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Abstract

In this work we prove the existence and regularity of the global attractors and the pullback at-
tractors for a class of autonomous and non-autonomous thermoelastic systems, respectively,
with vanishing mean value for temperature in a bounded domain with sufficiently smooth
boundary in R" with n > 2. Moreover, we prove the upper semicontinuity of the attractors

with respect to the diffusion coefficients.

Palavras-chave: thermoelasticity, global attractor, pullback attractor, upper semicontinuity,

regularity.



Resumo

Neste trabalho, provamos a existéncia e a regularidade dos atratores globais e dos atratores
de pullback para uma classe de sistemas termoeldsticos autdnomos e nao autdénomos, res-
pectivamente, com um valor médio da temperatura se anulando em um dominio limitado
com fronteira suficientemente suave em R" com n > 2. Além disso, provamos a semicon-

tinuidade superior dos atratores em relacao aos coeficientes de difusdo.

Palavras-chave: termoelasticidade, atratores globais, atratores pullback, semicontinuidade

superior, regularidade.
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Notations

e () is a domain of R when the body is in the reference state;

e v is the displacement of the body’s particle over time;

e 0 is temperature variation of studies body;

e f is the specific external body force;

e & is the internal energy;

e k diffusion coefficient;

e (3 is the thermal moduli;

e L(A, B) is space of bounded linear transformation of A to B;
o H=(H})" x (L*(Q))" x L*(Q) = (Y )" x Y" x Y;

o Y, = L3(Q) = {¢e L*(Q); |, &dx = 0};

o H,=H)=(YH)" x Y x Y,and H! = (Y2)" x (Y)" x Y};

e Y% is the fractional power space associated with the negative Laplacian operator sub-

ject to homogeneous Dirichlet boundary condition;
o YX=Y*NnY,
o T = [HLHI = (V170) o (Vo) Y

o & : L} — (HY(Q))™ is the Bogowskii operator given by div®(v) = v for all
ve Li(Q);
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e [3.5} scale of the fractional power space of H (page[57);



Introduction

We will work with non-linear dynamical system from problems of partial differential
equations with initial and boundary data associated to models related to the movement of an
elastic, isotropic, limited and sufficiently smooth boundary solid which occupies the region
2 < R™ with n < 1 and we will be taken into account also the influence of its temperature
in its displacement. More precisely, we will be interested in obtaining information about the

asymptotic behavior of two thermoelastic systems; an autonomous system
PPu— Au—Vdivu+ V0 = f(u), t>0, ze,
0 — div (k(2)VO) + divdu =0, t>0, x e,
subject to boundary conditions
u(z,t) =0, O(x,t) =0,t >0, z €
on initial conditions
u(z,0) = ug(x), du(x,0) = ui(z), xel,
0(x,0) = Oy(x) x e,
and a non-autonomous system
PPu—Au—Vdivu+ (t)V0 = f(u), t>s, z€Q,
010 — div (k(2)VO) + B(t)divou =0, t>s, x €l
subject to boundary conditions
u(z,t) =0, O(x,t) =0,t > s, x €
on initial conditions

u(z, s) = uo(z), du(z,s) =u(x), zeQ,

O(x,s) = Oy(x) x € Q.



In the problems above mentioned, the map f is external force, the functional parameters
is the diffusion coefficient and [ is the thermal moduli with some suitable growth conditions
which will be presented below.

We recall that for a smooth vector field in some sense u = (uq,...,u,) the gradient

and Laplacian of the vector field u are denoted, respectively, by
Vu = (Vuy,...,Vu,)

and

Au = (Auy, ..., Auy,),

and the divergent operator of a vector field d;u will be denoted by
div dpu = > | 0,,0u;.
i=1
The hypotheses on the non-linearity f = (fi,..., f,), where f; : R® — R. We
consider f a conservative vector field (i.e., there is a scalar field « such that f = Va)
with the functions f; twice continuously differentiable and f;(0) = 0,7 = 1,2,3,4,...,n.

Moreover, we also assume that for each v > 0 there exists C,, > 0 such that

f(f)'€<V‘€‘2+CV7

with - denoting the standard dot product on R". We can assume that there exist C,, > 0 and
n € (0, min{1, A\;}) such that if .
PO | fin

then

F(€) < 21 + Gy,
where A\; > 0 is the first eigenvalue of the negative Laplacian operator with zero Dirichlet
boundary condition, and Sg fd~ represents the line integral of f along a piecewise smooth
curve 7 : [s,t] — R"™ wich y(s) = 0 and y(t) = &, for any £ € R™ (that is, VF(§) = f(&),
where V F' stands for the gradient of £ in the variables £ € R"™).

