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Resumo

Neste trabalho estudamos a existência de ground states para a seguinte classe de

sistemas acoplados envolvendo equações de Schrödinger não-lineares −∆u+ V1(x)u = f1(x, u) + λ(x)v, x ∈ RN ,

−∆v + V2(x)v = f2(x, v) + λ(x)u, x ∈ RN ,

onde os potenciais V1 : RN → R, V2 : RN → R são não-negativos e estão relacionados

com o termo de acomplamento λ : RN → R por |λ(x)| < δ
√
V1(x)V2(x), para algum

0 < δ < 1. No caso N = 2, as não-linearidades f1 e f2 possuem crescimento crítico

exponencial no sentido da desigualdade de Trudinger-Moser. No caso N ≥ 3, as não-

linearidades são polinômios com expoente subcrítico e crítico no sentido de Sobolev.

Estudamos ainda a seguinte classe de sistemas acoplados não-locais (−∆)1/2u+ V1(x)u = f1(u) + λ(x)v, x ∈ R,

(−∆)1/2v + V2(x)v = f2(v) + λ(x)u, x ∈ R,

onde (−∆)1/2 denota o operador raíz quadrada do laplaciano e as não-linearidades

possuem crescimento crítico exponencial. Nossa abordagem é variacional e baseada na

técnica de minimização sobre a variedade de Nehari.

Palavras-chave: Sistemas linearmente acoplados; Soluções de energia mínima;

Variedade de Nehari; Crescimento crítico; Desigualdade de Trudinger-Moser.
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Abstract

In this work we study the existence of ground states for the following class of coupled

systems involving nonlinear Schrödinger equations −∆u+ V1(x)u = f1(x, u) + λ(x)v, x ∈ RN ,

−∆v + V2(x)v = f2(x, v) + λ(x)u, x ∈ RN ,

where the potentials V1 : RN → R, V2 : RN → R are nonnegative and related with

the coupling term λ : RN → R by |λ(x)| < δ
√
V1(x)V2(x), for some 0 < δ < 1. In

the case N = 2, the nonlinearities f1 e f2 have critical exponential growth in the sense

of Trudinger-Moser inequality. In the case N ≥ 3, the nonlinearities are polynomials

with subcritical and critical exponent in the Sobolev sense. We study also the following

class of nonlocal coupled systems (−∆)1/2u+ V1(x)u = f1(u) + λ(x)v, x ∈ R,

(−∆)1/2v + V2(x)v = f2(v) + λ(x)u, x ∈ R,

where (−∆)1/2 denotes the square root of the Laplacian operator and the nonlinearities

have critical exponential growth. Our approach is variational and based on

minimization technique over the Nehari manifold

Keywords: Linearly couples systems; Ground state solution; Nehari manifold; Critical

growth; Trudinger-Moser inequality.
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Introduction

The present work is concerned to study the existence of ground states for the

following class of coupled systems −∆u+ V1(x)u = f1(x, u) + λ(x)v, x ∈ RN ,

−∆v + V2(x)v = f2(x, v) + λ(x)u, x ∈ RN ,
(1)

where the potentials V1 : RN → R, V2 : RN → R are nonnegative and related with the

coupling term λ : RN → R by |λ(x)| < δ
√
V1(x)V2(x) for some 0 < δ < 1. Ground

states are solutions with minimal energy among the energy of all nontrivial solutions.

In the case N = 2, we study System (1) when the nonlinearities f1 : R2 × R→ R and

f2 : R2 × R → R have critical exponential growth motivated by classes of Trudinger-

Moser inequalities introduced in [14] and [34]. The case N ≥ 3 is studied when the

nonlinearities are polynomials involving subcritical and critical exponent in the Sobolev

sense. We are also concerned with the following class of coupled systems involving the

nonlocal operator square root of the Laplacian (−∆)1/2u+ V1(x)u = f1(u) + λ(x)v, x ∈ R,

(−∆)1/2v + V2(x)v = f2(v) + λ(x)u, x ∈ R.
(2)

The nonlinearities have critical exponential growth motivated by a class of Trudinger-

Moser inequality introduced by T. Ozawa, see [58]. Throughout the thesis we will

detail the assumptions required over the potentials and the nonlinearities.

The study of ground state solutions for coupled systems has made great progress

and attracted attention of many authors for its great physical interest. Solutions of

System (1) are related with standing waves of the following two-component system
−i∂ψ

∂t
= ∆ψ − V1(x)ψ + f1(x, ψ) + λ(x)φ, x ∈ RN , t ≥ 0,

−i∂φ
∂t

= ∆φ− V2(x)φ+ f2(x, φ) + λ(x)ψ, x ∈ RN , t ≥ 0,
(3)
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where i denotes the imaginary unit. Such class of systems arise in various branches

of mathematical physics and nonlinear topics, and can describe different physical

phenomena, such as Bose-Einstein condensates, Bose-Fermi mixture, propagation

in birefringent optical fibers and Kerr-like photorefractive media in optics, see e.g.

[2, 23,48,55,62]. For System (3), a solution of the form

(ψ(x, t), φ(x, t)) = (exp(−iEt)u(x), exp(−iEt)v(x)),

where E is some real constant is called standing wave solution. There are some papers

involving existence of standing waves under various hypotheses on the potentials and

the nonlinearities. We refer the readers to [5,10,11,19–21,44,49,50,65–67,72] and the

references therein. Assuming that fj(x, sξ) = fj(x, s)ξ, for all s ∈ R, j = 1, 2 and

ξ ∈ C with |ξ| = 1, it can be deduced that (ψ, φ) is a solution of (3) if and only if (u, v)

solves the following system −∆u+ (V1(x)− E)u = f1(x, u) + λ(x)v, x ∈ RN ,

−∆v + (V2(x)− E)v = f2(x, v) + λ(x)u, x ∈ RN .

For convenience and without loss of generality, replacing Vi(x)−E by Vi(x), i.e., shifting

E to 0, we turn to consider system (1).

Notice that if λ ≡ 0, V1 ≡ V2 ≡ V , f1 ≡ f2 ≡ f and u ≡ v, then System (1)

reduces to the nonlinear Schrödinger equation

−∆u+ V (x)u = f(x, u), x ∈ RN . (4)

This class of equations has been widely studied by many researchers. In order to

overcome the difficulty originated from the lack of compactness, it was introduced

several classes of potentials. For instance, P. Rabinowitz, [61], considered a class of

potentials bounded away from zero and coercive. He applied variational methods

based on variants of Mountain Pass Theorem to get existence results for (4) when

f(x, s) is subcritical or superlinear. In order to improve the behavior of the potentials

introduced in [61], T. Bartsch and Z.Q. Wang, [9], considered a class of uniformly

positive potentials such that the level sets {x ∈ RN : V (x) ≤M} have finite Lebesgue

measure for all M > 0. Besides to weaken the previous hypothesis under V (x),

they also improved the existence results getting infinitely many solutions if f(x, s)

2



is odd in s, that is, f(x,−s) = −f(x, s). In [64], B. Sirakov improved the class

of potentials contained in [9] and preserve the compactness of the energy functional

associated to (4). For more works concerning the scalar equation (4) we refer the

readers to [7, 8, 10, 11, 67] and references therein. Concerning to problems defined in

2−dimensional domains and involving nonlinearities with exponential growth, we refer

the readers to [3, 14,26,33,35,56,70] and references therein.

Our work was motivated by some papers that have appeared in the recent years

concerning the study of coupled systems involving nonlinear Schrödinger equations by

using variational approach. In [17], Z. Chen and W. Zou studied the existence of ground

states for the following class of critical coupled systems with constant potentials −∆u+ µu = |u|p−2u+ λv, x ∈ RN ,

−∆v + νv = |v|2∗−2v + λu, x ∈ RN ,
(5)

whenN ≥ 3 and 1 < p < 2∗−1, where 2∗ = 2N/(N−2) is the critical Sobolev exponent.

They proved that there exists critical parameters µ0 > 0 and λµ,ν ∈ [
√

(µ− µ0)ν,
√
µν)

such that (5) has a positive ground state when λ > λµ,ν and has no ground state

solutions when µ > µ0 and λ < λµ,ν . Coupled systems of nonlinear Schrödinger

equations of the type −∆u+ µu = (1 + a(x))|u|p−1u+ λv, x ∈ RN ,

−∆v + νv = (1 + b(x))|v|q−1v + λu, x ∈ RN ,

were studied by A. Ambrosetti [4] with N = 1 and A. Ambrosetti, G. Cerami, D. Ruiz

[6] with N ≥ 2. In [6], the authors used concentration compactness type arguments

to prove existence of positive bound and ground states when µ = ν = 1, λ ∈ (0, 1),

1 < p = q < 2∗ − 1, a(x) and b(x) vanishing at infinity. In [18], Z. Chen and W. Zou

extended and complemented some results introduced in [6], studying the following class

of coupled systems −∆u+ µu = f1(u) + λv, x ∈ RN ,

−∆v + νv = f2(v) + λu, x ∈ RN .

The authors obtained the existence of positive radial ground states and energy estimates

giving a description of the limit behavior as the parameter λ goes to zero. For

more existence results concerning coupled systems we refer to [16, 43, 51, 54, 59, 73]

and references therein. Note that in all of these works it was only considered

3



nonlinearities involving polynomial growth of subcritical or critical type in terms of

Sobolev embedding. On the nonlinear elliptic problems involving critical growth of

Trudinger-Moser type, we refer the readers to [24,25,29,34,47,60] and references therein.

Motivated by concrete applications in many fields of physics, biology and

mathematics, a great attention has been devoted to study the fractional nonlinear

Schrödinger equation

(−∆)su+ V (x)u = f(x, u), x ∈ RN , 0 < s < 1,

under many different assumptions on the potential V (x) and on the nonlinearity f(x, u).

In [40], it was proved the existence of positive solutions for the case when V ≡ 1 and

f(x, u) has subcritical growth in the Sobolev sense. In order to overcome the lack of

compactness, the authors used a comparison argument. Another way to overcome this

difficulty is requiring coercive potentials, that is, V (x) → +∞, as |x| → +∞. In this

direction, the existence of ground states was studied by M. Cheng, [22], considering a

polynomial nonlinearity, and S. Secchi, [63], considering a more general nonlinearity

in the subcritical case. For existence results involving another types of potentials, we

refer [15,31,41] and references therein. We point out that in all of these works it were

consider dimension N ≥ 2 and nonlinearities with polynomial growth.

It is known that when s → 1, the fractional Laplacian (−∆)s reduces to the

standard Laplace operator −∆, see [30]. In the fractional case, the critical Sobolev

exponent is given by 2∗s = 2N/(N − 2s). If 0 < s < N/2, then the fractional

Sobolev space Hs(RN) is continuously embedded into Lq(RN), for any q ∈ [2, 2∗s].

Thus, similarly the standard Laplacian case, the maximal growth on the nonlinearity

f(x, u) which allows to treat nonlinear fractional Schrödinger equations variationally

in Hs(RN), is given by |u|2∗s−1, when |u| → +∞. For N = 1 and s  1/2, we have

2∗s  +∞. In this case, H1/2(R) is continuously embedded into Lq(R), for q ∈ [2,+∞).

However, H1/2(R) is not continuously embedded into L∞(R). For more details we refer

the reader to [30] and the bibliographies therein. In this work, we deal with the limiting

case, when N = 1, s = 1/2 and nonlinearities with the maximum growth which allows

to treat System (2) variationally. For existence results considering the limiting case we

refer the readers to [27,28,36,37,45] and references therein.

Motivated by the above discussion, our work is concerned to study the existence
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of ground states for coupled systems under several assumptions on the potentials and

nonlinearities involving critical growth. Though there has been some works in this

direction, not much has been done for the classes of coupled systems introduced by (1)

and (2) when the nonlinear terms reached critical exponential growth. These classes of

systems imposes some difficulties. The first one is the lack of compactness due to the

fact that they are defined in the whole Euclidean space RN , which roughly speaking,

originates from the invariance of RN with respect to translation and dilation. Moreover,

the systems involve strongly coupled Schrödinger equations because of the linear terms

in the right hand side. System (2) has an additional difficulty that is the presence of

the square root of the Laplacian which is a nonlocal operator, that is, it takes care of

the behavior of the solution in the whole space. To overcome these difficulties, we shall

use a variational approach based on Nehari manifold. The literature on the Nehari

manifold is rather extensive and for a description of this subject, see for example [68].

In the following, we describe each chapter of the thesis.

In Chapter 1, we study the following class of coupled systems −∆u+ V1(x)u = µ|u|p−2u+ λ(x)v, x ∈ RN ,

−∆v + V2(x)v = |v|q−2v + λ(x)u, x ∈ RN ,
(6)

where N ≥ 3, 2 < p ≤ q ≤ 2∗ and 2∗ = 2N/(N − 2) is the critical Sobolev exponent.

Throughout the thesis, the coupling term λ will be related with the potentials V1 and

V2 by the assumption

|λ(x)| < δ
√
V1(x)V2(x), for some 0 < δ < 1. (7)

We divided the study of System (6) into three cases:

(i) (subcritical case) 2 < p ≤ q < 2∗,

(ii) (critical case) 2 < p < q = 2∗,

(iii) (critical case) p = q = 2∗.

The subcritical case is related with the classical paper of H. Brezis and E.H. Lieb, [12].

They proved the existence of ground states for the following class of systems

−∆ui(x) = gi(u(x)), i = 1, 2, ..., n, (8)

5



where gi(u) = ∂G(u)/∂ui, for some G ∈ C1(Rn), n ≥ 2. It can be checked that

when V1(x) ≡ µ, V2(x) ≡ ν and λ(x) ≡ λ, with 0 < λ < δ
√
µν, System (6)

becomes a particular case of System (8), satisfying all assumptions required on gi

in [12]. However, we deal with a more general coupling term λ(x) and two classes of

nonnegative potentials: periodic and asymptotically periodic. We prove the existence

of positive ground state and we use a bootstrap argument to improve the regularity of

the solution. In the critical case (ii), the existence of ground state will be related with

the parameter µ introduced in the first equation. Indeed, we prove that if µ ≥ µ0, for

some µ0 > 0, then we get ground state. Finally, in case (iii), we make use of Pohozaev

identity to conclude the nonexistence of positive classical solution for System (6).

In Chapter 2, we deal with the following class of coupled systems −∆u+ V1(x)u = f1(x, u) + λ(x)v, x ∈ R2,

−∆v + V2(x)v = f2(x, v) + λ(x)u, x ∈ R2.
(9)

We consider a class of potentials introduced by B. Sirakov, [64]. Since V1 and V2 satisfy

(7), we restrict the assumptions to nonnegative potentials. However, these hypotheses

involve a large class of potentials, for instance, coercive potentials. Motivated by a

class of Trudinger-Moser inequalities introduced in [34] (see Lemma 2.2.1 in Section

2.2), we study System (9) when the nonlinearities have critical exponential growth in

the following sense: for i = 1, 2 and αi0 > 0, fi : R2 × R→ R satisfies

lim sup
s→+∞

fi(x, s)

Ai(x)(eαs2 − 1)
=

 0 if α > αi0,

∞ if α < αi0,

where Ai(x) is a suitable function introduced in (V4) (see Chapter 2). In addition to

suitable assumptions, we suppose that there exists q > 2 such that

F1(x, s) + F2(x, t) ≥ θ(sq + tq), for all x ∈ R2 and s, t ≥ 0,

where Fi(x, s) :=
∫ s

0
Fi(x, τ) dτ , for i = 1, 2. Using a variational approach based on

Nehari manifold we prove that there exists θ0 > 0 such that System (9) possesses a

positive ground state solution, for some θ ≥ θ0. Moreover, we use a bootstrap argument

to get regularity and Lq-estimates to obtain an asymptotic behavior.

In Chapter 3 we study the existence of positive ground states for the following

6



class of coupled systems −∆u+ u = f1(u) + λ(x)v, x ∈ R2,

−∆v + v = f2(v) + λ(x)u, x ∈ R2,
(10)

when the nonlinearities f1(s) and f2(s) have critical exponential growth motivated by

a class of Trudinger-Moser inequalities introduced by D.M. Cao [14] (see Theorem A

in Section 3.2). For i = 1, 2 the function fi : R → R has αi0-critical growth at +∞,

that is,

lim sup
s→+∞

fi(s)

eαs2 − 1
=

 0 if α > αi0,

∞ if α < αi0.
(11)

In order to prove the existence of ground states we assume the following hypothesis:

lim inf
s→+∞

sf1(s)

eα
1
0s

2
≥ β0 >

2e

α0

. (12)

The assumption (12) was introduced in [1] and refined in [26]. It has been used in many

works, see e.g. [26, 35], and plays a very important role in this chapter. Indeed, (12)

will be used to get a suitable upper bound for the ground state energy level associated

with System (10). Thus, the ground state energy level will be in the range where we

can recover the compactness of the minimizing sequence. We study also the regularity

and we obtain asymptotic behavior.

Finally, in Chapter 4 we study the existence of ground states for the following

class of nonlocal coupled systems (−∆)1/2u+ V1(x)u = f1(u) + λ(x)v, x ∈ R,

(−∆)1/2v + V2(x)v = f2(v) + λ(x)u, x ∈ R,

where (−∆)1/2 denotes the square root of the Laplace operator. Motivated by a class

of Trudinger-Moser type inequalities introduced by T. Ozawa [58] (see Theorem B in

Section 4.2) we consider nonlinearities with critical exponential growth (11). Our

results may be considered as the extension of the main result for the scalar case

in [36]. Here we improve the class of potentials and we deal with two coupled nonlocal

equations.
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Notation and terminology

• C, C̃, C0, C1, C2,... denote positive (possibly different) constants;

• Cε or C(ε) denote positive constant which depends of the parameter ε;

• BR(x) denotes the open ball of radius R and center x;

• BR(x)c denotes the complement of BR(x);

• |A| denotes the Lebesgue measure of a set A ⊂ RN ;

• χA denotes the characteristic function of a set A ⊆ RN , that is,

χA(x) =

 1 if x ∈ A,

0 if x ∈ RN\A.

• For Ω ⊆ RN , u : Ω→ R and c ∈ R, we write

{u ≥ c} = {x ∈ Ω : u(x) ≥ c} and {u ≤ c} = {x ∈ Ω : u(x) ≤ c};

• ⇀ denotes weak convergence in a normed space;

• → denotes strong convergence in a normed space;

• 〈·, ·〉 denotes the duality pairing between E and the topological dual E∗;

• on(1) denotes a sequence which converges to 0 as n→∞;

• For 1 ≤ p ≤ ∞, the standard norm in Lp(RN) is denoted by ‖ · ‖p;

• For 1 ≤ p <∞, Lp(RN)× Lp(RN) denotes the Lebesgue space with norm

‖(u, v)‖p =
(
‖u‖pp + ‖v‖pp

)1/p
;
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• We denote by S the sharp constant of the embedding D1,2(RN) ↪→ L2∗(RN)∫
RN
|∇u|2 dx ≥ S

(∫
RN
|u|2∗ dx

)2/2∗

where D1,2(RN) := {u ∈ L2∗(RN) : |∇u| ∈ L2(RN)};

• C(Ω) denotes the space of continuous real functions in Ω ⊆ RN ;

• C(Ω) denotes the space of continuous real functions in Ω ⊆ RN , which are

uniformly continuous on bounded sets of Ω;

• For an integer k ≥ 1, Ck(Ω) denotes the space of k-times continuously

differentiable real functions defined over Ω ⊆ RN ;

• C∞(Ω) =
⋂∞
k=0C

k(Ω);

• C∞0 (Ω) denotes the space of infinitely differentiable real functions whose support

is compact in Ω ⊆ RN ;

• For 0 < β < 1 and Ω ⊂ RN , C0,β(Ω) denotes the standard Hölder space, that is,

C0,β(Ω) =

{
u ∈ C(Ω) : sup

x,y∈Ω

|u(x)− u(y)|
|x− y|β

<∞
}

;

• For an integer k ≥ 1, 0 < β < 1 and Ω ⊂ RN , Ck,β(Ω) denotes the space of the

functions in Ck(Ω) whose all derivatives up order k belongs to C0,β(Ω);
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Chapter 1

Ground states for coupled systems of
Schrödinger equations on RN

1.1 Introduction

In this chapter, we are interested in to establish existence and nonexistence results

for the following class of coupled systems involving nonlinear Schrödinger equations −∆u+ V1(x)u = µ|u|p−2u+ λ(x)v, x ∈ RN ,

−∆v + V2(x)v = |v|q−2v + λ(x)u, x ∈ RN ,
(Sµ)

where N ≥ 3, 2 < p ≤ q ≤ 2∗ and 2∗ = 2N/(N − 2) is the critical Sobolev exponent.

Our main goal here is to prove the existence of ground states for the subcritical case,

that is, when 2 < p ≤ q < 2∗ and for the critical case when 2 < p < q = 2∗. In

the critical case, the existence of ground state will be related with the parameter µ

introduced in the first equation. We are concerned with two classes of nonnegative

potentials: periodic and asymptotically periodic. The proof of our results rely on

minimization method based on the Nehari manifold. For the critical case when

p = q = 2∗, we make use of the Pohozaev identity to prove that System (Sµ) does

not admit positive solution.

1.1.1 Assumptions

In view of the presence of the potentials V1(x) and V2(x), for i = 1, 2 we introduce

the following space

Ei =

{
u ∈ H1(RN) :

∫
RN
Vi(x)u2 dx < +∞

}
,
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endowed with the inner product

(u, v)Ei =

∫
RN
∇u∇v dx+

∫
RN
Vi(x)uv dx,

to which corresponds the induced norm ‖u‖2
Ei

= (u, u)Ei . In order to establish a

variational approach to treat System (Sµ), we need to require suitable assumptions on

the potentials. For each i = 1, 2, we assume that

(V1) Vi, λ ∈ C1(RN) are 1-periodic in each of x1, x2, ..., xN .

(V2) Vi(x) ≥ 0 for all x ∈ RN and

νi = inf
u∈Ei

{∫
RN
|∇u|2 dx+

∫
RN
Vi(x)u2 dx :

∫
RN
u2 dx = 1

}
> 0.

(V3) |λ(x)| ≤ δ
√
V1(x)V2(x), for some δ ∈ (0, 1), for all x ∈ RN .

(V ′3) 0 < λ(x) ≤ δ
√
V1(x)V2(x), for some δ ∈ (0, 1), for all x ∈ RN .

The assumption (V2) implies that Ei is continuous embedded into Lp(RN), for all

2 ≤ p ≤ 2∗. We set the product space E = E1×E2. We have that E is a Hilbert space

when endowed with the inner product

((u, v), (z, w))E =

∫
RN

(∇u∇z + V1(x)uz +∇v∇w + V2(x)vw) dx,

to which corresponds the induced norm ‖(u, v)‖2
E = ((u, v), (u, v))E = ‖u‖2

E1
+ ‖v‖2

E2
.

Associated to System (Sµ), we have the C2 energy functional I : E → R defined by

I(u, v) =
1

2

(
‖(u, v)‖2

E − 2

∫
RN
λ(x)uv dx

)
− µ

p
‖u‖pp −

1

q
‖v‖qq,

which its differential is given by

〈I ′(u, v), (φ, ψ)〉 = ((u, v), (φ, ψ))−
∫
RN

(
|u|p−2uφ+ |v|q−2vψ + λ(x) (uψ + vφ)

)
dx,

where (φ, ψ) ∈ C∞0 (RN) × C∞0 (RN). Thus, critical points of I correspond to weak

solutions of (Sµ) and conversely.

Definition 1.1.1. We say that a pair (u, v) ∈ E \ {(0, 0)} is a ground state solution
(least energy solution) of (Sµ), if (u, v) is a solution of (Sµ) and its energy is minimal
among the energy of all nontrivial solutions of (Sµ), i.e., I(u, v) ≤ I(w, z) for any
other nontrivial solution (w, z) ∈ E. We say that (u, v) is nonnegative (nonpositive) if
u, v ≥ 0 (u, v ≤ 0) and positive (negative) if u, v > 0 (u, v < 0).
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We are also concerned with the existence of ground states for the following class

of coupled systems −∆u+ Ṽ1(x)u = µ|u|p−2u+ λ̃(x)v, x ∈ RN ,

−∆v + Ṽ2(x)v = |v|q−2v + λ̃(x)u, x ∈ RN ,
(S̃µ)

when the potentials Ṽ1(x), Ṽ2(x) and λ̃(x) are asymptotically periodic, that is, they

are infinity limit of the periodic functions V1(x), V2(x) and λ(x). In analogous way,

we may define the suitable product space Ẽ = Ẽ1× Ẽ2 considering the asymptotically

periodic potential Ṽi(x) instead Vi(x). In order to give a variational approach for our

problem, for i = 1, 2 we assume the following hypotheses:

(V4) Ṽi, λ̃ ∈ C1(RN), Ṽi(x) < Vi(x), λ(x) < λ̃(x), for all x ∈ RN and

lim
|x|→+∞

|Vi(x)− Ṽi(x)| = 0 and lim
|x|→+∞

|λ̃(x)− λ(x)| = 0.

(V5) Ṽi(x) ≥ 0 for all x ∈ RN and

ν̃i = inf
u∈Ẽi

{∫
RN
|∇u|2 dx+

∫
RN
Ṽi(x)u2 dx :

∫
RN
u2 dx = 1

}
> 0.

(V6) |λ̃(x)| ≤ δ
√
Ṽ1(x)Ṽ2(x), for some δ ∈ (0, 1), for all x ∈ RN .

(V ′6) 0 < λ̃(x) ≤ δ
√
Ṽ1(x)Ṽ2(x), for some δ ∈ (0, 1), for all x ∈ RN .

