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Abstract

In this work we prove the existence and regularity of the global attractors and the pullback at-

tractors for a class of autonomous and non-autonomous thermoelastic systems, respectively,

with vanishing mean value for temperature in a bounded domain with sufficiently smooth

boundary in Rn with n ě 2. Moreover, we prove the upper semicontinuity of the attractors

with respect to the diffusion coefficients.

Palavras-chave: thermoelasticity, global attractor, pullback attractor, upper semicontinuity,

regularity.
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Resumo

Neste trabalho, provamos a existência e a regularidade dos atratores globais e dos atratores

de pullback para uma classe de sistemas termoelásticos autônomos e não autônomos, res-

pectivamente, com um valor médio da temperatura se anulando em um domínio limitado

com fronteira suficientemente suave em Rn com n ě 2. Além disso, provamos a semicon-

tinuidade superior dos atratores em relação aos coeficientes de difusão.

Palavras-chave: termoelasticidade, atratores globais, atratores pullback, semicontinuidade

superior, regularidade.

vi



Agradecimentos

Agradeço a Deus, o qual, por sua graça, preparou o caminho, conduziu e cuidou para

que eu chegasse até aqui.

À minha esposa, Giulianna Soares Garcia Silva, pela confiança, incentivo, paciência,

orações e, principalmente, pelo seu amor.

Ao corpo docente e discente do Doutorado em Matemática da UFPB/UFCG pela opor-

tunidade de convívio e pela solicitude em compartilhar os seus conhecimentos.

Aos professores do Departamento de Ciências Exatas e Aplicadas da Universidade

Federal do Rio Grande do Norte por viabilizarem e apoiarem a minha dedicação integral

nesta conquista.

Ao meu orientador, Prof. Dr. Flank David Morais Bezerra, pelo talento, dedicação na

produção de conhecimento, disponibilidade em ajudar e estímulo ao aprimoramento. Sinto-

me honrado por ter realizado este estudo sob sua orientação.

Ao Prof. Dr. Marcelo José Dias Nascimento pela prestatividade em fornecer orien-

tações valorosas, tanto pessoalmente quanto a distância.

Ao Prof. Dr. Fágner Dias Araruna por se preocupar em ajudar da melhor maneira

possível e sempre de modo amistoso.

Agradeço ainda a todos professores da banca pelo tempo dedicado e pelos conselhos

de grande valia para a melhoria do texto.

vii



“O Problema pode ser modesto, mas se ele desafiar a

curiosidade e puser em jogo as faculdades inventivas,

quem o resolver por seus meios, experimenta o sentimento

da autoconfiança e gozará o triunfo da descoberta. Exper-

iências tais, numa idade suscetível, poderão gerar o gosto

pelo trabalho mental e deixar, por toda a vida, a sua marca

na mente e no carácter.”

George Pólya

viii



Dedicatória

minha esposa...

ix



x



Contents

Notations 1

List of figure 2

Introduction 3

1 Preliminary 7

1.1 Deduction of the thermoelastic system . . . . . . . . . . . . . . . . . . . . 7

1.2 Previous results about the thermoelasticity system . . . . . . . . . . . . . . 12

1.3 Embeddings and inequalities . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Semigroups, evolution processes and attractors 17

2.1 Nonlinear semigroups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 Linear semigroups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3 Global attractors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4 Nonlinear evolution processes . . . . . . . . . . . . . . . . . . . . . . . . 25

2.5 Pullback attractors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3 Autonomous n-dimensional thermoelasticity system 31

3.1 Preliminary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2 Well-possessedness of the problem . . . . . . . . . . . . . . . . . . . . . . 33

3.3 Existence of global attractor . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.4 Lamé operator of linear elastostatics system . . . . . . . . . . . . . . . . . 53

3.5 Regularity of attractors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.6 Upper semicontinuity of the attractors . . . . . . . . . . . . . . . . . . . . 61

4 Nonautonomous n-dimensional thermoelasticity system 63

4.1 Well-possessedness of nonautonomous thermoelastic system . . . . . . . . 63

xi



4.2 Existence of pullback attractor . . . . . . . . . . . . . . . . . . . . . . . . 66

4.3 Regularity of attractors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.4 Upper semicontinuity of the attractors . . . . . . . . . . . . . . . . . . . . 78

Bibliography 80

Index 83

xii



Notations

• Ω is a domain of Rn when the body is in the reference state;

• u is the displacement of the body’s particle over time;

• θ is temperature variation of studies body;

• f is the specific external body force;

• E is the internal energy;

• κ diffusion coefficient;

• β is the thermal moduli;

• LpA,Bq is space of bounded linear transformation of A to B;

• H “ pH1
0 pΩqq

n ˆ pL2pΩqqn ˆ L2pΩq “ pY 1qn ˆ Y n ˆ Y ;

• Y˚ “ L2
0pΩq “

 

ξ P L2pΩq;
ş

Ω
ξdx “ 0

(

;

• H˚ “ H0
˚ “ pY

1qn ˆ Y n ˆ Y˚ andH1
˚ “ pY

2qn ˆ pY 1qn ˆ Y 1
˚ ;

• Y α is the fractional power space associated with the negative Laplacian operator sub-

ject to homogeneous Dirichlet boundary condition;

• Y α
˚ “ Y α X Y˚;

• Hα “ rH1
˚,H0

˚sα “ pY
1´αqn ˆ pY ´αqn ˆ Y ´α˚ ;

• Φ : L2
0pΩq Ñ pH1

0 pΩqq
n is the Bogowskı̆i operator given by div Φpvq “ v for all

v P L2
0pΩq;
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Introduction

We will work with non-linear dynamical system from problems of partial differential

equations with initial and boundary data associated to models related to the movement of an

elastic, isotropic, limited and sufficiently smooth boundary solid which occupies the region

Ω Ă Rn with n ď 1 and we will be taken into account also the influence of its temperature

in its displacement. More precisely, we will be interested in obtaining information about the

asymptotic behavior of two thermoelastic systems; an autonomous system
$

’

&

’

%

B2
t u´∆u´∇ div u`∇θ “ fpuq, t ą 0, x P Ω,

Btθ ´ div pκpxq∇θq ` div Btu “ 0, t ą 0, x P Ω,

subject to boundary conditions

upx, tq “ 0, θpx, tq “ 0, t ą 0, x P BΩ

on initial conditions
$

’

&

’

%

upx, 0q “ u0pxq, Btupx, 0q “ u1pxq, x P Ω,

θpx, 0q “ θ0pxq x P Ω,

and a non-autonomous system
$

’

&

’

%

B2
t u´∆u´∇ div u` βptq∇θ “ fpuq, t ą s, x P Ω,

Btθ ´ div pκpxq∇θq ` βptq div Btu “ 0, t ą s, x P Ω,

subject to boundary conditions

upx, tq “ 0, θpx, tq “ 0, t ą s, x P BΩ

on initial conditions
$

’

&

’

%

upx, sq “ u0pxq, Btupx, sq “ u1pxq, x P Ω,

θpx, sq “ θ0pxq x P Ω.

3



In the problems above mentioned, the map f is external force, the functional parameters κ

is the diffusion coefficient and β is the thermal moduli with some suitable growth conditions

which will be presented below.

We recall that for a smooth vector field in some sense u “ pu1, . . . , unq the gradient

and Laplacian of the vector field u are denoted, respectively, by

∇u “ p∇u1, . . . ,∇unq

and

∆u “ p∆u1, . . . ,∆unq,

and the divergent operator of a vector field Btu will be denoted by

div Btu “
n
ÿ

i“1

BxiBtui.

The hypotheses on the non-linearity f “ pf1, . . . , fnq, where fi : Rn Ñ R. We

consider f a conservative vector field (i.e., there is a scalar field α such that f “ ∇α)

with the functions fi twice continuously differentiable and fip0q “ 0, i “ 1, 2, 3, 4, ..., n.

Moreover, we also assume that for each ν ą 0 there exists Cν ą 0 such that

fpξq ¨ ξ ď ν|ξ|2 ` Cν ,

with ¨ denoting the standard dot product on Rn. We can assume that there exist Cη ą 0 and

η P p0,mint1, λ1uq such that if

F pξq :“

ż ξ

0

fdγ,

then

F pξq ď
η

2
|ξ|2 ` Cη,

where λ1 ą 0 is the first eigenvalue of the negative Laplacian operator with zero Dirichlet

boundary condition, and
şξ

0
fdγ represents the line integral of f along a piecewise smooth

curve γ : rs, ts Ñ Rn wich γpsq “ 0 and γptq “ ξ, for any ξ P Rn (that is, ∇F pξq “ fpξq,

where∇F stands for the gradient of F in the variables ξ P Rn).

In addition, we shall assume throughout this text that there exists a constant C ą 0

such that for every i “ 1, . . . , n and ξ “ pξ1, . . . , ξnq P Rn,

|∇fipξq| ď C

˜

1`
n
ÿ

i“1

|ξi|
p´1

¸

,

|B
2
xi
fipξq| ď C,

4



for some 1 ă p ă n
n´2

, if n ą 2; 1 ă p ă `8 if n “ 2.

The coefficients κ in (3.1), are real-valued continuously differentiable function defined

on Ω such that there exist constants κ0 and κ1 with the property

0 ă κ0 ď κpxq ď κ1, x P Ω.

Furthermore, we assume that there are positive constants β0 and β1 such that

0 ă β0 ď βptq ď β1, t P R.

When we talk asymptotic behavior we are asking ourselves about the existence and

properties that the global attractor (in the autonomous case) and the pullback attractor (the

non-autonomous case). In the forward dynamic (in the autonomous case) is the behaviour

of solutions as t Ñ 8. Let Sp¨q be the semigroup that come from the global solution of

the autonomous problem which we are studying. The global attractor is a set A such that

is compact, invariant by Sp¨q and attracts bounded sets under Sp¨q. Now consider a non-

autonomous problem with the initial data taken in the time s and the processes Up¨, ¨q defined

by the global solution of the problem non-autonomous. The pullback dynamic is the study

of the solution of the non-autonomous problem when it fix the current time and go back to

history, i.e., is the behavior of solutions as s Ñ ´8. This is translated in the definition of

the pullback attractor which will be a family of sets Ap¨q such that Aptq are compact for all

t ą s, invariant for t ą s by the process Up¨, ¨q, in the sense that

Upt, τqApτq “ Aptq, t ě τ ě s

and Ap¨q is the minimal (in the sense that if there is another family Cp¨q such that pullback

attract bounded, Cptq Ă Aptq for all t ą s) family such that pullback attracting all bounded

sets by Ap¨q under Up¨, ¨q, i.e., for all t ą s, Aptq is such that any bounded set has the

Hausdorff semidistance between itself and Aptq tends to 0 as s Ñ ´8. By the hypotheses

which we assumed in both cases, there is only one attractor. In both cases, the space

(1) L2
0pΩq “

"

v P L2
pΩq;

ż

Ω

vdx “ 0

*

.

will play a crucial role in our analysis.

Another result that we find as a consequence of the propositions used to demonstrate

the existence of the attractors is the exponential decay of the solutions if we consider f ” 0.

5



As far as we know the hypotheses that we consider in this thesis were not considered in other

works that seek such decay as it is commented in Section 1.2. In general the exponential

decay for the thermoelasticity system is not guarantee in Rn with n ą 1, such decay depends

of the geometry of domain and hypotheses about u0 and u1 for example. In our cases, we

will ask θ0 P Y˚.

This work is organized in four chapters:

In the first one was made a summary of general knowledge that sets the problem. We

do a brief justification of the emergence of the thermoelastic system equations using the con-

servations laws, a synthesis of the known results about decay of the thermoelastic problem

to better understand what we do and the main general results of mathematical analysis which

we will use throughout the text.

The second chapter is dedicated to a summary on the theory of semigroups, processes,

global attractors and pullback attractors that we will use constantly. In this chapter, we will

establish the relationship between semigruop and processes with problems autonomous and

non-autonomous.

In chapters 3 and 4 we will reach our goal of studying the asymptotic behavior of the

problems previously announced by the use of the functional

Lpu, z, θq “MEpu, z, θq ` δ1pu, zqpL2pΩqqn ` δ2pΦ, zqpL2pΩqqn

given by a modification in the natural energy of the system

Epu, z, θq “ 1

2

´

}u}2
pH1

0 pΩqq
n ` }z}

2
pL2pΩqqn ` }θ}

2
L2pΩq

¯

´

ż

Ω

F puqdx.

where } ¨ }2
pH1

0 pΩqq
n “ p¨, ¨qpH1

0 pΩqq
n , F puq “

şu

0
fdγ with

şu

0
fdγ represents the line integral of

f along a piecewise smooth curve with initial point 0 and final point u with u “ upx, tq, and,

δ1, δ2 and M are positive constants to be chosen appropriately. Such a change is given by

using the Bogoviskı̆i operator Φ that naturally induces an invariant subspace of L2pΩq that

we can take θ0. The results obtained in Chapter 3 produced an article which was accepted

for publication in the Journal Colloquium Mathematicum.

6



Chapter 1

Preliminary

In this first chapter we wish to contextualize the problem studied by summarizing the

physical origin of the problem, some results obtained and also some important results of gen-

eral knowledge that will be required throughout the text. In the first section we will establish

the concept of stress and strain to induce the main equations of the thermoelastic system in

its most general way using law well known in the mechanics of fluids. In the second section

we mentioned some articles that previously studied cases similar to the problem that we want

to analyze in this text. Finally, in the last section of the chapter we have a compilation of

Sobolev spaces results, PDE’s, and other similarities that we will use constantly in Chapter

3 and Chapter 4, with the purpose of helping to read the text.

1.1 Deduction of the thermoelastic system

In general word we present in this section the deduction of the thermoelastic system

following the references Ciarlet [16], Dafermos [17] and, Racke and Jiang [38].

Let B be a body occupying a region Ω Ă Rn when it is not under the effect of forces of

any nature and at environment temperature in any point. We will assume that Ω is a bounded

domain with a smooth boundary. Thus, associate each material point of B with x P Ω your

position.

Considering ϕpx, tq P Rn the position and T px, tq the temperature in time t ě t0 of

the particle in x P Ω when the body is in the reference condition, for some t0 fixed. We

will denote by upx, tq “ ϕpx, tq ´ x the displacement and by θpx, tq “ T px, tq ´ T0 the

temperature variation, where T0 is a conveniently chosen reference temperature. In order to

establish the equations object of our study, we will formally assume that ϕ and T are enough

7



differentiable. By the nature of the problem, we assume that ϕ is injective on Ω. We will

denote Dϕp¨, tq as the differential of ϕp¨, tq.

Figure 1.1: Deformation ϕ of the body B

Now we will discuss the concept of stress on a point x in the position ϕpx, tq of the

body B in the direction of the n unit vector after a deformation in time t fixed. Consider

regular surface Γ with the follow proprieties:

(1.) ϕpx, tq P Γ, for all x P Ω;

(2.) n P Sn´1 “ tv P Rn; }v} “ 1u is normal to Γ in ϕpx, tq;

(3.) There are Ω1 and Ω2 subdomain of ϕpΩ, tq such that ϕpΩ, tq “ Ω1 Y Ω2 and

ϕpΩ, tq X Γ “ Ω1 X Ω2.

Figure 1.2: Cauchy’s stress vector field

8



We define as the Cauchy’s stress vector field by νϕ : ϕpΩ, tq ˆ Sn´1 Ñ Rn such that

νϕpϕpx, tq,nq is the force which Ωi exert over ϕpx, tq, where ´n is normal outside of Ωi in

ϕpx, tq. It can be verified that νϕpϕpx, tq,nq does not depend on the choices of Γ only n and

x. Moreover, as describe the next theorem νϕpϕpx, tq,nq behaves linearly on n.

Theorem 1.1. (Cauchy’s Theorem) Assume that for each n P Sn´1 vector field νϕp¨,nq is
continuously differentiable and νϕpϕpx, tq, ¨q is continuous for each ϕpx, tq P ϕpΩ, tq with t
fixed. Then exists a continuously differentiable symmetric tensor field called Cauchy’s stress
tensor define by

σϕ : ϕpΩ, tq ÑMn

such that for any n P Sn´1,

νϕpϕpx, tq,nq “ σϕ pϕpx, tqqn

where Mn is the set of matrices nˆ n of real numbers.

Proof. See Ciarlet [16, Page 62].
Recalling that the Euler variable is the way to describe the problem by taking as ob-

servation point in the object while it deforms, in other hand the Lagrange variable induces
the behavior of the object by take the information in the referenced state of the object. The
Cauchy’s stress tensor σϕpϕpx, tqq is defined at the Euler variable ϕpx, tq, we will use the so-
called Piola-Kirchhoff stress tensor or first Piola-Kirchhoff stress tensor σpx, tq defined
at Lagrange variable x by:

σpx, tq :“ pdetDϕpx, tqqσϕpϕpx, tqqDϕpx, tq´T .

Since in some cases it is interesting to have a symmetrical tensor and the tensor
σpx, tq is not symmetrical in general, we have defined to meet these needs the second Piola-
Kirchhoff stress tensor Σpxq by letting

Σpxq “ Dϕpxq´1σpxq “ pdetDϕpxqqDϕpxq´1σϕpϕpx, tqqDϕpxq´T .

The next concept we want to introduce is the strain which measures the deformation
rate with respect to the variation of x that the body has undergone after a displacement. For
any t fixed, ϕp¨, tq is differentiable in any point x P Ω, then for all points x` h P Ω:

ϕpx` h, tq ´ ϕpx, tq “ Dϕpx, tqh`Op|h|q

where Op|h|q
|h|

Ñ 0 as hÑ 0.
The deformation is given by

|ϕpx` h, tq ´ ϕpx, tq|2 “ hTDϕT px, tqDϕpx, tqh` hTDϕT px, tqOp|h|q
`Op|h|qDϕpx, tqh`Op|h|qTOp|h|q.

9



Figure 1.3: Deformation rate

The symmetric strain tensor in Euler variable is

Epϕq :“ DϕTDϕ.

We also can obtain that

Epϕq “ DϕTDϕ “ I `DuT `Du`DuTDu “ I ` 2Epuq.

The strain tensor of a given body B after a displacement u is define by

Epuq :“
1

2
pDuT `Du`DuTDuq

also called The Green-St Venant strain tensor. By assume the hypotheses of small deforma-
tions, we will be able work with the form linear of E which is

epuq :“
1

2
pDuT `Duq.

The Duhamel-Neumann’s Law witch is a generalization to the Hook’s Law (which
admit A null), tell us that

E “ Kσ ` Aθ

where K is called compliance tensor and A is coefficients of linear thermal expansion, and
also,

σ “ CE ´Bθ

where C is called stiffness tensor (also know as elastic moduli) and B is know as thermal
moduli. By assume the hypotheses of small deformations, we will be able to consider

(1.1) e “ Kσ ` Aθ

and

(1.2) σ “ Ce´Bθ.

10



When tensor C depends of position x we say that the material is anisotropic and when there
is no dependency the material is call isotropic (for more details see Kupradze [29, Chapter
5]). In the chapters 3 and 4, we will consider the isotropic case.

The balance of linear momentum, in our notation, is expressed by

(1.3) Bt

ż

V

ρBtu dV “

ż

A

σ ¨ n dA`

ż

V

ρf dV

where A “ BV , ρ is the material density (which depends of x) and f is the specific external
body force (which depends of x and t), in any V Ă Ω. By using (1.2) in (1.3), we have

Bt

ż

V

ρBtu dV “

ż

A

pCe´Bθq ¨ n dA`

ż

V

ρf dV

thus,

Bt

ż

V

ρBtu dV “

ż

A

ˆ

1

2
CpDuT `Duq ´Bθ

˙

¨ n dA`

ż

V

ρf dV.

Using Divergence Theorem and since previous identity is true for any V , we obtain the
following equation

(1.4) ρB2
t u “

1

2
div

`

CpDuT `Duq
˘

´ divpBθq ` ρf.

which is also presented as follows

ρB2
t ui “

n
ÿ

j“1

Bxj pCijklBxlukq ´
n
ÿ

j“1

BxjpBijθq ` ρfi

where 1
2
CpDuT `Duq “ rCijklBxluks and Bθ “ rBijθs.

We denote Eh by the Helmholtz free energy and η by the entropy (which is the quotient
of the amount of heat absorbed from the body B by its temperature.). We can assume that1:

Eh “
1

2
CijklBxjuiBxluk ´BijBxjuiθ ´

1

2T0

ρcDθ
2

where cDpxq is specific heat at the point x when Bxjui ` Bxiuj “ 0.
Using the notation U “ ∇u. Thanks to Racke and Jiang [38, Chapter 1]

ηpU, θq “ ´
BEh
Bθ
pU, θq.

The Fourier’s Law set
qi “ KijBxjθ

where q is the heat flux and rKijpxqs is the heat conduction tensor.
The conservation law of energy,

ρT0 Btη “ divpqq ` ρcDr

1for more details see [17].
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where r is the heat source. So

(1.5) T0

n
ÿ

i“1

BijBxjBtui ` ρcDBtθ “ divpK1jBxjθ, . . . ,KnjBxjθq ` ρcDr,

or in other notation,

ρcDBtθ ´ divpK∇θq ` T0BDpBtuiq “ ρcDr.

The equations (1.4) and (1.5) characterizes the thermoelastic problem. When Ω is
bounded, the boundary condition

u “ 0, θ “ 0 on BΩ,

is called of condition of rigidly clamped and constant temperature, and the boundary
condition

σν “ 0, νq “ 0 on BΩ,

is called of condition of tracion free insulated where ν is the outward unit normal to BΩ.

1.2 Previous results about the thermoelasticity system

Dafermos [17] studies the well-posedness of the anisotropic thermoelastic problem

(1.6)

$

’

’

&

’

’

%

ρB2
t ui ´

n
ÿ

j“1

Bxj pCijklBxlukq `
n
ÿ

j“1

BxjpBijθq “ ρbi

ρcDBtθ ´ divpK∇θq ` T0BDpBtuiq “ ρcDr.

and commented that the homogeneous version of the problem (1.6) has a decay, but not
necessarily exponential when we consider n ě 2.

In the period from 1991 to 1993, several papers on the case one-dimensional obtain
exponential decay rate (e.g., Henry, Perissinotto and Lopes in [26], Liu and Zheng in [33],
Slemrod [40] and references therein), and the question about exponential decay rate in the
case n-dimension for n ě 2 attracted more and more attention from researchers.

