ABOUT SOME LINEAR NON LOCAL PROBLEMS

ANÍBAL RODRÍGUEZ-BERNAL^{*} & SILVIA SASTRE GÓMEZ[†]

Let Ω be a bounded set in $\mathbb{R}^{\mathbb{N}}$,

$$\begin{cases} u_t(x,t) = L(u)(x,t) = K(u)(x,t) - h(x)u(x,t), & x \in \Omega, \ t > 0\\ u(x,0) = u_0(x), & x \in \Omega, \end{cases}$$
(0.1)

with $K(u)(x,t) = \int_{\Omega} J(x,y)u(y,t)dy$, h a bounded function and $u_0 \in L^p(\Omega)$, for $1 \le p \le \infty$. In particular for the Neumann problem $h(x) = h_0(x) = \int_{\Omega} J(x,y)dy$, see [1, 2].

We study the asymptotic behaviour of the solution of (0.1). We have that $L \in \mathcal{L}(L^p(\Omega), L^p(\Omega))$ and assume that the spectrum $\sigma(L)$ is a disjoint union of two closed subsets σ_1 and σ_2 , with $\delta_2 < \operatorname{Re}(\sigma_1) \leq \delta_1$, $\operatorname{Re}(\sigma_2) \leq \delta_2$, for $\delta_2 < \delta_1$.

Consider that Q_{σ_1} is a spectral projection over the space generated by the eigenfunctions associated to σ_1 .

Theorem 0.1. Considering all the hypotheses we have made before. The solution of (0.1) satisfies that

$$\lim_{t \to \infty} \|e^{-\mu t} (u(x,t) - Q_{\sigma_1}(u)(x,t))\|_{L^p(\Omega)} = 0, \ \forall \mu > \delta_2.$$

Let us see in particular, the asymptotic behaviour of the solution of (0.1), with h constant and $h = h_0$, considering $\sigma_1 = \{\lambda_1\}$, with λ_1 the first eigenvalue of the operator L isolated and simple, whose associated eigenfunction is Φ_1 .

Corollary 0.2. For h = a constant and $p = \infty$, if the initial data u_0 is bounded then we have the following asymptotic behavior

$$\lim_{t \to \infty} \max_{x \in \Omega} |e^{-\lambda_1 t} u(x,t) - C^* \Phi_1(x)| = 0$$

with $C^* = \frac{\int_\Omega u_0(x)\Phi_1(x)dx}{\int_\Omega \Phi_1^2(x)dx}.$

Corollary 0.3. For the "Neumann" problem with $h = h_0$ and $p = \infty$, if the initial data u_0 is bounded, then we have the following asymptotic behavior

$$\lim_{t \to \infty} \max_{x \in \Omega} \left| e^{-(\mu_2 + \delta)t} \left(u(x, t) - \frac{1}{|\Omega|} \int_{\Omega} u(x) dx \right) \right| = 0,$$

with μ_2 the second eigenvalue of the operator $K - h_0$, and $\delta > 0$.

Remark 0.4. The Corollaries 0.2 and 0.3 allow us recovering in a more general way, the asymptotic results in [2].

References

- ANDREU F., MAZON J.M., ROSSI J. D., TOLEDO J., The Neumann problem for nonlocal nonlinear diffusion equations, Journal of Evolution Equations. Vol. 8(1), 189-215, (2008).
- [2] CHASSEIGNE, E., CHAVES, M., ROSSI, J.D., Asymptotic behavior for nonlocal diffusion equations, J. Math. Pures Appl., 86, 271-291, (2006).

^{*}Facultad de C.C. Matemáticas, Universidad Complutense de Madrid, España, e-mail: arober@mat.ucm.es

[†]Facultad de C.C. Matemáticas, Universidad Complutense de Madrid, España, e-mail: silviasastre@mat.ucm.es