1.1.2 Statement of the main results

The main results of this chapter are the following:

Theorem 1.1.2. Assume that (V1)-(V3) hold. If 2 < p ≤ q < 2∗, then there exists a
nonnegative ground state solution (u0, v0) ∈ C1,β

loc (RN)×C1,β
loc (RN) for System (Sµ), for

all µ ≥ 0. If (V ′3) holds, then the ground state is positive.

Theorem 1.1.3. Assume that (V1)-(V3) hold. If 2 < p < q = 2∗, then there
exists µ0 > 0 such that System (Sµ) possesses a nonnegative ground state solution
(u0, v0) ∈ E, for all µ ≥ µ0. If (V ′3) holds, then the ground state is positive.

Theorem 1.1.4. Suppose that assumptions (V1)-(V6) hold. If 2 < p ≤ q < 2∗, then
there exists a nonnegative ground state solution (u0, v0) ∈ C1,β

loc (RN) × C1,β
loc (RN) for

System (S̃µ), for all µ ≥ 0 . Moreover, if 2 < p < q = 2∗, then there exists µ0 > 0 such
that System (S̃µ) possesses a nonnegative ground state solution for all µ ≥ µ0. If (V ′6)

holds, then the ground states are positive.
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Theorem 1.1.5. Assume p = q = 2∗. In addition, consider the following assumptions:

(V7) 0 ≤ 〈∇Vi(x), x〉 ≤ CVi(x).

(V8) |〈∇λ(x), x〉| ≤ C|λ(x)| and 〈∇λ(x), x〉 ≤ 0.

Then, System (Sµ) has no positive classical solution for all µ ≥ 0.

Remark 1.1.6. A typical example of functions satisfying (V7) and (V8) is λ(x) =

−(1/4)‖x‖2 and Vi(x) = (1/2)‖x‖2.

1.1.3 Outline

The remainder of this chapter is organized as follows. In the forthcoming section

we introduce and give some properties of the Nehari manifold (for a more complete

description of this subject we refer the reader to [68]). In Section 1.3 we deal with

System (Sµ) in the subcritical case when 2 < p ≤ q < 2∗ and the potentials are

periodic. For this matter we use a minimization method based on Nehari manifold

to get a positive ground state solution and a bootstrap argument to obtain regularity.

In Section 1.4 we study System (Sµ) in the critical case when 2 < p < q = 2∗ with

periodic potentials. In the periodic case, the key point is to use the invariance of

the energy functional under translations to recover the compactness of the minimizing

sequence. In Section 1.5 we study the existence of ground states when the potentials

are asymptotically periodic. For this purpose, we establish a relation between the

energy levels associated to Systems (Sµ) and (S̃µ). Finally, in Section 1.6 we make use

of the Pohozaev identity to prove the nonexistence of positive classical solutions for

system (Sµ) in the critical case when p = q = 2∗.

1.2 Preliminary results

One of the features of the class of coupled systems studied in this thesis is the

presence of the coupling term λ(x) in the equations. The assumption (V3) will be

required in all chapters henceforth. The next lemma is a crucial estimate obtained by

this assumption, and will be cited and used in the next chapters.
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Lemma 1.2.1. If (V3) holds, then we have

‖(u, v)‖2
E − 2

∫
RN
λ(x)uv dx ≥ (1− δ)‖(u, v)‖2

E, for all (u, v) ∈ E. (1.1)

Proof. For (u, v) ∈ E we have

0 ≤
(√

V1(x)|u| −
√
V2(x)|v|

)2

= V1(x)u2 − 2
√
V1(x)|u|

√
V2(x)|v|+ V2(x)v2,

which together with assumption (V3) implies that

−2

∫
RN
λ(x)uv dx ≥ −2

∫
RN
|λ(x)||u||v| dx

≥ −2δ

∫
RN

√
V1(x)|u|

√
V2(x)|v| dx

≥ −δ
(∫

RN
V1(x)u2 dx+

∫
RN
V2(x)v2 dx

)
≥ −δ‖(u, v)‖2

E,

which easily implies (1.1). �

In order to prove the existence of ground states, we introduce the Nehari manifold

associated to System (Sµ)

N = {(u, v) ∈ E\{(0, 0)} : 〈I ′(u, v), (u, v)〉 = 0} .

Notice that if (u, v) ∈ N , then

‖(u, v)‖2
E − 2

∫
RN
λ(x)uv dx = µ‖u‖pp + ‖v‖qq. (1.2)

It is obvious that all nontrivial critical points of I belong to N . In general, the Nehari

manifold may not be a manifold. However, in our case, N is in fact a C1-manifold as

we can see in the following lemma:

Lemma 1.2.2. There exists α > 0 such that

‖(u, v)‖E ≥ α, for all (u, v) ∈ N . (1.3)

Moreover, N is a C1-manifold.

Proof. Let (u, v) ∈ N . By using (1.1), (1.2) and Sobolev embedding, we deduce that

(1− δ)‖(u, v)‖2
E ≤ ‖(u, v)‖2

E − 2

∫
RN
λ(x)uv dx

= µ‖u‖pp + ‖v‖qq
≤ C (‖(u, v)‖pE + ‖(u, v)‖qE) .
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Hence, we have that

0 <
1− δ
C
≤ ‖(u, v)‖p−2

E + ‖(u, v)‖q−2
E ,

which implies (1.3). Now, let J : E\{(0, 0)} → R be the C1-functional defined by

J(u, v) = 〈I ′(u, v), (u, v)〉 = ‖(u, v)‖2
E − 2

∫
RN
λ(x)uv dx− µ‖u‖pp − ‖v‖qq.

Notice that N = J−1(0). If (u, v) ∈ N , then it follows from (1.2) that

〈J ′(u, v), (u, v)〉 = 2

(
‖(u, v)‖2 − 2

∫
RN
λ(x)uvdx

)
− pµ‖u‖pp − q‖v‖qq

= (2− p)
(
‖(u, v)‖2

E − 2

∫
RN
λ(x)uv dx

)
+ (p− q)‖v‖qq,

which together with (1.1), (1.3) and the fact that 2 < p ≤ q implies that

〈J ′(u, v), (u, v)〉 ≤ (2− p)(1− δ)‖(u, v)‖2
E ≤ (2− p)(1− δ)α < 0. (1.4)

Therefore, 0 is a regular value of J and N is a C1-manifold. �

Remark 1.2.3. If (u0, v0) ∈ N is a critical point of I |N , then I ′(u0, v0) = 0. In
fact, notice that I ′(u0, v0) = ηJ ′(u0, v0), where η ∈ R is the corresponding Lagrange
multiplier. Taking the scalar product with (u0, v0) and using (1.4) we conclude that
η = 0.

We define the ground state energy associated with (Sµ) by

cN = inf
(u,v)∈N

I(u, v).

We note that cN is positive. In fact, for any (u, v) ∈ N we can deduce that

I(u, v) =

(
1

2
− 1

p

)(
‖(u, v)‖2

E − 2

∫
RN
λ(x)uv dx

)
+

(
1

p
− 1

q

)
‖v‖qq.

Since 2 < p ≤ q, it follows from (1.1) and (1.3) that

I(u, v) ≥
(

1

2
− 1

p

)
(1− δ)‖(u, v)‖2

E ≥
(

1

2
− 1

p

)
(1− δ)α > 0,

which implies that cN > 0.

The set of all nontrivial critical points of I may contain only one element, while

the Nehari manifold contains infinitely many elements. Indeed, this is a consequence

of the following lemma:
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Lemma 1.2.4. Assume that (V3) holds. Thus, for any (u, v) ∈ E\{(0, 0)}, there exists
a unique t0 > 0, depending only on (u, v), such that

(t0u, t0v) ∈ N and I(t0u, t0v) = max
t≥0

I(tu, tv).

Proof. Let (u, v) ∈ E\{(0, 0)} be fixed and consider the function g : [0,∞)→ R defined
by g(t) = I(tu, tv). Notice that 〈I ′(tu, tv), (tu, tv)〉 = tg′(t). Therefore, t0 is a positive
critical point of g if and only if (t0u, t0v) ∈ N . It follows from assumption (V3) that

‖(u, v)‖2
E − 2

∫
RN
λ(x)uv dx ≥ 0, for all (u, v) ∈ E.

Since 2 < p ≤ q and

g(t) =
t2

2

(
‖(u, v)‖2

E − 2

∫
RN
λ(x)uv dx

)
− tp

p
µ‖u‖pp −

tq

q
‖v‖qq,

we conclude that g(t) < 0 for t > 0 sufficiently large. On the other hand, by using
(1.1) and Sobolev embeddings, we have that

g(t) ≥ (1− δ)t
2

2
‖(u, v)‖2

E − C1
tp

p
‖u‖pE1

− C2
tq

q
‖v‖qE2

≥ t2‖(u, v)‖2
E

(
1− δ

2
− C1

tp−2

p
‖(u, v)‖p−2

E − C2
tq−2

q
‖(u, v)‖q−2

E

)
> 0,

provided t > 0 is sufficiently small. Thus g has maximum points in (0,∞). In order to
prove the uniqueness, let us suppose that there exists t1, t2 > 0 with t1 < t2 such that
g′(t1) = g′(t2) = 0. Since every critical point of g satisfies

‖(u, v)‖2
E − 2

∫
RN
λ(x)uv dx = tp−2µ‖u‖pp + tq−2‖v‖qq,

we have that
0 =

(
tp−2
1 − tp−2

2

)
µ‖u‖pp +

(
tq−2
1 − tq−2

2

)
‖v‖qq,

which contradicts the fact that (u, v) 6= (0, 0). �

1.3 Proof of Theorem 1.1.2

By Ekeland’s variational principle (see [38]), there exists a sequence (un, vn)n ⊂ N

such that

I(un, vn)→ cN and I ′(un, vn)→ 0. (1.5)

16



Notice that (un, vn)n is bounded. In fact, recalling that p ≤ q it follows from (1.1) and

(1.2) that

I(un, vn) =

(
1

2
− 1

p

)(
‖(un, vn)‖2

E − 2

∫
RN
λ(x)unvn dx

)
+

(
1

p
− 1

q

)
‖vn‖qq

≥
(

1

2
− 1

q

)
(1− δ) ‖(un, vn)‖2

E.

Since (I(un, vn))n is a bounded sequence, we conclude that (un, vn)n is bounded in E.

Passing to a subsequence if necessary, we way assume that (un, vn) ⇀ (u0, v0) weakly

in E. By a standard argument, we have that I ′(u0, v0) = 0. We recall the following

result due to P.L. Lions [69, Lemma 1.21] (see also [52]).

Lemma 1.3.1. Let r > 0 and 2 ≤ s < 2∗. If (un)n ⊂ H1(RN) is a bounded sequence
such that

lim
n→+∞

sup
y∈RN

∫
Br(y)

|un|s dx = 0,

then un → 0 in Ls(RN).

Proposition 1.3.2. There exists a ground state solution for System (Sµ).

Proof. We split the argument into two cases.
Case 1. (u0, v0) 6= (0, 0).

In this case, (u0, v0) is a nontrivial critical point of the energy functional I. Thus,
(u0, v0) ∈ N . It remains to prove that I(u0, v0) = cN . It is clear that cN ≤ I(u0, v0).
On the other hand, by using the semicontinuity of norm, we can deduce that

cN + on(1) = I(un, vn)− 1

2
〈I ′(un, vn), (un, vn)〉

=

(
1

2
− 1

p

)
µ‖un‖pp +

(
1

2
− 1

q

)
‖vn‖qq

≥
(

1

2
− 1

p

)
µ‖u0‖pp +

(
1

2
− 1

q

)
‖v0‖qq + on(1)

= I(u0, v0)− 1

2
〈I ′(u0, v0), (u0, v0)〉+ on(1)

= I(u0, v0) + on(1),

which implies that cN ≥ I(u0, v0). Therefore, I(u0, v0) = cN .
Case 2. (u0, v0) = (0, 0).

We claim that there exists a sequence (yn)n ⊂ RN and R, ξ > 0 such that

lim inf
n→∞

∫
BR(yn)

(u2
n + v2

n) dx ≥ ξ > 0. (1.6)
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Suppose by contradiction that (1.6) does not hold. Thus, for any R > 0 we have

lim
n→∞

sup
y∈RN

∫
BR(y)

u2
n dx = 0 and lim

n→∞
sup
y∈RN

∫
BR(y)

v2
n dx = 0.

It follows from Lemma 1.3.1 that un → 0 strongly in Lp(RN) and vn → 0 strongly
Lq(RN), for any 2 < p, q < 2∗. Since (un, vn)n ⊂ N , we can deduce that

0 < (1− δ)α ≤ (1− δ)‖(un, vn)‖2
E ≤ µ‖un‖pp + ‖vn‖qq → 0,

which is a contradiction. Therefore, (1.6) holds.
We may assume without loss of generality that (yn)n ⊂ ZN . Let us consider the

shift sequence (ũn(x), ṽn(x)) = (un(x+yn), vn(x+yn)). Since V1(·), V2(·) and λ(·) are 1-
periodic functions, it follows that the energy functional I is invariant under translations
of the form (u, v) 7→ (u(· − z), v(· − z)) with z ∈ ZN . By a careful computation we can
deduce that

‖(ũn, ṽn)‖E = ‖(un, vn)‖E, I(ũn, ṽn) = I(un, vn)→ cN and I ′(ũn, ṽn)→ 0.

Moreover, arguing as before, we can conclude that (ũn, ṽn)n is a bounded sequence in
E. In this way, there exists a critical point (ũ, ṽ) of I, such that, up to a subsequence,
(ũn, ṽn) ⇀ (ũ, ṽ) weakly in E and (ũn, ṽn)→ (ũ, ṽ) strongly in L2(BR(0))×L2(BR(0)).
Thus, using (1.6) we obtain∫
BR(0)

(ũ2 + ṽ2) dx = lim inf
n→∞

∫
BR(0)

(ũ2
n + ṽ2

n) dx = lim inf
n→∞

∫
BR(yn)

(u2
n + v2

n) dx ≥ ξ > 0.

Therefore, (ũ, ṽ) 6= (0, 0). The conclusion follows as in the Case 1. �

Proposition 1.3.3. There exists a nonnegative ground state solution (ũ, ṽ) ∈
C1,β
loc (RN)× C1,β

loc (RN) for System (Sµ).

Proof. Let (u0, v0) ∈ N be the ground state obtained in the proposition 1.3.2. From
Lemma 1.2.4, there exists t > 0 such that (t|u0|, t|v0|) ∈ N . Thus, we can deduce that

I(t|u0|, t|v0|) ≤ I(tu0, tv0) ≤ max
t≥0

I(tu0, tv0) = I(u0, v0) = cN ,

which implies that (t|u0|, t|v0|) is also a minimizer of I on N . Therefore, (t|u0|, t|v0|)
is a nonnegative ground state solution for System (Sµ).

To prove the regularity, we use the standard bootstrap argument. Let us denote
(ũ, ṽ) = (t|u0|, t|v0|). First, we define

p1(x) = µ|ũ|p−2ũ+ λ(x)ṽ − V1(x)ũ and p2(x) = |ṽ|q−2ṽ + λ(x)ũ− V2(x)ṽ.

Thus, (ũ, ṽ) is a weak solution of the restricted problem{
−∆ũ = p1(x), x ∈ B1(0),

−∆ṽ = p2(x), x ∈ B1(0).
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Using Sobolev embedding we have that V1(x)ũ, V2(x)ṽ, λ(x)ũ, λ(x)ṽ ∈ L2∗(B1(0)).
Moreover, |ũ|p−2ũ ∈ Lr(B1(0)) for all 1 ≤ r ≤ 2∗/(p − 1) and |ṽ|q−2ṽ ∈ Ls(B1(0))

for all 1 ≤ s ≤ 2∗/(q − 1). Let us define r1 = 2∗/(q − 1). Since p ≤ q, it follows that
r1 ≤ 2∗/(p− 1). Hence |ũ|p−2ũ ∈ Lr1(B1(0)). Therefore, p1(x), p2(x) ∈ Lr1(B1(0)). On
the other hand, for each i = 1, 2 let wi be the Newtonian potential of pi(x). Thus, in
light of [42, Theorem 9.9] we have wi ∈ W 2,r1(B1(0)) and{

∆w1 = p1(x), x ∈ B1(0),

∆w2 = p2(x), x ∈ B1(0).

Therefore, (ũ−w1, ṽ−w2) ∈ H1(B1(0))×H1(B1(0)) is a weak solution of the problem{
∆z1 = 0, in B1(0),

∆z2 = 0, in B1(0).

In light of [46, Corollary 1.2.1], we have that (ũ−w1, ṽ−w2) ∈ C∞(B1(0))×C∞(B1(0)).
Therefore, (ũ, ṽ) ∈ W 2,r1(B1(0))×W 2,r1(B1(0)). Since q−1 < 2∗−1, there exists δ > 0

such that (q − 1)(1 + δ) = 2∗ − 1. Thus,

r1 =
2∗

q − 1
= 2∗

(1 + δ)

2∗ − 1
=

2N

N + 2
(1 + δ). (1.7)

Recall the Sobolev embedding W 2,r1(B1(0)) ↪→ Ls1(B1(0)), where s1 = Nr1/(N −2r1).
We claim that there exists r2 ∈ (r1, s1) such that (ũ, ṽ) ∈ W 2,r2(B1(0))×W 2,r2(B1(0)).
Indeed, we define r2 = s1/(q − 1) and we note that r2 < s1. By using (1.7) we deduce
that

r2

r1

=
Nr1

(q − 1)(N − 2r1)r1

=
(N − 2)(1 + δ)

N − 2− 4δ
> 1 + δ,

which implies that r2 ∈ (r1, s1). By Sobolev embedding,

W 2,r1(B1(0)) ↪→ Ls1(B1(0)) ↪→ Lr2(B1(0)).

Hence, p1(x), p2(x) ∈ Lr2(B1(0)). From the same argument used before, we can
conclude that (ũ, ṽ) ∈ W 2,r2(B1(0))×W 2,r2(B1(0)). Iterating, we obtain the sequence

rn+1 =
1

q − 1

(
Nrn

N − 2rn

)
.

Notice that rn+1 →∞, as n→∞. Therefore,

(ũ, ṽ) ∈ W 2,r
loc (RN)×W 2,r

loc (RN), for all 2 ≤ r <∞.

From Sobolev embedding, we have that (ũ, ṽ) ∈ C1,β(B1(0)) × C1,β(B1(0)), for some
β ∈ (0, 1). �

Proposition 1.3.4. If (V ′3) holds, then the ground state is positive.
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Proof. Let (ũ, ṽ) ∈ E\{(0, 0)} be the nonnegative ground state obtained in the
proposition 1.3.3. Since (ũ, ṽ) 6= (0, 0) we may assume without loss of generality that
ũ 6= 0. We claim that ṽ 6= 0. In fact, arguing by contradiction, let us suppose that
ṽ = 0. Thus,

0 = 〈I ′(ũ, 0), (0, ψ)〉 = −
∫
RN
λ(x)ũψ dx, for all ψ ∈ C∞0 (RN).

Since λ(x) is positive, we have that ũ = 0 which is a contradiction. Therefore, ṽ 6= 0.
Taking (ϕ, 0) as test function one sees that∫

RN
∇ũ∇ϕ dx+

∫
RN
V1(x)ũϕ dx =

∫
RN
|ũ|p−2ũϕ dx+

∫
RN
λ(x)ṽϕ dx ≥ 0,

for all ϕ ≥ 0, ϕ ∈ C∞0 (RN). Thus, we can deduce that∫
RN
∇(−ũ)∇ϕ dx−

∫
RN

[−V1(x)] (−ũ)ϕ dx ≤ 0,

for all ϕ ≥ 0, ϕ ∈ C∞0 (RN). Moreover, since V1(x) ≥ 0 for all x ∈ RN , it follows that

−
∫
RN
V1(x)ϕ dx ≤ 0, for all ϕ ≥ 0, ϕ ∈ C∞0 (RN).

In order to prove that (ũ, ṽ) is positive, we suppose by contradiction that there exists
p ∈ RN such that ũ(p) = 0. Thus, since −ũ ≤ 0 in RN , for any R > R0 > 0 we have
that

0 = sup
BR0

(p)

(−ũ) = sup
BR(p)

(−ũ).

By the Strong Maximum Principle [42, Theorem 8.19] we conclude that −ũ ≡ 0 in
BR(p), for all R > R0. Therefore, ũ ≡ 0 in RN which is a contradiction. Therefore
ũ > 0 in RN . Analogously we can prove that ṽ > 0 in RN . Therefore, the ground state
(ũ, ṽ) is positive. �

Proof of Theorem 1.1.2. It follows from Propositions 1.3.2, 1.3.3 and 1.3.4. �

1.4 Proof of Theorem 1.1.3

In this section, we deal with System (Sµ) when 2 < p < q = 2∗. Analogously

to Theorem 1.1.2, we have a sequence (un, vn)n ⊂ N satisfying (1.5). Moreover, the

sequence is bounded and (un, vn) ⇀ (u0, v0) weakly in E. We have also that (u0, v0) is

a critical point of the energy functional I. In order to get a nontrivial critical point,

we need the following lemma:

Lemma 1.4.1. There exists µ0 > 0 such that cN < 1
N
SN/2, for all µ ≥ µ0.
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Proof. Let us consider (u, v) ∈ E such that u, v ≥ 0 and u, v 6≡ 0. We denote uµ = µu

and vµ = µv. It follows from Lemma 1.2.4 that for any µ > 0, there exists a unique
tµ > 0 such that (tµuµ, tµvµ) ∈ N . Thus,

(tµµ)2‖(u, v)‖2
E = (tµµ)pµ‖u‖pp + (tµµ)2∗‖v‖2∗

2∗ + 2(tµµ)2

∫
RN
λ(x)uv dx, (1.8)

which implies that ‖(u, v)‖2
E ≥ (tµµ)2∗−2‖v‖2∗

2∗ . Therefore, (tµµ)µ is a bounded sequence.
Passing to a subsequence if necessary, we may assume that tµµ→ t̃ ≥ 0, as µ→ +∞.
We claim that t̃ = 0. Indeed, arguing by contradiction we suppose that t̃ > 0. In this
case,

(tµµ)pµ‖u‖pp + (tµµ)2∗‖v‖2∗

2∗ + 2(tµµ)2

∫
RN
λ(x)uv dx→ +∞, as µ→ +∞,

which contradicts (1.8). Therefore, tµµ → 0 as µ → +∞. Hence, there exists µ0 > 0

such that

cN ≤ I(tµuµ, tµvµ) ≤ (tµµ)2

2
‖(u, v)‖2

E <
1

N
SN/2, for all µ ≥ µ0. �

In analogous way to the proof of Theorem 1.1.2, we split the proof into two cases.

Case 1 (u0, v0) 6= (0, 0).

This case is completely similar to the proof of the subcritical case.

Case 2 (u0, v0) = (0, 0).

Let µ0 > 0 be the parameter obtained in the preceding lemma. We claim that if

µ ≥ µ0, then there exists a sequence (yn)n ⊂ RN and constants R, ξ > 0 such that

lim inf
n→∞

∫
BR(yn)

(u2
n + v2

n) dx ≥ ξ > 0. (1.9)

In fact, suppose that (1.9) does not hold. Thus, for any R > 0 we have

lim
n→∞

sup
y∈RN

∫
BR(y)

(u2
n + v2

n) dx = 0.

It follows from Lemma 1.3.1 that un → 0 strongly in Lp(RN), for 2 < p < 2∗. Notice

that

I(un, vn)− 1

2
〈I ′(un, vn), (un, vn)〉 =

p− 2

2p
µ‖un‖pp +

1

N
‖vn‖2∗

2∗ ,

which together with (1.5) and Lemma 1.3.1 implies that

NcN + on(1) = N

(
I(un, vn)− 1

2
〈I ′(un, vn), (un, vn)〉 − p− 2

2p
µ‖un‖pp

)
= ‖vn‖2∗

2∗ .
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Moreover, we can deduce that

NcN+on(1) = ‖vn‖2∗

2∗+µ‖un‖pp+〈I ′(un, vn), (un, vn)〉 = ‖(un, vn)‖2
E−2

∫
RN
λ(x)unvn dx.

The preceding computations implies that

NcN+on(1) = ‖vn‖2∗

2∗ ≤ S−
N
N−2‖∇vn‖

2N
N−2

2 ≤ S−
N
N−2

(
‖(un, vn)‖2

E − 2

∫
RN
λ(x)unvn dx

) N
N−2

.

Thus, we can conclude that

NcN + on(1) ≤
(
NcN
S

) N
N−2

+ on(1).

Therefore, cN ≥ 1
N
SN/2, contradicting Lemma 1.4.1.

Since (1.9) holds, we can consider the shift sequence (ũn(x), ṽn(x)) = (un(x +

yn), vn(x + yn)) and we can repeat the same arguments used in the proof of

Theorem 1.1.2 to finish the proof.

1.5 Proof of Theorem 1.1.4

In this section we are concerned with the existence of ground states for

the asymptotically periodic case. We emphasize that the only difference between

Vi(x), λ(x) and Ṽi(x), λ̃(x) is the 1-periodicity required to Vi(x) and λ(x). Thus, if

Ṽi(x) and λ̃(x) are periodic potentials, we can make use of Theorems 1.1.2 and 1.1.3 to

get a ground state solution for System (S̃µ). Let us suppose that they are not periodic.

Associated to System (S̃µ), we have the following energy functional

Ĩ(u, v) =
1

2

(
‖(u, v)‖2

Ẽ
− 2

∫
RN
λ̃(x)uv dx

)
− µ

p
‖u‖pp −

1

q
‖v‖qq.