In addition, we shall assume throughout this text that there exists a constant C' > 0

such that forevery i = 1,...,nand { = (&,...,&,) € R™,

IVl <C (1 +> \&W) ,
=1

|02, fi(©)] < C,



forsome 1 <p < Lo ifn>2;1<p<+wifn =2,
The coefficients « in (3.1)), are real-valued continuously differentiable function defined

on {2 such that there exist constants ~( and x; with the property
0 < ko < k() < Ky, T

Furthermore, we assume that there are positive constants 5, and ; such that
0<Bo<pB(t)<pr, teR.

When we talk asymptotic behavior we are asking ourselves about the existence and
properties that the global attractor (in the autonomous case) and the pullback attractor (the
non-autonomous case). In the forward dynamic (in the autonomous case) is the behaviour
of solutions as ¢ — 0. Let S(-) be the semigroup that come from the global solution of
the autonomous problem which we are studying. The global attractor is a set A such that
is compact, invariant by S(-) and attracts bounded sets under S(-). Now consider a non-
autonomous problem with the initial data taken in the time s and the processes U (-, -) defined
by the global solution of the problem non-autonomous. The pullback dynamic is the study
of the solution of the non-autonomous problem when it fix the current time and go back to
history, i.e., is the behavior of solutions as s — —oo. This is translated in the definition of
the pullback attractor which will be a family of sets .A(-) such that A(t) are compact for all

t > s, invariant for ¢t > s by the process U(-, -), in the sense that
U, 7)A(T) = A(t), t =7 >s

and A(-) is the minimal (in the sense that if there is another family C'(-) such that pullback
attract bounded, C'(t) < A(t) for all £ > s) family such that pullback attracting all bounded
sets by A(-) under U(-, "), i.e., for all t > s, A(t) is such that any bounded set has the
Hausdorff semidistance between itself and .A(t) tends to 0 as s — —oo. By the hypotheses
which we assumed in both cases, there is only one attractor. In both cases, the space

(1) Laﬂ>={veL%Q%J

vd:z:=0}.
Q

will play a crucial role in our analysis.
Another result that we find as a consequence of the propositions used to demonstrate

the existence of the attractors is the exponential decay of the solutions if we consider f = 0.
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As far as we know the hypotheses that we consider in this thesis were not considered in other
works that seek such decay as it is commented in Section [.2] In general the exponential
decay for the thermoelasticity system is not guarantee in R" with n > 1, such decay depends
of the geometry of domain and hypotheses about u, and u; for example. In our cases, we
will ask 6, € Y.

This work is organized in four chapters:

In the first one was made a summary of general knowledge that sets the problem. We
do a brief justification of the emergence of the thermoelastic system equations using the con-
servations laws, a synthesis of the known results about decay of the thermoelastic problem
to better understand what we do and the main general results of mathematical analysis which
we will use throughout the text.

The second chapter is dedicated to a summary on the theory of semigroups, processes,
global attractors and pullback attractors that we will use constantly. In this chapter, we will
establish the relationship between semigruop and processes with problems autonomous and
non-autonomous.

In chapters 3 and 4 we will reach our goal of studying the asymptotic behavior of the

problems previously announced by the use of the functional
E(u, z, 0) = Mg(u, z, 0) + 64 (u, Z)(Lz(Q))n + 52(@, Z)(L2(Q))n
given by a modification in the natural energy of the system

1
&(u.28) = 5 (o + Flly + 1013m) = | Pl

where || - | = () ma(yms Fu) = §; fdy with §] fdy represents the line integral of

(y(@)y
f along a piecewise smooth curve with initial point 0 and final point u with u = u(x, t), and,
01,02 and M are positive constants to be chosen appropriately. Such a change is given by
using the Bogoviskii operator ® that naturally induces an invariant subspace of L?((2) that
we can take 6. The results obtained in Chapter 3 produced an article which was accepted

for publication in the Journal Colloquium Mathematicum.



