that Ω = B = BR and f(x) = |x|α, g(x) = |x|β with

α, β ≥ 0, then

(0, a(α,R,N)]× (0, b(β,R,N)] ⊂ Λ,

where

a(α,R,N) := max

{
4(2 + α)(N + α)

27
,
(2 + α)(3N + α− 4)

9

}
1

R2+α

and

b(β,R,N) := max

{
4(2 + β)(N + β)

27
,
(2 + β)(3N + β − 4)

9

}
1

R2+β
.
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Proof. Consider the function

w(α,R)(x) =
1

3

(
1− |x|

2+α

R2+α

)
.

Using a similar computation as we have done in the previous lemma we can prove that

the pair (w(α,R), w(β,R)) is a super-solution of (Sλ,µ) in B provided that

λ ≤ 4(2 + α)(N + α)

27R2+α
and µ ≤ 4(2 + β)(N + β)

27R2+β
.

The same holds for the function

w(x) = 1−
(
|x|
R

)(2+α)/3

if

λ ≤ (2 + α)(3N + α− 4)

9R2+α
and µ ≤ (2 + β)(3N + β − 4)

9R2+β
.

Theorem 5.3. Assume that infΩ f(x) > 0 (respectively infΩ g(x) > 0), then

λ∗ ≤ 4µ1

27

1

infΩ f(x)

(
respectively µ∗ ≤ 4µ1

27

1

infΩ g(x)

)
,

where µ1 is the first eigenvalue of (−∆, H1
0 (Ω)). Therefore, if infΩ f(x) > 0 and

infΩ g(x) > 0 the region O1 is bounded, precisely,

O1 ⊂
(

0,
4µ1

27

1

infΩ f(x)

)
×
(

0,
4µ1

27

1

infΩ g(x)

)
.

Proof of Theorem 5.3. Let (λ, µ) ∈ Λ and (u, v) the corresponding solution of (Sλ,µ). Let

µ1 be the first eigenvalue for the Dirichlet boundary conditions−∆ϕ = νϕ in Ω,

ϕ = 0 on ∂Ω,
(47)

and the corresponding positive eigenfunction we denote by ψ1. Taking ψ1 as a test function

in the first equation of (Sλ,µ) and using integration by parts we obtain∫
Ω

(
−µ1u+

λf(x)

(1− v)2

)
ψ1 dx = 0

which implies that λ > λ∗ when

− µ1u+
λf(x)

(1− v)2
> 0 in Ω. (48)

After a simple calculation we find that (48) holds when

λ >
4µ1

27

1

infΩ f(x)
.

Using the same approach in the second equation we finish the proof.
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5.5 Monotonicity results for the extremal parameter

Let GΩ(x, ξ) = G(x, ξ) be the Green’s function of the Laplace operator for the region

Ω, with G(x, ξ) = 0 if x ∈ ∂Ω. We shall write (un,Ω(x), vn,Ω(x)) = (un(x), vn(x)) for the

sequence obtained by the interaction process as follows: (u0, v0) = (0, 0) in Ω and
un(x) =

∫
Ω

λf(x)G(x, ξ)

(1− vn−1)2
dξ in Ω,

vn(x) =

∫
Ω

µg(x)G(x, ξ)

(1− un−1)2
dξ in Ω.

(49)

It is easy to see that the sequence above converges uniformly for a minimal solution of

(Sλ,µ) provided that 0 < λ < λ∗ and 0 < µ < Γ(λ). This construction will help us to

prove the monotonicity result for λ∗ stated in Theorem 5.4.

We also establish some monotonicity properties for the critical parameter λ∗.

Theorem 5.4. If (Sλ,µ) has a solution in Ω, then it also has a solution for any subdomain

Ω′ ⊂ Ω for which the Green’s function exists. Furthermore, λ∗(Ω′) ≥ λ∗(Ω) and for the

corresponding minimal solutions, we have

(uΩ′(x), vΩ′(x)) ≤ (uΩ(x), vΩ(x)) in Ω.