The Nehari manifold associated to System (S̃µ) is defined by

Ñ = {(u, v) ∈ Ẽ\{(0, 0)} : 〈Ĩ ′(u, v), (u, v)〉 = 0},

and the ground state energy is given by cÑ = infÑ Ĩ(u, v). Arguing as before we deduce

that

Ĩ(u, v) ≥
(

1

2
− 1

µ

)
(1− δ)‖(u, v)‖2

Ẽ
≥
(

1

2
− 1

µ

)
(1− δ)ρ > 0, for all (u, v) ∈ Ñ .

Hence, cÑ > 0. The next step is to establish a relation between the energy levels cN

and cÑ .
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Lemma 1.5.1. cÑ < cN .

Proof. Let (u0, v0) ∈ N be the nonnegative ground state solution for System (Sµ). It
is easy to see that Lemma 1.2.4 remains true for Ĩ and Ñ . Thus, there exists a unique
t0 > 0, depending only on (u0, v0), such that (t0u0, t0v0) ∈ Ñ . By using (V4) we get∫

RN

[
(Ṽ1(x)− V1(x))u2

0 + (Ṽ2(x)− V2(x))v2
0 + (λ(x)− λ̃(x))u0v0

]
dx < 0.

Therefore, Ĩ(t0u0, t0v0) − I(t0u0, t0v0) < 0. Since (u0, v0) is a ground state for
System (Sµ) we can use Lemma 1.2.4 to deduce that

cÑ ≤ Ĩ(t0u0, t0v0) < I(t0u0, t0v0) ≤ max
t≥0

I(tu0, tv0) = I(u0, v0) = cN ,

which finishes the proof. �

Let (un, vn)n ⊂ Ñ be the minimizing sequence satisfying

Ĩ(un, vn)→ cÑ and Ĩ ′(un, vn)→ 0. (1.10)

Since (un, vn)n is a bounded sequence in Ẽ, we may assume up to a subsequence that

(un, vn) ⇀ (u0, v0) weakly in Ẽ. The main difficulty here is to prove that the weak

limit is nontrivial.

Proposition 1.5.2. The weak limit (u0, v0) of the minimizing sequence (un, vn)n is
nontrivial.

Proof. We suppose by contradiction that (u0, v0) = (0, 0). We may assume that

• un → 0 and vn → 0 strongly in Lploc(RN), for all 2 ≤ p < 2∗;

• un(x)→ 0 and vn(x)→ 0 almost everywhere in RN .

It follows from assumption (V4) that for any ε > 0 there exists R > 0 such that

|V1(x)− Ṽ1(x)| < ε, |V2(x)− Ṽ2(x)| < ε, |λ̃(x)− λ(x)| < ε, for |x| ≥ R. (1.11)

By using (1.11) and Sobolev embedding and local convergence there exists n0 ∈ N such
that∣∣∣∣∫

RN
(V1(x)− Ṽ1(x))u2

n dx

∣∣∣∣ ≤ ∫
BR(0)

|V1(x)− Ṽ1(x)|u2
n dx+ Cε

∫
BR(0)c

u2
n dx

≤ (‖V1‖L∞loc + ‖Ṽ1‖L∞loc)‖un‖
2
L2(BR(0)) + Cε‖un‖2

Ẽ1

≤ (‖V1‖L∞loc + ‖Ṽ1‖L∞loc)ε+ Cε,
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for all n ≥ n0. Analogously, we can deduce that∣∣∣∣∫
RN

(V2(x)− Ṽ2(x))v2
n dx

∣∣∣∣ ≤ (‖V2‖L∞loc + ‖Ṽ2‖L∞loc)ε+ Cε.

We have also from (1.11) the following estimates∣∣∣∣∫
RN

(λ̃(x)− λ(x))unvn dx

∣∣∣∣ ≤ ∫
BR(0)

|λ̃(x)− λ(x)||un||vn| dx+ Cε

∫
BR(0)c

|un||vn| dx

≤ (‖λ̃‖L∞loc + ‖λ‖L∞loc)ε+ Cε,

for all n ≥ ñ0. Therefore, we can conclude that

I(un, vn)− Ĩ(un, vn) = on(1) and 〈I ′(un, vn), (un, vn)〉−〈Ĩ ′(un, vn), (un, vn)〉 = on(1),

which jointly with (1.10) implies that

I(un, vn) = cÑ + on(1) and 〈I ′(un, vn), (un, vn)〉 = on(1). (1.12)

Using Lemma 1.2.4, we obtain a sequence (tn)n ⊂ (0,+∞) such that (tnun, tnvn)n ⊂ N .

Claim 1. lim supn→+∞ tn ≤ 1.

Arguing by contradiction, we suppose that there exists ε0 > 0 such that, up to a
subsequence, we have tn ≥ 1 + ε0, for all n ∈ N. Thus, using (1.12) and the fact that
(tnun, tnvn) ⊂ N we get

(tp−2
n − 1)µ‖un‖pp + (tq−2

n − 1)‖vn‖qq = on(1),

which together with tn ≥ 1 + ε0 implies that

((1 + ε0)p−2 − 1)µ‖un‖pp + ((1 + ε0)q−2 − 1)‖vn‖qq ≤ on(1). (1.13)

Similarly to the proof of Theorems 1.1.2 and 1.1.3, there exists a sequence (yn)n ⊂ RN

and constants R, ξ > 0 such that

lim inf
n→∞

∫
BR(yn)

(u2
n + v2

n) dx ≥ ξ > 0. (1.14)

We point out that when q = 2∗, (1.14) holds for parameters µ ≥ µ0, where µ0 was
introduced in Lemma 1.4.1. Let us define (ũn(x), ṽn(x)) = (un(x+ yn), vn(x+ yn)). It
follows from assumption (V4) that Ṽ1, Ṽ2 ∈ L∞(RN). Using the continuous embedding
Ẽi ↪→ H1(RN) we can deduce that (ũn, ṽn)n is bounded in Ẽ. Thus, up to a
subsequence, we may consider (ũn, ṽn) ⇀ (ũ, ṽ) weakly in Ẽ. Therefore,

lim
n→+∞

∫
BR(0)

(ũ2
n + ṽ2

n) dx = lim
n→+∞

∫
BR(yn)

(u2
n + v2

n) dx ≥ β > 0,
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which implies (ũ, ṽ) 6= (0, 0). Thus, by using (1.13) and the semicontinuity of the norm,
we get

0 < ((1 + ε0)p−2 − 1)µ‖ũ‖pp + ((1 + ε0)q−2 − 1)‖ṽ‖qq ≤ on(1),

which is not possible and finishes the proof of Claim 1.

Claim 2. There exists n0 ∈ N such that tn ≥ 1, for n ≥ n0.

In fact, arguing by contradiction, we suppose that up to a subsequence, tn < 1.
Since (tnun, tnvn)n ⊂ N we have that

cN ≤
p− 2

2p
µtpn‖un‖pp +

q − 2

2q
tqn‖vn‖qq ≤

p− 2

2p
µ‖un‖pp +

q − 2

2q
‖vn‖qq = cÑ + on(1).

Therefore, cN ≤ cÑ which contradicts Lemma 1.5.1 and finishes the proof of Claim 2.

Combining Claims 1 and 2 we deduce that

I(tnun, tnvn)− I(un, vn) = on(1).

Thus, it follows from (1.12) that

cN ≤ I(tnun, tnvn) = I(un, vn) + on(1) = cÑ + on(1),

which contradicts Lemma 1.5.1. Therefore, (u0, v0) 6= (0, 0). �

Proof of Theorem 1.1.4 completed. Since (u0, v0) is a nontrivial point of the energy
functional Ĩ, it follows that (u0, v0) ∈ Ñ . Therefore, we have cÑ ≤ Ĩ(u0, v0). On the
other hand, using the semicontinuity of the norm we deduce that

cÑ + on(1) =

(
1

2
− 1

p

)
µ‖un‖pp +

(
1

2
− 1

q

)
‖vn‖qq

≥
(

1

2
− 1

p

)
‖u0‖pp +

(
1

2
− 1

q

)
‖v0‖qq + on(1)

= Ĩ(u0, v0) + on(1).

Hence, cÑ ≥ Ĩ(u0, v0). Therefore Ĩ(u0, v0) = cN . Repeating the same argument used
in the proof of Theorem 1.1.2, we can deduce that there exists t0 > 0 such that
(t0|u0|, t0|v0|) ∈ Ñ is a positive ground state solution for System (S̃µ) which finishes
the proof of Theorem 1.1.4. �

1.6 Proof of Theorem 1.1.5

In this section we deal of the following coupled system −∆u+ V1(x)u = µ|u|2∗−2u+ λ(x)v, x ∈ RN ,

−∆v + V2(x)v = |v|2∗−2v + λ(x)u, x ∈ RN .
(1.15)

In order to get a nonexistence result, we prove the following Pohozaev identity.
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Lemma 1.6.1. Suppose N ≥ 3 and (V7),(V8). If (u, v) ∈ E is a classical solution of
(1.15), then it satisfies the following Pohozaev identity:∫

RN

(
|∇u|2 + |∇v|2

)
dx =

∫
RN

(
µ|u|2∗ + |v|2∗ + 2∗λ(x)uv

)
dx+

∫
RN
〈∇λ(x), x〉uv dx

−2∗

2

∫
RN

(
V1(x)u2 + V2(x)v2

)
dx− 1

N − 2

∫
RN

(
〈∇V1(x), x〉u2 + 〈∇V2(x), x〉v2

)
dx.

Proof. Let (u, v) ∈ E be a classical solution of the system (1.15) and let us denote

f(x, u, v) = −V1(x)u+µ|u|2∗−2u+λ(x)v and g(x, u, v) = −V2(x)v+|v|2∗−2v+λ(x)u.

We consider the cut-off function ψ ∈ C∞0 (R) defined by

ψ(t) =

{
1 if |t| ≤ 1,

0 if |t| ≥ 2,

such that |ψ′(t)| ≤ C, for some C > 0. We define ψn(x) = ψ (|x|2/n2) and we note that

∇ψn(x) =
2

n
ψ′
(
|x|2

n2

)
x.

Multiplying the first equation in (1.15) by the factor 〈∇u, x〉ψn and integrating we
obtain

−
∫
RN

∆u〈∇u, x〉ψn dx =

∫
RN
f(x, u, v)〈∇u, x〉ψn dx.

Multiplying the second equation in (1.15) by the factor 〈∇v, x〉ψn and integrating we
get

−
∫
RN

∆v〈∇v, x〉ψn dx =

∫
RN
g(x, u, v)〈∇v, x〉ψn dx.

The idea is to take the limit as n→ +∞ in the following equation

−
∫
RN

(∆u〈∇u, x〉+ ∆v〈∇v, x〉)ψn dx =

∫
RN
f(x, u, v)〈∇u, x〉ψn dx+

+

∫
RN
g(x, u, v)〈∇v, x〉ψn dx. (1.16)

In order to calculate the limit in the left-hand side of (1.16), we note that

div (〈∇u, x〉ψn∇u) = 〈∇ (〈∇u, x〉ψn) ,∇u〉+ 〈∇u, x〉ψndiv(∇u)

= ψn〈∇ (〈∇u, x〉) ,∇u〉+ 〈∇u, x〉〈∇ψn,∇u〉+ 〈∇u, x〉ψn∆u.

26



Moreover, we have

〈∇ (〈∇u, x〉) ,∇u〉 = 〈

(
N∑
i=1

∂

∂x1

(
∂u

∂xi
xi

)
, . . . ,

N∑
i=1

∂

∂xN

(
∂u

∂xi
xi

))
,∇u〉

= 〈

(
N∑
i=1

∂

∂x1

(
∂u

∂xi

)
xi, . . . ,

N∑
i=1

∂

∂xN

(
∂u

∂xi

)
xi

)
+∇u,∇u〉

=
N∑
i=1

N∑
j=1

∂

∂xj

(
∂u

∂xi

)
∂u

∂xi
xj + |∇u|2

= 〈∇
(
|∇u|2

2

)
, x〉+ |∇u|2.

Thus, we can deduce that

〈∇u, x〉ψn∆u = div (〈∇u, x〉ψn∇u)−ψn
(
〈∇
(
|∇u|2

2

)
, x〉 − |∇u|2

)
+〈∇u, x〉〈∇ψn,∇u〉.

Since

div
(
ψn
|∇u|2

2
x

)
= ψn〈∇

(
|∇u|2

2

)
, x〉+

N

2
ψn|∇u|2 +

|∇u|2

2
〈∇ψn, x〉,

it follows that

〈∇u, x〉ψn∆u = div(ψnH(x, u))+
N − 2

2
ψn|∇u|2 +

|∇u|2

2
〈∇ψn, x〉−〈∇u, x〉〈∇ψn,∇u〉,

(1.17)
where

H(x, u) = 〈∇u, x〉∇u− |∇u|
2

2
x.

Let us denote H i(x, u) the i-coordinate of H(x, u) for 1 ≤ i ≤ N . Since u ∈ H2
loc(RN)

and supp(ψn) ⊂ B2n(0), we can use the definition of weak derivatives to conclude that∫
RN

div(ψnH(x, u)) dx =
N∑
i=1

∫
B2n(0)

∂

∂xi

(
ψnH

i(x, u)
)

dx

=
N∑
i=1

∫
B2n(0)

(
∂ψn
∂xi

H i(x, u) + ψn
∂

∂xi

(
H i(x, u)

))
dx

=
N∑
i=1

∫
B2n(0)

(
∂ψn
∂xi

H i(x, u)− ∂ψn
∂xi

H i(x, u)

)
dx

= 0.

In order to use the Lebesgue dominated convergence theorem, we note that:

• |ψn|∇u|2| ≤ |∇u|2 ∈ L1(RN) and ψn|∇u|2 → |∇u|2, almost everywhere in RN ;
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•
∣∣∣∣ |∇u|22

〈∇ψn, x〉
∣∣∣∣ ≤ C|∇u|2 ∈ L1(RN) and

|∇u|2

2
〈∇ψn, x〉 → 0, almost

everywhere in RN ;

• |〈∇u, x〉〈∇ψn,∇u〉| ≤ C|∇u|2 ∈ L1(RN) and 〈∇u, x〉〈∇ψn,∇u〉 → 0, almost
everywhere in RN .

Therefore, integrating (1.17) and passing the limit, we obtain

− lim
n→∞

∫
RN
〈∇u, x〉ψn∆u dx = −N − 2

2

∫
RN
|∇u|2 dx. (1.18)

Analogously, we can deduce the limit

− lim
n→∞

∫
RN
〈∇v, x〉ψn∆v dx = −N − 2

2

∫
RN
|∇v|2 dx. (1.19)

The convergences (1.18) and (1.19) implies the limit of the left-hand side in (1.16). In
order to calculate the right-hand side, we note that

div (ψnF (x, u, v)x) = 〈∇ (ψnF (x, u, v)) , x〉+ ψnF (x, u, v)div(x)

= ψn〈∇F (x, u, v), x〉+ F (x, u, v)〈∇ψn, x〉+NψnF (x, u, v),

where F (x, u, v) = −1
2
V1(x)u2 + µ

2∗
|u|2∗ + λ(x)uv. Moreover, we have that

∇F (x, u, v) = −1

2
∇V1(x)u2 − (V1(x)u+ µ|u|2∗−2u+ λ(x)v)∇u+∇λ(x)uv + λ(x)u∇v,

which implies that

〈∇F (x, u, v), x〉 = −1

2
〈∇V1(x), x〉u2 +f(x, u, v)〈∇u, x〉+ 〈∇λ(x), x〉uv+ 〈λ(x)u∇v, x〉.

Therefore,∫
RN
f(x, u, v)〈∇u, x〉ψn dx =

∫
RN

(div(ψnF (x, u, v)x)− F (x, u, v)〈∇ψn, x〉ψn) dx

+

∫
RN

(
1

2
〈∇V1(x), u〉u2 −NF (x, u, v)ψn − 〈∇λ(x), x〉uv − 〈λ(x)u∇v, x〉

)
ψn dx.

Analogously, denoting G(x, u, v) = −1
2
V2(x)v2 + 1

2∗
|v|2∗ + λ(x)uv, we can deduce∫

RN
g(x, u, v)〈∇v, x〉ψn dx =

∫
RN

(div(ψnG(x, u, v)x)−G(x, u, v)〈∇ψn, x〉ψn) dx

+

∫
RN

(
1

2
〈∇V2(x), v〉v2 −NG(x, u, v)ψn − 〈∇λ(x), x〉uv − 〈λ(x)v∇u, x〉

)
ψn dx.

We note that

−
∫
RN
λ(x)〈u∇v + v∇u, x〉ψn dx = −

∫
B2n(0)

λ(x)
N∑
i=1

∂(uv)

∂xi
xiψn dx.
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Using integration by parts we have that

−
∫
B2n(0)

λ(x)
N∑
i=1

∂(uv)

∂xi
xiψn =

N∑
i=1

∫
B2n(0)

(
∂ψn
∂xi

xiλ(x)uv +
∂λ

∂xi
xiuvψn +Nψnλ(x)uv

)
.

Therefore,

lim
n→∞

∫
RN
λ(x)〈u∇v + v∇u, x〉ψn dx = −

∫
RN
〈∇λ(x), x〉uv dx−N

∫
RN
λ(x)uv dx.

Thus, using the Lebesgue dominated convergence theorem in the same way as we used
when we calculate the left-hand side, we obtain

lim
n→∞

∫
RN

(f(x, u, v)〈∇u, x〉+ g(x, u, v)〈∇v, x〉)ψn dx = −N
∫
RN
F (x, u, v) dx

−N
∫
RN
G(x, u, v) dx+

1

2

∫
RN

(
〈∇V1(x), x〉u2 + 〈∇V2(x), x〉v2

)
dx

−
∫
RN
〈∇λ(x), x〉uv dx+N

∫
RN
λ(x)uv dx.

Replacing F (x, u, v) and G(x, u, v) in the equation above, we get the right-hand side
of (1.16) which finishes the proof. �

Proof of Theorem 1.1.5 completed. Let (u, v) ∈ E be a positive classical solution of
(1.15). By the definition of weak solution we obtain∫

RN

(
|∇u|2 + V1(x)u2 + |∇v|2 + V2(x)v2

)
dx =

∫
RN

(
|u|2∗ + |v|2∗ + 2λ(x)uv

)
dx.

which together with the Pohozaev identity obtained in Lemma 1.6.1 implies that

0 =

(
1− 2∗

2

)∫
RN

(
V1(x)u2 + V2(x)v2 − 2λ(x)uv

)
dx+

∫
RN
〈∇λ(x), x〉uv dx

− 1

N − 2

∫
RN

(
〈∇V1(x), x〉u2 + 〈∇V2(x), x〉v2

)
dx. (1.20)

Multiplying (1.20) by the factor −(N − 2)/2, we get∫
RN

(
V1(x)u2 + V2(x)v2 − 2λ(x)uv

)
dx =

N − 2

2

∫
RN
〈∇λ(x), x〉uv dx

−1

2

∫
RN

(
〈∇V1(x), x〉u2 + 〈∇V2(x), x〉v2

)
dx.

Thus, it follows from assumptions (V7) and (V8) that∫
RN

(
V1(x)u2 + V2(x)v2 − 2λ(x)uv

)
dx ≤ 0.

On the other hand, by assumption (V3) we get∫
RN

(
V1(x)u2 + V2(x)v2 − 2λ(x)uv

)
dx ≥ 0.
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Thus, we conclude that∫
RN

(
V1(x)u2 + V2(x)v2 − 2λ(x)uv

)
dx = 0.

Therefore, we finally deduce that

0 ≤
∫
RN

(√
V1(x)u−

√
V2(x)v

)2

dx

=

∫
RN

(
V1(x)u2 − 2

√
V1(x)V2(x)uv + V2(x)v2

)
dx

≤
∫
RN

(
V1(x)u2 + V2(x)v2 − 2

δ
λ(x)uv

)
dx

<

∫
RN

(
V1(x)u2 + V2(x)v2 − 2λ(x)uv

)
dx

= 0,

which is not possible and finishes the proof of Theorem 1.1.5. �

Remark 1.6.2. Let us set

Λ := {µ > 0 : (Sµ) has ground state}.

We proved that Λ is nonempty since for µ sufficiently large System (Sµ) possesses
ground state solution. Let us define µ̃ := inf Λ. Naturally arise the following questions:

(i) µ̃ > 0?

(ii) Λ = [µ̃,+∞) or Λ = (µ̃,+∞)?

Moreover, let us consider the following system{
−∆u+ V1(x)u = |u|p−2u+ λ(x)v, x ∈ RN ,

−∆v + V2(x)v = µ|v|2∗−2v + λ(x)u, x ∈ RN .
(Sµ)

Does System (Sµ) possesses ground state solution for any µ > 0?
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Chapter 2

Ground states for coupled systems of
Schrödinger equations on R2 involving
critical exponential growth

2.1 Introduction

In this chapter we study the following class of coupled systems −∆u+ V1(x)u = f1(x, u) + λ(x)v, x ∈ R2,

−∆v + V2(x)v = f2(x, v) + λ(x)u, x ∈ R2,
(S)

where the potentials V1, V2 are nonnegative and satisfy |λ(x)| < δ
√
V1(x)V2(x) for

some 0 < δ < 1. Our main contribution in this chapter is to prove the existence of

ground states for the class of coupled systems (S) under assumptions involving a large

class of potentials that contains, for example, coercive potentials, and nonlinearities

with critical exponential growth of the Trudinger-Moser type.

2.1.1 Assumptions

We will use the notation H1(R2) for the usual Sobolev space, endowed the

standard scalar product and the induced norm

(u, v) =

∫
R2

(∇u∇v + uv) dx, ‖u‖2 =

∫
R2

(
|∇u|2 + u2

)
dx.

For each i = 1, 2, we consider the following weighted Sobolev space defined by

HVi(R2) =

{
u ∈ H1(R2) :

∫
R2

Vi(x)u2 dx <∞
}
,
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endowed with the natural norm

‖u‖Vi =

(∫
R2

|∇u|2 dx+

∫
R2

V1(x)u2 dx

)1/2

.

In order to apply variational methods based on the space HVi(R2), we assume suitable

conditions on the potential Vi(x) for each i = 1, 2.

(V1) Vi(x) ≥ 0, for all x ∈ R2 and Vi ∈ L∞loc(R2).

(V2) The infimum

inf
u∈HVi (R

2)

{∫
R2

(
|∇u|2 + Vi(x)u2

)
dx :

∫
R2

u2 dx = 1

}
is positive.

(V3) Let Ω ⊆ R2 be open and 2 ≤ s <∞. There exists s ∈ [2,+∞) such that

lim
R→∞

νis(R2\BR) =∞,

where

νis(Ω) =


inf

u∈H1
0 (Ω)\{0}

∫
Ω

(
|∇u|2 + Vi(x)u2

)
dx(∫

Ω
|u|s dx

)2/s
if Ω 6= ∅,

∞ if Ω = ∅.

(V4) There exists functions Ai(x) ∈ L∞loc(R2), with Ai(x) ≥ 1, and constants βi > 1,

C0, R0 > 0 such that

Ai(x) ≤ C0

[
1 + Vi(x)1/βi

]
, for all |x| ≥ R0.

(V5) There exists 0 < δ < 1 such that |λ(x)| < δ
√
V1(x)V2(x), for all x ∈ R2.

(V ′5) There exists 0 < δ < 1 such that 0 < λ(x) < δ
√
V1(x)V2(x), for all x ∈ R2.

Motivated by a class of Trudinger-Moser type inequality proved in [34], we study

a class of coupled systems when the nonlinearities have exponential critical growth. In

view of this inequality, we consider nonlinearities with maximal growth, which allows

us to treat System (S) variationally. Precisely, for i = 1, 2 and αi0 > 0, we say that

fi : R2 × R→ R has αi0-critical growth at +∞ if, uniformly in x, we have

lim sup
s→+∞

fi(x, s)

Ai(x)(eαs2 − 1)
=

 0 if α > αi0,

∞ if α < αi0.
(2.1)

For each i = 1, 2, we assume the following hypotheses under the nonlinearities:
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(f1) fi : R2 × R→ R is C1, fi(x, s) = 0 for all x ∈ R2, s ≤ 0, and

lim
s→0

fi(x, s)

Ai(x)s
= 0, uniformly in x ∈ R2.

(f2) fi(x, s) and ∂fi(x, s)/∂s are locally bounded in s, that is, for any bounded

interval I ⊂ R, there exists C > 0 such that |fi(x, s)|, |∂fi(x, s)/∂s| ≤ C, for

all (x, s) ∈ R2 × I.

(f3) For each fixed x ∈ R2 the function s 7→ s−1fi(x, s) is increasing for s > 0;

(f4) There exists µi > 2 such that

0 < µiFi(x, s) := µi

∫ s

0

fi(x, τ)dτ ≤ sfi(x, s), for all x ∈ R2 and s > 0.

We denote the product space E = HV1(R2) × HV2(R2) which is a Hilbert space

when endowed with the scalar product

((u, v), (w, z)) =

∫
R2

(∇u∇w + V1(x)uw +∇v∇z + V2(x)vz) dx,

to which corresponds the induced norm

‖(u, v)‖2 = ‖u‖2
V1

+ ‖v‖2
V2

=

∫
R2

(
|∇u|2 + V1(x)u2

)
dx+

∫
R2

(
|∇v|2 + V2(x)v2

)
dx.

The energy functional I : E → R associated with System (S) is

I(u, v) =
1

2

(
‖(u, v)‖2 − 2

∫
R2

λ(x)uv dx

)
−
∫
R2

(F1(x, u) + F2(x, v)) dx.