Chapter 1

Preliminary

In this first chapter we wish to contextualize the problem studied by summarizing the
physical origin of the problem, some results obtained and also some important results of gen-
eral knowledge that will be required throughout the text. In the first section we will establish
the concept of stress and strain to induce the main equations of the thermoelastic system in
its most general way using law well known in the mechanics of fluids. In the second section
we mentioned some articles that previously studied cases similar to the problem that we want
to analyze in this text. Finally, in the last section of the chapter we have a compilation of
Sobolev spaces results, PDE’s, and other similarities that we will use constantly in Chapter

[3|and Chapter {] with the purpose of helping to read the text.

1.1 Deduction of the thermoelastic system

In general word we present in this section the deduction of the thermoelastic system
following the references Ciarlet [16]], Dafermos [[17]] and, Racke and Jiang [38]].

Let B be a body occupying a region {2 < R™ when it is not under the effect of forces of
any nature and at environment temperature in any point. We will assume that €2 is a bounded
domain with a smooth boundary. Thus, associate each material point of B with = € {2 your
position.

Considering ¢(x,t) € R" the position and 7'(z,t) the temperature in time ¢ > ¢, of
the particle in x € {2 when the body is in the reference condition, for some ¢, fixed. We
will denote by u(x,t) = ¢(x,t) — z the displacement and by 0(x,t) = T'(x,t) — Ty the
temperature variation, where 7y is a conveniently chosen reference temperature. In order to

establish the equations object of our study, we will formally assume that ¢ and 7" are enough

7



differentiable. By the nature of the problem, we assume that ¢ is injective on (2. We will

denote D+, t) as the differential of (-, ).

Q

Figure 1.1: Deformation ¢ of the body B

Now we will discuss the concept of stress on a point x in the position ¢(z,t) of the
body B in the direction of the n unit vector after a deformation in time ¢ fixed. Consider

regular surface I' with the follow proprieties:
(1.) ¢(x,t) e T, forall x € €
(2) neS" ! = {veR"|v| =1} is normal to T in ¢(z, t);
(3.) There are €2, and €25 subdomain of ¢ (€2, t) such that ¢(Q2,¢) = Q; U 2, and

()N T = N Q.

Figure 1.2: Cauchy’s stress vector field



We define as the Cauchy’s stress vector field by v, : p(2,¢) x S*~! — R" such that
v,(p(x,t),n) is the force which €2; exert over ¢(z, t), where —n is normal outside of 2; in
¢(z,t). It can be verified that v, (¢(x, t), n) does not depend on the choices of I' only n and

x. Moreover, as describe the next theorem v, (¢(x, t), n) behaves linearly on n.

Theorem 1.1. (Cauchy’s Theorem) Assume that for each n € S"~! vector field v,(-,n) is
continuously differentiable and v, (p(x,t),-) is continuous for each ¢(x,t) € p(Q,t) with t
fixed. Then exists a continuously differentiable symmetric tensor field called Cauchy’s stress
tensor define by

o, (1) = M,

—1
such that for anyn € S™ ™,

Ve(p(x,1),n) = 0, (p(z,t)) n
where M, is the set of matrices n x n of real numbers.

Proof. See Ciarlet [16, Page 62].

Recalling that the Euler variable is the way to describe the problem by taking as ob-
servation point in the object while it deforms, in other hand the Lagrange variable induces
the behavior of the object by take the information in the referenced state of the object. The
Cauchy’s stress tensor o,(¢(z,t)) is defined at the Euler variable p(x,t), we will use the so-
called Piola-Kirchhoff stress tensor or first Piola-Kirchhoff stress tensor o (z,t) defined

at Lagrange variable x by:
o(x,t) = (det Do(, 1))o, (plx, 1)) Dol 1) 7.

Since in some cases it is interesting to have a symmetrical tensor and the tensor
o(x,t) is not symmetrical in general, we have defined to meet these needs the second Piola-
Kirchhoff stress tensor () by letting

S(x) = Dy(r)'o(x) = (det Dp())Dp(x) 0,0z, ) D) .

The next concept we want to introduce is the strain which measures the deformation
rate with respect to the variation of x that the body has undergone after a displacement. For

any t fixed, (-, t) is differentiable in any point x € €, then for all points x + h €
p(x + ht) —p(z,t) = Do(z,t)h + O(|h])

where O‘%L') —0ash — 0.