About this problem, we can note that in particular the system thermoelastic

(1.7)

$

&

%

B2
t u´ µ∆u´ pλ` µq∇ div u`∇θ “ 0, x P Ω, t ą 0,

Btθ ´∆θ ` div Btu “ 0, x P Ω, t ą 0,

subject to initial-boundary conditions
$

&

%

up0, xq “ u0pxq, Btup0, xq “ u1pxq, θp0, xq “ θ0pxq, x P Ω,

upt, xq “ 0, θpt, xq “ 0, x P BΩ, t ą 0,

12



can be obtain from (1.6) (where µ ą 0 and λ ą 0 are the Lamé coefficients) by the correct
choice of tensors. In the last years the famous question of thermoelasticity theory about ob-
taining the necessary and sufficient conditions to ensure the exponential uniform decay of the
energy of the linear thermoelastic system n-dimensional, under some geometric conditions
of the domain and regularity of the vector field u this problem was solved in Amann [1],
Racke, Rivera and Jiang [27], Koch [28], Kupradze [29], Lebeau and Zuazua [30], Lebeau
and Zuazua [31], Liu and Zheng [33], Rivera and Shibata [35], Rivera [39], Slemrod [40] and
references therein. More precisely, Lebeau and Zuazua in [30], have shown that in a smooth
boundary domain in Rn which possesses an arbitrarily large ray of geometrical optics which
is always perpendicularly reflected at the boundary, the problem not have exponential decay
(see too Lebeau and Zuazua [31]). Later, Koch in his work [28] extends this result show-
ing that the exponential decay is not possible if the domain is convex. But Rivera in 1997
study a the case when considerer the displacement divergent free for all point of the general
smooth domain in the paper Rivera [39]. He got the exponetial decay rate and shows that if
Pdpu0q ‰ 0 or Pdpu1q ‰ 0, then

Eptq ě
ż

Ω

|Pdpu1q|
2
` |∇Pdpu0q|

2 dx

where Pdpuq is a projection of u in Vd “ tw P H1
0 pΩq; divpwq ‰ 0u and E is the natural

energy of the system (1.7). Also the work of Jiang, Riveira and Racke (1998) in [27] has
verified exponential decay in the case where the initial data and domain are radially sym-
metric (under such hypotheses the solutions are radially symmetric and the displacement has
vanishing rotation).

1.3 Embeddings and inequalities

Here, we want to enunciate some well-known theorems of sobolev immersions and
differential equations, as well as useful inequalities, with the aim of easy reading and com-
prehension of the text.

Theorem 1.2. (Sobolev embedding) Let Ω Ă Rn be a bounded domain with boundary of
class Cm.

(1.) If mp ă n, then the following embedding is continuous

Wm,p
pΩq ãÑ Lq

˚

pΩq, where
1

q˚
“

1

p
´
m

n
.

Moreover, the embedding is compact for any q, with 1 ď q ă q˚.

(2.) If mp “ n, then the following embedding is continuous and compact

Wm,p
pΩq ãÑ Lq

˚

pΩq, for all 1 ď q ă 8.

Moreover, if p “ 1 and m “ n, then is possible assume q “ 8.

13



Proof. See Evans [21, Section 5.6].
The next theorem is a well-know result for the weak solution of the parabolic problem

which we will use in the sections about regularity of attractors.

Theorem 1.3. (See [8, Page 340]) Let H be a Hilbert space with scalar product p¨, ¨qH and
norm } ¨ }H . The dual space H˚ is identified with H . Let V be another Hilbert space with
norm } ¨ }V . We assume that V Ă H with dense and continuous injection, so that

V Ă H Ă V ˚.

For each T ą 0 fixed. We are considering a bilinear form apt; ¨, ¨q : V ˆ V Ñ R for a.e
t P r0, T s, satisfying the following properties:

(1.) For every u, v P V the function t ÞÑ apt;u, vq is meansurable;

(2.) }apt;u, vq}H ďM}u}V }v}V for a.e. t P r0, T s, @u, v P V ;

(3.) apt; v, vq ě α}v}2V ´ C}v}
2
H for a.e. t P r0, T s, @ P V ;

where α, M and C are positive constants. Given f P L2p0, T ;V ˚q and u0 P H , there exists
a unique function u satisfying u P L2p0, T ;V q X Cpr0, T s;Hq,

du

dt
P L2

p0, T ;V q

ˆ

du

dt
ptq, v

˙

` a pt;uptq, vq “ pfptq, vq

for a.e. t P p0, T q, @v P V, and up0q “ u0.

Proof. See Lions and Magenes [32].
In the next theorem is consequence of the Divergence Theorem.

Theorem 1.4. Let Ω Ă Rn be a domain with smooth boundary with n ą 1. If u P H2pΩq

and v P H1pΩq, then

´

ż

Ω

p∆uqv dx “

ż

Ω

∇u ¨∇v dx´
ż

BΩ

Bu

Bν
v dS,

and if u P pH2pΩqq
n and v P H1pΩq, then

´

ż

Ω

pdiv uqv dx “

ż

Ω

u ¨∇v dx´
ż

BΩ

uv ¨ ν dS,

where ν is the outward unit normal to BΩ.

Proof. See Boyer and Fabrie [7, Page 133] and Evans [21, Page 711].

14



Theorem 1.5. (Poincaré inequality) If u P H1
0 pΩq, then there is a positive constant C de-

pending only on Ω and n such that

}u}L2pΩq ď λ1}∇u}L2pΩq, @ u P H
1
0 pΩq

where λ1 is a minimal eigenvalue of the operator associate to the Dirichlet problem of neg-
ative Laplace’s equation.

Proof. See Evans [21, Page 290].

Lemma 1.6. (Grönwall’s inequality) Let J : r0, T s Ñ r0,`8q be a differential function,
which satisfy the following property:

J 1ptq ď ´αptqJptq ` βptq, for t P r0, T s,

where α, β : r0, T s Ñ R are integrable functions in r0, T s. Then, for any t P r0, T s

Jptq ď e´
şt
0 αpsqds

„

Jp0q `

ż t

0

βpτqdτ



.

Proof. See Evans [21, Page 708].

Lemma 1.7. (Young’s inequality) Let 1 ă p, q ă 8 with 1
p
` 1

q
“ 1 and ε ą 0. Then,

ab ď εap `
pεpq´q{p

q
bq, @a, b ě 0.

Proof. See Evans [21, Page 706].
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Chapter 2

Semigroups, evolution processes and
attractors

In the follows we recall some concepts and definitions from theory of nonlinear semi-
group and nonlinear evolution process, for more details see Babin and Vishik [3], Brezis [8],
Carvalho, Langa and Robinson [13], Hale [24], Pazy [36], Vrabie [41] and reference therein.

Throughout the text of this chapter, let pM, dq be a complete metric space and let
pX, } ¨ }Xq be a Banach space. We will denote CpMq the set of all continuous maps from M

into itself and pLpXq, } ¨ }LpXqq the space of all bounded linear operators from X into itself
with the norm

}T }LpXq “ sup
xPX;}x}Xď1

}Tx}X .

2.1 Nonlinear semigroups

We begin the section giving the most simple and comprehensive definition of semi-
group that is found in Babin and Vishik [3].

Definition 2.1. A nonlinear semigroup is a family of maps tSptq; t ě 0u in CpMq with the
properties

(1.) Sp0q “ I;

(2.) Spt` sq “ SptqSpsq, for all t, s ě 0;

(3.) r0,8q ˆX Q pt, xq ÞÑ Sptqx P CpMq is continuous.

Definition 2.2. A semigroup Sp¨q in M is called semigroup of class C0 (or for simplicity
C0-semigroup) if for all x P M, a function Sp¨qx : r0,8q Ñ M is continuous and Sptq is
a map continuous for all t ě 0. A C0-semigroup is called strongly continuous semigroup,
too.
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The compacity asymptotic is one of the conditions required in the theorem which we
will use to prove the existence of global attrator for a semigroup, see Theorem 2.38.

Definition 2.3. A semigroup Sp¨q in M is called asymptotically compact if, for each se-
quence ptnq such that tn Ñ 8 as n Ñ 8 and for each bounded sequence pxnq of points of
M, the sequence pSptnqxnq has a subsequece which is convergent in M.

The definition above is equivalent in a Banach space to say that for every bounder
closed and not empty B Ă X , there is a compact set K Ă X such that there exists t0 ą 0

such that SptqB Ă K for t ą t0.

Definition 2.4. A semigroup Sp¨q eventually bounded in X if there is a t0 P r0,8q such that

ď

tět0

SptqB

is bounded in X for every bounded B, where SptqB “ tSptqx P X;x P Bu. Case t0 “ 0,
we say that Sp¨q is bounded.

The next result gives a sufficient condition for a semigroup to be asymptotically com-
pact.

Theorem 2.5. Let Sp¨q be a bounded semigroup defined in X such that for each t ě 0, we
can write

Sptq “ S1ptq ` S2ptq

where

(1.) For every bounded set B and each t ą 0 there exists tpB,tq ě 0 and compact set
KpB, tq such that S2psqB Ă KpB, tq always that t ě s ě tpB,tq;

(2.) There exists a function g : r0,8q ˆ r0,8q Ñ R with gp¨, rq non-increasing for each
r ą 0, limsÑ8 gps, rq “ 0 and for all x P X with }x} ď r,

}S1ptqx}X ď gpt, rq.

Then the semigroup Sp¨q is asymptotically compact.

Proof. See Carvalho, Langa and Robinson [13, Page 42].

2.2 Linear semigroups

Now we deal with the case of Sptq is a linear operator for all t ą 0, when this hap-
pens we call Sp¨q of a linear semigroup. We will initially define a class within the linear
semigroups that is more comprehensive than C0-semigroups.

18



Definition 2.6. We say that Sp¨q Ă LpXq is a uniformly continuous linear semigroup

lim
tÑs
}Sptq ´ Spsq}LpXq “ 0.

Definition 2.7. The operator A is called infinitesimal generator of a linear semigroup Sp¨q
when

DpAq “

"

x P X; lim
tÑ0`

1

t
pSptqx´ xq exist

*

and for each x P DpAq we have

Ax “ lim
tÑ0`

1

t
pSptqx´ xq.

If A is an infinitesimal generator of the linear semigroup Sp¨q, we can say Sp¨q is
generated by A.

Definition 2.8. A semigroup Sp¨q is of type pM,αq if there are constants α P R and M ě 1

such that
}Sptqx}X ďMeαt}x}X , @t ě 0.

We say that Sp¨q is exponential stable if it is a semigroup type pM,αq with α ă 0.

Theorem 2.9. If Sp¨q is a C0-semigroup, then Sp¨q is of type pM,αq.

Proof. See Vrabie [41, Page 41] .

Definition 2.10. Let A : DpXq Ă X Ñ X be a closed densely defined linear operator (not
necessarily bounded). The resolvent set of A is

ρpAq “ tλ P C;λ´ A is injective and surjectiveu.

The σpAq “ CzρpAq is called spectrum of A.

From closed graph theorem, if λ´A is injective and surjective, then pλ´Aq´1 P LpXq.

Theorem 2.11. (Hille-Yosida) LetA : DpXq Ă X Ñ X be a linear operator, then following
statement are equivalent:

(1.) A is the infinitesimal generator of a C0-semigroup of linear operators Sp¨q of type
pM,αq;

(2.) A is closed, DpAq “ X , ρpAq contains pα,8q and

}pλI ´ Aq´n} ď
M

pλ´ αqn
, for λ ą α and n “ 1, 2, . . . .

Proof. See Pazy [36, Page 8].
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Remark 2.12. Note that the liner operator A is not required to be bounded, however condi-
tions are required for the A resolvent.

From now on, we will denote X˚ as the dual of X and we remind the reader that
xx, x˚y “ xx˚, xy “ x˚pxq is the value of x˚ P X˚ at x P X.

Definition 2.13. LetA : DpAq Ă X Ñ X be a linear operator. We say thatA is a dissipative
operator when for each x P DpAq there is an x˚ P Fpxq

Re xAx, x˚y ď 0, @x P DpAq

where Fpxq “ ty P X˚; py, xq “ }x}2 “ }y}2u.

One of the reasons we are interested in dissipative operators in the semigroup theory
is the Lumer-Phillipis’s Theorem.

Theorem 2.14. (Lumer-Phillips) Let A be a linear operator with dense domain DpAq in X.
The following affirmations are equivalents:

(1.) If A is dissipative and there is a λ0 ą 0 such that Rpλ0I ´ Aq, the range of λ0I ´ A,

is X , then A is the infinitesimal generator of a C0-semigroup of contractions on X.

(2.) IfA is the infinitesimal generator of aC0-semigroup of contractions onX thenRpλI´
Aq “ X for all λ ą 0 and A is dissipative. Moreover, RepAx, x˚q ď 0, for every
x P DpAq and every x˚ P Fpxq.

Proof. See Vrabie [41, Page 60].
We now want to discuss how the semigroup theory is made application of the semi-

group theory to solve problems involving partial differential equations. Consider an initial
value problem which we can write as follows

(2.1)

$

&

%

du

dt
` Au “ F, t ą 0

up0q “ u0

where ´A is a linear operator with domain DpAq Ă X is also the set in which the other con-
ditions of the problem are satisfied (for example boundary condition) and F P L1pr0, T s;Xq.

Definition 2.15. We will call u : r0, T s Ñ X a classical solution of the problem (2.1)

if u P C1pr0, T s;DpAqq and it satisfies
du

dt
ptq ` Auptq “ F ptq for each t P r0, T s and

up0q “ u0.

Definition 2.16. We will call u : r0, T s Ñ X a strong solution of the problem (2.1) if u is
absolutely continuous on r0, T s, u1 P L1pp0, T s;Xq, uptq P DpAq and it satisfies Btuptq `
Auptq “ F ptq for each t P r0, T s and up0q “ u0.
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The classical solution can be call C1-solution. The classical solution can be call ab-
solutely continuous solution. A classical solution of (2.1) is a strong solution, but not con-
versely. Assume that ´A is the infinitesimal generator of a C0-semigroup Sp¨q.

Definition 2.17. We will call u : r0, T s Ñ X a mild solution if u is defined by

(2.2) uptq “ Sptqu0 `

ż t

0

Spt´ sqF ps, upsqqds.

As say the next theorem, if u is a strong solution (or a classical solution), then u is a
mild solution.

Theorem 2.18. (Duhamel Principle) Each strong solution of (2.1) is given by (2.2).

Proof. See Vrabie [41, Page 184].

Theorem 2.19. If ´A : DpAq Ă X Ñ X is the infinitesimal generator of a C0-semigroup
Sp¨q, and F is of class C1 on r0, T s, then, for each u0 P DpAq, the problem (2.1) has a
unique classical solution.

Proof. See Vrabie [41, Page 186].

Theorem 2.20. If ´A : DpAq Ă X Ñ X is the infinitesimal generator of a C0-semigroup
Sp¨q, and F is of classC0 on r0, T s and locally Lipschitz continuous in u in bounded intervals
of r0, T s, then, for each u0 P X , the problem (2.1) has a unique mild solution. Moreover, if
T ă 8 then

lim
tÑT

}uptq} “ 8.

Proof. See Pazy [36, Page 186].

Definition 2.21. Let R “ tz :“ reiθ P C; θ P rθ1, θ2s and θ1 ă 0 ă θ2u. A family of
bounded linear operator tSpzq; z P Ru is called analytic semigroup on R if

(1.) z ÞÑ Spzq is analytic on R;

(2.) Sp0q “ I and limzÑ0 Spzqx “ x, for all x P R;

(3.) Spz1 ` z2q “ Spz1qSpz2q, for all z1, z2 P R.

A C0-semigroup Sp¨q is called analytic if there is an analytic semigroup S1p¨q on R “
tz :“ reiθ P C; θ P rθ1, θ2s and θ1 ă 0 ă θ2u such that r0,`8q Ă R and S1ptq “ Sptq.
Note that this tells us that the restriction of an analytic semigroup to the nonnegative real
axis is a C0 semigroup. But the reciprocal is not true in general.

Definition 2.22. A closed densely defined linear operator A : DpAq Ă X Ñ X is sectorial
if there exist α P p0, π{2q, a P R and M ě 1 such that
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(1.) Σa,α “ tz P C;α ď | argpz ´ aq| ď π, λ ‰ au contain the resolvent set of A;

(2.) }pλI ´ Aq´1
}LpXq ď

M

|λ´ a|
, @λ P Σa,α.

Theorem 2.23. If A is a sectorial operator, then ´A is the infinitesimal generator of an
analytic semigroup Sp¨q.

Proof. See Henry [25, Page 21].

Definition 2.24. A linear operator A : DpAq Ă X Ñ X is positive with constant M ě 1 if
A is closed, densely defined in X , r0,`8q Ă ρp´Aq and

p1` sq}ps` Aq´1
}LpXq ďM, s P R`.

For more details see Carbone, Nascimento, Schiabel-Silva and Silva [10], Pazy [36],
Vraibe [41] and reference therein.

If A is a positive linear operator with constant M , notice that

ΣM “ tz “ z1 ` z2 P C; | arg z1| ď arcsinp1{2Mq and |z2| ď 1{2Mu Ă ρp´Aq.

Definition 2.25. We define the fractional power of the positive operator A with exponent
α P C when Repαq ą 0, by the operator A´α : DpA´αq Ă X Ñ X given by

A´α “
1

2πi

ż

Γ

p´λq´αpλ` Aq´1 dλ,

where Γ Ă ΣMzR` is a simple curve which there is a parameterization given by |rptq|eiβptq

with limtÑ˘8 rptq “ 8 and limtÑ8 βptq “ ´ limtÑ´8 βptq. We assume DpA0q “ X and
A0 “ I as definition.

Remark 2.26. The fractional power is well defined because it does not depend on the param-
eterization for Γ. Moreover, A´α : DpA´αq Ă X Ñ X is bounded. If Sp¨q is C0-semigroup
exponentially stable, then we have DpA´αq “ X.

It is well-know that for α P C and Repαq ą 0, A´α is injective. Therefore, we define
Aα “ pA´αq´1. Now, we will give the basic relations between the operators of positive and
negative fractional power.

Theorem 2.27. Let´A be an infinitesimal generator of aC0-semigroup exponentially stable
Sp¨q. Then:

(1.) Aα is a closed operator with domain be the range of A´α, for α ą 0.

(2.) If w ě z ą 0, then DpAwq ãÑ DpAzq ãÑ X are dense.
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(3.) If z, w and z ` w in R and x P DpAuq where u “ maxtz, w, z ` wu, we get

AzAwx “ Az`wx.

Proof. See Pazy [36, Page 72].
The next two result, helps to verifies when the inclusion between spaces defined by

fractional power operators are continuous, see Vrabie [41, Section 7.6].

Theorem 2.28. LetA be an infinitesimal generator of a C0-semigroup exponentially stable
Sp¨q. If α P p0, 1q, there is C ą 0 such that, for each x P DpAq and for each ρ ą 0, we have

}Aαx} ď Cpρα}x} ` ρα´1
}Ax}q

and
}Aαx} ď 2C}x}1´α}Ax}α.

Theorem 2.29. LetA be an infinitesimal generator of a C0-semigroup exponentially stable
Sp¨q. Let B : DpBq Ă X Ñ X be a closed operator with DpAαq Ă DpBq. If α P p0, 1s,
there is C ą 0 such that, for each x P DpAαq and for each ρ ą 0, we have that

}Bx} ď C}Aαx}.

and if x P DpAq, we have that

}Bx} ď Cpρα}x} ` ρα´1
}Ax}q.

Theorem 2.30. Let H be a Hilbert space and let A be a positive definite self-adjoint linear
operator in H . Then A has bounded imaginary power.

Proof. See Amann [1, Pages 164 and 157].

Proposition 2.31. LetA : DpAq Ñ X be a sectorial operator in a BanachX and consider a
closed linear operatorB : DpBq Ñ X such thatDpAq Ă DpBq Ă X andB is subordinated
to A according to the condition

(2.3) }Bv}X ď c}Av}X ` c
1
}v}X , v P X

If the condition 2.3 holds with c ď M0 “
1

2p1`Mq
and 4c1M ď |λ|, then the perturbed

operator A`B with DpA`Bq “ DpAq is sectorial in X .

Proof. See Cholewa and Dlotko [15, Page 37].

Corollary 2.32. Under the assumptions of Proposition 2.31 and additional requirements
that both A and A`B are positive operators with its fractional powers of purely imaginary
exponent being bounded operators, the following equality holds:

(2.4) DppA`Bqαq “ DpAαq, α P p0, 1q.

Proof. See Cholewa and Dlotko [15, Page 52].
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2.3 Global attractors

In order to understand the definition of global attractor, we need to introduce some ter-
minologies, for more details we refer to Carvalho, Langa and Robinson [13] and references
therein.

Definition 2.33. The Hausdorff semidistance between A and B is defined as

distHpA,Bq “ sup
aPA

inf
bPB

dpa, bq.

Definition 2.34. Let A and B be subsets of M. We say that A attracts B under semigroup
Sp¨q if

lim
tÑ0

distHpSptqB,Aq “ 0.

When there is a bounded set B ĂM which attracts each bounded set of M by the semigroup
Sp¨q, we call Sp¨q of a bounded dissipative semigroup.

Definition 2.35. Let A and B be subsets of M. We say that A absorbs B under semigroup
Sp¨q if there is t0 ą 0 such that

SptqB Ă A, @t ě t0.

Definition 2.36. The set B is an absorbing set of Sp¨q if each bounded set B0 Ă M, B
absorb B0 under Sp¨q.

Definition 2.37. The global attractor of the semigroup Sp¨q is a set A Ă X such that

• A is compact;

• A is invariant under semigroup Sp¨q;

• A attracts any bounded subsets of X under the semigroup.

The global attractor, if it exists, is easily seen to be unique. The next result will be
useful to show the existence of the global attractor.

Theorem 2.38. If Sp¨q is bounded dissipative and asymptotically compact, then Sp¨q has a
global attractor.

Proof. See Carvalho, Langa and Robinson [13, Page 34].

Definition 2.39. We say that the family tAλuλPΛ of subsets of X is upper semicontinuitinu-
ous at λ0 if

lim
λÑλ0

distHpAλ,Aλ0q “ 0.
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2.4 Nonlinear evolution processes

We wish to deal with the non-autonomous case of the thermoelastic problem. To do so,
we need to adapt the concept of semigroup for the non-autonomous case, for more details we
refer to Babin and Vishik [3], Carvalho, Langa and Robinson [13], Cholewa and Dlotko [15],
Hale [24] and references therein.

Definition 2.40. A family of maps tUpt, sq; t ě su in CpMq is a nonlinear evolution process
if

(1.) Upt, tq “ I , for all t P R,

(2.) Upt, sq “ Upt, τqSpτ, sq, for all t ě τ ě s,

(3.) tpt, s, xq P R2 ˆX; t ě su Q pt, s, xq ÞÑ Upt, sqx PM is continuous.

Consider the problem

(2.5)

$

&

%

du

dt
` Aptqu “ F, t ě s

upsq “ u0 P Y

where Y Ă X is dense, F P L1pr0, T s;Xq and t´Aptq; t P Ru is a family of operator with
domain DpAptqq Ă X for any t P R under conditions sufficient to ensures the existence of a
process Up¨, ¨q such that if u is a classical or strong solution for (2.5), then

(2.6) u “ Upt, squ0 `

ż t

s

Upt, τqF pτ,uqdτ, t ě s

where the process Up¨, ¨q is given by

Upt, sq “ e´pt´sqApsq `

ż t

s

Upt, τqrApτq ´ Apsqse´pτ´sqApsqdτ.

Definition 2.41. We will call u : rs, T s Ñ X a mild solution for (2.5) if u is defined by (2.6)
for each u0 P X .

Theorem 2.42. Let F : rs, T sˆX Ñ X be continuous in t on rs, T s and uniformly Lipschitz
continuous onX . If´Apsq is the infinitesimal generator of a linear C0-semigroup Up¨, sq on
X for each s P p´8, T s, then every u0 P X the initial value problem (2.5) has a unique mild
solution u P Cprs, T s, Xq. Moreover, the mapping X Q u0 ÞÑ u P Cprs, τ s;Xq is Lipschitz
continuous from X into Cprs, T s, Xq.