By standard arguments can be verified that I ∈ C2(E,R) and its derivative is given by

〈I ′(u, v), (φ, ψ)〉 = ((u, v), (φ, ψ))−
∫
R2

(f1(x, u)φ+ f2(x, v)ψ) dx−
∫
R2

λ(x) (uψ + vφ) dx,

where (φ, ψ) ∈ C∞0 (RN) × C∞0 (RN). Thus critical points of I correspond to weak

solutions of (S) and conversely.

Definition 2.1.1. We say that a pair (u, v) ∈ E \ {(0, 0)} is a ground state solution
(least energy solution) of (S), if (u, v) is a solution of (S) and its energy is minimal
among the energy of all nontrivial solutions of (S), i.e., I(u, v) ≤ I(w, z) for any
other nontrivial solution (w, z) ∈ E. We say that (u, v) is nonnegative (nonpositive) if
u, v ≥ 0 (u, v ≤ 0) and positive (negative) if u, v > 0 (u, v < 0).
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2.1.2 Statement of the main result

Now we are in position to state our main result.

Theorem 2.1.2. For each i = 1, 2 suppose that fi(x, s) and ∂fi(x, s)/∂s have αi0-
critical growth, (V1)-(V5) and (f1)-(f4) are satisfied. In addition, suppose the following
hypothesis:

(f5) There exists q > 2 such that

F1(x, s) + F2(x, t) ≥ θ(sq + tq), for all x ∈ R2 and s, t ≥ 0.

Then, there exists a constant θ0 > 0 such that System (S) possesses a nonnegative
ground state solution (u0, v0) ∈ E, for some θ > θ0. If (V ′5) holds, then the ground
state is positive. Moreover, (u0, v0) ∈ C1,α

loc (R2)×C1,α
loc (R2) for some α ∈ (0, 1) with the

following asymptotic behavior

‖u0‖C1,α(BR(x0)) → 0 and ‖v0‖C1,α(BR(x0)) → 0, as |x0| → ∞.

Remark 2.1.3. We collect some remarks on our assumptions:

(i) A typical example of nonlinearity which satisfies the assumptions (f1)-(f5) is

given by

f(s) =

 θqsq−2s+ qsq−2s(eα0s2 − 1) + 2α0s
qseα0s2 if s > 0,

0 if s ≤ 0,

where q > µ > 2 and α0 is the critical exponent of the definition (2.1).

(ii) There are many examples of functions Vi(x) and λ(x) satisfying (V2)-(V5). For

instance, consider

Vi(x) =

 1 if |x| ≤ 1,

|x|αi if |x| > 1,

where αi ≥ 2, and λ(x) ∈ C∞0 (R2) such that

λ(x) =


1/2 if |x| ≤ 1,(
1

|x|2 + 1

)1/2

if |x| > 1.

(iii) We will prove the existence of ground state when the constant θ introduced in

(f5) is large enough. Accurately, we obtain the ground state for some constant

satisfying

θ > θ0 =

(
1

1− δ
µ

µ− 2

q − 2

q

α0β0

4π

)(q−2)/2 Sqq
q
,

where µ = min{µ1, µ2}, α0 = max{α1
0, α

2
0} and β0 = max{ β1

(β1−1)
, β2

(β2−1)
}.
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(iv) The assumption (f5) can be weakened. Indeed, instead of (f5), we can just assume

for each i = 1, 2, the following local condition

lim inf
s→0

Fi(x, s)

sq
≥ µ > 0. (2.2)

It can be deduced that conditions (f4) and (2.2) imply that (f5) holds.

2.1.3 Outline

The remainder of this chapter is organized as follows. In the forthcoming section

we collect some lemmas which are crucial to give a variational approach for our work.

Furthermore, we introduce and give some properties of the Nehari manifold associated

with the energy functional. In Section 2.3 we make use of the Ekeland’s variational

principle to obtain a minimizing sequence for the ground state energy associated with

System (S), and we use the growth conditions of the nonlinearities and a Trudinger-

Moser type inequality to prove that the weak limit of this sequence will be a ground

state solution of the problem. After that, we use the known ground state to get another

ground state which will be positive. Finally, we apply a bootstrap argument and Lq-

estimates to obtain regularity and asymptotic behavior.

2.2 Preliminary results

It is well known that when N ≥ 3, it is standard to require a polynomial

growth at infinity in order to define associated functionals in Sobolev spaces. However,

when N = 2, in view of a class of Trudinger-Moser inequality, a faster growth can

be allowed on the nonlinearities in order to treat System (S) variationally, see for

instance [14, 32, 57, 71]. The following extension of the Trudinger-Moser inequality

for the whole space R2 contained in [34], allow us to study System (S) when the

nonlinearities have exponential growth involving the terms A1(x) and A2(x).

Lemma 2.2.1. Suppose that (V1)-(V4) are satisfied and let i = 1, 2. Then, for any
u ∈ HVi(R2), q ≥ 2 and αi > 0,∫

R2

Ai(x)(eα
iu2 − 1)|u|q dx <∞. (2.3)
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Furthermore, if αiβi‖u‖2
Vi
< 4π(βi − 1), there exists C > 0 such that∫
R2

Ai(x)(eα
iu2 − 1)|u|q dx ≤ C‖u‖qVi . (2.4)

Lemma 2.2.2. If α > 0, l ≥ 1 and r ≥ l, then

(eαs
2 − 1)l ≤ (eαls

2 − 1), for all s ∈ R.

Proof. In fact, let f : [1,+∞)→ R be the function defined by f(t) = (tl−1)− (t−1)l.
Notice that f(1) = 0 and f ′(t) ≥ 0, for all t ≥ 1. The result follows taking t = eαs

2 . �

For i = 1, 2, let us define the weighted Lebesgue space

LpAi(R
2) =

{
u : R2 → R measurable :

∫
R2

Ai(x)|u|p dx < +∞
}
,

endowed with the usual norm

‖u‖LpAi =

(∫
R2

Ai(x)|u|p dx

)1/p

.

We set the product space LpAi(R
2)× LpAi(R

2) endowed with the norm

‖(u, v)‖LpAi =
(
‖u‖p

LpAi
+ ‖v‖p

LpAi

)1/p

.

The following embedding result has been proved by B. Sirakov in [64].

Lemma 2.2.3. Under the assumptions (V2)-(V4), for i = 1, 2, HVi(R2) is compactly
embedded into the Lebesgue spaces Lp(R2) and LpAi(R

2), for all 2 ≤ q <∞.

Lemma 2.2.4. Suppose that (f3)-(f4) hold. Then, for each i = 1, 2 we have

s2∂fi
∂s

(x, s)− sfi(x, s) > 0, (2.5)

∂fi
∂s

(x, s) > 0, (2.6)

sfi(x, s)− 2Fi(x, s) > 0, (2.7)

for all x ∈ R2 and s > 0.

Proof. For i = 1, 2, it follows from assumption (f3) that

0 <
∂

∂s

(
fi(x, s)

s

)
=
s2∂fi
∂s

(x, s)− sfi(x, s)

s3
, for x ∈ R2 and s > 0,

which implies (2.5). Using the preceding estimate together with (f4) we get

∂fi
∂s

(x, s) >
fi(x, s)

s
≥ µi
s2
Fi(x, s) > 0, for x ∈ R2 and s > 0,
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which implies (2.6). Now, let x ∈ R2 be fixed and consider 0 < s < t. Thus, using (f3)

we deduce that

sfi(x, s)− 2Fi(x, s) = s2fi(x, s)

s
− 2Fi(x, t) + 2

∫ t

s

fi(x, τ)

τ
τ dτ

< s2fi(x, t)

t
− 2Fi(x, t) + 2

fi(x, t)

t

∫ t

s

τ dτ

= s2fi(x, t)

t
− 2Fi(x, t) + (t2 − s2)

fi(x, t)

t
= tfi(x, t)− 2Fi(x, t).

Therefore, the function sfi(x, s) − 2Fi(x, s) is increasing for s > 0. Since sfi(x, 0) −
2Fi(x, 0) = 0, (2.7) follows. �

Lemma 2.2.5. Suppose that (2.1), (V4), (f1), (f2) and (f4) are satisfied. For any
ε > 0, α > αi0 and r > 2, there exists C = C(ε, r) > 0 such that

fi(x, s)s ≤ εAi(x)s2 + CAi(x)(eαs
2 − 1)sr, (2.8)

Fi(x, s) ≤ εAi(x)s2 + CAi(x)(eαs
2 − 1)sr, (2.9)

∂fi
∂s

(x, s) ≤ εAi(x)s2 + CAi(x)(eαs
2 − 1)sr, (2.10)

for each i = 1, 2 and for all (x, s) ∈ R2 × [0,+∞).

Proof. Let ε > 0 be fixed. By using (f1), there exists δ > 0 such that

fi(x, s)s ≤ εAi(x)s2, for all x ∈ R2 and 0 ≤ s < δ. (2.11)

By using (2.1) for α > αi0, there exists R > 0 such that

fi(x, s)s ≤ εAi(x)(eαs
2 − 1)s ≤ C1(ε, r)Ai(x)(eαs

2 − 1)sr, (2.12)

for all x ∈ R2 and s ≥ R. It follows from (V4) and (f2) that

fi(x, s)s ≤ C2(ε, r)Ai(x)(eαs
2 − 1)sr, for all (x, s) ∈ R2 × [δ, R]. (2.13)

From (2.12) and (2.13) we get

fi(x, s)s ≤ C(ε, r)Ai(x)(eαs
2 − 1)sr, for all (x, s) ∈ R2 × [δ,+∞). (2.14)

Combining (2.11) and (2.14) we get (2.8). By assumption (f4) we have

Fi(x, s) ≤
1

µi
fi(x, s)s, for all (x, s) ∈ R2 × [0,+∞),

and (2.9) follows immediately of the estimate (2.8). Analogously we can deduce
(2.10). �
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The Nehari manifold associated to System (S) is given by

N = {(u, v) ∈ E\{(0, 0)} : 〈I ′(u, v), (u, v)〉 = 0} .

Notice that if (u, v) ∈ N then

‖(u, v)‖2 − 2

∫
R2

λ(x)uv dx =

∫
R2

f1(x, u)u dx+

∫
R2

f2(x, v)v dx. (2.15)

Lemma 2.2.6. If (u, v) ∈ N , then |{u > 0}| > 0 or |{v > 0}| > 0.

Proof. Arguing by contradiction, let (u, v) ∈ N be such that |{u > 0}| = 0 and
|{v > 0}| = 0. We recall from Lemma 1.2.1 that

‖(u, v)‖2 − 2

∫
R2

λ(x)uv dx ≥ (1− δ)‖(u, v)‖2, for all (u, v) ∈ E. (2.16)

By using (2.16) and the fact that (u, v) ∈ N , we have that

0 < (1− δ)‖(u, v)‖2

≤ ‖(u, v)‖2 − 2

∫
R2

λ(x)uv dx

=

∫
R2

f1(x, u)u dx+

∫
R2

f2(x, v) dx = 0,

which is not possible and finishes the proof. �

In general, the Nehari manifold may not be a manifold. However, under our

assumptions, N is in fact a C1-manifold as we can see in the following lemma:

Lemma 2.2.7. N is a C1-manifold and there exists γ > 0, such that

‖(u, v)‖ ≥ γ, for all (u, v) ∈ N . (2.17)

Proof. We define the C1-functional ϕ : E\{(0, 0)} → R by ϕ(u, v) = 〈I ′(u, v), (u, v)〉,
that is,

ϕ(u, v) = ‖(u, v)‖2 − 2

∫
R2

λ(x)uv dx−
∫
R2

f1(x, u)u dx−
∫
R2

f2(x, v)v dx.

Notice that N = ϕ−1(0). Moreover, if (u, v) ∈ N , then it follows from (2.5) and (2.15)
that

〈ϕ′(u, v), (u, v)〉 =

∫
R2

(
f1(x, u)u− ∂f1

∂u
(x, u)u2 + f2(x, v)v − ∂f2

∂v
(x, v)v2

)
dx < 0,

(2.18)
which implies that 0 is a regular value of ϕ. Therefore N is a C1-manifold.
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Assume by contradiction that (2.17) does not hold. Thus, there exists a sequence
(un, vn)n ⊂ N such that ‖(un, vn)‖ → 0 as n→ +∞. Let us consider

αi > αi0 and 0 < γ1 < γ2 < 4π(βi − 1)/αiβi, for i = 1, 2

and let n0 ∈ N be such that ‖(un, vn)‖2 ≤ γ1 < γ2, for n ≥ n0. By using Lemma 2.2.1,
estimate (2.8) and Sobolev embedding, for given r > 2 and ε > 0, we deduce that∫

R2

f1(x, un)un dx ≤ ε‖un‖2
L2
A1

+ C2

∫
R2

A1(x)(eα
1u2n − 1)|un|r dx

≤ εC1‖un‖2
V1

+ C2‖un‖rV1
≤ εC1‖(un, vn)‖2 + C2‖(un, vn)‖r,

for n ≥ n0. Analogously, we get∫
R2

f2(x, vn)vn dx ≤ εC3‖(un, vn)‖2 + C4‖(un, vn)‖r, for n ≥ n0.

Hence,∫
R2

(f1(x, un)un + f2(x, vn)vn) dx ≤ εC̃1‖(un, vn)‖2 + C̃2‖(un, vn)‖r. (2.19)

Thus, it follows from (2.15), (2.16) and (2.19) that

(1− δ)‖(un, vn)‖2 ≤ ‖(un, vn)‖2 − 2

∫
R2

λ(x)unvn dx

=

∫
R2

(f1(x, un)un + f2(x, vn)vn) dx

≤ εC̃1‖(un, vn)‖2 + C̃2‖(un, vn)‖r.

Since ε > 0 is arbitrary and C̃1 does not depends of ε and n, we can choose ε sufficiently
small such that 1− δ − εC̃1 > 0. Therefore,

0 < γ3 =

(
1− δ − εC̃1

C̃2

)1/(r−2)

≤ ‖(un, vn)‖.

If we consider γ1 < γ = min{γ2, γ3} we get a contradiction. Therefore (2.17) holds. �

Let us define the ground state energy associated with System (S)

cN = inf
(u,v)∈N

I(u, v).

We claim that cN is positive. Indeed, using (f4) and recalling that µ := min{µ1, µ2},

it follows that

I(u, v) =
1

2

(
‖(u, v)‖2 − 2

∫
R2

λ(x)uv dx

)
−
∫
R2

(F1(x, u) + F2(x, v)) dx

≥ 1

2

(
‖(u, v)‖2 − 2

∫
R2

λ(x)uv dx

)
− 1

µ1

∫
R2

f1(x, u)u dx− 1

µ2

∫
R2

f2(x, v)v dx

≥
(

1

2
− 1

µ

)(
‖(u, v)‖2 − 2

∫
R2

λ(x)uv dx

)
,
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for all (u, v) ∈ N , which together with Lemma 2.2.7 and (2.16) implies that

I(u, v) ≥
(

1

2
− 1

µ

)
(1− δ)‖(u, v)‖2 ≥

(
1

2
− 1

µ

)
(1− δ)γ > 0.

Let us define the set

E+ := {(u, v) ∈ E\{(0, 0)} : |{u > 0}| > 0 or |{v > 0}| > 0}.

Lemma 2.2.8. Suppose that (V1)-(V5), (f1)-(f4) and (f5) holds. Then for each
(u, v) ∈ E+, there exists a unique t0 > 0, depending only of (u, v), such that

(t0u, t0v) ∈ N and I(t0u, t0v) = max
t≥0

I(tu, tv).

Proof. Let (u, v) ∈ E+ be fixed and define the function g : [0,∞) → R such that
g(t) = I(tu, tv). Notice that

〈I ′(tu, tv), (tu, tv)〉 = tg′(t).

Thus, it suffices to find a nontrivial positive critical point of g. From assumption (V5)

we get

‖(u, v)‖2 − 2

∫
R2

λ(x)uv dx ≥ 0.

Using assumption (V4) we can deduce that

Fi(x, s) ≥ C(|s|µi − 1), for s > 0.

We may assume without loss of generality that |{u > 0}| > 0. Let R > 0 be such that
|{u > 0} ∩BR(0)| > 0. Thus, we have that

g(t) =
t2

2

(
‖(u, v)‖2 − 2

∫
R2

λ(x)uv dx

)
−
∫
R2

F1(x, tu) dx−
∫
R2

F2(x, tv) dx

≤ t2

2

(
‖(u, v)‖2 − 2

∫
R2

λ(x)uv dx

)
− θtµ1

∫
{u>0}∩BR(0)

|u|µ1 dx.

Since µ1 > 2, we obtain g(t) < 0 for t > 0 sufficiently large. On the other hand, for
some αi > αi0 and

0 < t < min

{(
4π(β1 − 1)

α1β1‖u‖2
V1

)1/2

,

(
4π(β2 − 1)

α2β2‖v‖2
V2

)1/2
}
,

we can use (2.9) and the same ideas used to obtain the estimate (2.19), to get∫
R2

(F1(x, tu) + F2(x, tv)) dx ≤ C1ε
t2

2
‖(u, v)‖2 + C2t

r‖(u, v)‖r, (2.20)
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where r > 2 and ε is small enough such that 1− δ − C1ε > 0. Hence, by using (2.16)
and (2.20), we have

g(t) =
t2

2

(
‖(u, v)‖2 − 2

∫
R2

λ(x)uv dx

)
−
∫
R2

F1(x, tu) dx−
∫
R2

F2(x, tv) dx

≥ t2‖(u, v)‖2

(
1− δ − C1ε

2
− C2t

r−2‖(u, v)‖r−2

)
.

Therefore g(t) > 0 provided t > 0 is sufficiently small. Thus g has maximum points in
(0,∞). In order to prove the uniqueness, note that every critical point of g satisfies

‖(u, v)‖2 − 2

∫
R2

λ(x)uv dx =

∫
R2

f1(x, tu)u

t
dx+

∫
R2

f2(x, tv)v

t
dx. (2.21)

Moreover, it follows from (2.5) that

d

dt

(
fi(x, ts)s

t

)
=
ts2∂fi

∂s
(x, ts)− sfi(x, ts)

t2
=

(ts)2∂fi
∂s

(x, ts)− tsfi(x, ts)

t3
> 0,

which ensure that the right-hand side of (2.21) is increasing on t > 0, and consequently,
the critical point t0 ∈ (0,+∞) is unique. �

Let us define

Sq = inf
(u,v)∈E\{(0,0)}

Sq(u, v),

where for any (u, v) ∈ E\{(0, 0)}, we define

Sq(u, v) =

(
‖(u, v)‖2 − 2

∫
R2

λ(x)uvdx

)1/2

‖(u, v)‖q
.

Notice that Sq is positive. In fact, by using (2.16) and Sobolev embedding we have

that

‖(u, v)‖2 −
∫
R2

λ(x)uv dx ≥ (1− δ)‖(u, v)‖2 ≥ (1− δ)C‖(u, v)‖2
q,

for all (u, v) ∈ E\{(0, 0)}. Therefore, Sq ≥ [(1− δ)C]1/2 > 0.

Lemma 2.2.9. For any (u, v) ∈ E\{(0, 0)}, we have

max
t≥0

(
t2

2
Sq(u, v)2‖(u, v)‖2

q − θtq‖(u, v)‖qq
)

=

(
1

2
− 1

q

)
Sq(u, v)2q/(q−2)

(qθ)2/(q−2)
,

where θ and q are the constants introduced in (f5).

41



Proof. Let h : [0,+∞)→ R be defined by

h(t) =
t2

2
Sq(u, v)2‖(u, v)‖2

q − θtq‖(u, v)‖qq.

Thus, h is differentiable and

h′(t) = tSq(u, v)2‖(u, v)‖2
q − qθtq−1‖(u, v)‖qq.

Notice that h′(t) ≥ 0 if and only if t ≤ t̃, where

t̃ =

(
Sq(u, v)2

qθ‖(u, v)‖q−2
q

)1/(q−2)

.

Therefore, t̃ is a maximum for h and

max
t≥0

h(t) = h(t̃) =

(
1

2
− 1

q

)
Sq(u, v)2q/(q−2)

(qθ)2/(q−2)
. �

2.3 Proof of Theorem 2.1.2

By Ekeland’s variational principle (see [38]), there exists a sequence (un, vn)n ⊂ N

such that

I(un, vn)→ cN and I ′(un, vn)→ 0. (2.22)

Lemma 2.3.1. We have the following facts:

(a) The sequence (un, vn)n is bounded in E.

(b) We have the following estimate

lim sup
n→∞

‖(un, vn)‖2 ≤ 1

1− δ
µ

µ− 2

q − 2

q

S
2q/(q−2)
q

(qθ)2/(q−2)
. (2.23)

Proof. By using (2.22) we get

cN + on(1) =
1

2

(
‖(un, vn)‖2 − 2

∫
R2

λ(x)unvn dx

)
−
∫
R2

(F1(x, un) + F2(x, vn)) dx,

which together with (f4) and (2.16) implies that

cN + on(1) ≥ 1

2

(
‖(un, vn)‖2 − 2

∫
R2

λ(x)unvn

)
− 1

µ

∫
R2

(f1(x, un)un + f2(x, vn)vn)

≥
(

1

2
− 1

µ

)
(1− δ)‖(un, vn)‖2.

Therefore (un, vn)n is bounded in E.
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To prove (b), using the computation in the proof of (a) we obtain

lim sup
n→∞

‖(un, vn)‖2 ≤ 1

1− δ
2µ

µ− 2
cN . (2.24)

From Lemma 2.2.8, for any (ψ, φ) ∈ E\{(0, 0)} there exists t0 > 0 such that
(t0|ψ|, t0|φ|) ∈ N , which yields

cN ≤ I(t0|ψ|, t0|φ|) = max
t≥0

I(t|ψ|, t|φ|). (2.25)

Thus, by using (f5), (2.25) and the fact that Sq(|ψ|, |φ|)2 ≤ Sq(ψ, φ)2 we deduce that

cN ≤ max
t≥0

{
t2

2

(
‖(ψ, φ)‖2 − 2

∫
R2

λ(x)|ψ||φ| dx
)
− θtq‖(ψ, φ)‖qq

}
= max

t≥0

{
t2

2
Sq(|ψ|, |φ|)2‖(ψ, φ)‖2

q − θtq‖(ψ, φ)‖qq
}

≤ max
t≥0

{
t2

2
Sq(ψ, φ)2‖(ψ, φ)‖2

q − θtq‖(ψ, φ)‖qq
}
,

which jointly with Lemma 2.2.9 ensures that

cN ≤
(

1

2
− 1

q

)
Sq(ψ, φ)2q/(q−2)

(qθ)2/(q−2)
. (2.26)

Combining (2.24), (2.26) and taking the infimum over (ψ, φ) ∈ E\{(0, 0)} we have that

lim sup
n→∞

‖(un, vn)‖2 ≤ 1

1− δ
µ

µ− 2

q − 2

q

S
2q/(q−2)
q

(qθ)2/(q−2)
. �

Since (un, vn)n is bounded in E, passing to a subsequence, we may assume that

(un, vn) ⇀ (u0, v0) weakly in E. Moreover, it follows from Lemma 2.2.3 that, up to a

subsequence,

• un → u0 strongly in LpAi(R
2), for all 2 ≤ p <∞;

• vn → v0 strongly in LqAi(R
2), for all 2 ≤ p <∞;

• un(x)→ u0(x) and vn(x)→ v0(x) almost everywhere in R2.

Proposition 2.3.2. The weak limit (u0, v0) is nontrivial.

Proof. In light of (2.23), for αi > αi0, there exists θ0 > 0 such that

lim sup
n→∞

‖(un, vn)‖2 < min
{

4π(β1 − 1)/(α1β1), 4π(β2 − 1)/(α2β2)
}
, for i = 1, 2

provided that θ > θ0. Let r > 1 sufficiently close to 1 such that

0 < r‖(un, vn)‖2 < 4π(βi − 1)/(αiβi), for some θ > θ0.
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Now, we consider q > 2, l ∈ (1, r) and 1/l + 1/l′ = 1. Thus, using Lemma 2.2.2, (2.8)
and Hölder inequality we deduce that∫

R2

f1(x, un)undx ≤ ‖un‖2
L2
A1

+ C1

∫
R2

A1(x)(eα
1u2n − 1)|un|q dx

≤ ‖un‖2
L2
A1

+ C1

(∫
R2

A1(x)(eα
1u2n − 1)l|un|ql dx

)1/l

‖un‖q
Lql
′

A1

≤ ‖un‖2
L2
A1

+ C1

(∫
R2

A1(x)(erα
1u2n − 1)|un|ql

′
dx

)1/l

‖un‖q
Lql
′

A1

,

which together with Lemma 2.2.1 implies that∫
R2

f1(x, un)un dx ≤ ‖un‖2
L2
A1

+ C1‖un‖q
Lql
′

A1

. (2.27)

Analogously, ∫
R2

f2(x, vn)vn dx ≤ ‖vn‖2
L2
A2

+ C2‖vn‖q
Lql
′

A2

, (2.28)

On the other hand, from Lemma 2.2.7 and (2.16) it follows that

0 < γ(1− δ) ≤ (1− δ)‖(un, vn)‖2 ≤ ‖(un, vn)‖2 − 2

∫
R2

λ(x)unvn dx. (2.29)

Since (un, vn)n ⊂ N , one sees that

‖(un, vn)‖2 − 2

∫
R2

λ(x)unvn dx =

∫
R2

f1(x, un)un dx+

∫
R2

f2(x, vn)vn dx. (2.30)

Therefore, combining (2.27), (2.28), (2.29) and (2.30), we can deduce that

0 < γ(1− δ) ≤ ‖un‖2
L2
A1

+ ‖vn‖2
L2
A2

+ C̃

(
‖un‖q

Lql
′

A1

+ ‖vn‖q
Lql
′

A2

)
,

which together with Lemma 2.2.3 implies (u0, v0) 6= (0, 0). �

Proposition 2.3.3. The weak limit (u0, v0) is a critical point of the energy functional I.