The deformation is given by

lp(x + h,t) — o(z,t)]* = WD’ (z,t)Dp(z,t)h + KT D (2, 1) O(|h|)
+ O(|h))De(x, t)h + O(|R))TO(|h).

9



lo(x + A, t) — @z, 1))

Figure 1.3: Deformation rate

The symmetric strain tensor in Euler variable is
E(p) := D' Dy,
We also can obtain that
&(p) = D' Dy = I + Du’ + Du + Du'Du = I + 2E(u).
The strain tensor of a given body B after a displacement u is define by
E(u) := %('DUT + Du + Du’ Du)

also called The Green-St Venant strain tensor. By assume the hypotheses of small deforma-
tions, we will be able work with the form linear of £ which is

e(u) := %('DUT + Du).

The Duhamel-Neumann’s Law witch is a generalization to the Hook’s Law (which
admit 2 null), tell us that
E = Ro + 20

where £ is called compliance tensor and %l is coefficients of linear thermal expansion, and
also,
o=CE -850

where € is called stiffness tensor (also know as elastic moduli) and ‘B is know as thermal

moduli. By assume the hypotheses of small deformations, we will be able to consider

(1.1) e =Ro+ A0
and
(1.2) o = Ce — BO.

10



When tensor € depends of position x we say that the material is anisotropic and when there
is no dependency the material is call isotropic (for more details see Kupradze [29, Chapter
5]). In the chapters [3|and [ we will consider the isotropic case.

The balance of linear momentum, in our notation, is expressed by

(1.3) 8tf p@tudVZJa-ndA—FprdV
1% A %

where A = 0V, p is the material density (which depends of x) and f is the specific external
body force (which depends of = and ?), in any V' < ). By using (1.2)) in (1.3), we have

ﬁtJ p&tudV=f(€e—‘39)~ndA+f pf dV
v A v

thus,
1
atf poru dV = f (—@(DUT + Du) %9) -ndA+f pf dV.
v A \2 v

Using Divergence Theorem and since previous identity is true for any V', we obtain the

following equation
1
(1.4) poiu = 5 div (€(Du” + Du)) — div(Bb) + pf.

which is also presented as follows
pé?uz = Z axj (Qtijklaa:luk Z %1]9 + pfz

where %@(DUT + Du) = [€;1i0z,ux| and BO = [B,;0].

We denote &), by the Helmholtz free energy and 7 by the entropy (which is the quotient
of the amount of heat absorbed from the body B by its temperature.). We can assume thatﬂ:
En = 1(’} 310 Ui O U — B i 0 ;60 — chDHQ
g WETmITER R 2T,

where cp () is specific heat at the point z when 0, u; + 0y, u; = 0.
Using the notation U = Vu. Thanks to Racke and Jiang [38, Chapter 1]

o0&y,
0) = — 0).
N(U.0) = ~H(U.0)
The Fourier’s Law set
qi = Kzgaa:Je

where g is the heat flux and [K;;(z)] is the heat conduction tensor.

The conservation law of energy,

pTy 0im = div(q) + pcpr

Ifor more details see [17].

11



where r is the heat source. So

(1.5) Ty Y Bij0n, Opt; + pepdst = div(Kyjéa, 0, . .. Kn;da 0) + pepr,

=1

or in other notation,
pcpod — div(KVe) + Ty BD(0u;) = pepr.

The equations (1.4) and (1.5) characterizes the thermoelastic problem. When (2 is

bounded, the boundary condition
u =0, 0 =0o0n 0,

is called of condition of rigidly clamped and constant temperature, and the boundary
condition

ov =0, vq = 0 on 0€,

is called of condition of tracion free insulated where v is the outward unit normal to 0.

1.2 Previous results about the thermoelasticity system

Dafermos [[17]] studies the well-posedness of the anisotropic thermoelastic problem

n

pOu; = Y 0, (Cijadayur) + Y 0, (B160) = pb;
(1.6) j=1 =1

pcpod — div(KVe) + Ty BD(0u;) = pepr.

and commented that the homogeneous version of the problem has a decay, but not
necessarily exponential when we consider n > 2.

In the period from 1991 to 1993, several papers on the case one-dimensional obtain
exponential decay rate (e.g., Henry, Perissinotto and Lopes in [26], Liu and Zheng in [33]],
Slemrod [40] and references therein), and the question about exponential decay rate in the
case n-dimension for n > 2 attracted more and more attention from researchers.