Proof of Theorem 5.4. Let (un,Ω′ , vn,Ω′) be defined as in (49) with Ω replaced by Ω′. Using

the corresponding Green’s functions for the subdomains Ω′ ⊂ Ω satisfy the inequality

GΩ′(x, ξ) ≤ GΩ(x, ξ)

we have

u1,Ω′(x) =

∫
Ω′
λf(x)GΩ′(x, ξ)dξ ≤

∫
Ω

λf(x)GΩ(x, ξ) dξ in Ω′,

v1,Ω′(x) =

∫
Ω′
µg(x)GΩ′(x, ξ) dξ ≤

∫
Ω

µg(x)GΩ(x, ξ) dξ in Ω′.

By induction we conclude that

un,Ω′(x) ≤un,Ω(x) in Ω′,

vn,Ω′(x) ≤ vn,Ω(x) in Ω′.

On the other hand, since

un,Ω(x) ≤un+1,Ω(x) in Ω,

vn,Ω(x) ≤ vn+1,Ω(x) in Ω,
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for each n, we get that

un,Ω′(x) ≤uΩ(x) in Ω′,

vn,Ω′(x) ≤ vΩ(x) in Ω′,

and we are done.

Corollary 5.1. Suppose f1, f2, g1, g2 : Ω→ R satisfy condition (H) and

f1(x) ≤ f2(x) and g1(x) ≤ g2(x) for all x ∈ Ω,

then λ∗(f1, g1) ≥ λ∗(f2, g2) and for each λ ∈ (0, λ∗(f2, g2)). Furthermore

(u1(x), v1(x)) ≤ (u2(x), v2(x)) for all x ∈ Ω

for the corresponding minimal solutions. If

f1(x) < f2(x) or g1(x) < g2(x)

on a subset of positive measure, then

(u1(x), v1(x)) < (u2(x), v2(x)) for all x ∈ Ω.

We shall use Schwarz symmetrization method (94). Let BR = BR(0) the Euclidian

ball in RN with radius R > 0 centered at origin such that |BR|=|Ω|, and let u] be

the symmetrization of u, then it is well known that u] depends only on |x| and u] is a

decreasing function of |x|.

Theorem 5.5. Let f, g satisfying (H) and f ], g] the Schwarz symmetrization of f and g

respectively. Then λ∗(Ω, f, g) ≥ λ∗(BR, f
], g]) and for each λ ∈ (0, λ∗(BR, f, g)) we have

Γ(Ω,f,g)(λ) ≥ Γ(BR,f],g])(λ).

Proof of Theorem 5.5. For each λ ∈ (0, λ∗(BR, f, g)) and µ ∈ (0,Γ(BR,f],g])(λ)) we

consider the minimal sequence (un, vn) for (Sλ,µ) as defined in (51), and let (ûn, v̂n) be

the minimal sequence for the corresponding Schwarz symmetrized problem:

−∆u =
λf ](x)

(1− v)2
in BR,

−∆v =
µg](x)

(1− u)2
in BR,

0 <u, v < 1 in BR,

u = v = 0 on ∂BR.

(50)
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Since λ ∈ (0, λ∗(BR, f, g)) and µ ∈ (0,Γ(BR,f],g])(λ)) we can consider the corresponding

minimal solution (û, v̂) of (50). As in the proof of Lemma 5.7 we have 0 < ûn ≤ û < 1

and 0 < v̂n ≤ v̂ < 1 on BR for all n. We shall prove for the sequence (un, vn) we also have

0 < u]n ≤ û < 1 and 0 < v]n ≤ v̂ < 1 on BR for all n. Therefore, the minimal sequence

(un, vn) for (Sλ,µ) satisfies

un(x) ≤ max
x∈BR

û and vn(x) ≤ max
x∈BR

v̂

and again as in the proof of Lemma 5.1, there exists a minimal solution (u, v) for (Sλ,µ).