Proof. By the weak convergence we have that

((un, vn), (φ, ψ))→ ((u0, v0), (φ, ψ)), for all (φ, ψ) ∈ C∞0 (R2)× C∞0 (R2).

Moreover, from (V5), Lemma 2.2.3 and Hölder inequality,∣∣∣∣∫
R2

λ(x)unψ dx−
∫
R2

λ(x)u0ψ dx

∣∣∣∣ ≤ ‖λ(x)‖∞‖ψ‖2‖un − u0‖2 → 0,

and ∣∣∣∣∫
R2

λ(x)vnφ dx−
∫
R2

λ(x)v0φ dx

∣∣∣∣ ≤ ‖λ(x)‖∞‖φ‖2‖vn − v0‖2 → 0.
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Thus, if we prove that∫
R2

f1(x, un)φ dx→
∫
R2

f1(x, u0)φ dx and
∫
R2

f2(x, vn)ψ dx→
∫
R2

f2(x, v0)ψ dx,

(2.31)
then,

〈I ′(un, vn), (φ, ψ)〉 → 〈I ′(u0, v0), (φ, ψ)〉, for all (φ, ψ) ∈ C∞0 (R2)× C∞0 (R2). (2.32)

Since the space C∞0 (R2) is dense in (HVi(R2), ‖ · ‖Vi), it follows from (2.32) that (u0, v0)

is a critical point of I. Thus, it remains to prove (2.31). Notice that (2.31) holds if
and only if for any compact set K ⊂ R2 we have∫

K

|f1(x, un)| dx→
∫
K

|f1(x, u0)| dx and
∫
K

|f2(x, vn)| dx→
∫
K

|f2(x, v0)| dx.

(2.33)
Let us prove the first convergence. By using (2.27), we can deduce that∫

K

|f1(x, un)un| dx ≤ C1. (2.34)

Since un, u0 ∈ Lq(R2), we have that un, u0 ∈ L1(K). For any M > 0 we can write∣∣∣∣∫
K

|f1(x, un)| dx−
∫
K

|f1(x, u0)| dx
∣∣∣∣ ≤ In1 + In2 + In3 ,

where

In1 =

∫
{|un(x)|≥M}

|f1(x, un)| dx, In2 =

∫
{|u0(x)|≥M}

|f1(x, u0)| dx,

In3 =

∫
{|un(x)|<M}

(|f1(x, un)| − |f1(x, u0)|) dx.

Let us estimate each of these integrals separately. For any ε > 0, we can use (2.34)
and choose M > 0 sufficiently large such that∫

{|un(x)|≥M}
|f1(x, un)| dx =

∫
{|un(x)|≥M}

|f1(x, un)un|
|un|

dx ≤ C1

M
<
ε

3
. (2.35)

Moreover, since f1(x, u0) ∈ L1(K), we can choose M > 0 sufficiently large such that∫
{|u0(x)|≥M}

|f1(x, u0)| dx ≤ ε

3
. (2.36)

Thus, let M > 0 be fixed such that (2.35) and (2.36) are satisfied. Let us denote

Hn(x) = χ{|un(x)|<M}|f1(x, un)| − χ{|u0|<M}|f1(x, u0)|.

We claim that
In3 =

∫
K

Hn(x) dx→ 0. (2.37)

In fact, notice that:
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• Hn(x)→ 0, almost everywhere in K;

• |Hn(x)| ≤ |f1(x, u0)|, if |un(x)| ≥M ;

• |Hn(x)| ≤ C̃ + |f1(x, u0)|, if |un(x)| < M , where

C̃ = sup{|f1(x, s)| : x ∈ K, |s| < M}.

Thus, the claim follows from Lebesgue dominated convergence theorem. Therefore,
combining (2.35), (2.36) and (2.37), we obtain (2.33), and consequently (2.31). �

Proposition 2.3.4. The weak limit (u0, v0) is a ground state solution for System (S).

Proof. Since that (u0, v0) 6= (0, 0) and I ′(u0, v0) = 0, we have that (u0, v0) ∈ N .
Therefore cN ≤ I(u0, v0). On the other hand, by using (2.7), it follows from Fatou’s
lemma that

cN + on(1) = I(un, vn)− 1

2
〈I ′(un, vn), (un, vn)〉

=
1

2

∫
R2

(f1(x, un)un − 2F1(x, un) + f2(x, vn)vn − 2F2(x, vn)) dx

≥ 1

2

∫
R2

(f1(x, u0)u0 − 2F1(x, u0) + f2(x, v0)v0 − 2F2(x, v0)) dx+ on(1)

= I(u0, v0)− 1

2
〈I ′(u0, v0), (u0, v0)〉+ on(1)

= I(u0, v0) + on(1),

which implies that cN ≥ I(u0, v0). Therefore I(u0, v0) = cN . �

We have been proved that (u0, v0) is a ground state solution for System (S). By

assumptions (f1) and (f4) we have for i = 1, 2 that

Fi(x, s) ≤ Fi(x, |s|), for all (x, s) ∈ R2 × R.

Thus, we can deduce that I(|u0|, |v0|) ≤ I(u0, v0).

Proposition 2.3.5. There exists a nonnegative ground state solution (ũ, ṽ) ∈
C1,α
loc (R2)× C1,α

loc (R2), for some α ∈ (0, 1) with the following asymptotic behavior

‖ũ‖C1,α(BR(x0)) → 0 and ‖ṽ‖C1,α(BR(x0)) → 0, as |x0| → ∞.

Proof. Let (u0, v0) ∈ E be the ground state obtained in Proposition 2.3.4. It follows
from Lemma 2.2.8 that there exists a unique t0 > 0 such that (t0|u0|, t0|v0|) ∈ N .
Moreover, since (u0, v0) ∈ N , we have from Lemma 2.2.6 that (u0, v0) ∈ E+. Thus, it
follows that maxt≥0 I(tu0, tv0) = I(u0, v0). Thus, we have that

I(t0|u0|, t0|v0|) ≤ I(t0u0, t0v0) ≤ max
t≥0

I(tu0, tv0) = I(u0, v0) = cN .
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Therefore, (t0|u0|, t0|v0|) ∈ N is a nonnegative ground state solution for System (S).
Let us denote (ũ, ṽ) = (t0|u0|, t0|v0|). In order to get regularity, we use a bootstrap
argument. The ground state (ũ, ṽ) is a weak solution of the restricted problem{

−∆ũ = f1(x, ũ) + λ(x)ṽ − V1(x)ũ = p1(x), B2R(x0)

−∆ṽ = f2(x, ṽ) + λ(x)ũ− V2(x)ṽ = p2(x), B2R(x0)
(2.38)

Since V1(x), λ(x) ∈ L∞loc(R2) and ũ ∈ Lp(R2) for all p ≥ 2, we have that λ(x)ṽ, V1(x)ũ ∈
Lp(B2R(x0)) for all p ≥ 2. By using growth conditions of the nonlinearity, Lemmas
2.2.2 and 2.2.3 we have for ε > 0, p, q ≥ 2, r > p and α1 > α1

0 that∫
B2R(x0)

|f1(x, ũ)|p dx ≤
∫
B2R(x0)

|A1(x)ũ+ CA1(x)(eα
1ũ2 − 1)|ũ|q−1|p dx

≤ C

∫
B2R(x0)

A1(x)p|ũ|p + C

∫
B2R(x0)

A1(x)p(eα
1ũ2 − 1)p|ũ|p(q−1)

≤ C‖u0‖pLp(B2R(x0)) + C

∫
B2R(x0)

A1(x)(erα
1ũ2 − 1)|ũ|p(q−1)−1|ũ|.

Furthermore, it follows from Lemma 2.2.1 that(∫
B2R(x0)

A1(x)2(erα
1ũ2 − 1)2|ũ|2(p(q−1)−1) dx

)1/2

‖u0‖L2(B2R(x0)) ≤ C‖u0‖L2(B2R(x0)).

Using Hölder inequality and combining the previous estimates, we finally conclude that∫
B2R(x0)

|f1(x, ũ)|p dx ≤ C‖u0‖pLp(B2R(x0)) + C‖u0‖L2(B2R(x0)),

and since that the right-hand side is finite for all p, q ≥ 2, we have that p1(x) ∈
Lp(B2R(x0)) for all p ≥ 2. Let fp1(x) be the Newtonian potential of p1(x). In light of
Calderon-Zygmund [42, Theorem 9.9],

∆fp1 = p1(x), in B2R(x0), (2.39)

and fp1 ∈ W 2,p(B2R(x0)), for all p ≥ 2. Combining (2.38) and (2.39) we deduce that∫
B2R(x0)

∇(ũ− fp1)ϕ dx = 0, for all ϕ ∈ C∞0 (B2R(x0)),

which implies that ũ − fp1 is a weak solution of −∆z = 0 in B2R(x0). Since
ũ − fp1 ∈ W 1,2(B2R(x0)), it follows from Weyl’s Lemma [46, Corollary 1.2.1] that
ũ − fp1 ∈ C∞(B2R(x0)). Therefore, ũ ∈ W 2,p(B2R(x0)) for all p ≥ 2. Notice that
2/p < 2, for all p > 2. Thus, by Sobolev imbedding [39, Theorem 6] we conclude that
ũ ∈ C1,α(B2R(x0)), for some α ∈ (0, 1). The same argument can be used to prove that
ṽ ∈ C1,α(B2R(x0)), for some α ∈ (0, 1). By interior Lp-estimates [42, Theorem 9.11],
we have that

‖ũ‖W 2,p(BR(x0)) ≤ C(‖ũ‖Lp(B2R(x0)) + ‖p1‖Lp(B2R(x0))),
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By using Sobolev Imbedding and the previous computations, we deduce that

‖ũ‖C1,α(BR(x0)) ≤ C(‖ũ‖Lp(B2R(x0)) + ‖ũ‖L2(B2R(x0))).

Letting |x0| → ∞, we get ‖ũ‖C1,α(BR(x0)) → 0. The same idea can be applied to ṽ. �

Proposition 2.3.6. If (V ′5) holds then the ground state is positive.

Proof. The idea is similar to the proof of Lemma 1.3.4 and for convenience we give a
short version here. Let (ũ, ṽ) ∈ E\{(0, 0)} be the nonnegative ground state obtained in
the preceding proposition. Using (V ′5), we can conclude that ũ 6= 0 and ṽ 6= 0. Taking
(ϕ, 0) as test function one sees that∫

R2

∇ũ∇ϕ dx+

∫
R2

V1(x)ũϕ dx =

∫
R2

f1(x, ũ)ϕ dx+

∫
R2

λ(x)ṽϕ dx ≥ 0,

for all ϕ ≥ 0, ϕ ∈ C∞0 (R2). We suppose by contradiction that there exists p ∈ R2 such
that ũ(p) = 0. Thus, since −ũ ≤ 0 in R2, for any R > R0 > 0 we have that

0 = sup
BR0

(p)

(−ũ) = sup
BR(p)

(−ũ).

By the Strong Maximum Principle [42, Theorem 8.19] we conclude that −ũ ≡ 0 in
BR(p), for all R > R0. Therefore −ũ ≡ 0 in R2, which is a contradiction. Therefore
ũ > 0 in R2. Analogously, we can prove that ṽ > 0 in R2. Therefore, the ground state
(ũ, ṽ) is positive. �

Proof of Theorem 2.1.2. It follows from Propositions 2.3.2, 2.3.3, 2.3.4, 2.3.5 and
2.3.6. �

Remark 2.3.7. We stress that Theorem 2.1.2 holds for some θ > θ0 sufficiently large,
see Remark 2.1.3 (iii). Notice that by estimate (2.23) the norm of the minimizing
sequence is so small as we want, and it is controlled by the choice of θ0. However, in the
lemma 2.2.7, we proved that the norm of any element that belongs to Nehari manifold
is greater or equal to a positive constant γ, which is strictly less than 4π(βi − 1)/αiβi,
for i = 1, 2. Thus, our proof holds for any θ contained in a bounded interval of the real
line. Let us consider, for instance,

ϑ∗ := sup{ϑ ∈ R : (S) has ground states}.

Naturally, it arises the following questions: ϑ∗ is finite? If ϑ∗ is finite, then there exists
ground states at ϑ = ϑ∗?
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Chapter 3

On coupled systems of nonlinear
equations with critical exponential
growth

3.1 Introduction

This chapter is devoted to study the following class of coupled systems involving

nonlinear Schrödinger equations −∆u+ u = f1(u) + λ(x)v, x ∈ R2,

−∆v + v = f2(v) + λ(x)u, x ∈ R2.
(S)

Our main contribution in this work is to prove the existence of positive ground state

solutions for (S) when the nonlinearities f1(s), f2(s) have critical exponential growth

motivated by a class of Trudinger-Moser inequalities introduced by D.M. Cao [14] (see

Theorem A in Section 3.2).

3.1.1 Assumptions.

For i = 1, 2 we assume the following assumptions on fi:

(H1) The function fi belongs to C1(R), fi(s) = 0 for all s ≤ 0 and

lim
s→0

fi(s)

s
= 0.

(H2) The function s 7→ s−1fi(s) is increasing for s > 0.
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(H3) There exists µi > 2 such that

0 < µiFi(s) := µi

∫ s

0

fi(τ) dτ ≤ fi(s)s, for all s > 0.

(H4) There exists M > 0 such that

0 < Fi(s) ≤Mfi(s), for all s > 0.

(Hλ) There exists δ > 0 such that 0 < λ(x) ≤ δ < 1 for all x ∈ R2. Moreover, λ(x) is

1-periodic, that is, λ(x) = λ(x+ z) for all x ∈ R2 and z ∈ Z2.

(CG) The function fi : R → R has αi0-critical growth at +∞, that is, there exists

αi0 > 0 such that

lim sup
s→+∞

fi(s)

eαs2 − 1
=

 0 if α > αi0,

∞ if α < αi0.

Let us consider E = H1(R2)×H1(R2) endowed with the natural scalar product

((u, v), (w, z)) =

∫
R2

(∇u∇w + uw +∇v∇z + vz) dx,

and the induced norm ‖(u, v)‖2 = ((u, v), (u, v)). Associated to System (S) we have

the energy functional I : E → R defined by

I(u, v) =
1

2

(
‖(u, v)‖2 − 2

∫
R2

λ(x)uv dx

)
−
∫
R2

(F1(u) + F2(v)) dx.

By using the assumptions on fi(s) and λ(x) and Trudinger-Moser inequality, we can

easily see that I is well defined. Moreover, it’s standard to check that I is C2(E,R)

and

〈I ′(u, v), (φ, ψ)〉 = ((u, v), (φ, ψ))−
∫
R2

(f1(u)φ+ f2(v)ψ) dx−
∫
R2

λ(x) (uψ + vφ) dx.

The critical points of I are precisely the solutions (in the weak sense) of System (S).

Definition 3.1.1. We say that a pair (u, v) ∈ E \ {(0, 0)} is a ground state solution
(least energy solution) of (S), if (u, v) is a solution of (S) and its energy is minimal
among the energy of all nontrivial solutions of (S), i.e., I(u, v) ≤ I(w, z) for any
other nontrivial solution (w, z) ∈ E. We say that (u, v) is nonnegative (nonpositive) if
u, v ≥ 0 (u, v ≤ 0) and positive (negative) if u, v > 0 (u, v < 0).
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3.1.2 Statement of the main result.

We are now in position to formulate our main result and we also give some remarks

on our assumptions.

Theorem 3.1.2. Suppose that (Hλ) holds and assume that for each i = 1, 2 fi(s), f ′i(s)
have αi0-critical growth at +∞ (CG) and satisfies (H1)-(H4). In addition, we consider
the following assumption:

lim inf
s→+∞

sfi(s)

eα
i
0s

2
≥ β0 >

2e

α0

,(H5)

where α0 = max{α1
0, α

2
0}. Then System (S) possesses a positive ground state solution

(u0, v0) ∈ C1,α
loc (R2) × C1,α

loc (R2), for some 0 < α < 1 with the following asymptotic
behavior

‖u0‖C1,α(BR(x0)) → 0 and ‖v0‖C1,α(BR(x0)) → 0, as |x0| → ∞.

Furthermore, the set K of all ground state solutions of System (S) is a compact subset
of E.

Remark 3.1.3. A typical example of nonlinear term satisfying conditions (H1)-(H4)

and (CG) is given by f(s) = eα0s2(qsq−1 + 2α0s
q+1) if s ≥ 0 and f(s) = 0 if s < 0,

where α0 is the critical constant introduced in (CG).

Remark 3.1.4. A typical example of coupling term satisfying (Hλ) is given by
λ(x) = λ ∈ (0, δ), for all x ∈ R2, for some δ < 1. The assumption (Hλ) will be
crucial through the paper. It will be used to guarantee that the Nehari manifold is
bounded away from (0, 0) (see Lemma 3.2.3).

Remark 3.1.5. As we comment in the introduction, assumption (H5) was introduced
in [1] and refined in [26]. It plays a very important role in the proof of Theorem 3.1.2,
because it will ensure that the ground state energy associated to System (S) is strictly
less than 2π/α0 (Proposition 3.2.5). This fact will allow the use of Theorem A in
the minimizing sequence obtained by Ekeland’s variational principle (see (3.15) and
(3.23)).

3.1.3 Outline

The remainder of this chapter is organized as follows: In the forthcoming Section

we collect some results which are crucial to study our problem by a variational

approach. Moreover, we introduce and give some properties of the Nehari manifold.

In Section 3.3, we prove Theorem 3.1.2. We make use of the Ekeland’s variational
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principle to get a minimizing sequence for the energy functional associated to the

problem. We will use the invariance of the energy functional by translation to recover

the compactness of the minimizing sequence and a Trudinger-Moser type inequality

to prove that the weak limit of that sequence will be a ground state solution of the

problem. After that, we obtain a nonnegative ground state solution. Finally, we get

regularity and asymptotic behavior of the ground state using a bootstrap argument and

Lq-estimates. The positivity will be a consequence of the strong maximum principle.

3.2 Preliminary results

In this section, we provide preliminary results which will be used throughout the

chapter. The notion of criticality used in this work is motivated by the following result

which was first considered by D.M. Cao [14] (see also [32]).

Theorem A. If α > 0 and u ∈ H1(R2), then∫
R2

(eαu
2 − 1) dx <∞.

Moreover, if 0 < α < 4π, ‖∇u‖2 ≤ 1, ‖u‖2 ≤ C̃, then there exists a constant
C = C(α, C̃) > 0, depending only on α and C̃, such that∫

R2

(eαu
2 − 1) dx ≤ C.

Lemma 3.2.1. Let assumptions (H1)-(H3) hold. Then

f ′i(s)s
2 − fi(s)s > 0, (3.1)

f ′i(s) > 0, (3.2)

Hi(s) = fi(s)s− 2Fi(s) > 0, (3.3)

for i = 1, 2 and for all s > 0.

Proof. The proof is quite similar to Lemma 2.2.4 and will be omitted here. �

We introduce the Nehari manifold associated to (S) define by

N = {(u, v) ∈ E\{(0, 0)} : 〈I ′(u, v), (u, v)〉 = 0} .

Notice that if (u, v) ∈ N then

‖(u, v)‖2 − 2

∫
R2

λ(x)uv dx =

∫
R2

f1(u)u dx+

∫
R2

f2(v)v dx. (3.4)
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Remark 3.2.2. We can prove analogously Lemma 2.2.6 to the Nehari manifold defined
under assumptions of this chapter.

Lemma 3.2.3. Suppose that (CG), (H1) and (H2) hold. Then

(a) N is a C1-manifold.

(b) There exists ρ > 0, such that

‖(u, v)‖ ≥ ρ, for all (u, v) ∈ N . (3.5)

(c) (u, v) ∈ E\{(0, 0)} is a critical point of I if and only if (u, v) is a critical point
of I |N .

Proof. Let ϕ : E\{(0, 0)} → R be the C1-functional defined by

ϕ(u, v) = 〈I ′(u, v), (u, v)〉 = ‖(u, v)‖2−2

∫
R2

λ(x)uv dx−
∫
R2

f1(u)u dx−
∫
R2

f2(v)v dx.

Notice that N = ϕ−1(0). If (u, v) ∈ N , it follows from (3.1) and (3.4) that

〈ϕ′(u, v), (u, v)〉 =

∫
R2

(
f1(u)u− f ′1(u)u2

)
dx+

∫
R2

(
f2(v)v − f ′2(v)v2

)
dx < 0.

Therefore, 0 is a regular value of ϕ which implies that N is a C1-manifold.
Arguing by contradiction, we suppose that (3.5) does not hold. Thus, we have a

sequence
(un, vn)n ⊂ N , such that ‖(un, vn)‖ → 0 as n→ +∞. (3.6)

Consider α > α0 and ρ0 > 0 such that αρ2
0 < 4π. As consequence of (3.6), there exists

n0 ∈ N such that ‖(un, vn)‖ ≤ ρ1 < ρ0, for n ≥ n0. By using the growth conditions
(H1) and (CG), for any ε > 0 and p > 2, there exists a constant C = C(ε, p) > 0 such
that

fi(s) ≤ ε|s|+ C(ε, p)(eαs
2 − 1)|s|p, for all s ∈ R and i = 1, 2. (3.7)

We recall from Lemma 2.2.2 that for α > 0, l ≥ 1 and r ≥ l we have

(eαs
2 − 1)l ≤ (eαls

2 − 1), for all s ∈ R. (3.8)

Let us consider l > 1 close enough to 1 such that lαρ2
0 < 4π. Thus, it follows from

Theorem A, (3.8) and Hölder inequality that∫
R2

(eαu
2
n − 1)|un|p dx ≤

(∫
R2

(elα‖un‖
2( un
‖un‖)

2

− 1) dx

)1/l

‖un‖ppl′ ≤ C‖un‖ppl′ . (3.9)

Combining (3.7), (3.9) and using Sobolev embedding one sees that∫
R2

f1(un)un dx ≤ εC1‖(un, vn)‖2 + C2‖(un, vn)‖p, for n ≥ n0.
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Analogously, we deduce that∫
R2

f2(vn)vn dx ≤ εC3‖(un, vn)‖2 + C4‖(un, vn)‖p, for n ≥ n0.

Combining theses estimates we get∫
R2

(f1(un)un + f2(vn)vn) dx ≤ εC̃1‖(un, vn)‖2 + C̃2‖(un, vn)‖p. (3.10)

Since ε > 0 is arbitrary and C̃1 does not depend on ε and n, we can choose ε sufficiently
small such that 1− δ − εC̃1 > 0. We recall from Lemma 1.2.1 that

‖(u, v)‖2 − 2

∫
R2

λ(x)uv dx ≥ (1− δ)‖(u, v)‖2, for all (u, v) ∈ E. (3.11)

Thus, it follows from (3.10) and (3.11) that

(1− δ)‖(un, vn)‖2 ≤
∫
R2

(f1(un)un + f2(vn)vn) dx ≤ εC̃1‖(un, vn)‖2 + C̃2‖(un, vn)‖p,

which yields
0 < (1− δ − εC̃1)‖(un, vn)‖2 ≤ C̃2‖(un, vn)‖p.

Therefore, denoting ρ2 = (1− δ − εC̃1)/C̃2 we obtain

0 < ρ
1/(p−2)
2 ≤ ‖(un, vn)‖,

If we choose ρ1 < ρ = min{ρ0, ρ
1/(p−2)
2 } we get a contradiction. Therefore, ‖(u, v)‖2 ≥ ρ

for all (u, v) ∈ N .
Finally, if (u, v) 6= (0, 0) is a critical point of I, we have I ′(u, v) = 0 and

obviously (u, v) ∈ N . Conversely, if (u, v) is a critical point of I on N , we have
that λϕ′(u, v) = I ′(u, v), where λ ∈ R is the Lagrange multiplier. Taking the scalar
product with (u, v) and recalling the previous results we conclude that λ = 0, and the
lemma is proved. �

Let us define the set

E+ := {(u, v) ∈ E\{(0, 0)} : |{u > 0}| > 0 or |{v > 0}| > 0}.

Lemma 3.2.4. Suppose that (H1)-(H3) and (Hλ) hold. For any (u, v) ∈ E+, there
exists a unique t0 > 0, depending of (u, v), such that

(t0u, t0v) ∈ N and I(t0u, t0v) = max
t≥0

I(tu, tv).
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Proof. Let (u, v) ∈ E+ be fixed and define the function h : [0,∞) → R such that
h(t) = I(tu, tv). Notice that 〈I ′(tu, tv), (tu, tv)〉 = th′(t). Thus, it suffices to find a
nontrivial positive critical point of h. After integrating (H3), we get

Fi(s) ≥ C0(|s|µi − 1), for all s > 0.

We may assume without loss of generality that |{u > 0}| > 0. Let R > 0 be such that
|{u > 0} ∩BR(0)| > 0. Thus, we have that

h(t) ≤ t2

2

(
‖(u, v)‖2 − 2

∫
R2

λ(x)uv dx

)
− C0

∫
|{u>0}∩BR(0)|

tµ1|u|µ1 dx− C̃|BR(0)|.

Since µ1 > 2, we conclude that h(t) < 0 for t > 0 sufficiently large. On the other
hand, by using growth conditions we have that for any ε > 0 and p > 2, there exists
C = C(ε, p) > 0 such that

Fi(s) ≤ ε|s|+ C(eαs
2 − 1)|s|p−1, for all s ∈ R.