Proof. For a given u0 P X , we define a mapping

Gu0 : CpR, Xq Ñ CpR, Xq
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by

(2.7) pGu0uqptq “ Upt, squ0 `

ż t

s

Upt, τqF pτ,upτqqdτ, s ď t ď T.

Denoting by }u}8 the norm of u as an element of Cpp´8, T s, Xq it follows from the
choice of F that

(2.8) }pGu0uqptq ´ pGu0vqptq}X ďMpsqLpt´ sq}u´ v}8

where Mpsq is a bound of }Upt, sq} on rs, T s. Using (2.7), (2.8) and finite induction on n it
follows easily that

}pGn
u0
uqptq ´ pGn

u0
vqptq}X ď

pMpsqLpt´ sqqn

n!
}u´ v}8

whence

(2.9) }Gn
u0
u´Gn

u0
v} ď

pMpsqLT qn

n!
}u´ v}8

For n large enough pMpsqLT qn{n! ă 1 for all s P R and by a well known extension of the
contraction principle Gu0 has a unique fixed point u in Cprs, T s, Xq. This fixed point is the
desired solution of the integral equation (2.6).

The uniqueness of u and the Lipschitz continuity of the map u0 Ñ u are consequences
of the following argument. Let v be a mild solution of (2.5) on rs, T s with the initial value
v0. Then,

}uptq ´ vptq} ď }Upt, squ0 ´ Upt, sqv0} `

ż t

s

}Upt, sq}}F ps,upsqq ´ F ps,vpsqq}

ďM}u0 ´ v0} `ML

ż t

s

}upsq ´ vpsq}ds,

which implies, by Gronwall’s inequality, that

}uptq ´ vptq} ďMeMLpT´sq
}u0 ´ v0}

and therefore
}u´ v} ďMeMLpT´sq

}u0 ´ v0}

which yields both the uniqueness of u and the Lipschitz continuity of the map u0 ÞÑ u.

˝

Theorem 2.43. Let F : RˆX Ñ X be continuous in t on R and locally Lipschitz continuous
on X . If ´Apsq is the infinitesimal generator of a C0-semigroup Up¨, sq on X for each
s P R, then every u0 P X the initial value problem (2.5) has a unique mild solution u P

Cprs, tmaxq, Xq. Moreover, if tmax ă 8 then

lim
tÑtmax

}uptq} “ 8.
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Proof. We start by showing that for every t0 ě s, u0 P X , the initial value problem
(2.5) has, under the assumptions of our theorem, a unique mild solution u on an interval
rt0, t1s whose length is bounded below by

(2.10) δpt0, }u0}q “ min

"

1,
}u0}

Kpt0, sqLpKpt0, sq, t0 ` 1q `Mpt0, sq

*

where Lpc, tq is the local Lipschitz constant of F ,Mpt0, sq “ supt}Upt, sq}; s ď t ď t0`1u,
Kpt0, sq “ 2}u0}Mpt0, sq and Npt0, sq “ maxt}F pt, 0q}; s ď t ď t0 ` 1u. Indeed, let
t1 “ t0 ` δpt0, }u0}q, the mapping Gu0 defined by (2.7) maps the ball of radius Kpt0, sq
centred at 0 of Cprt0, t1s;Xq into itself. This follows from the estimates

}pGu0uqptq} ďMpt0, sq}u0} `

ż t

t0

}Upt, τq} p}F pτ,upτqq ´ F pτ, 0q} ` }F pτ, 0q}q ds

ďMpt0, sq t}u0} `Kpt0, sqLpKpt0, sq, t0 ` 1qpt´ t0q `Npt0, sqpt´ t0qu

ď 2Mpt0, sq}u0} “ Kpt0, sq

In this ball, G satisfies a uniform Lipschitz condition with constant L “ L pKpt0, sq, t0 ` 1q

and thus as in the proof of Theorem 2.42 it has a unique fixed point u in the ball. This fixed
point is the desired solution of (2.5) on the interval rt0, t1s.

From what we have just proved it follows that if u is a mild solution of (2.5) on the
interval rs, τ0s it can be extended to the interval rs, τ0`δs with δ ą 0 by defining on rτ0, τ0`

δs, uptq “ wptq where uptq is the solution of the integral equation

(2.11) uptq “ Upt, τ0qupτ0q `

ż t

τ0

Upt, τqF pτ,wpτqqdτ, τ0 ď t ď τ0 ` δ.

Moreover, δ depends only on }upτ0q}, Kpτ0, sq and Npτ0, sq.

Let rs, tmaxq be the maximal interval of existence of the mild solution u of (2.5). If
tmax ă 8 then limtÑtmax }uptq} “ 8 since otherwise there is a sequence tn Ñ t`max such
that }uptnq} ď C for all n. This would imply by what we have just proved that for each
tn, near enough to tmax, u defined on rs, tns can be extended to rs, tn ` δs where δ ą 0 is
independent of tn and hence u can be extended beyond tmax contradicting the definition of
tmax.

To prove the uniqueness of the local mild solution u of (2.5) we note that if v is
a mild solution of (2.5) then on every closed interval rs, t0s on which both u and v exist
they coincide by the uniqueness argument given at the end of the proof of Theorem 2.42.
Therefore, both u and v have the same tmax and on rs, tmaxq, u “ v.

˝

2.5 Pullback attractors

In order to understand the definition of pullback attractor, we need to introduce some
terminologies, for more details on the concept of pullback attractor we refer to Carvalho,
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Langa and Robinson [13] and references therein.

Definition 2.44. Let Up¨, ¨q be a nonlinear evolution process. Given t P R, a set K Ă X

pullback attracts a set D at time t under Up¨, ¨q if

(2.12) lim
sÑ´8

distHpUpt, sqD,Kq “ 0.

K pullback attracts bounded sets at time t if (2.12) holds for each bounded subset D of X .

A time dependent family of subset of X , Kp¨q pullback attracts bounded subsets of X
under Up¨, ¨q if Kptq pullback attracts bounded sets at time t under Up¨, ¨q, for each t P R.

Definition 2.45. A family tAptq; t P Ru is the pullback attractor for a nonlinear evolution
process Up¨, ¨q if

(1.) Aptq is compact for each t P R,

(2.) Ap¨q is invariant with respect to Up¨, ¨q,

(3.) Ap¨q pullback attracts bounded subsets of X , and

(4.) if there is another family Cp¨q of closed sets that pullback attracts bounded subsets of
X , then Aptq Ă Cptq for all t P R.

Definition 2.46. A nonlinear evolution process Up¨, ¨q in M is said to be pullback asymp-
totically compact if, for each t P R, each sequence tsku ď t with sk Ñ ´8 as k Ñ 8, and
each bounded sequence txku P X , the sequence tUpt, skqxku has a convergent subsequence.

Definition 2.47. A nonlinear evolution process Up¨, ¨q in M is said to be strongly pullback
bounded dissipative if for each t P R there is a bounded subset Bptq of M that pullback
attracts bounded subsets of M at time τ for each τ ď t; that is, given a bounded subset D of
M and τ ď t, limtÑ´8 distHpUpτ, sqD,Bptqq “ 0.

The following is a result that gives sufficient conditions for the existence of attractor.

Theorem 2.48. If a nonlinear process Up¨, ¨q is strongly pullback bounded dissipative and
pullback asymptotically compact and Bp¨q is a family of bounded subsets of X such that,
for each t P R, Bptq pullback attracts bounded subsets of X at time τ for each τ ď t, then
Up¨, ¨q has a compact pullback attractorAp¨q such that

Ť

sďtApsq is bounded for each t P R.

Proof. See Carvalho, Langa and Robinson [13, Page 35].

Definition 2.49. We say that tAεp¨quεPr0,1s is upper semicontinuous as ε Ñ 0 if, for each
t P R, the family tAεptquεPr0,1s is upper semicontinuous as εÑ 0.
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We suppose that we have a sequence of nonlinear processes Uεp¨, ¨q that converges to a
limiting process U0p¨, ¨q in the following sense: for each t P R for each compact subset K of
X and each T ą 0,

(2.13) sup
τPr0,T s

sup
xPK

distHpUεpt, t´ τq, U0pt, t´ τqxq Ñ 0 as εÑ 0.

It is therefore natural to make the standing assumption that for each t P R

(2.14)
ď

εPr0,1s

Aεptq is compact

if we want prove continuity of attractors.
We have already seen that pathologies are possible when the pullback attractor is not

bounded in the past. We therefore impose the additional condition that for each t P R,

(2.15)
ď

εPr0,1s

ď

săt

Aεpsq is bounded.

Theorem 2.50. Let Uεp¨, ¨q be a sequence of nonlinear evolution processes with correspond-
ing pullback attractors Aεp¨q for ε P r0, 1s. Assume that

(1.) for each t P R and for each compact subset K of X and each T ą 0,

sup
τPr0,T s

sup
xPK

distHpUεpt, t´ τqx, U0pt, t´ τqxq Ñ 0 as εÑ 0;

(2.)
ď

εPr0,1s

Aεptq is compact;

(3.)
ď

εPr0,1s

ď

săt

Aεpsq is bounded.

Then, Aεp¨q is upper semicontinuous as εÑ 0.

Proof. See Carvalho, Langa and Robinson [13, Page 57].
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Chapter 3

Autonomous n-dimensional
thermoelasticity system

In this is one of the main chapter, we aim to make a study of the asymptotic behavior,
in the sense of global attractors, of the solutions of a class of n-dimensional thermoelastic
systems with n ě 2. The results presented here make up an article entitled "Attractors for
a class of thermoelastic systems with vanishing mean value for temperature", which was
accepted for publication in the Journal Colloquium Mathematicum.

3.1 Preliminary

We are interested in the study of asymptotic behavior of mild solutions for a multidi-
mensional semilinear thermoelastic systems; namely, initial-boundary value problems with
space dependent diffusion coefficients

(3.1)

$

&

%

B2
t u´∆u´∇ div u`∇θ “ fpuq, x P Ω, t ą 0,

Btθ ´ div pκpxq∇θq ` div Btu “ 0, x P Ω, t ą 0,

subject to boundary conditions

(3.2) upx, tq “ 0, θpx, tq “ 0, x P BΩ, t ą 0,

and

(3.3) κpxq∇θpx, tq ´ Btupx, tq “ 0, x P BΩ, t ą 0,

on initial conditions

(3.4)

$

&

%

upx, 0q “ u0pxq, Btupx, 0q “ u1pxq, x P Ω,

θpx, 0q “ θ0pxq x P Ω.
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In this problem, the map f is external force and the functional parameters κ is the
diffusion coefficient with some suitable growth conditions which will be presented below.

We recall that for a smooth vector field in some sense u “ pu1, . . . , unq the gradient
and Laplacian of the vector field u are denoted, respectively, by

∇u “ p∇u1, . . . ,∇unq

and

∆u “ p∆u1, . . . ,∆unq,

and the divergent operator of a vector field Btu will be denoted by

div Btu “
n
ÿ

i“1

BxiBtui.

The hypotheses on the nonlinearity f “ pf1, . . . , fnq, where fi : Rn Ñ R. We consider
f a conservative vector field (i.e., there is a scalar field α such that f “ ∇α) with the
functions fi twice continuously differentiable and fip0q “ 0, i “ 2, 3, 4. Moreover, we also
assume that for each ν ą 0 there exists Cν ą 0 such that

(3.5) fpξq ¨ ξ ď ν|ξ|2 ` Cν ,

with ¨ denoting the standard dot product on Rn. Because of (3.5), we can assume that there
exist Cη ą 0 and η P p0,mint1, λ1uq such that if

F pξq :“

ż ξ

0

fdγ,

then

(3.6) F pξq ď
η

2
|ξ|2 ` Cη,

where λ1 ą 0 is the first eigenvalue of the negative Laplacian operator with zero Dirichlet
boundary condition, and

şξ

0
fdγ represents the line integral of f along a piecewise smooth

curve γ : rs, ts Ñ Rn wich γpsq “ 0 and γptq “ ξ, for any ξ P Rn (that is, ∇F pξq “ fpξq,
where∇F stands for the gradient of F in the variables ξ P Rn).

In addition, we shall assume throughout this text that there exists a constant C ą 0

such that for every i “ 1, . . . , n and ξ “ pξ1, . . . , ξnq P Rn,

|∇fipξq| ď C

˜

1`
n
ÿ

i“1

|ξi|
p´1

¸

,

|B
2
xi
fipξq| ď C,

(3.7)

for some 1 ă p ă n
n´2

, if n ą 2; 1 ă p ă `8 if n “ 2.
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The coefficients κ in (3.1), is a real-valued continuously differentiable function defined
on Ω such that there exist constants κ0 and κ1 with the property

(3.8) 0 ă κ0 ď κpxq ď κ1, x P Ω.

In order of better present our results, we introduce some terminology. Motivated by
Lebeau and Zuazua [31] we will consider the Hilbert space pH1

0 pΩqq
n equipped with the

inner product

(3.9) pu1, u2qpH1
0 pΩqq

n “

ż

Ω

p∇u1∇u2 ` div u1 div u2qdx

and consequently the product space

H “ pH1
0 pΩqq

n
ˆ pL2

pΩqqn ˆ L2
pΩq

equipped with the inner product

pu1,u2qH “

ż

Ω

∇u1∇u2dx`

ż

Ω

div u1 div u2 dx`

ż

Ω

z1z2dx`

ż

Ω

θ1θ2dx

for all u1 “ pu1, z1, θ1q,u2 “ pu2, z2, θ2q P H.

3.2 Well-possessedness of the problem

Let u “ pu, z, θq be the state vector with z “ Btu, we rewrite (3.1)-(3.5) as an initial-
value problem associated to an ordinary differential equation in the product space H as fol-
lows

(3.10)

$

&

%

du

dt
`Au “ Fpuq, t ą 0,

up0q “ u0,

where u0 “ pu0, z0, θ0q, A : DpAq Ă HÑ H is the linear unbounded operator defined by

DpAq “
`

pH1
0 pΩq XH

2
pΩqqn ˆ pH1

0 pΩqq
n
ˆ pH1

0 pΩq XH
2
pΩqq

˘

č

X,

and for any pu, z, θq P DpAq

Apu, z, θq “ p´z,´∆u´∇ div u`∇θ,´divpκ∇θq ` div zq

where
X “ tpu, z, θq P H;κpxq∇θpx, ¨q ´ Btupx, ¨q “ 0 in L2

pBΩqu.

The nonlinear term in (3.10) is defined by

Fpuq “ p0, f epuq, 0q,
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where f e denotes the Nemytskı̆i operator associated with f , i.e.

f epuq “ fpupt, xqq “ pf1pupt, xqq, . . . , fnpupt, xqqq

for any t ě 0, x P Ω and by simplicity of notation we also denote f e by f .
We choose as a base space for (3.10) the product space H, see [31] and references

therein. This choice allows us may exhibit a Lyapunov functional to (3.10); namely

(3.11) Epu, z, θq “ 1

2

´

}u}2
pH1

0 pΩqq
n ` }z}

2
pL2pΩqqn ` }θ}

2
L2pΩq

¯

´

ż

Ω

F puqdx

where } ¨ }2
pH1

0 pΩqq
n “ p¨, ¨qpH1

0 pΩqq
n defined in (3.9) and F puq “

şu

0
fdγ and

şu

0
fdγ represents

the line integral of f along a piecewise smooth curve with initial point 0 and final point u
with u “ upx, tq, decreases along trajectories. More precisely, multiplies by Btu the first
equation of (3.1) and second by θ, we obtain

$

&

%

pB2
t u´∆u´∇ div u`∇θqBtu “ fpuqBtu

pBtθ ´ div pκpxq∇θq ` div Btuqθ “ 0

by adding the two equations we obtain

(3.12)
dE
dt
“ ´

ż

Ω

κpxq|∇θ|2dx ď 0,

where Eptq “ Epuptq, zptq, θptqq for any t ě 0.

Differentiability of the Nonlinearity

To prove the differentiability of F we first see that it is enough to prove the differen-
tiable of f e. Since the map F is defined from H into H, its derivative DF is defined by for
each u “ pu, z, θq P H as follows

H Q h “ ph1, h2, h3
q ÞÑ DF puq ¨ h P H,

where
DF puq ¨ h “ p0, Df epuq ¨ h1, 0q,

and
Df epuq “ Dfpuq “ pDf1puq, . . . , Dfnpuqq,

according to next result.

Lemma 3.1. If the functions fi satisfy (3.7), then there exists C ą 0 such that for i “
1, . . . , n, and u “ pu1, . . . , unq, y “ py1, . . . , ynq P Rn, we have that

|fipuq ´ fipyq| ď 2p´1nC|u´ y|

˜

1`
n
ÿ

i“1

|ui|
p´1
`

n
ÿ

i“1

|yi|
p´1

¸

.
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Consequently, there exists C̃ ą 0 for any u1 “ pu1, z1, θ1q,u2 “ pu2, z2, θ2q P H with
ui “ pui1, . . . , uinq we deduce that

(3.13) }F pu1q ´ F pu2q}H ď C̃}u1 ´ u2}pH1pΩqqn

˜

1`
2
ÿ

i“1

n
ÿ

j“1

}uij}
p´1
H1pΩq

¸

.

Proof. Give u “ pu1, . . . , unq, y “ py1, . . . , ynq P Rn, it follows from mean value
theorem the existence of ϑ P p0, 1q such that

|fipuq ´ fipyq| ď |u´ y||∇fipp1´ ϑqu` ϑyq|

and by (3.7) we have that

|fipuq ´ fipyq| ď C|u´ y|

˜

1`
n
ÿ

i“1

|p1´ ϑqui ` ϑyi|
p´1

¸

ď 2p´1nC|u´ y|

˜

1`
n
ÿ

i“1

|p1´ ϑqui|
p´1
`

n
ÿ

i“1

|ϑyi|
p´1

¸

ď 2p´1nC|u´ y|

˜

1`
n
ÿ

i“1

|ui|
p´1
`

n
ÿ

i“1

|yi|
p´1

¸

.

Due to Hölder inequality and the Sobolev embedding H1pΩq ãÑ L
2n
n´2 pΩq we obtain

that
}F pu1q ´ F pu2q}H “ }fpu1q ´ fpu2q}pL2pΩqqn ,

where u1 “ pu1, z1, θ1q,u2 “ pu2, z2, θ2q P H and

}fipu1q ´ fipu2q}L2pΩq

ď 2p´1nC

»

–

ż

Ω

|u1 ´ u2|
2

˜

1`
2
ÿ

i“1

n
ÿ

j“1

|uij|
p´1

¸2

dx

fi

fl

1
2

ď 2p´1nC

„
ż

Ω

|u1 ´ u2|
2n
n´2dx


n´2
2n

«

ż

Ω

˜

1`
2
ÿ

i“1

n
ÿ

j“1

|uij|
p´1

¸n

dx

ff
1
n

,

in other words,

}fipu1q ´ fipu2q}pL2pΩqqn

ď C̃}u1 ´ u2}
pL

2n
n´2 pΩqqn

˜

1`
2
ÿ

i“1

n
ÿ

j“1

}uij}
p´1

Lpp´1qnpΩq

¸

ď C̃}u1 ´ u2}pH1pΩqqn

˜

1`
2
ÿ

i“1

n
ÿ

j“1

}uij}
p´1
H1pΩq

¸

.

The bound in (3.13) now follows in a straightforward way from the definition of F .
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˝

Lemma 3.2. If the functions fi satisfy (3.7), then the Nemytskı̆i operators associated to
fi, f ei : pH1

0 pΩqq
n Ñ L2pΩq are continuously differentiable and the derivative operators

Df ei : pH1
0 pΩqq

n Ñ LppH1
0 pΩqq

n, L2pΩqq are Lipschitz continuous (in bounded subsets of
pH1

0 pΩqq
n). Consequently, DF is also Lipschitz continuous (in bounded subsets of H), for

n “ 3, 4. For n ą 4, there exists a constant η P p0, 1q such that

}Df ei puq ´Df
e
i pvq}LppH1

0 pΩqq
n,L2pΩqq ď c}u´ v}η

pH1
0 pΩqq

n , @u, v P pH1
0 pΩqq

n.

Proof. For each u P pH1
0 pΩqq

n define the map Df ei puq P LppH1
0 pΩqq

n, L2pΩqq by

(3.14) pDf ei puq ¨ hqpxq “ Dpfiqpupx, tqq ¨ hpxq.

First we check that this is well defined. In fact, let u “ pu1, . . . , unq, h “ ph1, . . . , hnq P

pH1
0 pΩqq

n, then u, h P pL
2n
n´2 pΩqqn, and using (3.7) we get

ż

Ω

|Dfipupx, tqq|
2
|hpxq|2dx ď c2

ż

Ω

˜

1`
n
ÿ

i“1

|uipxq|
p´1

¸2

|hpxq|2dx,

and by Hölder inequality

ż

Ω

|Dfipupx, tqq|
2
|hpxq|2dx ď c2

›

›

›

›

›

›

˜

1`
ÿ

i“1

|ui|
p´1

¸2
›

›

›

›

›

›

L
n
2 pΩq

}|h|2}
L

n
n´2 pΩq

ď c2

˜

1`
n
ÿ

i“1

}ui}
2pp´1q

Lnpp´1qpΩq

¸

}h}2
pL

2n
n´2 pΩqqn

.

Since u, h P pL
2n
n´2 pΩqqn and p ă n

n´2
, it follows that

ż

Ω

|Dfipupx, tqq|
2
|hpxq|2dx ď c

˜

1`
n
ÿ

i“1

}ui}
2pp´1q

H1pΩq

¸

}h}2pH1pΩqqn .

Hence Df ei puqh P L
2pΩq and Df ei puq P LppH1

0 pΩqq
n, L2pΩqq. Now let us check that

Df ei puq is indeed the Fréchet derivative of f ei at u. If u “ pu1, . . . , unq, h “ ph1, . . . , hnq P

pH1
0 pΩqq

n then

}f ei pu` hq ´ f
e
i puq ´Df

e
i puq ¨ h}

2
L2pΩq

“

ż

Ω

|fipupx, tq ` hpxqq ´ fipupx, tqq ´Dfipupx, tqq ¨ hpxq|
2dx

ď

ż

Ω

|D2
pfiqpupx, tq ` σpxqhpxqq|

2
|hpxq|4dx,

where σpxq P p0, 1q, for all x P Ω. Thus, using (3.7) we obtain that

(3.15) }f ei pu` hq ´ f
e
i puq ´Df

e
i puq ¨ h}

2
L2pΩq ď c

ż

Ω

|hpxq|4dx.
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Case1: n “ 3. It follows from (3.15) and Hölder inequality that

}f ei pu` hq ´ f
e
i puq ´Df

e
i puq ¨ h}

2
L2pΩq ď c

ż

Ω

|hpxq|4dx

ď c|Ω|
1
3 }|h|4}

L
3
2 pΩq

ď c|Ω|
1
3 }|h|}4L6pΩq,

and consequently

}f ei pu` hq ´ f
e
i puq ´Df

e
i puq ¨ h}L2pΩq ď c}h}2

pH1
0 pΩqq

n .

This proves the differentiability of f ei in u for each u P pH1
0 pΩqq

n.