5.6 The branch of minimal solutions

Next, assuming the existence of solutions for System (Sλ,µ), we obtain also existence

and uniqueness of minimal solution.

Lemma 5.7. For any 0 < λ < λ∗ and 0 < µ < Γ(λ), there exists a unique minimal

solution (u, v) of (Sλ,µ).

Proof. This minimal solution is obtained as the limit of the sequence of pair of functions

(un, vn) constructed recursively as follows: (u0, v0) = (0, 0) in Ω and for each n = 1, 2, . . .,

(un, vn) is the unique solution of the boundary value problem:

−∆un =
λf(x)

(1− vn−1)2
in Ω,

−∆vn =
µg(x)

(1− un−1)2
in Ω,

0 <un, vn < 1 in Ω,

un = vn = 0 on ∂Ω.

(51)

Let (U, V ) be any solution for problem (Sλ,µ). First, it is clear that 1 ≥ U > u0 ≡ 0 and

1 ≥ V > v0 ≡ 0 in Ω. Now, assume that U ≥ un−1 and V ≥ vn−1 in Ω. Thus,

−∆(U − un) = λf(x)

[
1

(1− V )2
− 1

(1− un−1)2

]
≥ 0 in Ω,

−∆(V − vn) = µg(x)

[
1

(1− U)2
− 1

(1− vn−1)2

]
≥ 0 in Ω,

U − un = V − vn = 0 on ∂Ω.

(52)

By the maximum principle we conclude that

1 > U ≥ un > 0 and 1 > V ≥ vn > 0 in Ω.
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It is clear that this kind of argument implies that (un, vn) is a monotone increasing

sequence. Therefore, (un, vn) converges uniformly to a solution (u, v) of (Sλ,µ), which

by construction is unique in this class of minimal solutions.

We can introduce for any solution u of (Pλ), the linearized operator at u defined by

Lu,λ = −∆− 2λf(x)
(1−u)3

and its eigenvalues {µk,λ(u); k = 1, 2, ...}. The first eigenvalue is then

simple and can be characterized variationally by

µ1,λ(u) = inf

{
〈Lu,λφ, φ〉H1

0 (Ω) ; φ ∈ C∞0 (Ω),

∫
Ω

|φ(x)|2dx = 1

}
.

Stable solutions (resp., semi-stable solutions) of (S)λ are those solutions u such that

µ1,λ(u) > 0 (resp., µ1,λ(u) ≥ 0).

In the case that (u, v) is a solution of (Sλ,µ) we consider the first eigenvalue ν1 =

ν1((λ, µ), (u, v)) of the linearization L := −
−→
∆ − A(x) around (u, v) under Dirichlet

boundary conditions, where

−→
∆Φ =

 ∆φ1

∆φ2

 and A(x) :=

 0 a12(x)

a21(x) 0

 =

 0 2λf(x)
(1−v(x))3

2µg(x)
(1−u(x))3

0


that is, the eigenvalue problem

LΦ = νΦ, Φ ∈ W 1,2
0 (Ω)×W 1,2

0 (Ω),

namely, ν1 is the first eigenvalue of the problem

−∆φ1 −
2λf(x)

(1− v)3
φ2 = νφ1 in Ω,

−∆φ2 −
2µg(x)

(1− u)3
φ1 = νφ2 in Ω,

φ1 = φ2 = 0 on ∂Ω.

(E(λ,µ))

We recall that in (95, Proposition 3.1) was proved that there exists a unique eigenvalue

ν1 with strictly positive eigenfunction φ = (φ1, φ2) of (E(λ,µ)), that is, φi > 0 in Ω for

i = 1, 2.

Remark 5.1. The first eigenvalue of the linearized single equation has a variational

characterization; no such analogous formulation is available for our system.