By similar arguments used to get (3.10) we can deduce that∫
R2

(F1(tu) + F2(tv)) dx ≤ C1ε
t2

2
‖(u, v)‖2 + C2t

p‖(u, v)‖p.

Thus, we have

g(t) =
t2

2

(
‖(u, v)‖2 − 2

∫
R2

λ(x)uv dx

)
−
∫
R2

F1(tu) dx−
∫
R2

F2(tv) dx

≥ t2‖(u, v)‖2

(
1− δ − εC

2
− Ctp−2‖(u, v)‖p−2

)
.

Choosing ε > 0 small enough such that 1 − δ − εC > 0, we conclude that h(t) > 0

for t > 0 sufficiently small. Therefore h has maximum points in the interval (0,+∞).
Finally, notice that every critical point of h satisfies

‖(u, v)‖ − 2

∫
R2

λ(x)uv dx =

∫
R2

f1(tu)u

t
dx+

∫
R2

f2(tv)v

t
dx. (3.12)

It is easy to see that (3.1) implies that the right-hand side of (3.12) is strictly increasing
on t > 0. Thus, the critical point t0 ∈ (0,+∞) is unique. �

We define the ground state energy associated with System (S) by

cN = inf
(u,v)∈N

I(u, v).

The next Proposition plays a very important role and will be proved in Section 3.4.

Proposition 3.2.5. The energy level cN satisfies

0 < cN <
2π

α0

(3.13)

Remark 3.2.6. We can use Lemma 3.2.4 to get the following minimax
characterization:

cN = inf
(u,v)∈N

I(u, v) ≤ inf
(u,v)∈E+

max
t≥0

I(tu, tv). (3.14)
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3.3 Proof of Theorem 3.1.2

By Ekeland’s variational principle (see [38]), there exists a minimizing sequence

(un, vn)n ⊂ N such that

I(un, vn)→ cN and I ′(un, vn)→ 0. (3.15)

Proposition 3.3.1. The minimizing sequence (un, vn)n is bounded in E and∫
R2

f1(un)un dx ≤ C, and
∫
R2

F1(un) dx ≤ C,∫
R2

f2(vn)vn dx ≤ C, and
∫
R2

F2(vn) dx ≤ C.

Proof. We obtain from (3.15) that

cN+on(1) = I(un, vn) =
1

2

(
‖(un, vn)‖2 − 2

∫
R2

λ(x)unvn dx

)
−
∫
R2

(F1(un)+F2(vn)) dx.

Thus, by using (H3), (3.11) and the fact that (un, vn)n ⊂ N , we deduce that

cN + on(1) ≥
(

1

2
− 1

µ

)
(1− δ)‖(un, vn)‖2, (3.16)

where µ = min{µ1, µ2}. Therefore, (un, vn)n is bounded in E. It follows from (3.15)
that∣∣∣∣‖(un, vn)‖2 − 2

∫
R2

λ(x)unvn dx−
∫
R2

f1(un)un dx−
∫
R2

f2(vn)vn dx

∣∣∣∣ ≤ on(1)‖(un, vn)‖.

Combining these estimates together with (H3) we get∫
R2

(f1(un)un + f2(vn)vn) ≤ 2cN + 2on(1) + on(1)‖(un, vn)‖+ 2

∫
R2

(F1(un) + F2(vn))

≤ 2cN + 2on(1) + on(1)‖(un, vn)‖+
2

µ

∫
R2

(f1(un)un + f2(vn)vn),

which implies that∫
R2

(f1(un)un + f2(vn)vn) dx ≤ µ

µ− 2
(2cN + 2on(1) + εn‖(un, vn)‖). (3.17)

Since ‖(un, vn)‖ ≤ C for some C > 0, using (H3) and (3.17) we conclude the proof. �

By the preceding proposition, we may assume, up to a subsequence, that

• (un, vn) ⇀ (u0, v0) weakly in E;

• un → u0 and vn → v0 strongly in Lploc(R2), for all 2 ≤ p <∞;
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• u(x)→ u0(x) and v(x)→ v0(x), almost everywhere in R2.

Proposition 3.3.2. Let (un, vn)n ⊂ N be a minimizing sequence satisfying (3.15).
Then (un, vn)n satisfies exactly one of the following conditions:

(i) (un, vn)→ (0, 0) strongly in E;

(ii) There exists a sequence (yn)n ⊂ R2 and constants R, ξ > 0 such that

lim inf
n→∞

∫
BR(yn)

(u2
n + v2

n) dx ≥ ξ > 0.

Proof. Suppose that (ii) does not hold. Thus, for any R > 0 we have

lim
n→∞

sup
y∈R2

∫
BR(y)

(u2
n + v2

n) dx = 0. (3.18)

Assertion 3.3.3. If (3.18) holds, then

lim
n→∞

∫
R2

λ(x)unvn dx = lim
n→∞

∫
R2

F1(un) dx = lim
n→∞

∫
R2

F2(vn) dx = 0. (3.19)

In fact, if (3.18) holds it follows from Lemma 1.3.1 that un → 0 and vn → 0 in Lp(R2)

for any p > 2. Thus, up to a subsequence un(x)→ 0 and vn(x)→ 0 almost everywhere
in R2. By using assumption (Hλ), Sobolev imbedding, Hölder inequality and the fact
that the minimizing sequence is bounded, we have for p > 2 that∣∣∣∣∫

R2

λ(x)unvn dx

∣∣∣∣ ≤ δ‖un‖p‖vn‖p′ ≤ C‖vn‖‖un‖p ≤ C̃‖un‖p → 0.

By a similar argument used to get (2.33) (see also [26, Lemma 2.1]), we can deduce
that ∫

BR(0)

f1(un) dx→ 0 and
∫
BR(0)

f2(vn) dx→ 0, as n→∞,

for any R > 0. Therefore, by using assumption (H4) and generalized Lebesgue
dominated convergence theorem we conclude that∫

BR(0)

F1(un) dx→ 0 and
∫
BR(0)

F2(vn) dx→ 0, as n→∞. (3.20)

Thus, it remains to prove that for given ε > 0 there exists R = R(ε) > 0 such that∫
R2\BR(0)

F1(un) dx ≤ ε and
∫
R2\BR(0)

F2(vn) dx ≤ ε.

Let B > 0 be such that 2MCB−1 < ε and let us define the set

ΩB = {x ∈ R2\BR(0) : |un(x)| ≥ B}.
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It follows from assumption (H4) and Proposition 3.3.1 that∫
ΩB

F1(un) dx ≤M

∫
ΩB

f1(un) dx ≤ M

B

∫
ΩB

f1(un)un dx ≤ MC

B
≤ ε

2
. (3.21)

By assumption (H1), for any ε̃ > 0, there exists C = C(ε̃, B) > 0 such that

F1(s) ≤ ε̃s2 + Cs4, for |s| ≤ B.

Denoting Ωc
B = {x ∈ R2\BR(0) : |un(x)| ≤ B} and using the fact that un → 0 in

L4(R2), we have that

lim sup
n→∞

∫
ΩcB

F1(un) dx ≤ ε̃ sup
n
‖un‖2

2 ≤ ε̃ sup
n
‖(un, vn)‖2 ≤ ε

2
, (3.22)

since (un, vn)n is bounded in E and ε̃ is arbitrary. Combining (3.20), (3.21) and (3.22)
we get the second limit in (3.19). The same idea can be used to get the third limit in
(3.19), and Assertion 3.3.3 is proved.

By using (3.15) and Assertion 3.3.3 we deduce that

cN+on(1) =
1

2
‖(un, vn)‖2−

∫
R2

(F1(un) + F2(vn) + λ(x)unvn) dx =
1

2
‖(un, vn)‖2+on(1),

which together with Proposition 3.2.5 implies that

lim sup
n→∞

‖(un, vn)‖2 = 2cN <
4π

α0

. (3.23)

It follows from (3.23) that we can consider α > α0 and r > l > 1 sufficiently close to 1

such that rα‖(un, vn)‖2 < 4π. Thus, by using (3.7) and (3.9) we have that∫
R2

(f1(un)un + f2(vn)vn) dx ≤ εC1‖(un, vn)‖2 + C2‖(un, vn)‖qql′ , (3.24)

for q > 2. By choosing ε > 0 such that 1− εC1 > 0, it follows from (3.15), (3.19) and
(3.24) that

(1− εC1)‖(un, vn)‖2 ≤ εC2‖(un, vn)‖qql′ + on(1),

which jointly with Lemma 1.3.1 implies that ‖(un, vn)‖ → 0 and the lemma follows. �

Proposition 3.3.4. The weak limit (u0, v0) is a critical point of I.

Proof. For any (φ, ψ) ∈ C∞0 (R2)× C∞0 (R2) we have by the weak convergence that

((un, vn), (φ, ψ))→ ((u0, v0), (φ, ψ)).

Moreover, also by weak convergence we have the following convergences∫
R2

λ(x)ψun dx→
∫
R2

λ(x)ψu0 dx, and
∫
R2

λ(x)φvn dx→
∫
R2

λ(x)φv0 dx.
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Thus, if we get the convergences∫
R2

f1(un)φ dx→
∫
R2

f1(u0)φ dx, and
∫
R2

f2(vn)ψ dx→
∫
R2

f2(v0)ψ dx, (3.25)

we conclude that
〈I ′(un, vn), (φ, ψ)〉 → 〈I ′(u0, v0), (φ, ψ)〉,

for any (φ, ψ) ∈ C∞0 (R2) × C∞0 (R2), which together with (3.15) and the fact that
C∞0 (R2) is dense in H1(R2), implies that (u0, v0) is a critical point of I. In order to
prove (3.25), notice that the convergences holds if and only if∫

K

|f1(un)| dx→
∫
K

|f1(u0)| dx, and
∫
K

|f2(vn)| dx→
∫
K

|f2(v0)| dx, (3.26)

for any compact set K ⊂ R2. It follows by Theorem A that f1(un), f2(vn) ∈ L1(R2),
for any n ∈ N. Thus, by a quiet similar argument to used to obtain (2.33), we get
(3.26). �

Let us now complete the proof of the existence of ground state for System (S).

We split the argument into two cases.

Case 1 u0 6≡ 0 and v0 6≡ 0.

In this case (u0, v0) is a nontrivial critical point of I, thus (u0, v0) ∈ N . We only

need to prove that I(u0, v0) = cN . Since (u0, v0) ∈ N we have cN ≤ I(u0, v0). On the

other hand,

cN = I(un, vn)− 1

2
〈I ′(un, vn), (un, vn)〉+ on(1) =

1

2

∫
R2

(H1(un) +H2(vn)) dx+ on(1),

which together with (3.3) and Fatou’s lemma implies that

cN =
1

2

∫
R2

(H1(un) +H2(vn)) dx+ on(1) ≥ 1

2

∫
R2

(H1(u0) +H2(v0)) dx = I(u0, v0).

Therefore cN ≥ I(u0, v0) and (u0, v0) is a ground state for System (S).

Case 2 u0 ≡ 0 or v0 ≡ 0.

Recalling that I(un, vn)→ cN > 0 and I is continuous, we conclude that (un, vn)n

can not converge to zero strongly in E. Thus, it follows from Proposition 3.3.2 that the

sequence is non-vanishing, that is, there exists a sequence (yn)n ⊂ R2 and constants

R, ξ > 0 such that

lim inf
n→∞

∫
BR(yn)

(u2
n + v2

n) dx ≥ ξ > 0.
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We may assume, without loss of generality, that (yn)n ⊂ Z2. Let us consider the

shift sequence (ũn(x), ṽn(x)) = (un(x + yn), vn(x + yn)). By the invariance of I under

translations of the form (u, v) 7→ (u(· − z), v(· − z)) with z ∈ Z2, we conclude that

‖(ũn, ṽn)‖ = ‖(un, vn)‖, I(ũn, ṽn) = I(un, vn)→ cN and I ′(ũn, ṽn)→ 0.

We may assume that (yn)n is bounded in Z2. Repeating the same arguments used in

Propositions 3.3.1 and 3.3.4, we can deduce that (ũn, ṽn)n is a bounded sequence in E,

which implies that (ũn, ṽn) ⇀ (ũ, ṽ) and I ′(ũ, ṽ) = 0. Thus,

lim inf
n→∞

∫
BR(0)

(ũ2
n + ṽ2

n) dx = lim inf
n→∞

∫
BR(yn)

(u2
n + v2

n) dx ≥ ξ > 0.

Therefore, ũ 6≡ 0 or ṽ 6≡ 0. Let us consider without loss of generality that ṽ 6≡ 0. If we

suppose that ũ ≡ 0, then using the fact that I ′(ũ, ṽ) = 0, we get

0 = 〈I ′(ũ, ṽ), (ṽ, 0)〉 = −
∫
R2

λ(x)ṽ2 dx.

Since λ(x) > 0 we must have ṽ ≡ 0. This contradiction implies that ũ 6≡ 0 and ṽ 6≡ 0.

The conclusion follows from the same idea used in the Case 1.

Remark 3.3.5. If (ũ, ṽ) ∈ E is a ground state for System (S), then there exists
C = C(δ, µ) > 0 such that C‖(ũ, ṽ)‖2 ≤ cN . In fact, by a similar argument used to get
(3.16) we can deduce that

cN = I(ũ, ṽ) ≥
(

1

2
− 1

µ

)
(1− δ)‖(ũ, ṽ)‖2.

We note by assumptions (H1) and (H3) that for each i = 1, 2 we have

Fi(s) ≤ Fi(|s|) for all s ∈ R.

Thus, I(|ũ|, |ṽ|) ≤ I(ũ, ṽ). Since (|ũ|, |ṽ|) ∈ E\{(0, 0)}, it follows from Lemma 3.2.4

that there exists a unique t0 > 0 such that (t0|ũ|, t0|ṽ|) ∈ N . Moreover, since

(ũ, ṽ) ∈ N , we point out that maxt≥0 I(tũ, tṽ) = I(ũ, ṽ). Thus,

I(t0|ũ|, t0|ṽ|) ≤ I(t0ũ, t0ṽ) ≤ max
t≥0

I(tũ, tṽ) = I(ũ, ṽ) = cN .

Therefore, (t0|ũ|, t0|ṽ|) ∈ N is a nonnegative ground state for System (S). The

positivity and regularity are obtained by a similar argument used to get in the proof

of Theorem 2.1.2 (see Chapter 2).
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Let K be the set of all ground state solutions for System (S)

K := {(u, v) ∈ E : (u, v) ∈ N , I(u, v) = cN and I ′(u, v) = 0}.

Let (un, vn)n ⊂ K be a bounded sequence. Thus, I(un, vn) = cN and I ′(un, vn) = 0.

Passing to a subsequence we have (un, vn) ⇀ (u, v) weakly in E. By a similar argument

used before, we can prove that there exists a sequence (yn)n ⊂ R2 and constants

R, ξ > 0 such that

lim inf
n→∞

∫
BR(yn)

(u2
n + v2

n) dx ≥ ξ > 0.

By the invariance of I, we may assume that (yn)n is bounded in Z2. Therefore,

(u, v) 6= 0. Repeating the same argument used in Proposition 3.3.4, we conclude

that I ′(u, v) = 0. As before, we have also that I(u, v) = cN . By using (H3), the weakly

lower semi-continuity of the norm and Fatou’s lemma, we can deduce that

cN + on(1) = I(un, vn)− 1

µ
〈I ′(un, vn), (un, vn)〉

≥ I(u, v)− 1

µ
〈I ′(u, v), (u, v)〉+ on(1)

= cN + on(1).

Therefore ‖(un, vn)‖ → ‖(u, v)‖, which implies that (un, vn)→ (u, v) strongly in E.

3.4 Proof of Proposition 3.2.5

First, it follows from (H3), (3.11) and Lemma 3.2.3 that for any (u, v) ∈ N we

have

I(u, v) ≥
(

1

2
− 1

µ

)(
‖(u, v)‖2 − 2

∫
R2

λ(x)uv dx

)
≥
(

1

2
− 1

µ

)
(1− δ)ρ > 0,

which implies that cN > 0. Now, let f : (0,∞)→ R defined by f(r) = 4er
2/2/r2. Thus

f ′(r) =
4er

2/2(r2 − 1)

r3
.

Hence, r =
√

2 is the unique critical point and it is a minimum for f . Therefore,

minr>0 4er
2/2/r2 = 2e. Thus, it follows from assumption (H5) that there exists r > 0

such that

β0 >
4er

2/2

α0r2
. (3.27)
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We consider the following Moser’s sequence of functions (see [26,35,57])

ωn(x) =
1√
2π



√
log(n) if |x| ≤ r

n
,

log (r/|x|)√
log(n)

if
r

n
≤ |x| ≤ r,

0 if |x| ≥ r.

It is well known that ‖∇ωn‖2
2 = 1 and ‖ωn‖2

2 = r2/4 log(n) + on(r2/ log(n)). Thus,

‖ωn‖2 = 1 +
dn(r)

log(n)
, where dn(r) =

r2

4
+ on(1).

Let us define ωn = ωn/‖ωn‖. Notice that ‖ωn‖ = 1 and for |x| ≤ r/n we have

(ωn)2(x) =
1

2π
log(n)

log(n)

log(n) + dn(r)
=

1

2π

(
log(n)− dn(r)

log(n)

log(n) + dn(r)

)
.

Therefore, for n sufficiently large we deduce that

(ωn)2(x) ≥ 1

2π
(log(n)− dn(r)) , for |x| ≤ r

n
. (3.28)

In light of the minimax characterization (3.14), we note that to prove (3.13) it suffices

to get (w, z) ∈ E+ such that maxt≥0 I(tw, tz) < 2π/α0. The idea is to prove that there

exists n0 ∈ N such that

max
t≥0

I(tωn0 , 0) <
2π

α0

. (3.29)

Arguing by contradiction, we suppose that (3.29) does not hold, that is

max
t≥0

I(tωn, 0) ≥ 2π

α0

, for all n ∈ N. (3.30)

By using Lemma 3.2.4 for each n ∈ N, there exists tn > 0 such that

(tnωn, 0) ∈ N and I(tnωn, 0) = max
t≥0

I(tωn, 0).

We claim that the sequence (tn)n ⊂ (0,+∞) is bounded. In fact, it follows from (H5)

that for any ε > 0, there exists R = R(ε) > 0, such that

sf1(s) ≥ (β0 − ε)eα0s2 , for all s ≥ R.

Moreover, since (tnωn, 0) ∈ N we have that

t2n = ‖tnω‖2 =

∫
R2

f1(tnωn)tnωn dx.
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Thus, we can conclude that

t2n ≥ (β0 − ε)
∫
R2

eα0t2nω
2
n dx, for all tnωn ≥ R. (3.31)

Notice that if x ∈ B r
n
(0), then

tnωn =
tn
‖ωn‖

√
log(n)√

2π
→ +∞, as n→ +∞.

Thus, for given ε > 0, we can consider n sufficiently large such that tnωn ≥ R.

Therefore, by using (3.28) and (3.31) we get

t2n ≥ (β0 − ε)
∫
B r
n

(0)

eα0t2nω
2
n dx ≥ πr2(β0 − ε)eα0/(2π)t2n(log(n)−r2/4−on(1))−2 log(n), (3.32)

which implies that the sequence (t2n)n is bounded. It follows from (3.30) that

t2n
2

= I(tnwn, 0) +

∫
R2

F1(tnωn) dx ≥ I(tnωn, 0) = max
t≥0

I(tωn, 0) ≥ 1

2

4π

α0

,

which implies that t2n ≥ 4π/α0. Thus, up to a subsequence, t2n → t0 ∈ [4π/α0,+∞).

We claim that t0 = 4π/α0. In fact, suppose by contradiction that t0 = 4π/α0 + γ, for

some γ > 0. For n ∈ N large enough such that t2n > 4π/α0 + ε we have

α0

2π
t2n(log(n)−r2/4−on(1))−2 log(n) >

α0ε

2π
log(n)−

(
2 +

α0ε

2π

)(r2

4
+ on(1)

)
→ +∞,

as n→ +∞, which contradicts (3.32). Since t2n ≥ 4π/α0 and t2n → 4π/α0, we get

lim inf
n→+∞

∫
B r
n

(0)

eα0t2nω
2
n dx ≥ lim inf

n→+∞

∫
B r
n

(0)

eα0t2n log(n)−r2/4+on(1) dx ≥ πr2e−r
2/2,

which together with (3.31) implies that

4π

α0

= lim
n→+∞

t2n ≥ (β0 − ε)πr2e−r
2/2.

Since ε is arbitrary, we conclude that β0 ≤ 4er
2/2/(α0r

2), which contradicts (3.27).

Therefore, there exists n0 ∈ N such that (3.29) holds. Thus,

cN = inf
(u,v)∈N

I(u, v) ≤ inf
(u,v)∈E+

max
t≥0

I(tu, tv) ≤ max
t≥0

I(tωn0 , 0) <
2π

α0

,

which finishes the proof of Proposition 3.2.5.
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Chapter 4

Coupled systems involving the square
root of the Laplacian and critical
exponential growth

4.1 Introduction

In the last few years, a great attention has been focused on the study of

problems involving fractional Sobolev spaces and corresponding nonlocal equations,

both from a pure mathematical point of view and their concrete applications, since they

naturally arise in many different contexts, such as, among the others, obstacle problems,

flame propagation, minimal surfaces, conservation laws, financial market, optimization,

crystal dislocation, phase transition and water waves, see for instance [13, 30] and

references therein. This chapter deals with the existence of ground states to the

following class of coupled systems involving fractional nonlinear Schrödinger equations (−∆)1/2u+ V1(x)u = f1(u) + λ(x)v, x ∈ R,

(−∆)1/2v + V2(x)v = f2(v) + λ(x)u, x ∈ R,
(S)

where (−∆)1/2 denotes the square root of the Laplace operator, the potentials V1(x),

V2(x) are nonnegative and satisfy |λ(x)| ≤ δ
√
V1(x)V2(x), for some δ ∈ (0, 1) and for

all x ∈ R. Here we consider the case when V1(x), V2(x) and λ(x) are periodic, and also

when these functions are asymptotically periodic, that is, the limits of V1(x), V2(x)

and λ(x) are periodic functions when |x| → +∞. Our main goal here is to study the

existence of ground states for (S), when the nonlinearities f1(u), f2(v) have critical

exponential growth motivated by a class of Trudinger-Moser inequality introduced by
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T. Ozawa (see Theorem B in the Section 4.2).

4.1.1 Assumptions

We start this subsection recalling some preliminary concepts about the fractional

operator, for a more complete discussion we refer the readers to [30]. For s ∈ (0, 1),

the fractional Laplace operator of a measurable function u : R→ R is defined by

(−∆)su(x) = −1

2
C(s)

∫
R

u(x+ y) + u(x− y)− 2u(x)

|y|1+2s
dy,

where

C(s) =

(∫
R

1− cos(ξ)

|ξ|1+2s
dξ

)−1

.

The particular case when s = 1/2 its called the square root of the Laplacian. We recall

the definition of the fractional Sobolev space

H1/2(R) =

{
u ∈ L2(R) :

∫
R2

|u(x)− u(y)|2

|x− y|2
dx dy <∞

}
,

endowed with the natural norm

‖u‖1/2 =

(
[u]21/2 +

∫
R
u2 dx

)1/2

, [u]1/2 =

(∫
R2

|u(x)− u(y)|2

|x− y|2
dx dy

)1/2

where the term [u]1/2 is the so-called Gagliardo semi-norm of the function u. In light

of [30, Proposition 3.6] we have that

‖(−∆)1/4u‖2
2 =

1

2π

∫
R2

|u(x)− u(y)|2

|x− y|2
dx dy, for all u ∈ H1/2(R).

In view of the potentials V1(x) and V2(x), we define the following subspace of H1/2(R)

Ei =

{
u ∈ H1/2(R) :

∫
R
Vi(x)u2 dx < +∞

}
, for i = 1, 2,

endowed with the inner product

(u, v)Ei =

∫
R
(−∆)1/4u(−∆)1/4v dx+

∫
R
Vi(x)u2 dx,

to which corresponds the induced norm ‖u‖2
Ei

= (u, u)Ei . In order to establish a

variational approach to treat System (S), we need to require suitable assumptions on

the potentials. For each i = 1, 2, we assume that

(V1) Vi(x), λ(x) are periodic, that is, Vi(x) = Vi(x+ z), λ(x) = λ(x+ z), for all x ∈ R,

z ∈ Z.
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(V2) Vi(x) ∈ L∞loc(R), Vi(x) ≥ 0 for all x ∈ R and

νi = inf
u∈Ei

{
1

2π
[u]21/2 +

∫
R
Vi(x)u2 dx :

∫
R
u2 dx = 1

}
> 0.

(V3) |λ(x)| ≤ δ
√
V1(x)V2(x), for some δ ∈ (0, 1), for all x ∈ R.

We set the product space E = E1 × E2 endowed with the scalar product

((u, v), (w, z))E =

∫
R

(
(−∆)1/4u(−∆)1/4w + V1(x)uw + (−∆)1/4v(−∆)1/4z + V2(x)vz

)
,

to which corresponds the induced norm ‖(u, v)‖2
E = ((u, v), (u, v))E = ‖u‖2

E1
+ ‖v‖2

E2
.

It follows from assumption (V2) that E is a Hilbert space.