Case2: n “ 4. Using (3.15) we have that

}f ei pu` hq ´ f
e
i puq ´Df

e
i puq ¨ h}

2
L2pΩq ď c

ż

Ω

|hpxq|4dx “ c}|h|}4L4pΩq.

Remember that H1
0 pΩq ãÑ L4pΩq for n “ 4, and then

}f ei pu` hq ´ f
e
i puq ´Df

e
i puq ¨ h}L2pΩq ď c}h}2

pH1
0 pΩqq

n .

This proves the differentiability in this case.

Case3: n ą 4. Observe that n
n´2

ă 2 ă 2n
pn´2qp

. We have that

}f ei pu` hq ´ f
e
i puq ´Df

e
i puq ¨ h}

n
n´2

L
n
n´2 pΩq

“

ż

Ω

|rD2
pfiqpupx, tq ` σpxqhpxqqsh

2
pxq|

n
n´2dx,

where σpxq P p0, 1q, for all x P Ω. It follows from (3.7) that

}f ei pu` hq ´ f
e
i puq ´Df

e
i puq ¨ h}

n
n´2

L
n
n´2 pΩq

“ c

ż

Ω

|hpxq|
2n
n´2dx

ď c}|h|}
2n
n´2

L
2n
n´2 pΩq

,

and then

(3.16) }f ei pu` hq ´ f
e
i puq ´Df

e
i puq ¨ h}L

n
n´2 pΩq

ď c}h}2
pH1

0 pΩqq
n .

By other hand, we have

}f ei pu` hq ´ f
e
i puq ´Df

e
i puq ¨ h}

2n
pn´2qp

L
2n

pn´2qp pΩq

“

ż

Ω

|fipupx, tq ` hpxqq ´ fipupx, tqq ´Dfipupx, tqq ¨ hpxq|
2n

pn´2qpdx

ď

ż

Ω

|Dpfiqpupx, tq ` θpxqhpxqq ¨ hpxq ´Dfipupx, tqq ¨ hpxq|
2n

pn´2qpdx,
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where θpxq P p0, 1q, for all x P Ω. Using Hölder inequality with exponents p
p´1

and p we
have

}f ei pu` hq ´ f
e
i puq ´Df

e
i puq ¨ h}

2n
pn´2qp

L
2n

pn´2qp pΩq

ď }|Dpfiqpupx, tq ` θpxqhpxqq ´Dfipupx, tqq|
2n

pn´2qp }
L

p
p´1 pΩq

}|h|
2n

pn´2qp }LppΩq

ď }|Dpfiqpupx, tq ` θpxqhpxqq ´Dfipupx, tqq|}
2n

pn´2qp

L
2n

pn´2qpp´1q pΩq
}|h|}

2n
pn´2qp

L
2n
n´2 pΩq

(3.17)

Note that

}|Dpfiqpupx, tq ` θpxqhpxqq ´Dfipupx, tqq|}
L

2n
pn´2qpp´1q pΩq

ď }|Dpfiqpupx, tq ` θpxqhpxqq|}
L

2n
pn´2qpp´1q pΩq

` }|Dfipupx, tqq|}
L

2n
pn´2qpp´1q pΩq

Using (3.7) we get

}|Dpfiqpupx, tq ` θpxqhpxqq|}
2n

pn´2qpp´1q

L
2n

pn´2qpp´1q pΩq

ď c

ż

Ω

˜

1`
n
ÿ

i“1

|uipxq ` θpxqhipxq|
p´1

¸
2n

pn´2qpp´1q

dx

ď c

˜

1`
n
ÿ

i“1

}uipxq ` θpxqhipxq}
2n
n´2

L
2n

pn´2q pΩq

¸

and then
(3.18)

}|Dpfiqpupx, tq ` θpxqhpxqq|}
2n

pn´2qpp´1q

L
2n

pn´2qpp´1q pΩq
ď c

˜

1`
n
ÿ

i“1

}uipxq ` θpxqhipxq}
2n
n´2

H1
0 pΩq

¸

.

In a similar way, we obtain that

(3.19) }|Dpfiqpupx, tqq|}
2n

pn´2qpp´1q

L
2n

pn´2qpp´1q pΩq
ď c

ˆ

1` }|u|}
2n
n´2

H1
0 pΩq

˙

.

Using (3.15) and (3.18) in (3.17) we have that

}f ei pu` hq ´ f
e
i puq ´Df

e
i puq ¨ h}

L
2n

pn´2qp pΩq

ď k

˜

1`
n
ÿ

i“1

r}uipxq}
p´1

H1
0 pΩq

` }θpxqhipxq}
p´1

H1
0 pΩq
s ` }u}p´1

pH1
0 pΩqq

n

¸

}h}pH1
0 pΩqq

n .
(3.20)

It follows from Interpolation Theorem [22, Proposition 6.10 pg. 185], (3.16) and (3.17) that
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there exists λ P p0, 1q such that

}f ei pu` hq ´ f
e
i puq ´Df

e
i puq ¨ h}L2pΩq

ď

”

c}h}2
pH1

0 pΩqq
n

ı1´λ ”

k
´

1`
n
ÿ

i“1

r}uipxq}
p´1

H1
0 pΩq

` }θpxqhipxq}
p´1

H1
0 pΩq
s

` }u}p´1

pH1
0 pΩqq

n

¯

}h}pH1
0 pΩqq

n

ıλ

ď c

˜

1`
n
ÿ

i“1

r}uipxq}
p´1

H1
0 pΩq

` }θpxqhipxq}
p´1

H1
0 pΩq
s ` }u}p´1

pH1
0 pΩqq

n

¸λ

}h}2´λ
pH1

0 pΩqq
n .

and consequently
}f ei pu` hq ´ f

e
i puq ´Df

e
i puq ¨ h}L2pΩq

}h}pH1
0 pΩqq

n

ÝÑ 0

as }h}pH1
0 pΩqq

n Ñ 0. This conclude the proof that D is the Frechét derivative of f ei .

Now, we show that u ÞÑ Df ei puq is Lipschitz continuous as a map from pH1
0 pΩqq

n into
LppH1

0 pΩqq
n, L2pΩqq, for n “ 3, 4.

Suppose that n “ 3, and let u, h P pH1
0 pΩqq

n, then

}Df ei puq ¨ h´Df
e
i pvq ¨ h}

2
L2pΩq

ď

ż

Ω

|Dpfiqpupx, tqq ´Dpfiqpvpx, tqq||hpxq|
2dx

ď

ż

Ω

|D2
pfiqpu` ϑpxqvpx, tqq|

2
|upx, tq ´ vpx, tq|2||hpxq|2dx,

for some ϑpxq P p0, 1q. It follows from (3.7) that

}Df ei puq ¨ h´Df
e
i pvq ¨ h}

2
L2pΩq ď C

ż

Ω

|upx, tq ´ vpx, tq|2||hpxq|2dx

ď C}|u´ v|2}
L

3
2 pΩq

}|h|2}L3pΩq

ď C}|u´ v|}2L6pΩq}|h|}
2
L6pΩq

ď C}u´ v}2
pH1

0 pΩqq
3}h}

2
pH1

0 pΩqq
3 .

Let n “ 4. In a similar way, we obtain that

}Df ei puq ¨ h´Df
e
i pvq ¨ h}

2
L2pΩq ď C

ż

Ω

|upx, tq ´ vpx, tq|2||hpxq|2dx

ď C}|u´ v|}L4pΩq}|h|}
2
L4pΩq

ď C}u´ v}2
pH1

0 pΩqq
4}h}

2
pH1

0 pΩqq
4 ,

in the last inequality we used that H1
0 pΩq ãÑ L4pΩq.

Let n ą 4. Observe that n
n´2

ă 2 ă 2n
pn´2qp

and then

(3.21) L
2n

pn´2qp pΩq ãÑ L2
pΩq ãÑ L

n
n´2 pΩq.
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For all u, v, h P pH1
0 pΩqq

n, we have

}Df ei puq¨h´Df
e
i pvq¨h}

n
n´2

L
n
n´2 pΩq

“

ż

Ω

|rD2
pfiqpupxq`σpxqvpxqqspupxq´vpxqqhpxq|

n
n´2dx,

where σpxq P p0, 1q, for all x P Ω. It follows from (3.7) that

}Df ei puq ¨ h´Df
e
i pvq ¨ h}

n
n´2

L
n
n´2 pΩq

ď C

ż

Ω

|pupxq ´ vpxqqhpxq|
n
n´2dx

ď C}|upxq ´ vpxq|
n
n´2 }L2pΩq}|h|

n
n´2 }L2pΩq

ď C}|upxq ´ vpxq|}
n
n´2

L
2n
n´2 pΩq

}|h|}
n
n´2

L
2n
n´2 pΩq

ď C}|upxq ´ vpxq|}
n
n´2

H1
0 pΩq
}|h|}

n
n´2

H1
0 pΩq

.

Then,

(3.22) }Df ei puq ¨ h´Df
e
i pvq ¨ h}L

n
n´2 pΩq

ď C}upxq ´ vpxq}pH1
0 pΩqq

n}h}pH1
0 pΩqq

n .

Now, using Hölder inequality with exponents p
p´1

and p we have

}Df ei puq ¨ h´Df
e
i pvq ¨ h}

2n
pn´2qp

L
2n

pn´2qp pΩq

ď

ż

Ω

rDpfiqpupx, tqqhpxq ´Dpfiqpvpx, tqqhpxqs
2n

pn´2qpdx

ď }|Dpfiqpupx, tqq ´Dpfiqpvpx, tqq|
2n

pn´2qp }
L

p
p´1 pΩq

}|h|
2n

pn´2qp }LppΩq

ď }|Dpfiqpupx, tqq ´Dpfiqpvpx, tqq|}
2n

pn´2qp

L
2n

pn´2qpp´1q pΩq
}|h|}

2n
pn´2qp

L
2n
n´2 pΩq

,

and then

}Df ei puq¨h´Df
e
i pvq¨h}

L
2n

pn´2qp pΩq
ď }|Dpfiqpupx, tqq´Dpfiqpvpx, tqq|}

L
2n

pn´2qpp´1q pΩq
}|h|}

L
2n
n´2 pΩq

.

It follows from (3.19) that

(3.23) }Df ei puq ¨ h´Df
e
i pvq ¨ h}

L
2n

pn´2qp pΩq
ď c

´

1` }|u|}p´1

H1
0 pΩq

` }|v|}p´1

H1
0 pΩq

¯

}|h|}H1
0 pΩq

.

It follows from Interpolation Theorem [22, Proposition 6.10, pg. 185], (3.22) and
(3.23) that there exists η P p0, 1q such that

}Df ei puq¨h´Df
e
i pvq¨h}L2pΩq ď c

´

1`}u}p´1

pH1
0 pΩqq

n`}v}
p´1

pH1
0 pΩqq

n

¯η

}u´v}1´η
pH1

0 pΩqq
n}h}pH1

0 pΩqq
n .

From this, for u, v in bounded subsets of pH1
0 pΩqq

n we obtain that there exists η P p0, 1q such
that

}Df ei puq ´Df
e
i pvq}LppH1

0 pΩqq
n,L2pΩqq ď C}u´ v}1´η

pH1
0 pΩqq

n .

˝
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As we previously notice, in Dafermos [17] we can to ensure that the linear part of the
problem generates a linear C0-semigroup of contractions inH. Since the Lemma 3.1 and the
Lemma 3.2 are ensure for f , we can guarantee the local well-possessedness of the problem
(3.10) thanks to the Theorem 2.21. More precisely, the next result is hold.

Theorem 3.3. Given u0 “ pu0, u1, v0q P H “ pH1
0 pΩqq

n ˆ pL2pΩqqn ˆ L2pΩq, the initial
value problem (3.10) has a unique mild solution with

u P Cpr0, τu0q; pH
1
0 pΩqq

n
q X C1

pr0, τu0q; pL
2
pΩqqnq, and θ P Cpr0, τu0q, L

2
pΩqq.

Moreover, if

u0 “ pu0, u1, θ0q P DpAq “ pH
1
0 pΩq XH

2
pΩqqn ˆ pH1

0 pΩqq
n
ˆ pH1

0 pΩq XH
2
pΩqq

then the following regularity property

u P Cpr0, τu0q; pH
2
pΩq XH1

0 pΩqq
n
q X C1

pr0, τu0q; pH
1
0 pΩqq

n
q X C2

pr0, τu0q; pL
2
pΩqqnq,

and
θ P Cpr0, τu0q;H

2
pΩq XH1

0 pΩqq X C
1
pr0, τu0q;L

2
pΩqq

is verified. In this case that u “ pu, Btu, θq is a strong solution of (3.10).

From this and standard ordinary differential theory via linear semigroups theory, see
Pazy [36, Theorem 1.4], the problem (3.10) has a unique local solution upt;u0q in H satis-
fying the initial condition up0;u0q “ u0 P H and defined on maximal interval of existence
r0, τu0q.

Now we wish to prove that solutions of (3.10) are globally defined, i.e., for each u0 “

pu0, u1, θ0q P H, τu0 “ 8. Thanks to Pazy [36, Theorema 1.4] and [36, Theorema 1.5], we
can consider the continuously differentiable functional E : H Ñ R defined by (3.11) and
using the estimate (3.6) it follows that

Epu, z, θq ě 1

2

´

}u}2pL2pΩqqn ` }z}
2
pL2pΩqqn ` }θ}

2
L2pΩq

¯

´
η

2
}u}2pL2pΩqqn ´ Cη|Ω|,

and applying Poincaré inequality we obtain that

Epu, z, θq ě 1

2

´

}u}2
pH1

0 pΩqq
n ` }z}

2
pL2pΩqqn ` }θ}

2
L2pΩq

¯

´
η

2λ1

}u}2
pH1

0 pΩqq
n ´ Cη|Ω|

“
1

2

´

1´
η

λ1

¯

}u}2
pH1

0 pΩqq
n `

1

2
}z}2pL2pΩqqn `

1

2
}θ}2L2pΩq ´ Cη|Ω|.

For 0 ă η ă mint1, λ1u we get

(3.24) }pu, z, θq}2H ď c1Epu, z, θq ` c2,

for some c1 “ c1pηq ą 0 and c2 “ c2pηq ą 0.
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Then it is clear from (3.12) that r0, τu0q Q t ÞÑ Epuptq, Btuptq, θptqq P R is a non-
increasing function. It follows from the fact that E is continuous and bounded in bounded
subsets ofH and from (3.12) that, given r ą 0, there is a constant C “ Cprq ą 0 such that

supt}puptq, Btuptq, θptqq}H; }pu0, u1, θ0q}H ď r, and t P r0, τu0qu ď C

This implies that for each u0 P H, the solution of (3.10) with u0 “ pu0, u1, θ0q is
defined for all t ě 0. We will write the mild solution of (3.10)

(3.25) Sptqu0 “ S1ptqu0 ` S2ptqu0,

where S1ptqu0 is defined as the solution of (3.10) with F ” 0 and

S2ptqu0 “

ż t

0

S1pt´ ξqFpSpξqu0qdξ, @t ě 0

here Fpuq “ p0, f epuq, 0q, with f e the Nemytskı̆i operator to f .

3.3 Existence of global attractor

In order to study the asymptotic behavior of the system (3.1), we assume the vanishing
mean value for θ0 on Ω; that is,

(3.26) θ0 P L
2
0pΩq “

"

θ P L2
pΩq;

ż

Ω

θpxqdx “ 0

*

.

where Ω is a bounded domain with sufficiently smooth boundary in Rn, n ě 2.
For our better knowledge, large time behavior of solution, in the sense of existence and

sensitivity of global attractors, for the system (3.1) has not yet been treated in the literature
if we assume (3.26) on initial data.

Since the physical interpretation of the function u as the displacement and θ as the
temperature variation of a body occupying the domain Ω Ă Rn is considered, we can see
that the hypothesis (3.26) is natural for the problem. Let us recall that the problem (3.1) is
formulated by considering a certain value T1 P R, which will be the reference temperature of
the environment where the body is inserted and from this define θ0pxq “ T0pxq ´ T1 where
T0pxq is the body temperature in x P Ω. As we are considering not an external heat source
other than the environment, this hypothesis is compatible since the functions in L2pΩq can
be written as a direct sum of the functions that satisfy (3.26) and constants functions. The
condition (3.26) is necessary in our analysis to use the Bogowskı̆i’s operator, which is a right
inverse for the divergent operator. Duran in [19] and, Duran and Muschietti in [20], we find
the properties of the Bogowskiı̆ operator that we will use in this work.

We will denote by

(3.27) Y˚ “ L2
0pΩq
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and we will consider the problem (3.10) in the space

H˚ “ pY 1
q
n
ˆ Y n

ˆ Y˚.

equipped with usual inner product ofH.
Now we want to construct a Lyapunov functional and combine the arguments from

Andrade, Silva and Ma [2], Barbosa and Ma [4], Cavalcanti, Domingos Cavalcanti and Fer-
reira [14], Araújo, Ma and Qin [18], Giorgi, Rivera and Pata [23] and Pokojovy [37] to
prove that the nonlinear semigroup tSptq; t ě 0u has a bounded attracting set. We will ap-
ply [13, Theorem 2.23] and deduce the existence of a global attractor, to do this we need to
show that the nonlinear semigroup is also asymptotically compact according to the [13, Def-
inition 2.8].

We define the wanted functional conveniently changing the functional energy using
the existence of a continuous right inverse of the divergence, which is called the Bogovskiĭ
operator. Because this, we assume that Ω is star-shape domain with diameter R1 ą 0 with
respect to a ball B1 and the vanishing mean value for θ0 on Ω; that is, (3.26).

Under the hypoteses about Ω, it is well know that the divergence as an operator from
the Sobolev space pH1

0 pΩqq
n into the space L2

0pΩq, it has continuous right inverse called
Bogowskiı̆’s operator, see e.g. [6], [9], [19], [20], [34] and [37]. Given a function v P L2

0pΩq,
we will denote Φpvq P pH1

0 pΩqq
n a solution of the problem

Since the physical interpretation of the function u as the displacement and θ as the
temperature variation of a body occupying the region Ω Ă Rn is considered, we can see
that the hypothesis (3.26) is natural for the problem. Let us recall that the problem (3.1) is
formulated by considering a certain value T1 P R which will be the reference temperature
of the environment where the body is inserted and from this define θ0pxq “ T0pxq ´ T1

where T0pxq is the body temperature in x P Ω. As we are considering not an external
heat source other than the environment, this hypothesis is compatible since the functions
in L2pΩq can be written as a direct sum of the functions that satisfy (3.26) and constants
functions. The condition (3.26) is necessary in our analysis to use the Bogowskiı̆ operator,
which is a right inverse for the divergent operator. More precisely, Bogowskiı̆ operator is
Φ : L2

0pΩq Ñ pH1
0 pΩqq

n such that

(3.28)

$

’

’

’

&

’

’

’

%

divpΦpvqq “ v in Ω,

Φpvq “ 0 on BΩ

}Φpvq}pH1
0 pΩqq

n ď C}v}L2pΩq

where C ą 0 depends only on Ω, for more details see Duran [19] and, Duran and Muschietti
[20]. Note that L2

0pΩq is a Hilbert space equiped with the inner product induced by usual
inner product of L2pΩq.

Duran and Muschietti in [20], we find the next results of the Bogowskiı̆ operator that
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we will use in this paper. They define

Gpx, yq “

ż 1

0

1

sn`1
px´ yqω

´

y `
x´ y

s

¯

ds,

for a ω P C80 pΩq such that
ş

Ω
ωdx “ 1 and proof the Lemma 3.4 and the Theorem 3.5

Lemma 3.4. For any ω1 P C
8
0 pΩq we define ω̄1 “

ş

Ω
ωpxqω1pxqdx. Then, for y P Ω we have

pω1 ´ ω̄1qpyq “ ´

ż

Ω

Gpx, yq∇ω1pxqdx.

Theorem 3.5. Let Ω be a bounded and star-shaped with respect to a ball B Ă Ω. Given
v P LppΩq, 1 ă p ă 8, such that

ş

Ω
vdx “ 0 define

Φpvq “

ż

Ω

Gpx, yq vpyqdy.

Then

Φpvq P pW 1,p
0 pΩqqn,

divpΦpvqq “ v

and

}Φpvq}
pW 1,p

0 pΩqqn ď C}v}LppΩq

where C ą 0 depends only on Ω.

Notice that, if pu, θq satisfy (3.1), then we have immediately that

Btθ “ divpκ∇θ ´ Btuq.

for t ě 0 and x P Ω. Besides that
ş

Ω
Btθdx “ 0, and

Btθ “ Bt divpΦpθqq “ divpBtΦpθqq.

Therefore,

divpκ∇θ ´ Btuq “ divpBtΦpθqq.

This leads us to think that

(3.29) BtpΦpθqqpx, tq “ rκ∇θ ´ Btuspx, tq.

The identity (3.29) is true in L2pΩq, because for any ω1 P C
8
0 pΩq from Lemma 3.4 and
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Theorem 3.5, we can do the following
ż

Ω

rBtΦpθq ´ pκ∇θ ´ Btuqs ¨∇ω1pxqdx

“

ż

Ω

ˆ
ż

Ω

BtθpyqGpx, yqdy

˙

∇ω1pxqdx`

ż

Ω

pBtθω1q pxqdx

“

ż

Ω

Btθpyq

ˆ
ż

Ω

Gpx, yq∇ω1pxqdx

˙

dy `

ż

Ω

pBtθω1q pxqdx

“ ´

ż

Ω

Btθpyqpω1 ´ ω̄1qpyqdy `

ż

Ω

pBtθω1q pxqdx

“ ´

ż

Ω

pBtθω1q pyqdy `

ż

Ω

Btθpyqω̄1dy `

ż

Ω

pBtθω1q pxqdx

“ ω̄1

ż

Ω

Btθpyqdy “ 0

where we omit t for simplicity.
Let us consider the functional

(3.30) Lpu, z, θq “MEpu, z, θq ` δ1pu, zqpL2pΩqqn ` δ2pΦ, zqpL2pΩqqn

where δ1, δ2 and M are positive constants to be chosen appropriately and Φ is define in
(3.28), we obtain the following result:

Theorem 3.6. For M ą 0 sufficiently large, there exist constants M1 ą 0 and M2 ą 0 such
that for all t ě 0

(3.31)
dL
dt
ď ´M1Eptq `M2,

where Lptq “ Lpu, z, θq, Eptq “ Epu, z, θq, and pu, z, θq “ puptq, zptq, θptqq is the global
solution of (3.1)-(3.26).

Proof. Note that

(3.32)
dL
dt
“M

dE
dt
` δ1

d

dt
pu, zqpL2pΩqqn ` δ2

d

dt
pΦ, zqpL2pΩqqn .

Thanks to (3.8), (3.12) and Poincaré inequality we have

dE
dt
ptq “ ´

ż

Ω

κpxq|∇θ|2dx

ď ´
κ0

2

ż

Ω

|∇θ|2dx´ κ0λ1

2

ż

Ω

|θ|2dx,

(3.33)

where λ1 is the first eigenvalue of negative Laplacian operator with zero Dirichlet boundary
condition in Ω.

We also have
d

dt
pu, zqpL2pΩqqn “ pBtu, zqpL2pΩqqn ` pu, BtzqpL2pΩqqn “ pBtu, BtuqpL2pΩqqn ` pu, B

2
t uqpL2pΩqqn

“

ż

Ω

|Btu|
2dx´

ż

Ω

|∇u|2dx´
ż

Ω

| div u|2dx´

ż

Ω

∇θudx`
ż

Ω

fpuqudx.