Definition 5.1 (Stable and Semi-stable Solution). A solution of problem (Sλ,µ) is said

to be stable (resp. semi-stable) if ν1 > 0 (resp., ν1 ≥ 0).
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Proposition 5.2. Suppose that (λ, µ) ∈ Λ with 0 < µ ≤ λ and we let (u, v) denote the

minimal solution of (Sλ,µ). Let ν, φ1, φ2 as in (E(λ,µ)). Then

φ2

φ1

≥ µ

λ
in Ω.

Proof. Take the difference equation in (E(λ,µ)) and use Lemma 5.2 to obtain

−∆(φ2 − φ1) =
2µφ1

(1− u)3
− 2λφ2

(1− v)3
+ ν(φ2 − φ1)

≥ µ(φ1 − φ2)

(1− v)3
+

(µ− λ)φ2

(1− v)3
+ ν(φ2 − φ1).

Rewriting this we have

−∆(φ2 − φ1)− ν(φ2 − φ1) +
µ(φ2 − φ1)

(1− v)3
≥ (µ− λ)φ2

(1− v)3
in Ω.

Now, define a elliptic operator L := −∆− ν. We have that

L

(
ψ2 − ψ1 +

λ− µ
λ

ψ1

)
+

µ

(1− v)3

(
ψ2 − ψ1 +

λ− µ
λ

)
≥ L

(
ψ2 − ψ1 +

λ− µ
λ

ψ1

)
+

µ

(1− v)3
(ψ2 − ψ1)

≥ (µ− λ)φ2

(1− v)3
+
λ− µ
λ

L(φ1) = 0

Using the maximum principle, we have

φ2 − φ1 +
λ− µ
λ

φ1 ≥ 0 in Ω.

Re-arranging the above equation follows

φ2

φ1

≥ µ

λ

and this finish the proof.

5.7 Estimates for minimal solutions

The next lemmas are crucial to obtain the estimates which are already behind the

proof of the regularity of semi-stable solutions. We start with a lemma that can be found

in (96).
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Lemma 5.8. Suppose (u, v) is a smooth minimal solution of −∆u = γG(u, v), −∆v =

λF (u, v) in Ω with u = v = 0 on ∂Ω. Here, F (u, v) and G(u, v) are positive nonlinearities

which are increasing in u and v. Then∫ (
γGuα

2 + λFvβ
2
)

dx+ 2

∫ √
FuGvαβ dx ≤

∫
|∇α|2 dx+

∫
|∇β|2 dx

for all α, β ∈ H1
0 (Ω).

Lemma 5.9. Suppose that (uλ, vσλ) denotes a sequence of smooth minimal solutions of

(Sλ,σλ) where 0 < σ ≤ 1 and let 0 < t <
√
σ +

√
σ +
√
σ. Then (uλ, vσλ) is uniformly

bounded in Lp(Ω)× Lp(Ω) for all p ≤ t+ 3/2.

Proof. Taking α = β = (1− u)−t − 1 in Lemma 5.8 we have that

√
λµ

∫
Ω

√
1

(1− u)3

1

(1− v)3

(
(1− u)−t − 1

)2
dx ≤ t2

∫
Ω

(1− u)−2t−2|∇u|2 dx.

Multiplying −∆u = λ
(1−v)2

by (1− u)−2t−1 − 1 and integrating by parts we have

(2t+ 1)

∫
Ω

|∇u|2(1− u)−2t−2 dx =

∫
Ω

λ ((1− u)−2t−1 − 1)

(1− v)2
dx.

Follows that

√
σ

∫
Ω

√
1

(1− u)3

1

(1− v)3

(
(1− u)−t − 1

)2
dx ≤ t2

2t+ 1

∫
Ω

((1− u)−2t−1 − 1)

(1− v)2
dx

By monotonicity, follows that[√
σ − t2

2t+ 1

] ∫
Ω

1

(1− v)2

1

(1− u)2t+1
dx ≤ 2

∫
Ω

1

(1− v)2

1

(1− u)t+1
dx

Using Hölder inequality with conjugate exponents p1 = 2t+1
t+1

and q1 = 2t+1
t

we have[√
σ − t2

2t+ 1

] ∫
Ω

1

(1− v)2

1

(1− u)2t+1
dx

≤ 2

[∫
Ω

1

(1− v)2

1

(1− u)2t+1
dx

]1/p1 [∫
Ω

1

(1− v)2
dx

]1/q1

.