We are also concerned with the existence of ground states for the following class

of coupled systems (−∆)1/2u+ Ṽ1(x)u = f1(u) + λ̃(x)v, x ∈ R,

(−∆)1/2v + Ṽ2(x)v = f2(v) + λ̃(x)u, x ∈ R,
(S̃)

when the potentials Ṽ1(x), Ṽ2(x) and λ̃(x) are asymptotically periodic. In analogous

way, we may define the suitable space Ẽ = Ẽ1× Ẽ2 considering Ṽi(x) instead Vi(x). In

order to establish an existence theorem for (S̃), for i = 1, 2 we introduce the following

assumptions:

(V4) Ṽi(x) < Vi(x), λ(x) < λ̃(x) and

lim
|x|→+∞

|Vi(x)− Ṽi(x)| = 0 and lim
|x|→+∞

|λ̃(x)− λ(x)| = 0.

(V5) Ṽi(x) ∈ L∞loc(R), Ṽi(x) ≥ 0 for all x ∈ R and

ν̃i = inf
u∈Ẽi

{
1

2π
[u]21/2 +

∫
R
Ṽi(x)u2 dx :

∫
R
u2 dx = 1

}
> 0.

(V6) |λ̃(x)| ≤ δ
√
Ṽ1(x)Ṽ2(x), for some δ ∈ (0, 1), for all x ∈ R.

We suppose here that the nonlinearities f1(s) and f2(s) have critical exponential

growth. Precisely, we say that fi : R → R for i = 1, 2 has αi0-critical growth at ±∞ if

there exists αi0 > 0 such that

lim sup
s→±∞

fi(s)

eαs2 − 1
=

 0 if α > αi0,

±∞ if α < αi0.
(CG)
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This notion of criticality is motivated by a class of Trudinger-Moser type inequality

introduced by T. Ozawa (see Section 4.2). Furthermore, for i = 1, 2 we make the

following assumptions on the nonlinearities:

(H1) The function fi belongs to C1(R), convex function on R+, fi(−s) = −fi(s) for

s ∈ R, and

lim
s→0

fi(s)

s
= 0.

(H2) The function s 7→ s−1fi(s) is increasing for s > 0.

(H3) There exists µi > 2 such that

0 < µiFi(s) := µi

∫ s

0

fi(τ) dτ ≤ fi(s)s, for all s ∈ R\{0}.

(H4) There exist q > 2 and ϑ > 0 such that

Fi(s) ≥ ϑ|s|q, for all s ∈ R.

4.1.2 Statement of the main results

We are in condition to state our existence theorem for the case when the potentials are

periodic.

Theorem 4.1.1. Suppose that assumptions (V1)-(V3) hold. Assume that for each
i = 1, 2 fi(s) and f ′i(s)s have αi0-critical growth (CG) and satisfy (H1)-(H4). Then,
System (S) possesses a nonnegative ground state solution provided ϑ in (H4) is large
enough.

Theorem 4.1.2. Suppose that assumptions (V1)-(V6) hold and for each i = 1, 2 assume
that fi(s) has αi0-critical growth (CG), satisfies (H1)-(H4) and f ′i(s)s has αi0-critical
growth (CG). Then, System (S̃) possesses a nonnegative ground state solution provided
ϑ in (H4) is large enough.

Remark 4.1.3. We collect the following remarks on our assumptions:

(i) A typical example of nonlinearity which satisfies the assumptions (H1)-(H4) is

f(s) = ϑq|s|q−2s+ q|s|q−2s(eα0s2 − 1) + 2α0|s|qseα0s2 , for 2 < µ < q and s ∈ R,

where α0 is the critical exponent introduced in (CG).
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(ii) The assumption (H4) could be replaced by the following local condition: there

exists q > 2 and ϑ̃ such that

lim inf
s→0

Fi(s)

|s|q
≥ ϑ̃ > 0. (4.1)

In fact, we can use the critical exponential growth of the nonlinearities,

Ambrosetti-Rabinowitz condition (H3) and assumption (4.1) to deduce (H4). In

order to make ease the presentation of this paper and avoid certain technicalities,

we simply assume (H4).

(iii) The assumption (H4) plays a very important role in the proof of

Theorems 4.1.1 and 4.1.2. We will prove the existence of ground states when

ϑ is large enough. Precisely, if

ϑ > ϑ0 =
Sqq
q

(
1

1− δ
µ

µ− 2

q − 2

q

α0κ
−1

ω

)(q−2)/2

, (4.2)

where α0 = max{α1
0, α

2
0}, µ = min{µ1, µ2}, ω is introduced in Theorem B,

κ−1 = max{κ−1
1 , κ−1

2 } where κi is introduced in Lemma 4.2.3 and Sq is introduced

in Section 4.5. The estimate (4.2) will allow us to apply the Trudinger-Moser

inequality (see Section 4.2, Theorem B) in the minimizing sequence obtained by

Ekeland’s variational principle (see Lemma 4.5.2) in order to prove that the weak

limit of this sequence belongs to Nehari manifold.

(iv) Theorems 4.1.1 and 4.1.2 may be considered as the extension of the main result

for the scalar case in [36], because we consider a class of potentials and the

nonlinear term different from them. If we take u = v and λ = 0 in System (S)

then we solve the single equation found in that paper but under our hypotheses.

4.1.3 Outline

The remainder of this chapter is organized as follows. In Sections 4.2 and 4.3, we

collect some results which are crucial to give a variational approach for our problem.

In Section 4.4, we introduce and give some properties of the Nehari manifold. In

Section 4.5, we study the periodic case. For this purpose, we make use of the Ekeland’s

variational principle to obtain a minimizing sequence for the energy functional on the

Nehari manifold. We shall use a fractional version of a lemma introduced by P.L. Lions,
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a Brezis-Lieb type lemma and a Trudinger-Moser type inequality to prove that the weak

limit of this sequence will be a ground state solution for the problem. In the periodic

case, the key point is to use the invariance of the energy functional under translations

to recover the compactness of the minimizing sequence. Finally, in Section 4.6 we

study the asymptotically periodic case. For this matter, the key point is a relation

obtained between the ground state energy associated with Systems (S) and (S̃) (see

Lemma 4.6.1).

4.2 Preliminary results

In this section we provide preliminary results which will be used throughout the

chapter. One of the features of the class of the systems (S) and (S̃) is the presence

of the nonlocal operator, square root of the Laplacian. Another feature is the critical

exponential behavior of the nonlinearities in the sense of Trudinger-Moser. We are

motivated by the following Trudinger-Moser type inequality which was introduced by

T. Ozawa, see [58].

Theorem B. There exists ω ∈ (0, π) such that, for all α ∈ (0, ω], there exists Hα > 0

with ∫
R
(eαu

2 − 1) dx ≤ Hα‖u‖2
2, (4.3)

for all u ∈ H1/2(R) such that ‖(−∆)1/4u‖2
2 ≤ 1.

The following result is a consequence of Theorem B, more details can be found

in [36, Lemma 2.2].

Lemma 4.2.1. Let u ∈ H1/2(R) and ρ0 > 0 be such that ‖u‖1/2 ≤ ρ0. Then, there
exists C = C(α, ρ0) > 0 such that∫

R
(eαu

2 − 1) dx ≤ C, for every 0 < αρ2
0 < ω.

Remark 4.2.2. In light of [53, Theorem 8.5], for any p ≥ 2, there exists C = C(p),
such that

‖u‖p ≤ C‖u‖1/2, for all u ∈ H1/2(R). (4.4)

Lemma 4.2.3. Assume that (V2) holds. Then for each i = 1, 2 there exists κi > 0 such
that

κi‖u‖2
1/2 ≤

1

2π
[u]21/2 +

∫
R
Vi(x)u2 dx, for all u ∈ Ei. (4.5)
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Proof. The proof can be found in [27] and for the sake of convenience, we sketch the
proof here. Suppose that (4.5) does not holds. Thus, there exists a sequence (un)n ⊂ Ei

such that ‖un‖1/2 = 1 and

1

2π
[un]21/2 +

∫
R
Vi(x)u2

n dx <
1

n
.

By using (V2), we have that

0 < λi ≤
1

‖un‖2
2

(
1

2π
[un]21/2 +

∫
R
Vi(x)u2

n dx

)
<

1

n

1

‖un‖2
2

,

which implies that ‖un‖2
2 → 0 and [un]21/2 → 1. Therefore, since Vi ≥ 0, we conclude

that
on(1) = −‖un‖2

2 ≤
∫
R
Vi(x)u2

n dx <
1

n
− 1

2π
[un]21/2 → −

1

2π
,

which is not possible and finishes the proof. �

Notice that combining Remark 4.2.2 and Lemma 4.2.3 we have that Ei is

continuously embedded into Lp(R), for any p ≥ 2. The next lemma is a very important

tool to overcome the lack of compactness. The vanishing lemma was proved originally

by P.L. Lions [52, Lemma I.1] and here we use the following version to fractional

Sobolev spaces.

Lemma 4.2.4. Assume that (un)n is a bounded sequence in H1/2(R) satisfying

lim
n→+∞

sup
y∈R

∫ y+R

y−R
|un|2 dx = 0,(4.6)

for some R > 0. Then, un → 0 strongly in Lp(R), for 2 < p <∞.

Proof. Given r > p, R > 0 and y ∈ R it follows by standard interpolation that

‖un‖Lp(BR(y)) ≤ ‖un‖1−θ
L2(BR(y))‖un‖

θ
Lr(BR(y)),

for some θ ∈ (0, 1) such that
1− θ

2
+
θ

r
=

1

q
.

Using a locally finite covering of R consisting of open balls of radius R, the continuous
embedding H1/2(R) ↪→ Lr(R), the fact that ‖un‖1/2 ≤ C and assumption (4.6), we can
conclude that

lim
n→+∞

‖un‖p ≤ C lim
n→+∞

sup
y∈R

(∫ y+R

y−R
|un|2 dx

)(1−θ)/2

= 0.

�
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4.3 The Variational Setting

The energy functional I : E → R associated to System (S) is defined by

I(u, v) =
1

2

(
‖(u, v)‖2

E − 2

∫
R
λ(x)uv dx

)
−
∫
R

(F1(u) + F2(v)) dx.

Under our assumptions on fi(s), Vi(x) and λ(x), its standard to check that I is well

defined. Moreover, I ∈ C2(E) and its differential is given by

〈I ′(u, v), (φ, ψ)〉 = ((u, v), (φ, ψ))−
∫
R

(f1(u)φ+ f2(v)ψ) dx−
∫
R
λ(x) (uψ + vφ) dx.

The critical points of I are precisely solutions (in the weak sense) to (S).

Definition 4.3.1. We say that a pair (u, v) ∈ E \ {(0, 0)} is a ground state solution
(least energy solution) of (S), if (u, v) is a solution of (S) and its energy is minimal
among the energy of all nontrivial solutions of (S), i.e., I(u, v) ≤ I(w, z) for any other
nontrivial solution (w, z) ∈ E.

Lemma 4.3.2. If (H1)-(H3) hold, then we have the following facts:

f ′i(s)s
2 − fi(s)s > 0, (4.7)

f ′i(s) > 0, (4.8)

φi(s) = fi(s)s− 2Fi(s) > 0, (4.9)

φi(s) > φi(ts), for all t ∈ (0, 1), (4.10)

for each i = 1, 2 and for all s ∈ R\{0}.

Proof. The proof is quite similar to Lemma 2.2.4 and we omitted here. �

Lemma 4.3.3. Suppose that (H1) and (H3) hold. If fi(s) and f ′i(s)s have αi0-critical
growth, then for each i = 1, 2, for any ε > 0, α > αi0 and p > 2, there exists
C = C(ε, p) > 0 such that

fi(s) ≤ ε|s|+ C(eαs
2 − 1)|s|p−1, (4.11)

f ′i(s)s ≤ ε|s|+ C(eαs
2 − 1)|s|p−1, (4.12)

Fi(s) ≤ εs2 + C(eαs
2 − 1)|s|p., (4.13)

for each i = 1, 2 and for all s ∈ R\{0}.

Proof. The proof is similar to Lemma 2.2.5 and we omitted here. �
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4.4 The Nehari manifold

We introduce the Nehari manifold associated to System (S)

N = {(u, v) ∈ E\{(0, 0)} : 〈I ′(u, v), (u, v)〉 = 0} .

Notice that if (u, v) ∈ N then

‖(u, v)‖2
E − 2

∫
R
λ(x)uv dx =

∫
R
f1(u)u dx+

∫
R
f2(v)v dx. (4.14)

Lemma 4.4.1. N is a C1-manifold and there exists ρ > 0, such that

‖(u, v)‖E ≥ ρ, for all (u, v) ∈ N . (4.15)

Proof. The proof of the lemma is similar to Lemma 3.2.3, but for the sake of convenience
we give the proof here. Let J : E\{(0, 0)} → R be the C1-functional defined by

J(u, v) = 〈I ′(u, v), (u, v)〉 = ‖(u, v)‖2
E − 2

∫
R
λ(x)uv dx−

∫
R
f1(u)u dx−

∫
R
f2(v)v dx.

Notice that N = J−1(0). If (u, v) ∈ N , it follows from (4.7) and (4.14) that

〈J ′(u, v), (u, v)〉 =

∫
R

(
f1(u)u− f ′1(u)u2

)
dx+

∫
R

(
f2(v)v − f ′2(v)v2

)
dx < 0. (4.16)

Therefore, 0 is a regular value of J which implies that N is a C1-manifold.
To prove the second part, we suppose by contradiction that (4.15) does not hold.

Thus, we have a sequence

(un, vn)n ⊂ N , such that ‖(un, vn)‖E → 0 as n→ +∞. (4.17)

Let us consider ρ0 > 0 such that αρ2
0 < ω. As consequence of (4.17), there exists

n0 ∈ N such that κ−1‖(un, vn)‖2
E ≤ ρ2

1 < ρ2
0, for n ≥ n0, where κ−1 = max{κ−1

1 , κ−1
2 }.

For given p > 2 and ε > 0, it follows from estimate (4.11) that∫
R
f1(un)un dx ≤ ε‖un‖2

2 + C2

∫
R
(eαu

2
n − 1)|un|p dx. (4.18)

We recall from Lemma 2.2.2 that for α > 0, l ≥ 1 and r ≥ l we have

(eαs
2 − 1)l ≤ (eαls

2 − 1), for all s ∈ R. (4.19)

Let r > l > 1 be sufficiently close to 1 such that rαρ2
0 < ω. Thus, it follows from

Lemma 4.2.1, (4.19) and Hölder inequality that∫
R
(eαu

2
n − 1)|un|p dx ≤

(∫
R
(erαu

2
n − 1) dx

)1/l

‖un‖ppl′ ≤ C‖un‖ppl′ ,
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which together with (4.18) and Sobolev embedding implies that∫
R
f1(un)un dx ≤ εC1‖un‖2

E1
+ C2‖un‖pE1

≤ εC1‖(un, vn)‖2
E + C2‖(un, vn)‖pE.

Analogously, we deduce that∫
R
f2(vn)vn dx ≤ εC3‖(un, vn)‖2

E + C4‖(un, vn)‖pE.

Combining theses estimates we get,∫
R
(f1(un)un + f2(vn)vn) dx ≤ εC̃1‖(un, vn)‖2

E + C̃2‖(un, vn)‖pE. (4.20)

Since ε > 0 is arbitrary and C̃1 does not depend of ε and n, we can choose ε sufficiently
small such that 1− δ − εC̃1 > 0. We recall from Lemma 1.2.1 that

‖(u, v)‖2
E − 2

∫
R2

λ(x)uv dx ≥ (1− δ)‖(u, v)‖2
E, for all (u, v) ∈ E. (4.21)

Thus, combining (4.20), (4.21) and the fact that (un, vn)n ⊂ N we get

(1− δ)‖(un, vn)‖2
E ≤

∫
R
(f1(un)un + f2(vn)vn) dx ≤ εC̃1‖(un, vn)‖2

E + C̃2‖(un, vn)‖pE,

which yields
0 < (1− δ − εC̃1)‖(un, vn)‖2

E ≤ C̃2‖(un, vn)‖pE.

Hence, denoting ρ2 = (1− δ − εC̃1)/C̃2 we obtain

0 < ρ
1/(p−2)
2 ≤ ‖(un, vn)‖E.

Choosing ρ1 < ρ = min{ρ0, ρ
1/(p−2)
2 } we get a contradiction and we conclude that (4.15)

holds. �

Remark 4.4.2. If (u0, v0) ∈ N is a critical point of I |N , then I ′(u0, v0) = 0. In
fact, recall the notation J(u0, v0) = 〈I ′(u0, v0), (u0, v0)〉 and notice that I ′(u0, v0) =

ηJ ′(u0, v0), where η ∈ R is the corresponding Lagrange multiplier. Taking the scalar
product with (u0, v0) and using (4.16) we conclude that η = 0.

Let us define the ground state energy associated with System (S)

cN = inf
(u,v)∈N

I(u, v).

We point out that cN is positive. In fact, if (u, v) ∈ N it follows from (H3) that

I(u, v) ≥ 1

2

(
‖(u, v)‖2

E − 2

∫
R
λ(x)uv dx

)
− 1

µ1

∫
R
f1(u)u dx− 1

µ2

∫
R
f2(v)v dx

≥
(

1

2
− 1

µ

)(
‖(u, v)‖2

E − 2

∫
R
λ(x)uv dx

)
,

Thus, combining with (4.21) we conclude that

I(u, v) ≥
(

1

2
− 1

µ

)
(1− δ)‖(u, v)‖2

E ≥
(

1

2
− 1

µ

)
(1− δ)ρ > 0, for all (u, v) ∈ N .
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Lemma 4.4.3. Suppose that (V3) and (H1)-(H4) hold. For any (u, v) ∈ E\{(0, 0)},
there exists a unique t0 > 0, depending only of (u, v), such that

(t0u, t0v) ∈ N and I(t0u, t0v) = max
t≥0

I(tu, tv).

Moreover, if 〈I ′(u, v), (u, v)〉 < 0, then t0 ∈ (0, 1).

Proof. Let (u, v) ∈ E\{(0, 0)} be fixed and consider the function g : [0,∞) → R
defined by g(t) = I(tu, tv). Notice that

〈I ′(tu, tv), (tu, tv)〉 = tg′(t).

The result follows if we find a positive critical point of g. After integrating (H3), we
deduce that

Fi(s) ≥ C0(|s|µi − 1), for all s 6= 0,

which implies that

g(t) ≤ t2

2

(
‖(u, v)‖2

E − 2

∫
R
λ(x)uv dx

)
− C0

∫ R

−R
(tµ1|u|µ1 + tµ2|v|µ2) dx− C̃.

Since µ1, µ2 > 2, we obtain g(t) < 0 for t > 0 sufficiently large. On the other hand, for
some α > α0 and ρ0 > 0 satisfying αρ2

0 < ω, we consider t > 0 sufficiently small such
that tκ−1‖(u, v)‖2

E < ρ2
0. Thus, for ε > 0 and p > 2, we can use (4.13) and the same

ideas used to obtain (4.20) to get∫
R
(F1(tu) + F2(tv)) dx ≤ εC1

t2

2
‖(u, v)‖2

E + C2t
p‖(u, v)‖pE. (4.22)

Since C1 does not depends of ε which is arbitrary, we can take it small enough such
that 1− δ − C1ε > 0. Hence, by using (4.21) and (4.22) we have

g(t) ≥ t2‖(u, v)‖2
E

(
1− δ − C1

2
− C2t

p−2‖(u, v)‖p−2
E

)
.

Thus, g(t) > 0 provided t > 0 is sufficiently small. Therefore, g has maximum points in
(0,∞). In order to prove the uniqueness, we note that every critical point of g satisfies

‖(u, v)‖2
E − 2

∫
R
λ(x)uv dx =

∫
R

f1(tu)u

t
dx+

∫
R

f2(tv)v

t
dx. (4.23)

Furthermore, by using (4.7) we get

d

dt

(
fi(ts)s

t

)
=
f ′i(ts)ts

2 − fi(ts)s
t2

=
f ′i(ts)t

2s2 − fi(ts)ts
t3

> 0, (4.24)

which implies that the right-hand side of (4.23) is strictly increasing on t > 0, and
consequently, the critical point t0 ∈ (0,+∞) is unique.
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Finally, we assume that 〈I ′(u, v), (u, v)〉 < 0 and we suppose by contradiction
that t0 ≥ 1. Since t0 is a critical point of g, we have

0 = g′(t0) = ‖(u, v)‖2
E − 2

∫
R
λ(x)uv dx−

∫
R

f1(t0u)u

t0
dx+

∫
R

f2(t0v)v

t0
dx.

Therefore, by using the monotonicity obtained above, we conclude that

0 ≤ ‖(u, v)‖2
E − 2

∫
R
λ(x)uv dx−

∫
R
f1(u)u dx+

∫
R
f2(v)v dx = 〈I ′(u, v), (u, v)〉 < 0,

which is a contradiction and the lemma is proved. �

4.5 Proof of Theorem 4.1.1

For q > 2 considered in (H4), we define the constant

Sq = inf
(u,v)∈E\{(0,0)}

Sq(u, v),

where

Sq(u, v) =

(
‖(u, v)‖2

E − 2

∫
R
λ(x)uv dx

)1/2

‖(u, v)‖q
, for (u, v) ∈ E\{(0, 0)}.

Lemma 4.5.1. Let ϑ and q be the constants introduced in (H4).

(a) The constant Sq is positive.

(b) For any (u, v) ∈ E\{(0, 0)}, we have

max
t≥0

(
t2

2
Sq(u, v)2‖(u, v)‖2

q − ϑtq‖(u, v)‖qq
)

=

(
1

2
− 1

q

)
Sq(u, v)2q/(q−2)

(qϑ)2/(q−2)
.

Proof. The proof is the same of Lemma 2.2.9 and we omitted here. �

By Ekeland’s variational principle (see [38]), there exists a sequence (un, vn)n ⊂ N

such that

I(un, vn)→ cN and I ′(un, vn)→ 0. (4.25)

Now we summarize some properties of (un, vn)n which are useful to study our problem.

Lemma 4.5.2. The minimizing sequence (un, vn)n satisfies the following properties:

(a) (un, vn)n is bounded in E.
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(b) lim sup
n→+∞

‖(un, vn)‖2
E ≤

1

1− δ
µ

µ− 2

q − 2

q

S
2q/(q−2)
q

(qϑ)2/(q−2)
.

(c) (un, vn)n does not converge strongly to zero in Lm(R)×Lm(R), for some m > 2.

(d) There exists a sequence (yn)n ⊂ R and constants β,R > 0 such that

lim inf
n→+∞

∫ yn+R

yn−R
(u2

n + v2
n) dx ≥ β > 0. (4.26)

Proof. It follows from assumption (4.25) that

cN+on(1) = I(un, vn) =
1

2

(
‖(un, vn)‖2

E − 2

∫
R
λ(x)unvn dx

)
−
∫
R
(F1(un)+F2(vn)) dx.

Thus, by using (H3), (4.21) and the fact that (un, vn)n ⊂ N , we deduce that

cN + on(1) ≥
(

1

2
− 1

µ

)
(1− δ)‖(un, vn)‖2

E.

Therefore, (un, vn)n is bounded in E. Moreover, the preceding estimate implies that

lim sup
n→∞

‖(un, vn)‖2
E ≤

1

1− δ
2µ

µ− 2
cN . (4.27)

To prove item (b), we have from (H4) that

F1(s) + F2(t) ≥ ϑ(|s|q + |t|q), for all s, t ∈ R. (4.28)

By using Lemma 4.4.3, for any (w, z) ∈ E\{(0, 0)} there exists a unique t0 > 0 such
that (t0w, t0z) ∈ N . Thus, since that cN ≤ I(t0w, t0z) ≤ maxt≥0 I(tw, tz), we can use
(4.28) to get

cN ≤ max
t≥0

{
t2

2

(
‖(w, z)‖2 − 2

∫
R
λ(x)wz dx

)
− ϑtq‖(w, z)‖qq

}
.

Recalling the definition of Sq(w, z) and using Lemma 4.5.1 (b), we conclude that

cN ≤ max
t≥0

{
t2

2
Sq(ψ, φ)2‖(w, z)‖2

q − ϑtq‖(w, z)‖qq
}

=

(
1

2
− 1

q

)
Sq(w, z)

2q/(q−2)

(qϑ)2/(q−2)
. (4.29)

Combining (4.27), (4.29) and taking the infimum over (w, z) ∈ E\{(0, 0)} we have that

lim sup
n→∞

‖(un, vn)‖2
E ≤

1

1− δ
µ

µ− 2

q − 2

q

S
2q/(q−2)
q

(qϑ)2/(q−2)
.

Concerning (c), let α, ρ0 > 0 be such that α > α0 and 0 < αρ2
0 < ω. By using

item (b), there exists ϑ0 > 0 such that

κ−1 lim sup
n→+∞

‖(un, vn)‖2
E ≤ ρ2

0, for ϑ > ϑ0.
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By similar arguments used in the proof of Lemma 4.4.1, for given p > 2, r > l > 1,
sufficiently close to 1, such that rαρ2

0 < ω and a suitable ε > 0, we can deduce that

0 < (1− δ − εC1)ρ2 ≤ (1− δ − εC1)‖(un, vn)‖2
E ≤ C2‖(un, vn)‖ppl′ ,

where 1/l + 1/l′ = 1. Therefore, (un, vn)n cannot converge to zero in Lpl′(R).
Finally to prove item (d), we suppose by contradiction that (4.26) does not holds.

Thus, for any R > 0, we have

lim
n→+∞

sup
y∈R

∫ y+R

y−R
(u2

n + v2
n) dx = 0.

By using Lemma 4.2.4, it follows that (un, vn)→ 0 strongly in Lp(R)× Lp(R) for any
p > 2. In particular, for pl′ > 2 contradicting item (c). �

Proposition 4.5.3. There exists a minimizing sequence which converges to a nontrivial
weak limit.