About this problem, we can note that in particular the system thermoelastic

O2u — pAu— A+ p)Vdivu + VO =0, e, t>0,
ﬁte—AQ—i—leé’tu:O, ZE'EQ, t>0,

1.7

subject to initial-boundary conditions

u(0,2) = ug(x), Gu(0,x) = ui(x), 6(0,2) = Oy(x), =€,
u(t,z) =0, 0(t,x) =0, x e, t>0,

12



can be obtain from (I.6) (where 1+ > 0 and A > 0 are the Lamé coefficients) by the correct
choice of tensors. In the last years the famous question of thermoelasticity theory about ob-
taining the necessary and sufficient conditions to ensure the exponential uniform decay of the
energy of the linear thermoelastic system n-dimensional, under some geometric conditions
of the domain and regularity of the vector field w this problem was solved in Amann []1]],
Racke, Rivera and Jiang [27], Koch [28], Kupradze [29], Lebeau and Zuazua [30]], Lebeau
and Zuazua [31]], Liu and Zheng [33]], Rivera and Shibata [|35], Rivera [[39], Slemrod [40] and
references therein. More precisely, Lebeau and Zuazua in [30]], have shown that in a smooth
boundary domain in R™ which possesses an arbitrarily large ray of geometrical optics which
is always perpendicularly reflected at the boundary, the problem not have exponential decay
(see too Lebeau and Zuazua [31]]). Later, Koch in his work [28]] extends this result show-
ing that the exponential decay is not possible if the domain is convex. But Rivera in 1997
study a the case when considerer the displacement divergent free for all point of the general
smooth domain in the paper Rivera [39]. He got the exponetial decay rate and shows that if
Py(ug) # 0 or Py(uy) # 0, then

Et) = L | Py(up)|? + |V Py(uo)|* do

where Py(u) is a projection of w in V; = {w € H}(Q);div(w) # 0} and & is the natural
energy of the system (I.7). Also the work of Jiang, Riveira and Racke (1998) in [27] has
verified exponential decay in the case where the initial data and domain are radially sym-
metric (under such hypotheses the solutions are radially symmetric and the displacement has

vanishing rotation).

1.3 Embeddings and inequalities

Here, we want to enunciate some well-known theorems of sobolev immersions and
differential equations, as well as useful inequalities, with the aim of easy reading and com-

prehension of the text.

Theorem 1.2. (Sobolev embedding) Let ) < R"™ be a bounded domain with boundary of
class C™.

(1.) If mp < n, then the following embedding is continuous

1 1

W™P(Q) — LI (Q), where — = — —

- p

Moreover, the embedding is compact for any q, with 1 < q

m
-
< q*.
(2.) If mp = n, then the following embedding is continuous and compact

W™P(Q) — LI(Q), foralll <q < .

Moreover, if p = 1 and m = n, then is possible assume q = 0.

13



Proof. See Evans [21}, Section 5.6].
The next theorem is a well-know result for the weak solution of the parabolic problem

which we will use in the sections about regularity of attractors.

Theorem 1.3. (See [8, Page 340]) Let H be a Hilbert space with scalar product (-, )y and
norm | - |g. The dual space H* is identified with H. Let V' be another Hilbert space with

norm || - |y. We assume that V< H with dense and continuous injection, so that
VcHcV™

For each T' > 0 fixed. We are considering a bilinear form a(t;-,-) : V. x V. — R for a.e
t € [0, T, satisfying the following properties:

(1.) Forevery u,v € V the function t — a(t; u,v) is meansurable;
(2.) |a(t;u,v)|g < M|ulv|v|yv forae. t e [0,T], Vu,veV;
(3.) a(t;v,v) = a|v||} — C|v|% fora.e t€[0,T], Ve V;

where o, M and C are positive constants. Given f € L*(0,T;V*) and uy € H, there exists
a unique function u satisfying u € L*(0,T;V) n C([0,T]; H),

du
— e L*0.T.V
o € L0.TY)

(G00) +attsutt).o) = (0.0)
fora.e. te (0,T),Yv eV, and u(0) = uy.

Proof. See Lions and Magenes [32]].

In the next theorem is consequence of the Divergence Theorem.