45



To deal with the integral term, just notice that from (3.5) we have

d

dt
pu, zqpL2pΩqqn ď

ż

Ω

|Btu|
2dx´

ż

Ω

|∇u|2dx´
ż

Ω

| div u|2dx´

ż

Ω

∇θudx`ν
ż

Ω

|u|2dx`Cν |Ω|

and again by Poincaré inequality

d

dt
pu, zqpL2pΩqqn ď

ż

Ω

|Btu|
2dx´

ż

Ω

|∇u|2dx´
ż

Ω

| div u|2dx´

ż

Ω

∇θudx` ν

λ1

ż

Ω

|∇u|2dx

` Cν |Ω|

in other words

d

dt
pu, zqpL2pΩqqn ď

ż

Ω

|Btu|
2dx´

Cν
2

ż

Ω

|∇u|2dx´
ż

Ω

| div u|2dx´

ż

Ω

∇θudx` Cν |Ω|,

where ν ą 0 is chosen such that

Cν :“ 1´
ν

λ1

ą 0,

that is,

0 ă ν ă λ1.

Due to Young’s inequality we conclude that

δ1
d

dt
pu, zqpL2pΩqqn ď δ1

ż

Ω

|Btu|
2dx´

δ1Cν
2

ż

Ω

|∇u|2dx´
ˆ

δ1 ´
1

2

˙
ż

Ω

| div u|2dx

`
δ2

1

2

ż

Ω

|θ|2dx` δ1Cν |Ω|.

(3.34)

We also have

d

dt
pΦ, zqpL2pΩqqn “ pΦ, B

2
t uqpL2pΩqqn ` pBtΦ, BtuqpL2pΩqqn ,

and from (3.29) we obtain that

d

dt
pΦ, zqpL2pΩqqn “

ż

Ω

Φ∆udx`

ż

Ω

Φ∇ div udx´

ż

Ω

Φ∇θdx`
ż

Ω

Φfpuqdx

`

ż

Ω

κ∇θBtudx´
ż

Ω

|Btu|
2dx

In other words,

d

dt
pΦ, zqpL2pΩqqn “ ´

ż

Ω

∇Φ∇udx´
ż

Ω

θ div udx`

ż

Ω

|θ|2dx`

ż

Ω

Φfpuqdx

`

ż

Ω

κpxq∇θBtudx´
ż

Ω

|Btu|
2dx.
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Using (3.8) and the Young’s inequality we get for any ε ą 0,

δ2
d

dt
pΦ, zqpL2pΩqqn ď

δ2
2

2

ż

Ω

|∇Φ|2dx`
1

2

ż

Ω

|∇u|2dx` δ2
2 ` 2δ2

2

ż

Ω

|θ|2dx`

ż

Ω

| div u|2dx

`
1

2

ż

Ω

|fpuq|2dx`
δ2

2

2

ż

Ω

|Φ|2dx`
δ2κ

2
1ε

2

ż

Ω

|∇θ|2dx

`

ˆ

1

2ε
´ 1

˙

δ2

ż

Ω

|Btu|
2dx

ď
δ2

2 ` 2δ2

2

ż

Ω

|θ|2dx`
1

2

ż

Ω

|∇u|2dx`
ż

Ω

| div u|2dx

`
1

2

ż

Ω

|fpuq|2dx`
δ2

2

2

ż

Ω

|∇Φ|2dx`
δ2

2

2λ1

ż

Ω

|∇Φ|2dx

`
δ2κ

2
1ε

2

ż

Ω

|∇θ|2dx`
ˆ

1

2ε
´ 1

˙

δ2

ż

Ω

|Btu|
2dx

Then,

δ2
d

dt
pΦ, zqpL2pΩqqn ď

1

2

ˆ

δ2
2 ` 2δ2 ` Cδ

2
2 `

Cδ2
2

λ1

˙
ż

Ω

|θ|2dx`
1

2

ż

Ω

|∇u|2dx

`
1

2

ż

Ω

| div u|2dx`
1

2

ż

Ω

|fpuq|2dx`
δ2κ

2
1ε

2

ż

Ω

|∇θ|2dx

`

ˆ

1

2ε
´ 1

˙

δ2

ż

Ω

|Btu|
2dx.

(3.35)

Thanks to (3.7) there exists C ą 0 such that

ż

Ω

|fpuq|2dx ď C

ż

Ω

|u|2dx` C
n
ÿ

i“1

ż

Ω

|ui|
2pdx.

Since 1 ă p ă n
n´2

if n ě 2, and 1 ă p ă `8 if n “ 2, we see that H2pΩq ãÑ L2ppΩq, and
we obtain that

ż

Ω

|fpuq|2dx ď C

ż

Ω

|u|2dx` C̄

ď
C̄1

λ1

ż

Ω

|∇u|2dx` C̄2,

(3.36)

whenever }u}pH2pΩqqn ď r (as in Carvalho, Cholewa, Dlotko et al. [12]).
Now combining (3.35) and (3.36) we get

δ2
d

dt
pΦ, zqpL2pΩqqn ď

1

2

ˆ

δ2
2 ` 2δ2 ` Cδ

2
2 `

Cδ2
2

λ1

˙
ż

Ω

|θ|2dx`
1

2

ż

Ω

|∇u|2dx

`
1

2

ż

Ω

| div u|2dx`
δ2κ

2
1ε

2

ż

Ω

|∇θ|2dx` C̄1

2λ1

ż

Ω

|∇u|2dx

`

ˆ

1

2ε
´ 1

˙

δ2

ż

Ω

|Btu|
2dx`

C̄2

2
.

(3.37)
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Therefore, combining (3.32) with (3.33), (3.34) and (3.37) we see that

d

dt
Lptq ď ´Mκ0

2

ż

Ω

|∇θ|2dx´ Mκ0λ1

2

ż

Ω

|θ|2dx` δ1

ż

Ω

|Btu|
2dx´

δ1Cν
2

ż

Ω

|∇u|2dx

´

ˆ

δ1 ´
1

2

˙
ż

Ω

| div u|2dx`
δ2

1

2

ż

Ω

|θ|2dx`
1

2

ˆ

δ2
2 ` 2δ2 ` Cδ

2
2 `

Cδ2
2

λ1

˙
ż

Ω

|θ|2dx

`
1

2

ż

Ω

|∇u|2dx` 1

2

ż

Ω

| div u|2dx`
δ2κ

2
1ε

2

ż

Ω

|∇θ|2dx` C̄1

2λ1

ż

Ω

|∇u|2dx

`

ˆ

1

2ε
´ 1

˙

δ2

ż

Ω

|Btu|
2dx`

C̄2

2
` δ1Cν |Ω|.

When we reorganize the previous inequality,

d

dt
Lptq ď

ˆ

δ2κ
2
1ε

2
´
κ0M

2

˙
ż

Ω

|∇θ|2dx´
ˆ

δ1Cν
2

´
C̄1

2λ1

´
1

2

˙
ż

Ω

|∇u|2dx

`

ˆ

1

2

ˆ

δ2
2 ` 2δ2 ` Cδ

2
2 `

Cδ2
2

λ1

˙

`
δ2

1

2
´
κ0λ1M

2

˙
ż

Ω

|θ|2dx

´ pδ1 ´ 1q

ż

Ω

| div u|2dx´

ˆˆ

1´
1

2ε

˙

δ2 ´ δ1

˙
ż

Ω

|Btu|
2dx`

C̄2

2
` δ1Cν |Ω|.

(3.38)

Now take ε ą 0 large enough to be able choose δ1 and δ2 such that

0 ă max
!C̄1 ` λ1

λ1Cν
, 1
)

ă δ1,

and

δ1 ă

ˆ

1´
1

ε

˙

δ2.

Choose M ą 0 sufficiently large too such that

δ2κ
2
1ε

2
´
κ0M

2
ă 0 and

1

2

ˆ

δ2
2 ` 2δ2 ` Cδ

2
2 `

Cδ2
2

λ1

˙

`
δ2

1

2
´
κ0λ1M

2
ă 0,

with these choices for the constants δ1, δ2 and M there exist %0 ą 0 and %1 ą 0 such that

dL
dt
ptq ď ´%0

„

1

2

ż

Ω

´

|∇u|2 ` |divu|2 ` |z|2 ` |θ|2
¯

dx



` %1.

Finally, we observe that if ξ P H1
0 pΩq ãÑ L

2n
n´2 pΩq, then

ξ|ξ|p P L
2n

pn´4qpp`1q pΩq ãÑ L1
pΩq, for all 1 ă p ă

n

n´ 2
,

and our hypothesis on f (see (3.7)) implies that

|fipξq| ď cp1` |ξ1|
p
` ¨ ¨ ¨ ` |ξn|

p
q, ξ “ pξ1, . . . , ξnq P Rn.

Therefore, we can find a constant c̄ ą 1 such that for all u “ pu1, . . . , unq P pH
1
0 pΩqq

n,

´

ż

Ω

F puqdx ď c̄}u}2pH1pΩqqnp1` }u1}
p´1
H1pΩq ` ¨ ¨ ¨ ` }un}

p´1
H1pΩqq,
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and therefore

(3.39) ´ d̄

ż

Ω

F puqdx ď }u}2pH1pΩqqn ,

whenever }u}pH1
0 pΩqq

n ď r and considering d̄ “ 1
c̄p1`n1´prp´1q

ă 1.
Thanks to (3.38) and (3.39) there exist constants %3 ą 0,M1 ą 0 and M2 ą 0 such

that

d

dt
Lptq ď ´%3

2

ż

Ω

´

|∇u|2 ` |divu|2 ` |z|2 ` |θ|2
¯

dx´
%3

2

ż

Ω

´

|∇u|2 ` |divu|2
¯

dx` %1

ď ´
%3

2

ż

Ω

´

|∇u|2 ` |divu|2 ` |z|2 ` |θ|2
¯

dx`
%3d̄

2

ż

Ω

F puqdx` %1

ď ´M1

„

1

2

ż

Ω

´

|∇u|2 ` |divu|2 ` |z|2 ` |θ|2
¯

dx´

ż

Ω

F puqdx



`M2,

where F puq “
şu

0
fdγ and

şu

0
fdγ represents the line integral of f along a piecewise smooth

curve with initial point 0 and final point u.
Finally, from (3.11) we conclude there exist constants M1 ą 0 and M2 ą 0 such that

dL
dt
ď ´M1Eptq `M2,

where upx, tq, z “ zpx, tq, θ “ θpx, tq. This concludes the proof of the theorem.

˝

Theorem 3.7. For M ą 0 sufficiently large, there exists positive constants CM , cM , C1 and
C2 ą 0 such that for any t ě 0,

(3.40) cMEptq ´ C1 ď Lptq ď CMEptq ` C2,

where Lptq “ Lpu, z, θq, Eptq “ Epu, z, θq, and pu, z, θq “ puptq, zptq, θptqq is the solution
of (3.1)-(3.26).

Proof. In the follows we prove the two inequalities in (3.40) simultaneously, once the
arguments are similar. From definition of the functional L and Cauchy-Schwarz inequality,
for any M ą 0 we can see that

MEptq ´ δ1

ż

Ω

|u||z|dx´ δ2

ż

Ω

|Φ||z|dx ď Lptq,

and
Lptq ďMEptq ` δ1

ż

Ω

|u||z|dx` δ2

ż

Ω

|Φ||z|dx.

Then, it follows from Young’s inequality

MEptq ´ δ1

2
}u}2pL2pΩqqn ´

1

2
pδ1 ` δ2q}z}

2
pL2pΩqqn ´

δ2

2
}Φ}2pL2pΩqqn ď Lptq,
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and
Lptq ďMEptq ` δ1

2
}u}2pL2pΩqqn `

1

2
pδ1 ` δ2q}z}

2
pL2pΩqqn `

δ2

2
}Φ}2pL2pΩqqn .

Now using the Poincaré inequality, we have that

MEptq ´ δ1

2λ1

}u}2
pH1

0 pΩqq
n ´

1

2
pδ1 ` δ2q}z}

2
pL2pΩqqn ´

δ2

2λ1

}Φ}2
pH1

0 pΩqq
n ď Lptq,

and

Lptq ďMEptq ` δ1

2λ1

}u}2
pH1

0 pΩqq
n `

1

2
pδ1 ` δ2q}z}

2
pL2pΩqqn `

δ2

2λ1

}Φ}2
pH1

0 pΩqq
n .

From definition of the functionais E and Φ, we get

1

2

”´

M ´
δ1

λ1

¯

}u}2
pH1

0 pΩqq
n ` pM ´ δ1 ´ δ2q}z}

2
pL2pΩqqn `

´

M ´
δ2C

2

λ1

¯

}θ}2L2pΩq

ı

´M

ż

Ω

F puqdx ď Lptq,

and

Lptq ď 1

2

”´

M `
δ1

λ1

¯

}u}2
pH1

0 pΩqq
n ` pM ` δ1 ` δ2q}z}

2
pL2pΩqqn `

´

M `
δ2C

2

λ1

¯

}θ}2L2pΩq

ı

`M

ż

Ω

F puqdx.

for some C ą 0.
Using (3.6) we see that

ż

Ω

F puqdx ď
η

2λ1

}u}2
pH1

0 pΩqq
n ` Cη|Ω|.

and if we denote

c1 “
δ1

λ1

` δ1 ` δ2 `
δ2C

2

λ1

;

c2 “
Cηλ1

λ1 ´ η
;

c3 “
2Mη ´ c1λ1

λ1 ´ η
;

c4 “ 1´
C1pλ´ ηq

2Mη ´ c1λ1

,

then we conclude that

Lptq ě 1

2

”

pM ´ c1q}u}
2
pH1

0 pΩqq
n ` pM ´ c1q}z}

2
pL2pΩqqn ` pM ´ c1q}θ}

2
L2pΩq

ı

´M

ż

Ω

F puqdx

ě
1

2

”

M ´

´

c1 `
ηc2

λ1

¯ı

}pu, z, θq}H˚ `
ηc2

2λ1

}u}2
pH1

0 pΩqq
n ´ pM ´ c2q

ż

Ω

F puqdx

´ c2

ż

Ω

F puqdx
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and

Lptq ď 1

2

”

pM ` c1q}u}
2
pH1

0 pΩqq
n ` pM ` c1q}z}

2
pL2pΩqqn ` pM ` c1q}θ}

2
ı

`M

ż

Ω

F puqdx

ď
1

2

”

pM ` c1 ` c4c3q}pu, z, θq}H˚ ´ c4c3}u}
2
pH1

0 pΩqq
n

ı

´ pM ` c3q

ż

Ω

F puqdx

` p2M ` c3q

ż

Ω

F puqdx,

where M ą 0 is chosen sufficiently large such that M ´ c2 ą 0, c3 ą 0 and c4 ą 0, we can
note that

c2 “ c1 `
η

λ1

c2;

c4c3 “ p2M ` c3q
η

λ1

;

c3 “ c2 ` c4c3.

Therefore by (3.6) we get

1

2

”

M ´

´

c1 `
η

λ1

c2

¯ı

}pu, z, θq}2H˚ `
´ η

2λ1

c2 ´
η

2λ1

c2

¯

}u}2
pH1

0 pΩqq
n

´ pM ´ c2q

ż

Ω

F puqdx´ Cηc2|Ω| ď Lptq,

and

Lptq ď 1

2
rM ` pc1 ` c3c4qs}pu, z, θq}

2
H˚ `

1

2

”

´ c3c4 ` p2M ` c3q
η

λ1

ı

}u}2
pH1

0 pΩqq
n

´ pM ` c3q

ż

Ω

F puqdx` p2M ` c3qCη|Ω|.

Finally, if we define cM “ M ´ c2, C1 “ c2Cη|Ω|, C2 “ p2M ` c3qCη|Ω| and
CM “M ` c3, then

cM
2
}pu, z, θq}2H˚ ´ cM

ż

Ω

F puqdx´ C1 ď Lptq,

and
Lptq ď CM

2
}pu, z, θq}2H˚ ´ CM

ż

Ω

F puqdx` C2.

˝

We have the following result as a consequence of Theorem 3.6.

Theorem 3.8. There exists R ą 0 such that for each bounded subset B of H˚ there exists
tB ą 0 with the property

SptqB Ă BH˚p0;Rq,

for any t ě tB. Here, BH˚p0;Rq denotes the open ball inH˚ centered at origin of radius R.
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Proof. Let B be a subset of H˚, and let pu, z, θq “ puptq, zptq, θptqq be the solution of
(3.1)-(3.26) with pu0, u1, θ0q P B. Using Theorem 3.6 and the second inequality of (3.40) in
Theorem 3.7 we have that there exits constants %1 ą 0 and %2 ą 0 such that

d

dt
Lptq ď ´%1Lptq ` %2,

where Lptq “ Lpu, z, θq for any t ě 0.
From (1.6), we can find that

Lptq ď Lp0qe´
şt
0 %1ds `

ż t

0

%2e
´
şt
τ %1dsdτ ď Lp0qe´%1t ` %2

%1

p1´ e´%1tq

where Lp0q “ Lpu0, u1, θ0q, and combining with the inequalities (3.24) and (3.40) in Theo-
rem 3.7, we get

}pu, z, θq}2H˚ ď c1Epu, z, θq ` c2 ď
c1

cM
Lptq ` C1c1

cM
` c2

ď

´ c1

cM
Lp0q ´ %2

%1

¯

e´%1t `
%2c1

%1cM
`
C1c1

cM
` c2,

for some constants c1, c2, cM and C1 ą 0.
LetRB ą 0 such that }pu0, u1, θ0q}

2
H˚ ď RB, then after some calculations we conclude

that there exists tB ą 0 with

}pu, z, θq}2H˚ ď 2
´ %2c1

%1cM
`
C1c1

cM
` c2

¯

for any t ě tB.

˝

Proposition 3.9. There exists positive constants K and α such that

}S1ptq}LpH˚q ď Ke´αt for all t ě 0,

and S2ptq is a compact operator fromH˚ into itself for all t ą 0. In particular the nonlinear
semigroup Sp¨q is asymptotically compact.

Proof. To prove the decay of S1ptq, one considers the functional

L0pu, z, θq “
1

2

´

}u}2
pH1

0 pΩqq
n ` }z}

2
pL2pΩqqn ` }θ}

2
L2pΩq

¯

` δ1pu, zqpL2pΩqqn ` δ2pΦ, zqpL2pΩqqn .

Thanks to Theorem 3.6 and Theorem 3.7 we have

d

dt
L0ptq ď ´αL0ptq

for some α ą 0, where

L0pS1ptqpu0, u1, θ0qq ď L0pS1ptqpu0, u1, θ0qqe
´αt,
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and consequently,

}S1ptqpu0, u1, θ0q}
2
H˚ ď Ke´αt}pu0, u1, θ0q}

2
H˚ .

To show that S2ptq is compact, we first show that f is bounded from pH1
0 pΩqq

n into
pW 1,rpΩqqn, with r “ 2pn´1q

pn´2q
“ n

n´2
` 1 P p1, 2q; indeed, it follows from Lemma 3.1 that for

any u P Rn we have

|fpuq| ď 2p´1n2C|u|p1` |u1|
p´1
` ¨ ¨ ¨ ` |un|

p´1
q,

for p ă n
n´2

and from (3.7),

}fpuq}rW 1,rpΩq “

ż

Ω

p|fpuq|r ` |∇fpuq|r|∇u|rqdx

ď

ż

Ω

` `

2p´1n2C|u|p1` |u1|
p´1
` ¨ ¨ ¨ ` |un|

p´1
q
˘r

` Cnp1`
n
ÿ

i“1

|ui|
p´1
q
r
|∇u|r

˘

dx

ď C

ˆ

}u} rpLrpΩqqn ` }u}
pr
pLprpΩqqn ` }∇u}

r
pL2pΩqqn ` }u}

pp´1qr

pL
2pp´1qr

2´r pΩqqn
}∇u}r{2

pL2pΩqqn

˙

ď C 1
´

}u}pr
pLprpΩqqn ` }∇u}

r
pL2pΩqqn ` }u}

pp´1qr

pL´rpΩqqn}∇u}
r{2

pL2pΩqqn

¯

.

Our choice of r ă 2n
n´2

implies that pr ă 2n
n´2

and from the embedding of H1
0 pΩq into

LqpΩq for q ď 2n
n´2

it follows that f e is bounded from pH1
0 pΩqq

n into pW 1,rpΩqqn and the
latter is compactly embedded in r ą 1. Thus, F is bounded fromH˚ into t0uˆpW 1,rpΩqqnˆ

t0u and the latter is compactly embedded in pH1
0 pΩqq

n ˆ pW 1,rpΩqqn ˆH1
0 pΩq.

Now fix t ě 0 and consider

S2ptqu0 “

ż t

0

S1pξqF pSpξqu0qdξ, t ě 0.

for u0 P B, whereB is a bounded subset ofH˚. Since orbits of bounded subsets ofH˚ under
the nonlinear semigroup tSptq; t ě 0u are bounded in H˚, it follows that S2ptq is compact
for each t ą 0. Thus the fact of nonlinear semigroup tSptq; t ě 0u is asymptotically compact
is a consequence of [13, Theorem 2.37].

˝

Finally, as application of Theorem 2.38 now implies that problem (3.10) has a global
attractor A inH˚.

3.4 Lamé operator of linear elastostatics system

Thanks to (3.8) the linear unbounded operator with homogeneous Dirichlet boundary
condition Λκ : DpΛκq Ă L2pΩq Ñ L2pΩq defined by

DpΛκq “ H2
pΩq XH1

0 pΩq,
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and

Λκφ “ ´divpκ∇φq

is a sectorial operator which generates exponentially decaying analytic semigroup.
Let Y “ L2pΩqwith usual inner product. Since the negative Laplacian operator subject

to zero Dirichlet bounded condition is a sectorial operator in Y (see Carracedo, Alix and
Sanz [11, Section 2.3] and Henry [25, Page 19]). The operator

Λ1 :
`

Y 2
˘n
Ă Y n

Ñ Y n

defined by

Λ1pvq “ ´∆v “ p´∆v1, . . . ,´∆vnq

is positive, self-adjoint, ´Λ1 infinitesimal generator of an analytic semigroup in Y n.
The unbounded linear operator

Λ2 :
`

Y 2
˘n
Ă Y n

Ñ Y n

defined by

Λ2pvq “ ´∇ div v

is closed in Y n. Using the Proposition 2.29, we have there is C ą 0 such that

}Λ2x} ď Cpρα}x} ` ρα´1
}Λ1x}q,

for all x P DpAq, ρ ą 0 and α P p0, 1s. By the Theorem 2.30, Λ1 and Λ1 ` Λ2 has bounded
imaginary power for α P p0, 1q.

Therefore, Λ1 and Λ2 are in the conditions of the Proposition 2.31 and the Corollary
2.32. Hence, Λ “ Λ1 ` Λ2 is sectorial, therefore by the Theorem 2.23 Λ is infinitesimal
generator of a C0-semigroup, and

DppΛ1 ` Λ2q
α
q “ DpΛα1 q, α P p0, 1q.