Proof. Let (un, vn)n ⊂ E be the minimizing sequence satisfying (4.25). By
Lemma 4.5.2 (a), (un, vn)n is bounded in E. Thus, passing to a subsequence, we
may assume that (un, vn) ⇀ (u0, v0) weakly in E. Let us define the shift sequence
(ũn(x), ṽn(x)) = (un(x + yn), vn(x + yn)). Notice that the sequence (ũn, ṽn)n is also
bounded in E which implies that, up to a subsequence, (ũn, ṽn) ⇀ (ũ, ṽ) weakly in
E. By using assumption (V1), we can note that the energy functional is invariant by
translations of the form (u, v) 7→ (u(· − z), v(· − z)), with z ∈ Z. Thus, by a careful
computation we can deduce that

‖(ũn, ṽn)‖ = ‖(un, vn)‖, I(ũn, ṽn) = I(un, vn)→ cN and I ′(ũn, ṽn)→ 0.

Therefore,

lim
n→+∞

∫ R

−R
(ũ2

n + ṽ2
n) dx = lim

n→+∞

∫ yn+R

yn−R
(u2

n + v2
n) dx ≥ β > 0,

which implies (ũ, ṽ) 6= (0, 0). �

For the sake of simplicity, we will keep the notation (un, vn)n and (u0, v0). In

order to prove that (u0, v0) ∈ N , we will use the following Brezis-Lieb type lemma

which has been proved by J.M. do Ó et al. [36, Lemma 2.6].

Lemma 4.5.4. Let (un)n ⊂ H1/2(R) be a sequence such that un ⇀ u weakly in H1/2(R)

and ‖un‖1/2 < ρ0 with ρ0 > 0 small. Then, as n→∞, we have∫
R
f(un)un dx =

∫
R
f(un − u)(un − u) dx+

∫
R
f(u)u dx+ on(1),∫

R
F (un) dx =

∫
R
F (un − u) dx+

∫
R
F (u) dx+ on(1).
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As consequence of Lemma 4.5.4, we have the following lemma:

Lemma 4.5.5. If wn = un − u0 and zn = vn − v0, then

〈I ′(u0, v0), (u0, v0)〉+ lim inf
n→+∞

〈I ′(wn, zn), (wn, zn)〉 = 0. (4.30)

Therefore, either 〈I ′(u0, v0), (u0, v0)〉 ≤ 0 or lim infn→+∞〈I ′(wn, zn), (wn, zn)〉 < 0.

Proof. By easy computations we can deduce that

‖un‖2
E1

= ‖wn‖2
E1

+ ‖u0‖2
E1

+ 2

(∫
R
(−∆)1/4wn(−∆)1/4u0 dx+

∫
R
V1(x)wnu0 dx

)
,

‖vn‖2
E2

= ‖zn‖2
E2

+ ‖v0‖2
E2

+ 2

(∫
R
(−∆)1/4zn(−∆)1/4v0 dx+

∫
R
V2(x)znv0 dx

)
.

Thus, since (wn, zn) ⇀ 0 weakly in E, we have

‖(un, vn)‖2
E = ‖(wn, zn)‖2

E + ‖(u0, v0)‖2
E + 2((wn, zn), (u0, v0))E

= ‖(wn, zn)‖2
E + ‖(u0, v0)‖2

E + on(1). (4.31)

Moreover, we have also that∫
R
λ(x)wnzn dx =

∫
R
λ(x)unvn dx+

∫
R
λ(x)u0v0 dx−

∫
R
λ(x)unv0 dx−

∫
R
λ(x)vnu0 dx.

By the weak convergence we have the following convergences∫
R
λ(x)v0un dx→

∫
R
λ(x)v0u0 dx and

∫
R
λ(x)u0vn dx→

∫
R
λ(x)v0u0 dx,

which yields ∫
R
λ(x)wnzn dx =

∫
R
λ(x)unvn dx−

∫
R
λ(x)u0v0 dx+ on(1). (4.32)

By using Lemma 4.5.4, (4.31), (4.32) and the fact that (un, vn)n ⊂ N , we conclude
that

lim inf
n→+∞

〈I ′(wn, zn), (wn, zn)〉 = −〈I ′(u0, v0), (u0, v0)〉,

which completes the proof. �

Proposition 4.5.6. The weak limit (u0, v0) satisfies 〈I ′(u0, v0), (u0, v0)〉 = 0.

Proof. We have divided the proof into two steps.

Step 1. 〈I ′(u0, v0), (u0, v0)〉 ≥ 0.

Suppose by contradiction that 〈I ′(u0, v0), (u0, v0)〉 < 0. Thus, from Lemma 4.4.3,
there exists t0 ∈ (0, 1) such that (t0u0, t0v0) ∈ N . By using (4.9) and Fatou’s lemma,
we obtain

cN + on(1) =
1

2

∫
R
(φ1(un) + φ2(vn)) dx ≥ 1

2

∫
R
(φ1(u0) + φ2(v0)) dx+ on(1).
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Since t0 ∈ (0, 1), it follows from (4.10) that

1

2

∫
R
(φ1(u0) + φ2(v0)) dx+ on(1) >

1

2

∫
R
(φ1(t0u0) + φ2(t0v0)) dx+ on(1).

Combining these estimates and using the fact that (t0u0, t0v0) ∈ N , we conclude that

cN + on(1) > I(t0u0, t0v0)− 1

2
〈I ′(t0u0, t0v0), (t0u0, t0v0)〉+ on(1) = I(t0u0, t0v0) + on(1).

Hence, I(t0u0, t0v0) < cN , which is a contradiction. Therefore, 〈I ′(u0, v0), (u0, v0)〉 ≥ 0.

Step 2. 〈I ′(u0, v0), (u0, v0)〉 ≤ 0.

Suppose by contradiction, that 〈I ′(u0, v0), (u0, v0)〉 > 0. By Lemma 4.5.5, we
have that

lim inf
n→+∞

〈I ′(wn, zn), (wn, zn)〉 < 0. (4.33)

Thus, passing to a subsequence, we have 〈I ′(wn, zn), (wn, zn)〉 < 0, for n ∈ N
sufficiently large. By Lemma 4.4.3, there exists a sequence (tn)n ⊂ (0, 1) such that
(tnwn, tnzn)n ⊂ N . Passing to a subsequence, we may assume that tn → t0 ∈ (0, 1].
Arguing by contradiction, we suppose that t0 = 1. Thus, it follows that

‖(wn, zn)‖2
E − 2

∫
R
λ(x)wnzn dx = ‖(tnwn, tnzn)‖2

E − 2

∫
R
λ(x)tnwntnzn dx+ on(1).

(4.34)
If we prove the following convergences∫

R
f1(wn)wn dx =

∫
R
f1(tnwn)tnwn dx+ on(1), (4.35)∫

R
f2(zn)zn dx =

∫
R
f2(tnzn)tnzn dx+ on(1), (4.36)

then combining with (4.34) and the fact that (tnwn, tnzn)n ⊂ N we conclude that

〈I ′(wn, zn), (wn, zn)〉 = 〈I ′(tnwn, tnzn), (tnwn, tnzn)〉+ on(1) = on(1),

which contradicts (4.33). This contradiction implies that t0 ∈ (0, 1). It remains to prove
(4.35) and (4.36). For this purpose, for each i = 1, 2 we apply the mean value theorem
to the function gi(t) = fi(t)t. Thus, we get a sequence of functions (τ in)n ⊂ (0, 1) such
that

f1(wn)wn − f1(tnwn)tnwn = (f ′1(σin)σin + f1(σin))wn(1− tn), (4.37)

f2(zn)zn − f2(tnzn)tnzn = (f ′2(σin)σin + f2(σin))zn(1− tn), (4.38)

where σ1
n = wn + τ 1

nwn(tn − 1) and σ2
n = zn + τ 2

nzn(tn − 1). By using Lemma 4.5.2 (b),
there exists ϑ0 > 0 such that κ−1‖(un, vn)‖2

E ≤ ρ2
0, for some α > α0, 0 < αρ2

0 < ω and
ϑ > ϑ0. Since we have

‖un‖2
E1

= ‖wn‖2
E1

+ ‖u0‖2
E1

+ on(1),
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it follows that κ−1 lim supn→+∞ ‖wn‖2
E1
≤ ρ2

0. Thus, up to a subsequence, we get

‖σ1
n‖E1 = ‖wn + τ 1

nwn(tn − 1)‖E1 = |1− (1− tn)τ 1
n|‖wn‖E1 ≤ κρ0,

for n ∈ N sufficiently large. We claim that

sup
n

∫
R
f1(σ1

n)wn dx <∞ and sup
n

∫
R
f ′1(σ1

n)σ1
nwn dx <∞, (4.39)

sup
n

∫
R
f2(σ2

n)zn dx <∞ and sup
n

∫
R
f ′2(σ2

n)σ2
nzn dx <∞. (4.40)

In fact, for p > 2 it follows from (4.4), (4.11) and Hölder inequality that∫
R
f1(σ1

n)wn dx ≤ C‖σ1
n‖E1‖wn‖E1 + C

∫
R
(eα(σ1

n)2 − 1)|σ1
n|p−1|wn| dx.

Consider r > l > 1, sufficiently close to 1, such that 0 < rαρ2
0 < ω. By using Sobolev

embedding, Lemma 4.2.1, (4.19) and Hölder inequality we get∫
R
(eα(σ1

n)2 − 1)|σ1
n|p−1|wn| dx ≤

(∫
R
(erα(σ1

n)2 − 1) dx

)1/l(∫
R
|σ1
n|l
′(p−1)|wn|l

′
dx

)1/l′

≤ C

(∫
R
|σ1
n|2l

′(p−1) dx

)1/2l′ (∫
R
|wn|2l

′
dx

)1/2l′

≤ C‖σ1
n‖

p−1
E1
‖wn‖E1 ,

where 1/l + 1/l′ = 1 and we have used the fact that 2l′(p− 1) > 2. Therefore,∫
R
f1(σ1

n)wn dx ≤ C‖σ1
n‖E1‖wn‖E1 + C‖σ1

n‖
p−1
E1
‖wn‖E1 ≤ Cρ2

0 + Cρp−1
0 ρ0 <∞.

By using (4.12) and similar computations we obtain∫
R
f ′1(σ1

n)σ1
nwn dx ≤ C‖σ1

n‖E1‖wn‖E1 + C‖σ1
n‖

p−1
E1
‖wn‖E1 <∞.

Analogously we obtain (4.40) and the claim is proved. From (4.39) and (4.40) we
conclude that

sup
n

∫
R
|f1(σ1

n)σ1
n + f1(σ1

n)||wn| dx <∞ and sup
n

∫
R
|f2(σ2

n)σ2
n + f2(σ2

n)||zn| dx <∞.

(4.41)
Finally, combining (4.37), (4.38), (4.41) and tn → 1, we get (4.35) and (4.36).

The preceding arguments concluded that, up to a subsequence, tn → t0 ∈ (0, 1).
By a similar argument used in the Step 1, we can deduce that

cN + on(1) =
1

2

∫
R
(φ1(un) + φ2(vn)) dx ≥ 1

2

∫
R
(φ1(tnun) + φ2(tnvn)) dx. (4.42)

Notice that tnun ⇀ t0u0 and κ−1‖tnun‖2
E1
≤ ρ2

0. Thus, by using Lemma 4.5.4 we have∫
R
φ1(tnun) dx =

∫
R
φ1(tnun − t0u0) dx+

∫
R
φ1(t0u0) dx. (4.43)
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Let us denote t̂n = tn− t0 → 0. By the mean value theorem, there exists a sequence of
functions (γn)n ⊂ (0, 1) such that

φ1(tnun − t0u0)− φ1(tnwn) = φ′1((1− γn)(tnun − t0u0) + γtnwn)t̂nu0.

Notice that tnun − t0u0 = tnwn + t̂nu0. Thus, it follows that

φ1(tnun − t0u0)− φ1(tnwn) = φ′1(ζn)t̂nu0, (4.44)

where ζn = (1− γn)t̂nu0 + tnwn. Recalling that κ−1‖wn‖2
E1
≤ ρ2

0 we have

‖ζn‖E1 = ‖(1− γn)t̂nu0 + tnwn‖E1 ≤ t̂n‖u0‖E1 + tn‖wn‖E1 ≤ ρ0,

for n sufficiently large. Repeating the same argument used to deduce (4.41), we get

sup
n

∫
R
|φ′1(ζn)||u0| dx ≤ sup

n

∫
R
|f ′1(ζn)ζn + f1(ζn)||wn| dx <∞. (4.45)

By using (4.44), (4.45) and the fact that t̂n → 0, we conclude that∫
R
φ1(tnun − t0u0) dx =

∫
R
φ1(tnwn) dx+ on(1). (4.46)

Since tnvn ⇀ t0v0 and κ−1‖tnvn‖2
E2
≤ ρ2

0, we can check analogously that∫
R
φ2(tnvn) dx =

∫
R
φ2(tnvn − t0v0) dx+

∫
R
φ2(t0v0) dx, (4.47)∫

R
φ2(tnvn − t0v0) dx =

∫
R
φ2(tnzn) dx+ on(1). (4.48)

Therefore, by using (4.42), (4.43), (4.46), (4.47), (4.48) and the fact that (tnwn, tnzn) ∈
N , we have that

cN + on(1) ≥ 1

2

∫
R
(φ1(tnun) + φ2(tnvn)) dx

=
1

2

∫
R
(φ1(tnun − t0u0) + φ2(tnvn − t0v0)) dx+

1

2

∫
R
(φ1(t0u0) + φ2(t0v0)) dx

=
1

2

∫
R
(φ1(tnwn) + φ2(tnzn)) dx+

1

2

∫
R
(φ1(t0u0) + φ2(t0v0)) dx+ on(1),

which implies that

cN + on(1) ≥ I(tnwn, tnzn) +
1

2

∫
R
(φ1(t0u0) + φ2(t0v0)) dx+ on(1).

Since (u0, v0) 6= (0, 0), it follows from (4.9) that

1

2

∫
R
(φ1(t0u0) + φ2(t0v0)) dx > 0,

which jointly with (4.49) implies that I(tnwn, tnzn) < cN for n large, contradicting the
definition of cN . Therefore, 〈I ′(u0, v0), (u0, v0)〉 = 0 and the proof is complete. �
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Proof of Theorem 4.1.1 completed. Finally, we will conclude that (u0, v0) is in fact a
ground state solution for System (S), even though we do not know if (un, vn) converges
strongly in E. By Propositions 4.5.3 and 4.5.6, we have that (u0, v0) ∈ N . Thus,
cN ≤ I(u0, v0). On the other hand, by using (4.9) and similar arguments as used
before, we deduce that

cN+on(1) =
1

2

∫
R
(φ1(un)+φ2(vn)) dx ≥ 1

2

∫
R
(φ1(u0)+φ2(v0)) dx+on(1) = I(u0, v0)+on(1),

which implies that cN ≥ I(u0, v0). Therefore I(u0, v0) = cN and jointly with
Remark 4.4.2 implies that (u0, v0) is a ground state solution for System (S).

In order to get a nonnegative ground state, we note that I(|u0|, |v0|) ≤ I(u0, v0).
Moreover, by using Lemma 4.4.3, there exists t0 > 0, depending on (|u0|, |v0|), such
that (t0|u0|, t0|v0|) ∈ N . Since (u0, v0) ∈ N , we have also from Lemma 4.4.3 that
maxt≥0 I(tu0, tv0) = I(u0, v0). Hence,

I(t0|u0|, t0|v0|) ≤ I(t0u0, t0v0) ≤ max
t≥0

I(tu0, tv0) = I(u0, v0) = cN .

Therefore, (t0|u0|, t0|v0|) ∈ N is a nonnegative ground state solution for System (S)
which finishes the proof of Theorem 4.1.1. �

Remark 4.5.7. Let K be the set of all ground state solutions for System (S), that is,

K := {(u, v) ∈ E : (u, v) ∈ N , I(u, v) = cN and I ′(u, v) = 0}.

Let (un, vn)n ⊂ K be a bounded sequence. Thus, up to a subsequence, we may assume
(un, vn) ⇀ (u, v) weakly in E. Proceeding analogously to the proof of Proposition 4.5.3,
we can conclude that there exists a sequence (yn)n ⊂ Z and constants R, ξ > 0 such
that

lim inf
n→∞

∫
BR(yn)

(u2
n + v2

n) dx ≥ ξ > 0.

Using the invariance of I, we may conclude that (u, v) 6= 0. Repeating the same
arguments used in the proof of Proposition 4.5.6, we deduce that (u, v) ∈ N . As before,
we see also that I(u, v) = cN . Thus, using (H3), the weakly lower semi-continuity of
the norm and Fatou’s lemma, we have

cN + on(1) = I(un, vn)− 1

µ
〈I ′(un, vn), (un, vn)〉

≥ I(u, v)− 1

µ
〈I ′(u, v), (u, v)〉+ on(1)

= cN + on(1).

Thus, ‖(un, vn)‖ → ‖(u, v)‖, which implies that (un, vn) → (u, v) strongly in E.
Therefore, K is a compact set in E.
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4.6 Proof of Theorem 4.1.2

In this section we will be concerned with the existence of ground states for the

asymptotically periodic case. The idea is the same used in the proof of Theorem 1.5.

We emphasize that the only difference between the potentials Vi(x), λ(x) and Ṽi(x),

λ̃(x) is the periodicity by translations required to Vi(x) and λ(x). Thus, if Ṽi(x) and

λ̃(x) are periodic potentials, we can make use of Theorem 4.1.1 to get a ground state

solution for System (S̃). Let us suppose that they are not periodic.

Associated to System (S̃), we have the following energy functional

Ĩ(u, v) =
1

2

(
‖(u, v)‖2

Ẽ
− 2

∫
R
λ̃(x)uv dx

)
−
∫
R

(F1(u) + F2(v)) dx.

The Nehari manifold for System (S̃) is defined by

Ñ = {(u, v) ∈ Ẽ\{(0, 0)} : 〈Ĩ(u, v), (u, v)〉},

and the ground state energy associated cÑ = infÑ Ĩ(u, v). Similarly to Section 4.4, for

any (u, v) ∈ Ñ , we can deduce that

Ĩ(u, v) ≥
(

1

2
− 1

µ

)
(1− δ)‖(u, v)‖2

Ẽ
≥
(

1

2
− 1

µ

)
(1− δ)ρ > 0.

Hence, cÑ > 0. The next step is to establish a relation between the levels cN and cÑ .

Lemma 4.6.1. Assume the hypotheses of Theorem 4.1.2. Then cÑ < cN .

Proof. The proof is quite similar to Lemma 1.5.1 and we omitted here. �

As in the proof of Theorem 4.1.1, there exists a sequence (un, vn)n ⊂ N such that

Ĩ(un, vn)→ cÑ and Ĩ ′(un, vn)→ 0. (4.49)

Notice that in the proof of Theorem 4.1.1 the only step we used the periodicity of

the potentials was to guarantee that a minimizing sequence converges to a nontrivial

limit (see Proposition 4.5.3). Thus, Lemma 4.5.2 remains true for the minimizing

sequence obtained above to the asymptotically periodic case. Since (un, vn)n is a

bounded sequence in Ẽ, we may assume up to a subsequence that (un, vn) ⇀ (u0, v0)

weakly in Ẽ. The main difficulty is to prove that the weak limit is nontrivial.

Proposition 4.6.2. The weak limit (u0, v0) of the minimizing sequence (un, vn)n is
nontrivial.
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Proof. Arguing by contradiction, we suppose that (u0, v0) = (0, 0). We may assume
that

• un → 0 and vn → 0 strongly in Lploc(R), for all 2 ≤ p <∞;

• un(x)→ 0 and vn(x)→ 0 almost everywhere in R.

It follows from (V4) that for any ε > 0 there exists R > 0 such that

|V1(x)− Ṽ1(x)| < ε, |V2(x)− Ṽ2(x)| < ε, |λ̃(x)− λ(x)| < ε, for |x| ≥ R. (4.50)

By the same idea used to get (1.12) we can deduce that

I(un, vn) = cÑ + on(1) and 〈I ′(un, vn), (un, vn)〉 = on(1). (4.51)

Using Lemma 4.4.3, there exists (tn)n ⊂ (0,+∞) such that (tnun, tnvn)n ⊂ N .

Claim 1. lim supn→+∞ tn ≤ 1.

In fact, we suppose by contradiction that there exists ε0 > 0 such that, up to a
subsequence, we have tn ≥ 1 + ε0, for all n ∈ N. Combining (4.51) and the fact that
(tnun, tnvn) ⊂ N , we can deduce that∫

R

(
f1(tnun)un

tn
− f1(un)un

)
dx+

∫
R

(
f2(tnvn)vn

tn
− f2(vn)vn

)
dx = on(1).

By using (4.7) (see (4.24)) and the fact that tn ≥ 1 + ε0, we have that∫
R

(
f1((1 + ε0)un)un

1 + ε0

− f1(un)un

)
dx+

∫
R

(
f2((1 + ε0)vn)vn

1 + ε0

− f2(vn)vn

)
dx = on(1).

(4.52)
Arguing similar to the proof of Proposition 4.5.3 we consider the shift sequence
(ũn(x), ṽn(x)) = (un(x + yn), vn(x + yn)). The sequence (ũn(x), ṽn(x)) is bounded
in Ẽ and, up to a subsequence, (ũn(x), ṽn(x)) ⇀ (ũ, ṽ). Therefore,

lim
n→+∞

∫ R

−R
(ũ2

n + ṽ2
n) dx = lim

n→+∞

∫ yn+R

yn−R
(u2

n + v2
n) dx ≥ β > 0,

which implies (ũ, ṽ) 6= (0, 0). Thus, by using (4.7), (4.52) and Fatou’s lemma, we
conclude that

0 <

∫
R

(
f1((1 + ε0)ũ)ũ

1 + ε0

− f1(ũ)ũ

)
dx+

∫
R

(
f2((1 + ε0)ṽ)ṽ

1 + ε0

− f2(ṽ)ṽ

)
dx = on(1),

which is not possible and finishes the proof of Claim 1.

Claim 2. There exists n0 ∈ N such that tn ≥ 1, for n ≥ n0.
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In fact, arguing by contradiction, we suppose that up to a subsequence, tn < 1.
By using (4.10) and the fact that (tnun, tnvn)n ⊂ N we have

cN ≤
1

2

∫
R
(φ1(tnun) + φ2(tnvn)) dx ≤ 1

2

∫
R
(φ1(un) + φ2(vn)) dx = cÑ + on(1).

Therefore, cN ≤ cÑ which contradicts Lemma 4.6.1 and finishes the proof of Claim 2.
Combining Claims 1 and 2, we can deduce that∫

R
(F1(tnun)−F1(un)+F2(tnvn)−F2(vn)) dx =

∫ tn

1

∫
R
(f1(τun)un+f2(τvn)vn) dxdτ = on(1).

Moreover, we have that

t2n − 1

2

(
‖(un, vn)‖2

E − 2

∫
R
λ(x)unvn dx

)
= on(1).

These convergences imply that I(tnun, tnvn)− I(un, vn) = on(1). Thus, it follows from
(4.51) that

cN ≤ I(tnun, tnvn) = I(un, vn) + on(1) = cÑ + on(1),

which contradicts Lemma 4.6.1. Therefore, (u0, v0) 6= (0, 0) and the proposition is
proved. �

Proof of Theorem 4.1.2 completed. We point out that we did not use the periodicity on
the potentials Vi(x) and λ(x) to prove Proposition 4.5.6. Thus, since (u0, v0) 6= (0, 0),
we can repeat the same proof to conclude that (u0, v0) ∈ Ñ . Therefore, we have
cÑ ≤ I(u0, v0). On the other hand, by using (4.9) and similar arguments as used
before, we deduce that

cÑ + on(1) =
1

2

∫
R
(φ1(un) + φ2(vn)) dx

≥ 1

2

∫
R
(φ1(u0) + φ2(v0)) dx+ on(1)

= Ĩ(u0, v0) + on(1),

which implies that cÑ ≥ I(u0, v0). Therefore Ĩ(u0, v0) = cN . Repeating the same
argument used in the proof of Theorem 4.1.1, we can deduce that there exists t0 > 0

such that (t0|u0|, t0|v0|) ∈ Ñ is a ground state solution for System (S̃) which finishes
the proof of Theorem 4.1.2. �

Remark 4.6.3. Let K̃ be the set of all ground state solutions for System (S̃), that is,

K̃ := {(u, v) ∈ Ẽ : (u, v) ∈ Ñ , Ĩ(u, v) = cÑ and Ĩ ′(u, v) = 0}.

Using Proposition 4.40 instead Proposition 4.5.3, we can apply a similar argument used
in Remark 4.6.2 , with I replaced by Ĩ, to conclude that K̃ is a compact set in Ẽ.
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Remark 4.6.4. The main goal of this chapter was to prove the existence of ground
states for Systems (S) and (S̃), when the constant ϑ introduced in (H4) is large enough.
In the lemma 4.4.1, we proved that the norm of any element that belongs to the Nehari
manifold is greater or equal to a positive constant ρ, which is strictly less than κω/α0.
However, we note by Lemma 4.5.2 (b) that the norm of the minimizing sequence is so
small as we want, and it is controlled by the choice of ϑ. Thus, our proof holds for any
ϑ contained in a bounded interval of the real line. Let us consider, for instance,

ϑ∗ := sup{ϑ ∈ R : (S) has ground states}.

Naturally, it arises the following questions: ϑ∗ is finite? If ϑ∗ is finite, then there exists
ground states at ϑ = ϑ∗?
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