Theorem 1.4. Let 2 = R" be a domain with smooth boundary with n > 1. If u € H*(Q)
and v € H' (), then

—J(Au)vdxzj Vu-Vode — | ——vdS,
Q Q
and if u € (H*(Q))" and v € HY(Q), then

—J(divu)vdxzf u-Vvdx—f w - v dS,
0 0 o0

where v is the outward unit normal to 05).
Proof. See Boyer and Fabrie [7, Page 133] and Evans 21} Page 711].

14



Theorem 1.5. (Poincaré inequality) If u € H}(QQ), then there is a positive constant C' de-
pending only on ) and n such that

lull L2y < M|Vl r2), ¥ ue Hy(Q)

where )\ is a minimal eigenvalue of the operator associate to the Dirichlet problem of neg-

ative Laplace’s equation.
Proof. See Evans 21}, Page 290].

Lemma 1.6. (Gronwall’s inequality) Let J : [0,T] — [0, +0) be a differential function,
which satisfy the following property:

J'(t) < —a(t)J(t) + B(t), forte|0,T],

where «, 5 : [0, T] — R are integrable functions in [0,T']. Then, for any t € [0,T]
. t
J(t) < e Joal)ds {J(O) + f B(T)dT] :
0

Proof. See Evans [21}, Page 708].

Lemma 1.7. (Young’s inequality) Let 1 < p,q < o0 with ]lo + é = land e > 0. Then,

(ep)
q

ab < ea®? +

b?, Ya,b>=0.

Proof. See Evans [21], Page 706].
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Chapter 2

Semigroups, evolution processes and
attractors

In the follows we recall some concepts and definitions from theory of nonlinear semi-
group and nonlinear evolution process, for more details see Babin and Vishik [3]], Brezis [§],
Carvalho, Langa and Robinson [13]], Hale [24], Pazy [36]], Vrabie [41] and reference therein.

Throughout the text of this chapter, let (91, d) be a complete metric space and let
(X, | - |x) be a Banach space. We will denote C(91) the set of all continuous maps from 9t
into itself and (L(X), | - [l¢(x)) the space of all bounded linear operators from X into itself
with the norm

[Ty =" sup[Ta|x.

e Xz x <1

2.1 Nonlinear semigroups

We begin the section giving the most simple and comprehensive definition of semi-
group that is found in Babin and Vishik [J3]].

Definition 2.1. A nonlinear semigroup is a family of maps {S(t);t = 0} in C(9N) with the

properties
(1.) S(0) = I,
(2.) S(t+s) =S(t)S(s), forallt,s = 0;
(3.) [0,00) x X > (t,x) — S(t)x € C(9M) is continuous.

Definition 2.2. A semigroup S(-) in M is called semigroup of class Cy (or for simplicity
Co-semigroup) if for all x € M, a function S(-)z : [0,00) — M is continuous and S(t) is
a map continuous for all t = 0. A Cy-semigroup is called strongly continuous semigroup,

too.
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The compacity asymptotic is one of the conditions required in the theorem which we
will use to prove the existence of global attrator for a semigroup, see Theorem [2.38]

Definition 2.3. A semigroup S(-) in MM is called asymptotically compact if, for each se-
quence (t,,) such that t, — o as n — o0 and for each bounded sequence (x.,,) of points of

9N, the sequence (S(t,)x,) has a subsequece which is convergent in .

The definition above is equivalent in a Banach space to say that for every bounder
closed and not empty B < X, there is a compact set K < X such that there exists tg > 0
such that S(t)B < K for t > t.

Definition 2.4. A semigroup S(-) eventually bounded in X if there is a t, € [0, 00) such that

| s@B

t=to

is bounded in X for every bounded B, where S(t)B = {S(t)r € X;x € B}. Case ty = 0,
we say that S(-) is bounded.

The next result gives a sufficient condition for a semigroup to be asymptotically com-

pact.

Theorem 2.5. Let S(-) be a bounded semigroup defined in X such that for each t = 0, we

can write

S(t) = S1(t) + Sa(t)
where

(1.) For every bounded set B and each t > 0 there exists t(p;) = 0 and compact set
K(B,t) such that Sy(s)B < K(B,t) always thatt > s > t(p;

(2.) There exists a function g : [0,00) x [0,00) — R with g(-,r) non-increasing for each
r >0, lim,_, g(s,7) = 0 and for all x € X with ||x| <,

[S1(t)z]x < g(t, 7).