Thus [√
σ − t2

2t+ 1

] ∫
Ω

1

(1− v)2

1

(1− u)2t+1
dx ≤ 2

∫
Ω

1

(1− v)2
dx.

Using the monotonicity and Hölder inequality with conjugate exponents p2 = 2t+3
2

and

q2 = 2t+3
2t+1

, we have∫
Ω

1

(1− v)2t+3
dx ≤ 2

∫
Ω

1

(1− v)2
dx ≤ C

[∫
Ω

1

(1− v)2t+3
dx

]1/p2

.
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Follows that [∫
Ω

1

(1− v)2t+3
dx

]1/q2

≤ C.

Analogously to scalar case as in (16), we can define the notion of extremal solution of

(Sλ,µ) for points on the critical curve. Precisely, for (λ∗, µ∗) a point on the critical curve

Γ, we can write µ∗ = σλ∗ for some σ > 0. Let us consider (λn) an increasing sequence

converging to λ∗, and consequently σλ∗n → σλ∗ = µ∗. In view of Theorem 5.1, we can

consider the minimal solution (uλn , vσλn) of System (Sλn,σλn). Now, we can define the

extremal solution (u∗, v∗) at (λ∗, µ∗) by passing to the limit when λn ↗ λ∗ along the ray

given by µ = σλ, namely,

(u∗, v∗) = lim
λ↗λ∗

(uλn , vσλn).

The following theorem deals with regularity properties for solutions of (Sλ,µ). Our

method are based on systematic use of maximum principle in combination with energy

estimates to conclude that extremal solutions of (Sλ,µ) are smooth in lower dimensions

provided one stays close to the diagonal of (λ, µ)-plane, precisely

Theorem 5.6. Assume that f, g are bounded nontrivial functions and let 0 < σ ≤ 1.

Then the extremal solution (u∗, v∗) of System (Sλ∗,σλ∗) is smooth when N ≤ 5.

Proof of Theorem 5.6. The above estimate said that (1 − u)3 is bounded uniformly in λ

over Lp(Ω) for all p ≤ 2, 6. By elliptic estimates, u is uniformly bounded in W 2,p
0 (Ω).

Taking the limit in λ, we obtain that u∗ is a classical solution when N ≤ 5.

Remark 5.2. It remains an interesting and open question to determine the critical

dimension for this class of Lane-Emden systems, precisely determine the dimension N∗

such that the extremal solution is smooth when N < N∗ and singular when N ≥ N∗.

In Theorem 5.6 we prove that the extremal solution (uλ∗ , vσλ∗) is smooth when N ≤ 5.

Now, if Ω is the unit ball, we take u = v and the system turns into a scalar equation and

the function u∗(x) = 1− |x|2/3 is a singular solution for (Sλ∗,σλ∗) if N ≥ 8. In view of this

facts we believe that N∗ = 8 is the critical dimension for (Sλ,µ).

Remark 5.3. Using a result due to W. Troy (97, Theorem 1), we can see that any smooth

solution of (Sλ,µ) is radially symmetric and decreasing when Ω is a ball of RN .
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[24] SANCHÓN, Manel. Boundedness of the extremal solution for some p-Laplacian

problems. Nonlinear Analysis. Theory, Methods & Applications. An

International Multidisciplinary Journal. Series A: Theory and Methods,

v. 67, n. 1, p. 281-294, 2007

[25] WEI, Long. Boundedness of the extremal solution for some p-Laplacian problems.

Mathematica Slovaca, v. 64, n. 2, p. 379-390, 2014.
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