Multiplicity of solutions to ressonat elliptic problems.

Edcarlos D. da Silva *

In this notes we discuss the existence and multiple solutions of the Dirichlet boundary value problem

$$\begin{cases} -\Delta_p u = \lambda_1 |u|^{p-2} u + f(x, u) \text{ in } \Omega, \\ u = 0 \text{ on } \partial\Omega, \end{cases}$$
(0.1)

where $\Omega \subset \mathbb{R}^N$ is a bounded open domain with smooth boundary $\partial \Omega$, $1 and <math>f : \Omega \times \mathbb{R} \to \mathbb{R}$ is a Carathéodory function such that

$$\lim_{|t| \to \infty} \frac{f(x,t)}{|t|^{p-1}} = 0.$$
(0.2)

Here \triangle_p denotes the p-Laplacian operator, that is, $\triangle_p u = div(|\nabla u|^{p-2}\nabla u)$. When p = 2, it is the usual Laplacian operator.

From a variational stand point of view, finding solutions of (0.1) in $W_0^{1,p}(\Omega)$ is equivalent to finding critical points of the C^1 functional J given by

$$J(u) = \frac{1}{p} \int_{\Omega} |\nabla u|^p dx - \frac{\lambda_1}{p} \int_{\Omega} |u|^p dx - \int_{\Omega} F(x, u) dx, \,\forall \, u \in W_0^{1, p}(\Omega),$$
(0.3)

where $F(x,t) = \int_0^t f(x,s) ds$ and the Sobolev space $W_0^{1,p}(\Omega)$ is a Banach space endowed with the norm $||u|| = (\int_{\Omega} |\nabla u|^p dx)^{\frac{1}{p}}$.

First, we can prove the following result

Teorema 0.1. (Existence) Suppose (SR), (H0). Then the problem (0.1) has at least one solution $u_0 \in W_0^{1,p}(\Omega)$.

Now, we take $F(x,0) \equiv 0$, $f(x,0) \equiv 0$ which implies that u = 0 is a trivial solution of problem (0.1). In this case the key point is assure the existence of nontrivial solutions. We need some additional hypothesis

(H1) There are $\delta > 0$ and $\alpha \in (0, \lambda_1)$ such that

$$F(x,t) \le \frac{\alpha - \lambda_1}{p} |t|^p, \, \forall \, |t| \le \delta, \, \forall \, x \in \Omega.$$

(H2) There is $t_{\star} \in \mathbb{R} \setminus \{0\}$ such that

$$\int_{\Omega} F(x, t_{\star} \Phi_1(x)) dx > 0$$

Thus, combining Ekeland's Variational Principle and Mountain Pass Theorem, we can prove the following multiplicity result

Teorema 0.2. Suppose (SR), (H0), (H1), (H2). Then the problem (0.1) has at least two nontrivial solutions $u_0, u_1 \in W_0^{1,p}(\Omega)$.

Next, we consider the following hypothesis

(H3) There are r > 0 and $\epsilon \in (0, \lambda_2 - \lambda_1)$ such that

$$0 \le F(x,t) \le \frac{\lambda_2 - \lambda_1 - \epsilon}{p} |t|^p, \, \forall \, |t| \le r, \, \forall \, x \in \Omega.$$

Then, using the Three-Critical Point Theorem, we can show the following result

Teorema 0.3. Suppose (SR), (H0), (H3). Then the problem (0.1) has at least two nontrivial solutions.

^{*}Instituto de Matemática , IME -UFG, Brasil, edcarlos@mat.ufg.br

References

[1] P. BARTOLO, V. BENCI, D. FORTUNATO, Abstract critical point theorems and applications to some nonlinear problems with "strong" resonance at infinity, Nonlinear Anal. 7 (1983), no. 9, pp 981-1012..

[1] E.M. LANDESMAN AND A. C. LAZER, Nonlinear pertubations of linear elliptic boundary value problems at resonance, J. Math. Mech. 19, (1969/1970), pp 609-623.

[1] D. G. COSTA AND C. A. MAGALHAES, Variational Elliptic Problems Which are Nonquadratic at Infinity, Nonlinear Anal. 23 (1994), no. 11, 1401-1412.

[1] EDCARLOS D. DA SILVA, *Quasilinear elliptic problems under strong resonance conditions*, Nonlinear Analysis, Volume 73, Issue 8, 15 October 2010, Pages 2451-2462.