Then the semigroup S(-) is asymptotically compact.

Proof. See Carvalho, Langa and Robinson [13, Page 42].

2.2 Linear semigroups

Now we deal with the case of S(t) is a linear operator for all ¢ > 0, when this hap-
pens we call S(-) of a linear semigroup. We will initially define a class within the linear

semigroups that is more comprehensive than Cj-semigroups.
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Definition 2.6. We say that S(-) < L£(X) is a uniformly continuous linear semigroup
lim [S(2) — ()] ccx) = 0.

Definition 2.7. The operator A is called infinitesimal generator of a linear semigroup S|(-)

when

t—0+ ¢

1
D(A) = {a: € X; lim —(S(t)xz — x) exist}
and for each x € D(A) we have

Az = lim 1(S(t)x — ).

t—0+ t

If A is an infinitesimal generator of the linear semigroup S(-), we can say S(-) is
generated by A.

Definition 2.8. A semigroup S(-) is of type (M, &) if there are constants o € R and M > 1
such that
IStz x < Me®|z|x, Yt = 0.

We say that S(-) is exponential stable if it is a semigroup type (M, ) with a < 0.
Theorem 2.9. If S(-) is a Cy-semigroup, then S(-) is of type (M, «v).
Proof. See Vrabie [41, Page 41] .

Definition 2.10. Let A : D(X) € X — X be a closed densely defined linear operator (not

necessarily bounded). The resolvent set of A is
p(A) = {\ € C; X\ — A is injective and surjective}.
The o(A) = C\p(A) is called spectrum of A.
From closed graph theorem, if A— A is injective and surjective, then (A\—A)~! € £(X).

Theorem 2.11. (Hille-Yosida) Let A : D(X) ¢ X — X be a linear operator, then following

statement are equivalent:

(1.) A is the infinitesimal generator of a Cy-semigroup of linear operators S(-) of type
(M, v);

(2.) Aisclosed, D(A) = X, p(A) contains (c,0) and

(A —A)™| < —, for \>aandn=1,2,....

M
(A—a)
Proof. See Pazy [36, Page 8].
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Remark 2.12. Note that the liner operator A is not required to be bounded, however condi-
tions are required for the A resolvent.

From now on, we will denote X™* as the dual of X and we remind the reader that
{x,x%) = {w*,x) = x*(x) is the value of z* € X* atz € X.

Definition 2.13. Let A : D(A) € X — X be a linear operator. We say that A is a dissipative
operator when for each x € D(A) there is an x* € §(x)

Re(Ax,x+) <0, Yx e D(A)

where §(z) = {y € X*; (y,x) = |=* = |ly[*}.

One of the reasons we are interested in dissipative operators in the semigroup theory
is the Lumer-Phillipis’s Theorem.

Theorem 2.14. (Lumer-Phillips) Let A be a linear operator with dense domain D(A) in X.

The following affirmations are equivalents:

(1.) If A is dissipative and there is a Ao > 0 such that R(\oI — A), the range of \oI — A,

is X, then A is the infinitesimal generator of a Cy-semigroup of contractions on X.

(2.) If Ais the infinitesimal generator of a Cy-semigroup of contractions on X then R(\ —
A) = X forall N > 0 and A is dissipative. Moreover, Re(Ax,z*) < 0, for every
x € D(A) and every x* € §(z).

Proof. See Vrabie [41, Page 60].
We now want to discuss how the semigroup theory is made application of the semi-
group theory to solve problems involving partial differential equations. Consider an initial

value problem which we can write as follows

d—u—i—Au:F, t>0
2.1 dt

u(0) = ug

where — A is a linear operator with domain D(A) < X is also the set in which the other con-

ditions of the problem are satisfied (for example boundary condition) and F € L'([0, T]; X).

Definition 2.15. We will call u : [0,T] — X a classical solution of the problem (2.1)
ifue CY[0,T]; D(A)) and it satisfies C;—?(t) + Au(t) = F(t) for each t € [0,T] and
u(0) = uy.

Definition 2.16. We will call u : [0, T] — X a strong solution of the problem 2.1)) if u is
absolutely continuous on [0,T], u' € L'((0,T]; X), u(t) € D(A) and it satisfies d;u(t) +
Au(t) = F(t) for each t € [0, T] and u(0) = u,.
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The classical solution can be call C'-solution. The classical solution can b