3.5 Regularity of attractors

We have that

pY n
q
α
“ DppΛ1 ` Λ2q

α
q,

α ě 0, the fractional power spaces associated with the operator Λ
α
2 with the graph norm

} ¨ }pY nqα “ }Λ
α
2 ¨ }Y n and by Y α “ Dpp´∆q

α
2 q endowed with the graph norm } ¨ }Y α “

}p´∆q
α
2 ¨ }Y . We just verify in the previous section pY nqα “ pY αqn as sets, but this don’t

mean }¨}pY nqα is equivalent to }¨}pY αqn . Through the similar argumentDpp´∆q
α
2 q “ DpΛ

α
2
κ q,

since is know } ¨ }Y α is equivalent }κ ¨ }Y thanks to (3.8).
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With this notation, we have pY ´αq1 “ Y α for all α ě 0. It is of special interest the
spaces

Y 2
“ H2

pΩq XH1
0 pΩq, Y

1
“ H1

0 pΩq, Y
0
“ Y “ L2

pΩq and Y ´1
“ pY 1

q
1
“ H´1

pΩq.

From now on, we consider Y α
˚ “ Y α X Y˚.

Remark 3.10. If u “ pu, z, θq is a mild solution of (3.10) and θ0 P Y
´α, then we can ensure

that θ P Y 1´α for t a.e. in r0,8q. Without lost of generality, we just need to show that if
θ0 P L

2pΩq, then θ P H1
0 pΩq.

Being u “ pu, Btu, θq a mild solution for (3.10),

u “ pu, Btu, θq “ Sptqu0 `

ż b

a

Spt´ sqF pupsqqds “ pS1ptq, S2ptq, S3ptqqu0.

where Sptq is a semigroup which hasA as your infinitesimal generator. Notice thatF pu, Bt, θq “
p0, fpuq, 0q.

Since the operator A is closed and densely defined for there is a suit pu0,nq Ă DpAq

such that u0,n Ñ u0 in H. Since u0,n P DpAq implies that u0,n be a classical solution, in
particular

dn “

ˆ

d

dt
S3ptqu0,n, v

˙

´ pκ∇S3ptqu0,n,∇vq ` pdiv Bt pS1ptqu0,nq , vq “ 0, @t ě 0.

Since
div Bt pS1ptqu0,nq Ñ div Bt pS1ptqu0q in L2

pΩq

and we have u0,n Ñ u0 inH˚, then S3ptqu0,n Ñ S3ptqu0 in L2pΩq and dn “ d0 “ 0.
Notice hat div Btu P L

2pΩq Ă H´1 with the proper identifications. Given θ̄0 P L
2pΩq,

let θ̄ P L2pp0,8q;H1
0 pΩqq XCpp0,8q;L

2pΩqq Ă Cpp0,8q;L2pΩqq be such that θ̄p0, ¨q “ θ̄0

and
ˆ

d

dt
θ̄, v

˙

´
`

κ∇θ̄,∇v
˘

` pdiv Bt pS1ptqu0q , vq “ 0.

By the Theorem 1.3, θ̄0 is unique in L2pp0,8q;H1
0 pΩqqXCpp0,8q;L

2pΩqq. Therefore,

θ̄ “ S3ptqu0,

because S3ptqu0,n Ñ S3ptqu0 in q. Use again the Theorem 1.3 ensure us, the following

S3ptqu0 P L
2
pp0,8q;H1

0 pΩqq X Cpp0,8q;L
2
pΩqq Ă Cpp0,8q;L2

pΩqq.

We will also denote

H “ H0
“ pY 1

q
n
ˆ Y n

ˆ Y,

H1
“ pY 2

q
n
ˆ pY 1

q
n
ˆ Y 1,

H˚ “ pY 1
q
n
ˆ Y n

ˆ Y˚
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and
H1
˚ “ pY

2
q
n
ˆ pY 1

q
n
ˆ Y 1

˚ ,

all equipped with usual inner product of pH2pΩqqn X pH1
0 pΩqq

n ˆH1
0 pΩq

n ˆ L2pΩq.

Thanks to work as Dafermos [17] and Henry, Perissinotto and Lopes [26], the operator
A is the generator of a strongly continuous semigroup of contractions on H. Furthermore,
A has a compact inverse. A partial description of the fractional power spaces Hα “ DpAαq

endowed with the graph norm is given by

Hα
“ rH1

˚,H0
˚sα “ pY

1´α
q
n
ˆ pY ´αqn ˆ Y ´α˚ .

for α P r0, 1s, see Amann [1, Section 2 of Chapter 1].
Now we investigate the regularity of the global attractor. As a matter of fact, we prove

that A is a bounded subset ofH1
˚.

Theorem 3.11. The global attractor A for the problem (3.10), obtained in Section 3.3, lies
in a more regular space thanH˚, in fact, A is a bounded subset ofH1

˚.

Proof. The main idea that we will use in verifying this result is the argument of pro-
gressive increases of regularity, following Babin and Vishik in [3] (and also explored for
example in Carvalho, Langa and Robinson [13, Chapter 15]). With lost of generality we will
assume κ “ 1 to simplify the calculations.

Let ξ : RÑ H˚ be a global bounded solution of (3.10). Then, the set tξptq; t P Ru is a
bounded subset ofH˚. We already know thatA is bounded inH˚. Hence, if ξp¨q “ RÑ H˚
is such that ξptq P A for all t P R, then

ξptq “ S1ptqξp0q `

ż t

0

S1psqF pξpsqqds,

where S1p¨q is defined in (3.25). Now using the decay of S1ptq in the Proposition 3.9 and
letting tÑ `8 it follows that

(3.41) ξptq “

ż `8

0

S1psqF pξpsqqds.

Set pµ0, µ1, ϑ0q “ ξp0q, and we consider

” µ
Btµ
ϑ

ı

ptq “ S2ptq
” µ0
µ1
ϑ0

ı

“

ż t

0

S1psqF pSpsq
” µ0
µ1
ϑ0

ı

qds,

and note that pµp¨q, Btµp¨q, ϑp¨qq P H˚ solves the system

(3.42)

$

&

%

B2
t µ´∆µ´∇ div µ`∇ϑ “ fpµpt;µ0qq, x P Ω, t ą 0,

Btϑ´∆ϑ` div Btµ “ 0, x P Ω, t ą 0,

with

(3.43) µpx, 0q “ Btµpx, 0q “ 0 and ϑpx, 0q “ 0, x P Ω.
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We again consider the following functional

L0pµptq, Btµptq, θptqq “
1

2

´

}µptq}2
pH1

0 pΩqq
n ` }Btµptq}

2
pL2pΩqqn ` }θptq}

2
L2pΩq

¯

` δ1pµptq, BtµptqqpL2pΩqqn ` δ2pΦptq, BtµptqqpL2pΩqqn

to estimate the solution of (3.42)-(3.43) for pµ0, µ1, ϑ0q in a bounded subset B of H˚. The
same arguments of the proof of Theorem 3.6 to obtain (we omitted t in order to simplify the
notation)

(3.44)
dL0

dt
pµ, Btµ, ϑq ď ´C0}∇µ}2pL2pΩqqn ´ C1}Btµ}

2
pL2pΩqqn ´ C2}ϑ}

2
L2pΩq ` C3,

where C0, C1, C2 and C3 are positive constants.
From this it follows that

(3.45)
ď

0ďτďt

S2pτqB is a bounded subset ofH˚.

Therefore p$, ζq “ pBtµ, Btϑq solves the system

(3.46)

$

&

%

B2
t$ ´∆$ ´∇ div$ `∇ζ “ f 1pµpt;µ0qq$pt;µ0q, x P Ω, t ą 0,

Btζ ´∆ζ ` div Bt$ “ 0, x P Ω, t ą 0,

with $p0q “ 0, $tp0q “ fpµ0q, and ζp0q “ 0.
In order to continue with verification, we will show that pµ, Bµ, ϑq is bounded in H1

˚,
by estimate p$, Bt$, ζq in H˚. But solutions are not regular enough to allow this directly,
that’s why we will work ‘towards’H˚ by progressive increases of regularity.

Figure 3.1: scale of the fractional power spaces of Y .

Figure 3.2: scale of the fractional power spaces ofH.

We will take p$, Bt$, ζq P H´α “ pY 1´αqn ˆ pY ´αqn ˆ Y ´α˚ for α P p0, 1q and we
define

Lαptq “
M

2

´

2}$}2pY 1´αqn ` }φ}
2
pY ´αqn ` }ζ}

2
Y ´α

¯

` δ1p$,φqpY ´αqn ` δ2pγ, φqpY ´α˚ qn ,

(3.47)

57



where γ such that div γ “ ζ.

We want to find an inequality like 3.44. Therefore, we will obtain following estimates
for the terms involved in Lαptq; First, thanks to (3.42) we get

d

dt
}φ}2pY ´αqn “ 2p∆$`∇ div$,φqpY ´αqn´2p∇ζ, φqpY ´αqn`2pf 1pµpt;µ0qq$pt;µ0q, φqpY ´αqn .

Because of (3.8) we have

d

dt
}ζ}2Y ´α “ 2p∆ζ, ζqY ´α ´ 2pdiv Bt$, ζqY ´α ď ´2}ζ}Y 1´α ´ 2pdiv Bt$, ζqY ´α .

Again by (3.42) we obtain

d

dt
p$,φqpY ´αqn “ }φ}

2
pY ´αqn ` p$,∆$ `∇ div$qpY ´αqn ´ p$,∇ζqpY ´αqn

` p$, f 1pµpt;µ0qq$pt;µ0qqpY ´αqn .

Also, we see that

d

dt
pγ, φqpY ´αqn “ pBtγ, φqpY ´αqn ` pγ,∆$ `∇ div$qpY ´αqn ´ pγ,∇ζqpY ´αqn

` pγ, f 1pµpt;µ0qq$pt;µ0qqpY ´αqn .

In this way,

dLα

dt
ď
M

2
r2pBt$,$qpY 1´αqn ` 2p∆$ `∇ div$,φqpY ´αqn ´ 2p∇ζ, φqpY ´αqn

` 2pf 1pµpt;µ0qq$pt;µ0q, φqpY ´αqn ´ 2}ζ}2Y 1´α ´ 2pdiv Bt$, ζqY ´αs

` δ1

”

}φ}2pY ´αqn ` p$,∆$ `∇ div$qpY ´αqn ´ p$,∇ζqpY ´αqn

` p$, f 1pµpt;µ0qq$pt;µ0qqpY ´αqn

ı

` δ2

”

pBtγ, φqpY ´αqn ´ pγ,∇ζqpY ´αqn

` pγ,∆$ `∇ div$qpY ´αqn ` pγ, f
1
pµpt;µ0qq$pt;µ0qqpY ´αqn

ı

.

What implies in

dLα

dt
ďM rpf 1pµpt;µ0qq$pt;µ0q, φqpY ´αqn ´ }ζ}

2
Y 1´αs ` δ1r}φ}

2
pY ´αqn

` p$,∆$ `∇ div$qpY ´αqn ´ p$,∇ζqpY ´αqn ` p$, f 1pµpt;µ0qq$pt;µ0qqpY ´αqns

` δ2rpBtγ, φqpY ´αqn ` pγ,∆$ `∇ div$qpY ´αqn ` pζ, ζqpY ´αqn

` pγ, f 1pµpt;µ0qq$pt;µ0qqpY ´αqns.

by simplify and reorder right hand of inequality,

dLα

dt
ďMpf 1pµpt;µ0qq$pt;µ0q, φqpY ´αqn ` δ1pf

1
pµpt;µ0qq$pt;µ0q, $qpY ´αqn

` δ2pf
1
pµpt;µ0qq$pt;µ0q, γqpY ´αqn ´M}ζ}

2
Y 1´α ` δ2}ζ}

2
Y ´α

` δ1}φ}
2
pY ´αqn ´ δ1}$}

2
pY 1´αqn ` δ2pBtγ, φqpY ´αqn

` δ2pγ,∆$ `∇ div$qpY ´αqn ´ δ1p$,∇ζqpY ´αqn .

(3.48)
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Next, we deal with the three terms in which it appears explicitly the nonlinearity f 1.
From now on, let

α1 :“
pp´ 1qpN ´ 2q

2
.

Note that since p ă N
N´2

, we obtain that α1 ă 1.
If α P p0, α1q then we can observe that

pf 1pµpt;µ0qq$pt;µ0q, gqpY ´αqn ď }g}pY ´αqn}f
1
pµpt;µ0qq$pt;µ0q}pY ´αqn

for g P tϕ, Btϕ, ζu and using the embedding pY αqn ãÑ pH2αpΩqqn ãÑ pLppΩqqn (or
equivalently pL

p
p´1 pΩqqn ãÑ pY ´αqn) for any 1 ă p ď 2N

N´2α
and (3.7), we have that for

some c4 ą 0

}f 1pµq$}pY ´αqn ď c4}f
1
pµq$}

L
2N

N`2α pΩq
ď C}$p1` |µ|p´1

q}
L

2N
N`2α pΩq

ď C}$}H˚}1` |µ|
p´1
}
L
N
α pΩq

and so
}f 1pµq$}2pY ´αqn ď C2

}$}2H˚}1` |µ|
p´1
}

2

L
N
α pΩq

.

From (3.45) µ remains in a bounded subset of H
1
2
˚ ãÑ L

pp´1qN
α pΩq for any 1 ă p ă

N´4`4α
N´4

and this implies that
ż

Ω

p1` |µ|p´1
q
N
α dx ď |Ω| ` }µ}

pp´1qN´α
Npp´1q

L
pp´1qN

α pΩq
ď |Ω| ` c5}µ}

pp´1qN´α
Npp´1q

H
1
2
˚

ď c5,

for some c5 ą 0.
Therefore, there exists a positive constant Cf such that

(3.49) }f 1pµq$}2pY ´αqn ď Cf .

From (3.29), we have that Btγ “ ∇ζ ´ Bt$, then for any ε ą 0, we have

Btγ “ ∇ζ ´ Bt$,

then for any ε ą 0, we have

δ2pBtγ, φqpY 1´αq
n ď δ2p∇ζ ´ φ, φqpY ´αqn ď δ2p∇ζ, φqpY ´αqn ´ δ2}φ}

2
pY ´αqn

and therefore

(3.50) δ2pBtγ, φqpY 1´αq
n ď

δ2

ε
}ζ}2Y 1´α ` δ2 pε´ 1q }φ}2pY ´αqn .

as previously discussed in Remark 3.10, }ζ}2Y 1´α ă 8 a.e. for t P r0,8q.
Now we will denote

J1 “ δ2pγ,∆$ `∇ div$qpY ´αqn ´ δ1p∇ζ,$qpY ´αqn .
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From γ P Y 1´α
˚ ãÑ Y ´α˚ , we obtain following inequality

J1 ď
δ2

ε
}γ}2pY 1´αqn ` εδ2}$}

2
pY 1´αq `

δ1

ε
}ζ}2pY 1´αqn ` εδ1}$}

2
pY ´αq

ď
δ2

ε
}γ}2pY 1´αqn ` εpδ1 ` δ2q}$}

2
pY 1´αq `

δ1

ε
}ζ}2pY 1´αqn

when we observe that }γ}2
pY 1´αqn

ď C1}ζ}
2
pY ´αq ď C2}ζ}

2
pY 1´αq

,then

(3.51) J1 ď

ˆ

δ2C2

ε
`
δ1

ε

˙

}ζ}2pY 1´αqn ` εpδ1 ` δ2q}$}
2
pY 1´αq.

Using (3.49), (3.50) and (3.51) in (3.48) we get

dLα

dt
ď ε}φ}2pY ´αqn ` ε}$}

2
pY ´αqn ` ε}γ}

2
pY ´αqn ` CpM, δ1, δ2q ´ pM ´ δ2q}ζ}

2
Y 1´α

` δ1}φ}
2
pY ´αqn ´ δ1}$}

2
pY 1´αqn `

ˆ

δ2C2

ε
`
δ1

ε

˙

}ζ}2Y 1´α

` δ2 pε´ 1q }φ}2pY ´αqn ` εpδ1 ` δ2q}$}
2
pY 1´αqn

ď p´δ1 ` εpδ1 ` δ2q ` εq}$}
2
pY 1´αqn ` pε` δ1 ` δ2ε` 2δ2εCpΩq ´ δ2q }φ}

2
pY ´αqn

`

ˆ

δ2C3

ε
`
δ1

ε
` εC ´M ` δ2

˙

}ζ}2Y 1´α ` CpM, δ1, δ2q.

Let ε ą 0 be small enough and, let δ1 ă δ2 and M ą 0 be large enough such that it is
possible choose p1, p2 ą 0 which,

dLα

dt
ď ´p1

´

}$}2pY 1´αqn ` }φ}
2
pY ´αqn ` }ζ}

2
Y 1´α

¯

` p2

for t a.e. in r0,8q.
But }ζ}2

pY ´αqn ď
C2

C1
}ζ}2

pY 1´αqn
and ζ P Cp0,8;Y ´αq. This lead us to

dLα

dt
ď ´p1

´

}$}2pY 1´αqn ` }φ}
2
pY ´αqn ` }ζ}

2
Y ´α

¯

` p2, @t P r0,8qs

and from the fact that A “ tξptq : ξp¨q is a global bounded solution of (3.10) inH˚u we
obtain that

(3.52) A is bounded in pY 2´α1q
n
ˆ pY 1´α1q

n
ˆ Y 1´α1

˚ .

Using (3.52) and restarting from with α2 “ pp ` 1qα1 ´ p ă α1 if follows that A is
bounded in pY 2´α2qn ˆ pY 1´α2qn ˆ Y 1´α2

˚ .
How can we apply this procedure when we get αk ă αk´1, we can now show thatA is

bounded in pY 2qn ˆ pY 1qn ˆ Y 1
˚ and by the Remark 3.10 this implies in fact, that

A is bounded in pY 2
q
n
ˆ pY 1

q
n
ˆ Y 2

˚ .

˝
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3.6 Upper semicontinuity of the attractors

In this section we prove the upper semicontinuity of the global attractors in H1
˚ with

respect to functional parameter κ in (3.1). Let tκεuεPr0,1q be a family of functions such that
for each κε the condition (3.8) is valid and suppose that

}κε ´ κ0}L8pΩq Ñ 0, as εÑ 0`.

We observe that all previous results are also valid to the problem (3.1) with κε instead
of κ. If tSεptq; t ě 0u denotes the evolution process associate to the problem (3.10) with
global attractors Aε for each ε P r0, 1s, then we have the following result.

Theorem 3.12. The family of global attractors Aε is upper semicontinuous as εÑ 0`.

Proof. Let uε “ Sεptqu0 be the solution of (3.10) with uε “ puε, zε, θεq. Then we write
µ “ uε ´ u0 and ϑ “ θε ´ θ0.

Hence, pµ, Btµ, ϑq solves the following system
$

&

%

B2
t µ´∆µ´∇ div µ` β∇ϑ “ fpuεq ´ fpu0q, x P Ω, t ą 0,

Btϑ´ rdiv pκεpxq∇θεq ´ div pκ0pxq∇θ0qs ` β div Btµ “ 0, x P Ω, t ą 0.

We be able to find
ż

Ω

B
2
t µ

ε
Btµ

εdx´

ż

Ω

p∆µε `∇ div µεqBtµ
εdx`

ż

Ω

∇ϑεBtµεdx “
ż

Ω

pfpuεq ´ fpu0
qqBtµ

εdx,

by multiplies Btµε in the first equation and,
ż

Ω

Btϑ
εϑεdx´

ż

Ω

rdiv pκεpxq∇θεq ´ div
`

κ0pxq∇θ0
˘

sϑεdx`

ż

Ω

div Btµ
εϑεdx “ 0

by multiplies ϑε in the second equation.
This lead us to

d

dt
}pµε, Btµ

ε, ϑεq}2H˚ “ 2

ż

Ω

pfpuεq´fpu0
qqBtµ

εdx`2

ż

Ω

div
`

κεpxq∇θε ´ κ0pxq∇θ0
˘

ϑεdx,

and in other words,

d

dt
}pµε, Btµ

ε, ϑεq}2H˚ “ 2

ż

Ω

pfpuεq ´ fpu0
qqBtµ

εdx´ 2

ż

Ω

`

κεpxq∇θε ´ κ0pxq∇θ0
˘

∇ϑεdx.

Now, note that
ˇ

ˇ

ˇ

ż

Ω

`

κεpxq∇θε ´ κ0pxq∇θ0
˘

∇ϑεdx
ˇ

ˇ

ˇ

ď

ż

Ω

“

κεpxqp∇θε ´∇θ0
q ` pκεpxq ´ κ0pxqq∇θ0

‰

∇ϑεdx

ď }κε ´ κ0}L8pΩq}θ
0
}Y 1
˚
}ϑε}Y 1 ` }κε}L8pΩq}θ

ε
´ θ0

}
2
Y 1
˚

ď C1}κε ´ κ0}L8pΩq ` C2}pµ
ε, Btµ

ε, ϑεq}2H˚ ,
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where C1 ą 0 and C2 ą 0 are constants independents of ε thanks to Theorem 3.11.
From Lemma 3.1, we have

ż

Ω

pfpuεq ´ fpu0
qqBtµ

εdx ď C3}pµ
ε, Btµ

ε, ϑεq}2H˚ ,

where C3 ą 0 is constant independent of ε.
Hence, there exist constants C 1 ą 0 and C2 ą 0 such that

d

dt
}pµε, Btµ

ε, ϑεq}2H˚ ď C 1}κε ´ κ0}L8pΩq ` C
2
}pµε, Btµ

ε, ϑεq}2H˚ .

and so

(3.53) }pµε, Btµ
ε, ϑεq}2H˚ ď C 1te´C

2t
}κε ´ κ0}L8pΩq, @t ą 0,

i.e., uε Ñ u0 in H˚, as ε Ñ 0`, uniformly for t in bounded subset of the interval r0,`8q
and u0 in bounded subset ofH˚.

From the existence of attractor we have proved,Aκε is bounded inH˚. Then for δ ą 0

given, there is a t ą 0 large enough such that

distHpSκ0ptqAκε ,Aκ0q ă
δ

2
, @ε P p0, 1s.

Using (3.53), there exists ε0 ą 0 such that

sup
uεPAκε

}Sκεptqu
ε
´ Sκ0ptqu

ε
}H˚ ă

δ

2
, @ε P p0, ε0s.

Therefore,

distHpAκε ,Aκ0q ď distHpSκεptqAκε , Sκ0ptqAκεq ` distHpSκ0ptqAκε , Sκ0ptqAκ0q
ď sup

uεPAε
inf

uεPAε
}Sκεptqu

ε
´ Sκ0ptqu

ε
}H˚ ` distHpSκ0ptqAκε ,Aκ0q

ď sup
uεPAε

}Sκεptqu
ε
´ Sκ0ptqu

ε
}H˚ ` distHpSκ0ptqAκε ,Aκ0q ă δ

which proves the upper semicontinuity of the family of attractors with respect to the para-
meter ε.

˝
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Chapter 4

Nonautonomous n-dimensional
thermoelasticity system

In this chapter we will be interested in checking the non-autonomous case of the ther-
moelastic problem. Similar to the previous chapter we will deal with the existence, regularity,
and superior semicontinuity of the pullback attractor. Here we will consider n ě 2.

4.1 Well-possessedness of nonautonomous thermoelastic sys-
tem

We are interested in the study of asymptotic behavior of mild solutions for a multidi-
mensional semilinear thermoelastic systems; namely, initial-boundary value problems with
space dependent diffusion coefficients

(4.1)

$

&

%

B2
t u´∆u´∇ div u` βptq∇θ “ fpuq, x P Ω, t ą s,

Btθ ´ div pκpxq∇θq ` βptq div Btu “ 0, x P Ω, t ą s,

subject to initial-boundary condition

(4.2)

$

’

’

’

’

’

&

’

’

’

’

’

%

upx, sq “ u0pxq, Btupx, sq “ u1pxq, x P Ω,

θpx, sq “ θ0pxq x P Ω,

upx, tq “ 0, θpx, tq “ 0, x P BΩ, t ą s.

κpxq∇θpx, tq ´ Btupx, tq “ 0, x P BΩ, t ě s

In this problem, the map f is external force and the functional parameters κ is the
diffusion coefficient with the conditions (4.1)-(4.2). Furthermore, we assume that the thermal
moduli β : R Ñ R is continuously differentiable and there are positive constants β0 and β1

such that

(4.3) 0 ă β0 ď βptq ď β1, t P R.
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Let u “ pu, z, θq be the state vector with z “ Btu, we rewrite (4.1)-(4.2) as ordinary
differential equations in the product spaceH

(4.4)

$

&

%

du

dt
`Aptqu “ Fpuq, t ą s,

upsq “ u0,

where u0 “ pu0, z0, θ0q, Aptq : DpAptqq Ă HÑ H is a family of linear unbounded operator
defined by

DpAptqq “ pH1
0 pΩq XH

2
pΩqqn ˆ pH1

0 pΩqq
n
ˆ pH1

0 pΩq XH
2
pΩqq

č

X,

and for any pu, z, θq P DpAptqq

Aptqpu, z, θq “ p´z,´∆u´∇ div u` βptq∇θ,´divpκ∇θq ` βptq div zq

where
X “ tpu, z, θq P H;κpxq∇θpx, ¨q ´ Btupx, ¨q “ 0, for x P BΩu.

The nonlinear term in (4.4) is defined by

Fpuq “ p0, f epuq, 0q,

where f e denotes the Nemytskı̆i operator associated with f , i.e.

f epuq “ fpupt, xqq “ pf1pupt, xqq, . . . , fnpupt, xqqq

for any t ě s, x P Ω and we have the following results about f e which by simplicity of
notation we also denote by f . We observe that the Lemma 3.1 and the Lemma 3.2 proofs for
f in the previous chapter are ensure for f in here too.

Similar to the previous case, under such circumstances, we may exhibit a Lyapunov
functional E to (4.4) which has the same definition given in (3.11), i.e.,

Epu, z, θq “ 1

2

´

}u}2
pH1

0 pΩqq
n ` }z}

2
pL2pΩqqn ` }θ}

2
L2pΩq

¯

´

ż

Ω

F puqdx.

It has already been verified in (3.12) that

dE
dt
“ ´

ż

Ω

κpxq|∇θ|2dx ď 0,

where Eptq “ Epuptq, zptq, θptqq for any t ě s.
As previously notice Dafermos [17] ensure that the linear part of the problem (4.4)

generates a strongly continuous semigroup of contraction in H for each s P R fixed. Since
the Lemma 3.1 and the Lemma 3.2 are ensure for f , we can guarantee the local well-
possessedness of the problem (4.4) thank to the Theorem 2.43. More precisely, the next
result is hold.
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Theorem 4.1. Given u0 “ pu0, u1, v0q P H “ pH1
0 pΩqq

n ˆ pL2pΩqqn ˆ L2pΩq, the initial
value problem (4.4) has a unique mild solution with

u P Cprs, τu0q; pH
1
0 pΩqq

n
q X C1

prs, τu0q; pL
2
pΩqqnq, and θ P Cprs, τu0q, L

2
pΩqq.

Moreover, if

u0 “ pu0, u1, θ0q P DpAq “ pH
1
0 pΩq XH

2
pΩqqn ˆ pH1

0 pΩqq
n
ˆ pH1

0 pΩq XH
2
pΩqq

then the following regularity property

u P Cprs, τu0q; pH
2
pΩq XH1

0 pΩqq
n
q X C1

prs, τu0q; pH
1
0 pΩqq

n
q X C2

prs, τu0q; pL
2
pΩqqnq,

and

θ P Cprs, τu0q;H
2
pΩq XH1

0 pΩqq X C
1
prs, τu0q;L

2
pΩqq

is verified. In this case that u “ pu, Btu, θq is a strong solution of (4.4).

Now we wish to prove that solutions of (4.4) are globally defined, i.e., for each u0 “

pu0, u1, θ0q P H, τu0 “ 8.

As in (3.24), for 0 ă η ă mint1, λ1u we get

}pu, z, θq}2H ď c1Epu, z, θq ` c2,

for some c1 “ c1pηq ą 0 and c2 “ c2pηq ą 0.

It is clear from (3.12) that rs, τu0q Q t ÞÑ Epuptq, Btuptq, θptqq P R is a non-increasing
function. It follows from the fact that E is continuous and bounded in bounded subsets ofH
and from (3.12) that, given r ą 0, there is a constant C “ Cprq ą 0 such that

supt}puptq, Btuptq, θptqq}H; }pu0, u1, θ0q}H ď r, and t P rs, τu0qu ď C.

This implies that for each u0 P H, the solution of (4.4) with u0 “ pu0, u1, θ0q is defined
for all t ě s. We will write the mild solution of (4.4)

(4.5) Spt, squ0 “ S1pt, squ0 ` S2pt, squ0,

where S1pt, squ0 is defined as the solution of (4.4) with F ” 0 and

S2pt, squ0 “

ż t

s

S1pt, ξqFpSpξ, squ0qdξ, @t ě s

here Fpuq “ p0, f epuq, 0q, with f e the Nemytskı̆i operator to f .
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4.2 Existence of pullback attractor

Let us consider once more the functional

Lpu, z, θq “MEpu, z, θq ` δ1pu, zqpL2pΩqqn ` δ2pΦ, zqpL2pΩqqn

where δ1, δ2 and M are positive constants to be chosen appropriately and Φ is define in
(3.28).

Theorem 4.2. For M ą 0 sufficiently large, there exist constants M1 ą 0 and M2 ą 0 such
that for all t ě s

dL
dt
ď ´M1Eptq `M2,

where Lptq “ Lpu, z, θq, Eptq “ Epu, z, θq, and pu, z, θq “ puptq, zptq, θptqq is the global
solution of (4.1)-(4.3).

Proof. Note that

(4.6)
dL
dt
“M

dE
dt
` δ1

d

dt
pu, zqpL2pΩqqn ` δ2

d

dt
pΦ, zqpL2pΩqqn .

Thanks to (3.8), (3.12) and Poincaré inequality we have

dE
dt
ptq “ ´

ż

Ω

κpxq|∇θ|2dx

ď ´
κ0

2

ż

Ω

|∇θ|2dx´ κ0λ1

2

ż

Ω

|θ|2dx,

(4.7)

where λ1 is the first eigenvalue of negative Laplacian operator with zero Dirichlet boundary
condition in Ω.

We also have

d

dt
pu, zqpL2pΩqqn “ pBtu, zqpL2pΩqqn ` pu, BtzqpL2pΩqqn “ pBtu, BtuqpL2pΩqqn ` pu, B

2
t uqpL2pΩqqn

“

ż

Ω

|Btu|
2dx´

ż

Ω

|∇u|2dx´
ż

Ω

| div u|2dx´

ż

Ω

βptq∇θudx

`

ż

Ω

fpuqudx.

To deal with the integral term, just notice that from (3.5) we have

d

dt
pu, zqpL2pΩqqn ď

ż

Ω

|Btu|
2dx´

ż

Ω

|∇u|2dx´
ż

Ω

| div u|2dx´

ż

Ω

βptq∇θudx

` ν

ż

Ω

|u|2dx` Cν |Ω|

and again by Poincaré inequality

d

dt
pu, zqpL2pΩqqn ď

ż

Ω

|Btu|
2dx´

ż

Ω

|∇u|2dx´
ż

Ω

| div u|2dx´

ż

Ω

βptq∇θudx

`
ν

λ1

ż

Ω

|∇u|2dx` Cν |Ω|
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in other words

d

dt
pu, zqpL2pΩqqn ď

ż

Ω

|Btu|
2dx´

Cν
2

ż

Ω

|∇u|2dx´
ż

Ω

| div u|2dx´

ż

Ω

βptq∇θudx

` Cν |Ω|,

where ν ą 0 is chosen such that Cν :“ 1´
ν

λ1

ą 0, that is, 0 ă ν ă λ1.

Due to Young’s inequality we conclude that

δ1
d

dt
pu, zqpL2pΩqqn ď δ1

ż

Ω

|Btu|
2dx´

δ1Cν
2

ż

Ω

|∇u|2dx´
ˆ

δ1 ´
1

2

˙
ż

Ω

| div u|2dx

`
δ2

1β
2
0

2

ż

Ω

|θ|2dx` δ1Cν |Ω|.

(4.8)

We also have that

d

dt
pΦ, zqpL2pΩqqn “ pΦ, B

2
t uqpL2pΩqqn ` pBtΦ, BtuqpL2pΩqqn ,

and from (3.29) we obtain that

d

dt
pΦ, zqpL2pΩqqn “

ż

Ω

Φ∆udx`

ż

Ω

Φ∇ div udx´

ż

Ω

Φβptq∇θdx`
ż

Ω

Φfpuqdx

`

ż

Ω

κ∇θBtudx´ βptq
ż

Ω

|Btu|
2dx

In other words, and from (3.29) we obtain that

d

dt
pΦ, zqpL2pΩqqn “ ´

ż

Ω

∇Φ∇udx´
ż

Ω

θ div udx`

ż

Ω

|βptqθ|2dx

`

ż

Ω

Φfpuqdx`

ż

Ω

κpxq∇θBtudx´ βptq
ż

Ω

|Btu|
2dx.

Using (3.8) and the Young’s inequality we get for any ε ą 0,

δ2
d

dt
pΦ, zqpL2pΩqqn ď

δ2
2

2

ż

Ω

|∇Φ|2dx`
1

2

ż

Ω

|∇u|2dx`
ˆ

δ2
2 ` 2β1δ2

2

˙
ż

Ω

|θ|2dx`

ż

Ω

| div u|2dx

`
1

2

ż

Ω

|fpuq|2dx`
δ2

2

2

ż

Ω

|Φ|2dx`
δ2κ

2
1ε

2

ż

Ω

|∇θ|2dx

`

ˆ

1

2ε
´ β0

˙

δ2

ż

Ω

|Btu|
2dx

ď

ˆ

δ2
2 ` 2β1δ2

2

˙
ż

Ω

|θ|2dx`
1

2

ż

Ω

|∇u|2dx`
ż

Ω

| div u|2dx

`
1

2

ż

Ω

|fpuq|2dx`
δ2

2

2

ż

Ω

|∇Φ|2dx`
δ2

2

2λ1

ż

Ω

|∇Φ|2dx

`
δ2κ

2
1ε

2

ż

Ω

|∇θ|2dx`
ˆ

1

2ε
´ β0

˙

δ2

ż

Ω

|Btu|
2dx.
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Then,

δ2
d

dt
pΦ, zqpL2pΩqqn

ď
1

2

ˆ

δ2
2 ` 2β1δ2 ` Cδ

2
2 `

Cδ2
2

λ1

˙
ż

Ω

|θ|2dx`
1

2

ż

Ω

|∇u|2dx` 1

2

ż

Ω

| div u|2dx

`
1

2

ż

Ω

|fpuq|2dx`
δ2κ

2
1ε

2

ż

Ω

|∇θ|2dx`
ˆ

1

2ε
´ β0

˙

δ2

ż

Ω

|Btu|
2dx.

(4.9)

Now combining (4.9) and (3.36) we get

δ2
d

dt
pΦ, zqpL2pΩqqn

ď
1

2

ˆ

δ2
2 ` 2β1δ2 ` Cδ

2
2 `

Cδ2
2

λ1

˙
ż

Ω

|θ|2dx`
1

2

ż

Ω

|∇u|2dx` 1

2

ż

Ω

| div u|2dx

`
δ2κ

2
1ε

2

ż

Ω

|∇θ|2dx` C̄1

2λ1

ż

Ω

|∇u|2dx`
ˆ

1

2ε
´ β0

˙

δ2

ż

Ω

|Btu|
2dx`

C̄2δ2

2
.

(4.10)

Therefore, combining (4.6) with (4.7), (4.8) and (4.10) we see that

d

dt
Lptq ď ´Mκ0

2

ż

Ω

|∇θ|2dx´ Mκ0λ1

2

ż

Ω

|θ|2dx` δ1

ż

Ω

|Btu|
2dx´

δ1Cν
2

ż

Ω

|∇u|2dx

´

ˆ

δ1 ´
1

2

˙
ż

Ω

| div u|2dx`
1

2

ˆ

δ2
2 ` 2β1δ2 ` C

ˆ

δ2
2 `

δ2
2

λ1

˙˙
ż

Ω

|θ|2dx

`
δ2

1β0

2

ż

Ω

|θ|2dx`
1

2

ż

Ω

|∇u|2dx` 1

2

ż

Ω

| div u|2dx`
δ2κ

2
1ε

2

ż

Ω

|∇θ|2dx

`
C̄1

2λ1

ż

Ω

|∇u|2dx`
ˆ

1

2ε
´ β0

˙

δ2

ż

Ω

|Btu|
2dx

`
C̄2δ2

2
` δ1Cν |Ω|.

When we reorganize the previous inequality,

d

dt
Lptq ď 1

2

ˆ

δ2
2 ` 2β1δ2 ` C

ˆ

δ2
2 `

δ2
2

λ1

˙

`
δ2

1β0

2
´ κ0λ1M

˙
ż

Ω

|θ|2dx

ˆ

δ2κ
2
1ε

2
´
κ0M

2

˙
ż

Ω

|∇θ|2dx´
ˆ

δ1Cν
2

´
C̄1

2λ1

´
1

2

˙
ż

Ω

|∇u|2dx

´ pδ1 ´ 1q

ż

Ω

| div u|2dx´

ˆˆ

β0 ´
1

2ε

˙

δ2 ´ δ1

˙
ż

Ω

|Btu|
2dx`

C̄2

2
` δ1Cν |Ω|.

(4.11)

Now take ε ą 0 large enough to be able choose δ1 and δ2 such that

0 ă max
!C̄1 ` λ1

λ1Cν
, 1
)

ă δ1,
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and

δ1 ă

ˆ

β0 ´
1

ε

˙

δ2.

Choose M ą 0 sufficiently large too such that

δ2κ
2
1ε

2
´
κ0M

2
ă 0 and δ2

2 ` 2β1δ2 ` C

ˆ

δ2
2 `

δ2
2

λ1

˙

`
δ2

1β0

2
´ κ0λ1M ă 0,

with these choices for the constants δ1, δ2 and M there exist %0 ą 0 and %1 ą 0 such that

dL
dt
ptq ď ´%0

„

1

2

ż

Ω

´

|∇u|2 ` |divu|2 ` |z|2 ` |θ|2
¯

dx



` %1.

Thanks to (4.11) and (3.39) there exist constants %3 ą 0,M1 ą 0 and M2 ą 0 such
that

d

dt
Lptq ď ´%3

2

ż

Ω

´

|∇u|2 ` |divu|2 ` |z|2 ` |θ|2
¯

dx´
%3

2

ż

Ω

´

|∇u|2 ` |divu|2
¯

dx` %1

ď ´
%3

2

ż

Ω

´

|∇u|2 ` |divu|2 ` |z|2 ` |θ|2
¯

dx`
%3d̄

2

ż

Ω

F puqdx` %1

ď ´M1

„

1

2

ż

Ω

´

|∇u|2 ` |divu|2 ` |z|2 ` |θ|2
¯

dx´

ż

Ω

F puqdx



`M2,

where F puq “
şu

0
fdγ and

şu

0
fdγ represents the line integral of f along a piecewise smooth

curve with initial point 0 and final point u.
Finally, from (3.11) we conclude there exist constants M1 ą 0 and M2 ą 0 such that

dL
dt
ď ´M1Eptq `M2,

where upx, tq, z “ zpx, tq, θ “ θpx, tq. This concludes the proof of the theorem.

˝

Theorem 4.3. For M ą 0 sufficiently large, there exist positive constants CM , cM , C1 and
C2 ą 0 such that for any t ě s,

(4.12) cMEptq ´ C1 ď Lptq ď CMEptq ` C2,

where Lptq “ Lpu, z, θq, Eptq “ Epu, z, θq, and pu, z, θq “ puptq, zptq, θptqq is the solution
of (4.1)-(4.2).

Proof. In the following, we prove the two inequalities in (4.12) simultaneously, once
the arguments are similar. From definition of the functional L and Cauchy-Schwarz inequal-
ity, for any M ą 0 we can see that

MEptq ´ δ1

ż

Ω

|u||z|dx´ δ2

ż

Ω

|Φ||z|dx ď Lptq,
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and
Lptq ďMEptq ` δ1

ż

Ω

|u||z|dx` δ2

ż

Ω

|Φ||z|dx.

Then, it follows from Young’s inequality

MEptq ´ δ1

2
}u}2pL2pΩqqn ´

1

2
pδ1 ` δ2q}z}

2
pL2pΩqqn ´

δ2

2
}Φ}2pL2pΩqqn ď Lptq,

and
Lptq ďMEptq ` δ1

2
}u}2pL2pΩqqn `

1

2
pδ1 ` δ2q}z}

2
pL2pΩqqn `

δ2

2
}Φ}2pL2pΩqqn .

Now using the Poincaré inequality, we have that

MEptq ´ δ1

2λ1

}u}2
pH1

0 pΩqq
n ´

1

2
pδ1 ` δ2q}z}

2
pL2pΩqqn ´

δ2

2λ1

}Φ}2
pH1

0 pΩqq
n ď Lptq,

and

Lptq ďMEptq ` δ1

2λ1

}u}2
pH1

0 pΩqq
n `

1

2
pδ1 ` δ2q}z}

2
pL2pΩqqn `

δ2

2λ1

}Φ}2
pH1

0 pΩqq
n .

From definition of the functionais E and Φ, we get

1

2

”´

M ´
δ1

λ1

¯

}u}2
pH1

0 pΩqq
n ` pM ´ δ1 ´ δ2q}z}

2
pL2pΩqqn `

´

M ´
δ2C

2

λ1

¯

}θ}2L2pΩq

ı

´M

ż

Ω

F puqdx ď Lptq,

and

Lptq ď 1

2

”´

M `
δ1

λ1

¯

}u}2
pH1

0 pΩqq
n ` pM ` δ1 ` δ2q}z}

2
pL2pΩqqn `

´

M `
δ2C

2

λ1

¯

}θ}2L2pΩq

ı

`M

ż

Ω

F puqdx.

for some C ą 0.
Using (3.6) we see that

ż

Ω

F puqdx ď
η

2λ1

}u}2
pH1

0 pΩqq
n ` Cη|Ω|.

and if we denote

c1 “
δ1

λ1

` δ1 ` δ2 `
δ2C

2

λ1

;

c2 “
Cηλ1

λ1 ´ η
;

c3 “
2Mη ´ c1λ1

λ1 ´ η
;

c4 “ 1´
C1pλ´ ηq

2Mη ´ c1λ1

,
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then we conclude that

Lptq ě 1

2

”

pM ´ c1q}u}
2
pH1

0 pΩqq
n ` pM ´ c1q}z}

2
pL2pΩqqn ` pM ´ c1q}θ}

2
L2pΩq

ı

´M

ż

Ω

F puqdx

ě
1

2

”

M ´

´

c1 `
ηc2

λ1

¯ı

}pu, z, θq}H˚ `
ηc2

2λ1

}u}2
pH1

0 pΩqq
n ´ pM ´ c2q

ż

Ω

F puqdx

´ c2

ż

Ω

F puqdx

and

Lptq ď 1

2

”

pM ` c1q}u}
2
pH1

0 pΩqq
n ` pM ` c1q}z}

2
pL2pΩqqn ` pM ` c1q}θ}

2
ı

`M

ż

Ω

F puqdx

ď
1

2

”

pM ` c1 ` c4c3q}pu, z, θq}H˚ ´ c4c3}u}
2
pH1

0 pΩqq
n

ı

´ pM ` c3q

ż

Ω

F puqdx

` p2M ` c3q

ż

Ω

F puqdx,

where M ą 0 is chosen sufficiently large such that M ´ c2 ą 0, c3 ą 0 and c4 ą 0, we can
note that

c2 “ c1 `
η

λ1

c2;

c4c3 “ p2M ` c3q
η

λ1

;

c3 “ c2 ` c4c3.

Therefore by (3.6) we get

1

2

”

M ´

´

c1 `
η

λ1

c2

¯ı

}pu, z, θq}2H˚ `
´ η

2λ1

c2 ´
η

2λ1

c2

¯

}u}2
pH1

0 pΩqq
n

´ pM ´ c2q

ż

Ω

F puqdx´ Cηc2|Ω| ď Lptq,

and

Lptq ď 1

2
rM ` pc1 ` c3c4qs}pu, z, θq}

2
H˚ `

1

2

”

´ c3c4 ` p2M ` c3q
η

λ1

ı

}u}2
pH1

0 pΩqq
n

´ pM ` c3q

ż

Ω

F puqdx` p2M ` c3qCη|Ω|.

Finally, if we define cM “ M ´ c2, C1 “ c2Cη|Ω|, C2 “ p2M ` c3qCη|Ω| and
CM “M ` c3, then

cM
2
}pu, z, θq}2H˚ ´ cM

ż

Ω

F puqdx´ C1 ď Lptq,

and
Lptq ď CM

2
}pu, z, θq}2H˚ ´ CM

ż

Ω

F puqdx` C2.

˝
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We have the following result as a consequence of Theorem 4.2.

Theorem 4.4. There exists R ą 0 such that for each bounded subset B of H˚ there exists
tB ą s with the property

Spt, sqB Ă BH˚p0;Rq,

for any t ě tB. Here, BH˚p0;Rq denotes the open ball inH˚ centered at origin and of radius
R.

Proof. Let B be a subset of H˚, and let pu, z, θq “ puptq, zptq, θptqq be the solution of
(4.1)-(3.26) with pu0, u1, θ0q P B. Using Theorem 4.2 and the second inequality of (4.12) in
Theorem 4.3 we have there exit constant %1 ą 0 and %2 ą 0 such that

d

dt
Lptq ď ´%1Lptq ` %2,

where Lptq “ Lpu, z, θq for any t ě s.
From (1.6), we can find that

Lptq ď Lp0qe´
şt
0 %1ds `

ż t

0

%2e
´
şt
τ %1dsdτ ď Lp0qe´%1t ` %2

%1

p1´ e´%1tq

where Lp0q “ Lpu0, u1, θ0q, and combining with the inequalities (3.24) and (4.12) in Theo-
rem 4.3, we get

}pu, z, θq}2H˚ ď c1Epu, z, θq ` c2 ď
c1

cM
Lptq ` C1c1

cM
` c2

ď

´ c1

cM
Lp0q ´ %2

%1

¯

e´%1t `
%2c1

%1cM
`
C1c1

cM
` c2,

for some constants c1, c2, cM and C1 ą 0.
LetRB ą 0 such that }pu0, u1, θ0q}

2
H˚ ď RB, then after some calculations we conclude

that there exists tB ą 0 with

}pu, z, θq}2H˚ ď 2
´ %2c1

%1cM
`
C1c1

cM
` c2

¯

for any t ě tB.

˝

Proposition 4.5. There exists positive constants K and α such that

}S1pt, sq}LpH˚q ď Ke´αpt´sq for all t ě s,

and S2pt, sq is a compact operator from H˚ into itself for all t ą s. In particular the
nonlinear process Sp¨, ¨q is pullback asymptotically compact.
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Proof.
To prove the decay of S1pt, sq, one considers the functional

L0pu, z, θq “
1

2

´

}u}2
pH1

0 pΩqq
n ` }z}

2
pL2pΩqqn ` }θ}

2
L2pΩq

¯

` δ1pu, zqpL2pΩqqn ` δ2pΦ, zqpL2pΩqqn .

Thanks to Theorem 4.2 and Theorem 4.3 we have
d

dt
L0ptq ď ´αL0ptq

for some α ą 0, where

L0pS1pt, sqpu0, u1, θ0qq ď rL0pS1pt, sqpu0, u1, θ0qq ` L0pS1ps, sqpu0, u1, θ0qqs e
´αpt´sq,

and consequently,

}S1pt, sqpu0, u1, θ0q}
2
H˚ ď Ke´αt}pu0, u1, θ0q}H˚ .

To show that S2pt, sq is compact, we first show that f is bounded from pH1
0 pΩqq

n into
pW 1,rpΩqqn, with r “ 2pn´1q

pn´2q
“ n

n´2
` 1 P p1, 2q; indeed, it follows from Lemma 3.1 that for

any u P Rn we have

|fpuq| ď 2p´1n2C|u|p1` |u1|
p´1
` ¨ ¨ ¨ ` |un|

p´1
q,

for p ă n
n´2

and from (3.7),

}fpuq}rW 1,rpΩq “

ż

Ω

p|fpuq|r ` |∇fpuq|r|∇u|rqdx

ď

ż

Ω

` `

2p´1n2C|u|p1` |u1|
p´1
` ¨ ¨ ¨ ` |un|

p´1
q
˘r

` Cnp1`
n
ÿ

i“1

|ui|
p´1
q
r
|∇u|r

˘

dx

ď C

ˆ

}u} rpLrpΩqqn ` }u}
pr
pLprpΩqqn ` }∇u}

r
pL2pΩqqn ` }u}

pp´1qr

pL
2pp´1qr

2´r pΩqqn
}∇u}r{2

pL2pΩqqn

˙

ď C 1
´

}u}pr
pLprpΩqqn ` }∇u}

r
pL2pΩqqn ` }u}

pp´1qr

pL´rpΩqqn}∇u}
r{2

pL2pΩqqn

¯

.

Our choice of r ă 2n
n´2

implies that pr ă 2n
n´2

and from the embedding of H1
0 pΩq into

LqpΩq for q ď 2n
n´2

it follows that f e is bounded from pH1
0 pΩqq

n into pW 1,rpΩqqn and the
latter is compactly embedded in r ą 1. Thus, F is bounded fromH˚ into t0uˆpW 1,rpΩqqnˆ

t0u and the latter is compactly embedded in pH1
0 pΩqq

n ˆ pW 1,rpΩqqn ˆH1
0 pΩq.

Now fix t ě s and consider

S2pt, squ0 “

ż t

0

S1pξ, sqF pSpξ, squ0qdξ, t ě s.

for u0 P B, whereB is a bounded subset ofH˚. Since orbits of bounded subsets ofH˚ under
the nonlinear process tSpt, sq; t ě su are bounded in H˚, it follows that S2pt, sq is compact
for each t ą s. Thus the fact of nonlinear process tSpt, sq; t ě su is asymptotically compact
is a consequence of [13, Theorem 2.37].
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˝

Finally, as application of [13, Theorem 2.23], we conclude that (4.4) has a pullback
attractor tAptq; t P Ru inH˚.

4.3 Regularity of attractors

We will use the same notation here as that exposed in the Section 3.5 to investigate the
regularity of the pullback attractor. As a matter of fact, we prove like in the previous case
that

Ť

těsAptq is a bounded subset ofH1
˚.

Theorem 4.6. The pullback attractor Ap¨q for the problem (4.4), obtained in Section 4.2,
lies in a more regular space thanH˚, in fact,

Ť

těsAptq is a bounded subset ofH1
˚.

Proof. Without lost of generality, we will assume κ “ 1 to simplify the calculations
in this proof. Let ξ : R Ñ H˚ be a pullback bounded solution of (4.4). Then, the set
tξptq; t P Ru is a bounded subset ofH˚.

We already know that Aptq is bounded in H˚. Hence, if ξ : R Ñ H˚ is such that
ξptq P Aptq for all t P R, then

ξptq “ S1pt, sqξpsq `

ż t

s

S1pτ, sqF pξpτ, sqqdτ,

where S1p¨, ¨q and S2p¨, ¨q is defined in (4.5). Now using the decay of S1pt, sq in the Proposi-
tion 4.5 and letting tÑ `8 it follows that

(4.13) ξptq “

ż `8

s

S1pτ, sqF pξpτ, sqqdτ.

Set pµ0, µ1, ϑ0q “ ξpsq, and we consider

” µ
Btµ
ϑ

ı

ptq “ S2ptq
” µ0
µ1
ϑ0

ı

“

ż t

0

S1psqF pSpsq
” µ0
µ1
ϑ0

ı

qds,

and note that pµp¨q, Btµp¨q, ϑp¨qq P H˚ solves the system

(4.14)

$

&

%

B2
t µ´∆µ´∇ div µ` βptq∇ϑ “ fpµpt;µ0qq, x P Ω, t ą s,

Btϑ´∆ϑ` βptq div Btµ “ 0, x P Ω, t ą s,

with

(4.15) µpx, sq “ Btµpx, sq “ 0 and ϑpx, sq “ 0, x P Ω.

We again consider the following functional

L0pµptq, Btµptq, θptqq “
1

2

´

}µptq}2
pH1

0 pΩqq
n ` }Btµptq}

2
pL2pΩqqn ` }θptq}

2
L2pΩq

¯

` δ1pµptq, BtµptqqpL2pΩqqn ` δ2pΦptq, BtµptqqpL2pΩqqn
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to estimate the solution of (4.14)-(4.15) for pµ0, µ1, ϑ0q in a bounded subset B of H˚. The
same arguments of the proof of Theorem 4.2 to obtain (we omitted t in order to simplify the
notation)

(4.16)
dL0

dt
pµ, Btµ, ϑq ď ´C0}∇µ}2pL2pΩqqn ´ C1}Btµ}

2
pL2pΩqqn ´ C2}ϑ}

2
L2pΩq ` C3,

where C0, C1, C2 and C3 are positive constants.
From this it follows that

(4.17)
ď

sďτďt

S2pτ, sqB is a bounded subset ofH˚.

Therefore p$, ζq “ pBtµ, Btϑq solves the system

(4.18)

$

&

%

B2
t$ ´∆$ ´∇ div$ ` βptq∇ζ “ f 1pµpt;µ0qq$pt;µ0q, x P Ω, t ą s,

Btζ ´∆ζ ` βptq div Bt$ “ 0, x P Ω, t ą s,

with $psq “ 0, $tpsq “ fpµ0q, and ζpsq “ 0.
In order to continue with verification, we will show that pµ, Bµ, ϑq is a bounded solu-

tion inH1
˚, by estimate p$, Bt$, ζq inH˚. But thus solutions are not regular enough to allow

this directly, that’s why we will work ‘towards’H˚ by progressive increases of regularity.
We will take p$, Bt$, ζq P H´α and we define

Lαptq “
M

2

´

2}$}2pY 1´αqn ` }φ}
2
pY ´αqn ` }ζ}

2
Y ´α

¯

` δ1p$,φqpY ´αqn ` δ2pγ, φqpY ´α˚ qn ,

(4.19)

where γ such that div γ “ ζ.

We want to find an inequality like (4.3). Therefore, we will obtain followings estimates
for the terms involved in Lαptq; First, thanks to (4.14) we get

d

dt
}φ}2pY ´αqn “ 2p∆$`∇ div$,φqpY ´αqn´2pβptq∇ζ, φqpY ´αqn`2pf 1pµpt;µ0qq$pt;µ0q, φqpY ´αqn .

Because of (3.8) we have that

d

dt
}ζ}2Y ´α “ 2p∆ζ, ζqY ´α ´ 2pβptq div Bt$, ζqY ´α ď ´2}ζ}Y 1´α ´ 2βptqpdiv Bt$, ζqY ´α .

Again by (4.14) we obtain that

d

dt
p$,φqpY ´αqn “ }φ}

2
pY ´αqn ` p$,∆$ `∇ div$qpY ´αqn ´ p$, βptq∇ζqpY ´αqn

` p$, f 1pµpt;µ0qq$pt;µ0qqpY ´αqn .

Also, we see that

d

dt
pγ, φqpY ´αqn “ pBtγ, φqpY ´αqn ` pγ,∆$ `∇ div$qpY ´αqn ´ pγ, βptq∇ζqpY ´αqn

` pγ, f 1pµpt;µ0qq$pt;µ0qqpY ´αqn .
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In this way,

dLα

dt
ď
M

2
r2pBt$,$qpY 1´αqn ` 2p∆$ `∇ div$,φqpY ´αqn ´ 2pβptq∇ζ, φqpY ´αqn

` 2pf 1pµpt;µ0qq$pt;µ0q, φqpY ´αqn ´ 2}ζ}2Y 1´α ´ 2pβptq div Bt$, ζqY ´αs

` δ1

”

}φ}2pY ´αqn ` p$,∆$ `∇ div$qpY ´αqn ´ p$, βptq∇ζqpY ´αqn

` p$, f 1pµpt;µ0qq$pt;µ0qqpY ´αqn

ı

` δ2

”

pBtγ, φqpY ´αqn ´ pγ, βptq∇ζqpY ´αqn

` pγ,∆$ `∇ div$qpY ´αqn ` pγ, f
1
pµpt;µ0qq$pt;µ0qqpY ´αqn

ı

.

Thus

dLα

dt
ď
M

2
r´2pBt$,$qpY 1´αqn ` 2pΛ

1
2 p$ ` div$q, Λ

1
2φqpY ´αqn

` 2pf 1pµpt;µ0qq$pt;µ0q, φqpY ´αqn ´ 2}ζ}2Y 1´αs ` δ1r}φ}
2
pY ´αqn

` p$,∆$ `∇ div$qpY ´αqn ´ p$, βptq∇ζqpY ´αqn ` p$, f 1pµpt;µ0qq$pt;µ0qqpY ´αqns

` δ2rpBtγ, φqpY ´αqn ` pγ,∆$ `∇ div$qpY ´αqn ` βptqpζ, ζqpY ´αqn

` pγ, f 1pµpt;µ0qq$pt;µ0qqpY ´αqns

in other words,

dLα

dt
ďM rpf 1pµpt;µ0qq$pt;µ0q, φqpY ´αqn ´ }ζ}

2
Y 1´αs ` δ1r}φ}

2
pY ´αqn

` p$,∆$ `∇ div$qpY ´αqn ´ p$, βptq∇ζqpY ´αqn ` p$, f 1pµpt;µ0qq$pt;µ0qqpY ´αqns

` δ2rpBtγ, φqpY ´αqn ` pγ,∆$ `∇ div$qpY ´αqn ` βptqpζ, ζqpY ´αqn

` pγ, f 1pµpt;µ0qq$pt;µ0qqpY ´αqns.

Therefore,

dLα

dt
ďMpf 1pµpt;µ0qq$pt;µ0q, φqpY ´αqn ` δ1pf

1
pµpt;µ0qq$pt;µ0q, $qpY ´αqn

` δ2pf
1
pµpt;µ0qq$pt;µ0q, γqpY ´αqn ´M}ζ}

2
Y 1´α ` δ2βptq}ζ}

2
Y ´α

` δ1}φ}
2
pY ´αqn ´ δ1}$}

2
pY 1´αqn ` δ2pBtγ, φqpY ´αqn

` δ2pγ,∆$ `∇ div$qpY ´αqn ´ δ1βptqp$,∇ζqpY ´αqn .

(4.20)

Next, we deal with the three terms in which it appears explicitly the nonlinearity f 1.
From now on, let

α1 :“
pp´ 1qpN ´ 2q

2
.

Note that since p ă N
N´2

, we obtain that α1 ă 1.
If α P p0, α1q then we can observe that

pf 1pµpt;µ0qq$pt;µ0q, gqpY ´αqn ď }g}pY ´αqn}f
1
pµpt;µ0qq$pt;µ0q}pY ´αqn

76



for g P tϕ, Btϕ, ζu and using the embedding pY αqn ãÑ pH2αpΩqqn ãÑ pLppΩqqn (or
equivalently

´

L
p
p´1 pΩqqn ãÑ pY ´αqn

¯

for any 1 ă p ď 2N
N´2α

and (3.7), we have that for
some c4 ą 0

}f 1pµq$}pY ´αqn ď c4}f
1
pµq$}

L
2N

N`2α pΩq
ď C}$p1` |µ|p´1

q}
L

2N
N`2α pΩq

ď C}$}H˚}1` |µ|
p´1
}
L
N
α pΩq

and so
}f 1pµq$}2pY ´αqn ď C2

}$}2H˚}1` |µ|
p´1
}

2

L
N
α pΩq

.

From (4.15) µ remains in a bounded subset of H
1
2
˚ ãÑ L

pp´1qN
α pΩq for any 1 ă p ă

N´4`4α
N´4

and this implies that
ż

Ω

p1` |µ|p´1
q
N
α dx ď |Ω| ` }µ}

pp´1qN´α
Npp´1q

L
pp´1qN

α pΩq
ď |Ω| ` c5}µ}

pp´1qN´α
Npp´1q

H
1
2
˚

ď c5,

for some c5 ą 0.
Therefore, there exists a positive constant Cf such that

(4.21) }f 1pµq$}2pY ´αqn ď Cf .

From (3.29),
Btγ “ ∇ζ ´ βptqBt$,

then @ε ą 0, we have

δ2pBtγ, φqpY 1´αq
n ď δ2p∇ζ ´ βptqφ, φqpY ´αqn ď δ2p∇ζ, φqpY ´αqn ´ δ2βptq}φ}

2
pY ´αqn

and therefore

(4.22) δ2pBtγ, φqpY 1´αq
n ď

δ2

ε
}ζ}2Y 1´α ` δ2 pε´ βptqq }φ}

2
pY ´αqn .

as previously discussed in Remark 3.10, }ζ}2Y 1´α ă 8 a.e. for t P R.
Now we will denote

J1 “ δ2pγ,∆$ `∇ div$qpY ´αqn ´ δ1βptqp∇ζ,$qpY ´αqn .

From γ P Y 1´α
˚ ãÑ Y ´α˚ , we obtain following inequality

J1 ď
δ2

ε
}γ}2pY 1´αqn ` εδ2}$}

2
pY 1´αq `

δ1β
2
1

ε
}ζ}2pY 1´αqn ` εδ1}$}

2
pY ´αq

ď
δ2

ε
}γ}2pY 1´αqn ` εpδ1 ` δ2q}$}

2
pY 1´αq `

δ1β
2
1

ε
}ζ}2pY 1´αqn

when we observe that }γ}2
pY 1´αqn

ď C1}ζ}
2
Y ´α ď C2}ζ}

2
Y 1´α , then

(4.23) J1 ď

ˆ

δ2C2

ε
`
δ1β

2
1

ε

˙

}ζ}2pY 1´αqn ` εpδ1 ` δ2q}$}
2
Y 1´α .
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Using (4.21), (4.22) and (3.51) in (4.20) we get

dLα

dt
ď ε}φ}2pY ´αqn ` ε}$}

2
pY ´αqn ` ε}γ}

2
pY ´αqn ` CpM, δ1, δ2q ´ pM ´ δ2q}ζ}

2
Y 1´α

` δ1}φ}
2
pY ´αqn ´ δ1}$}

2
pY 1´αqn `

ˆ

δ2C2

ε
`
δ1β

2
1

ε

˙

}ζ}2Y 1´α

` δ2 pε´ βptqq }φ}
2
pY ´αqn ` εpδ1 ` δ2q}$}

2
pY 1´αqn

ď p´δ1 ` εpδ1 ` δ2q ` εq}$}
2
pY 1´αqn ` pε` δ1 ` δ2ε` 2δ2εCpΩq ´ δ2β0q }φ}

2
pY ´αqn

`

ˆ

δ2C3

ε
`
δ1β

2
1

ε
` εC ´M ` δ2

˙

}ζ}2Y 1´α ` CpM, δ1, δ2q.

Let ε ą 0 be small enough and, let δ1 ă δ2 and M ą 0 be large enough such that it is
possible choose p1, p2 ą 0 which,

dLα

dt
ď ´p1

´

}$}2pY 1´αqn ` }φ}
2
pY ´αqn ` }ζ}

2
Y 1´α

¯

` p2

for t a.e. in r0,8q.
But }ζ}2

pY ´αqn ď
C2

C1
}ζ}2

pY 1´αqn
and ζ P Cp0,8;Y ´αq. This lead us to

dLα

dt
ď ´p1

´

}$}2pY 1´αqn ` }φ}
2
pY ´αqn ` }ζ}

2
Y ´α

¯

` p2, @t P R

and from the fact that Aptq “ tξpτq : ξp¨q is a pullback bounded solution of (4.4) inH˚u we
obtain that

(4.24)
ď

těs

Aptq is bounded in pY 2´α1q
n
ˆ pY 1´α1q

n
ˆ Y 1´α1

˚ .

Using (4.24) and restarting from with α2 “ pp ` 1qα1 ´ p ă α1 if follows that A is
bounded in pY 2´α2qn ˆ pY 1´α2qn ˆ Y 1´α2

˚ .
Iterating this procedure a finite number of times, we can now show that A is bounded

in pY 2qn ˆ pY 1qn ˆ Y 1
˚ and by the Remark 3.10 this implies in fact, that
ď

těs

Aptq is bounded in pY 2
q
n
ˆ pY 1

q
n
ˆ Y 2

˚ .

˝

4.4 Upper semicontinuity of the attractors

In this section we prove the upper semicontinuity of the pullback attractors inH1
˚ with

respect to functional parameter κ in (4.1). Let tκεuεPr0,1q be a family of functions such that
for each κε the condition (3.8) is valid and suppose that

}κε ´ κ0}L8pΩq Ñ 0, as εÑ 0.

We observe that all previous results are also valid to the problem (4.1) with κε instead
of κ. If tSεpt, sq; t ě su denotes the evolution process associate to the problem (4.4) with
pullback attractors Aε for each ε P r0, 1s, then we have the following result.
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Theorem 4.7. The family of pullback attractors Aεptq is upper semicontinuous at ε “ 0`.

Proof. Let uε “ Sεpt, squ0 be the solution of (4.4) with uε “ puε, zε, θεq. Then we
write µ “ uε ´ u0 and ϑ “ θε ´ θ0, then pµ, Btµ, ϑq solves the following system

$

&

%

B2
t µ´∆µ´∇ div µ` βptq∇ϑ “ fpuεq ´ fpu0q, x P Ω, t ą s,

Btϑ´ rdiv pκεpxq∇θεq ´ div pκ0pxq∇θ0qs ` βptq div Btµ “ 0, x P Ω, t ą s.

We be able to find
ż

Ω

B
2
t µ

ε
Btµ

εdx´

ż

Ω

p∆µε`∇ div µεqBtµ
εdx`

ż

Ω

βptq∇ϑεBtµεdx “
ż

Ω

pfpuεq´fpu0
qqBtµ

εdx,

by multiplies Btµε in the first equation and,
ż

Ω

Btϑ
εϑεdx´

ż

Ω

rdiv pκεpxq∇θεq ´ div
`

κ0pxq∇θ0
˘

sϑεdx` βptq

ż

Ω

div Btµ
εϑεdx “ 0

by multiplies ϑε in the second equation.
This lead us to

d

dt
}pµε, Btµ

ε, ϑεq}2H˚ “ 2

ż

Ω

pfpuεq´fpu0
qqBtµ

εdx`2

ż

Ω

div
`

κεpxq∇θε ´ κ0pxq∇θ0
˘

ϑεdx,

and in other words,

d

dt
}pµε, Btµ

ε, ϑεq}2H˚ “ 2

ż

Ω

pfpuεq ´ fpu0
qqBtµ

εdx´ 2

ż

Ω

`

κεpxq∇θε ´ κ0pxq∇θ0
˘

∇ϑεdx.

Now, note that
ˇ

ˇ

ˇ

ż

Ω

`

κεpxq∇θε ´ κ0pxq∇θ0
˘

∇ϑεdx
ˇ

ˇ

ˇ

ď

ż

Ω

“

κεpxqp∇θε ´∇θ0
q ` pκεpxq ´ κ0pxqq∇θ0

‰

∇ϑεdx

ď }κε ´ κ0}L8pΩq}θ
0
}Y 1
˚
}ϑε}Y 1 ` }κε}L8pΩq}θ

ε
´ θ0

}
2
Y 1
˚

ď C1}κε ´ κ0}L8pΩq ` C2}pµ
ε, Btµ

ε, ϑεq}2H˚ ,

where C1 ą 0 and C2 ą 0 are constants independents of ε thanks to Theorem (4.6).
From Lemma 3.1, we have

ż

Ω

pfpuεq ´ fpu0
qqBtµ

εdx ď C3}pµ
ε, Btµ

ε, ϑεq}2H˚ ,

where C3 ą 0 is constant independent of ε.
Hence, there exist constants C 1 ą 0 and C2 ą 0 such that

d

dt
}pµε, Btµ

ε, ϑεq}2H˚ ď C 1}κε ´ κ0}L8pΩq ` C
2
}pµε, Btµ

ε, ϑεq}2H˚ .
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and so

(4.25) }pµε, Btµ
ε, ϑεq}2H˚ ď C 1te´C

2t
}κε ´ κ0}L8pΩq, @t ą s,

i.e., uε Ñ u0 in H˚, as εÑ 0`, uniformly for t in bounded subset of the interval rs,8q and
u0 in bounded subset ofH˚.

From [13, Theorem 2.20],
Ť

sďtAκεpsq is bounded in Y . Then for δ ą 0 given, there
is τ P p´8, ts such that

distpSκ0pt, τqAκεpτq,Aκ0ptqq ď distpSκ0pt, τq
ď

sďt

Aκεpsq,Aκ0ptqq ă
δ

2
, @ε P r0, 1s.

Using (4.25), there exists ε0 ą 0 such that

sup
uεPAκε ptq

}Sκεpt, τquε ´ Sκ0pt, τquε} ă
δ

2

for any ε ă ε0. Therefore,

distpAκεptq,Aκ0ptqq
ď distpSκεpt, τqAκεpτq, Sκ0pt, τqAκεpτqq ` distpSκ0pt, τqAκεpτq, Sκ0pt, τqAκ0pτqq
ď sup

uεPAκε ptq
}Sκεpt, τquε ´ Sκ0pt, τquε} ` distpSκ0pt, τqAκεpτq,Aκ0ptqq ă δ

which proves the upper semicontinuity of the family of attractors at ε “ 0.

˝
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