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Resumo

O objetivo principal deste trabalho é analisar principios de concentracao de
compacidade para espacos de Sobolev fracionarios baseados na concentracao de
compacidade de P.-L. Lions e no perfil de decomposicao para convergéncia fraca em
espacos de Hilbert devido a K. Tintarev e K.-H Fieseler. Como aplicacao, abordamos
questoes sobre a compacidade do funcional energia associado aos seguintes problems
elipticos nao locais,

-

(—=AY*u = f(v,u) em RY,
(—=AYu+a(z)u = f(r,u) em RY,

(—=A)u + V(z)u + A\K(z)pu = f(x,u) + g(z,u) em R3

(—A)*¢ = K(z)u? em R?

\
onde 0 < s <1, 0<a<l 2aa+4s >3, A > 0e K(x) = 0 pertence a um espago
de Lebesgue adequado. Obtemos resultados de existéncia para uma vasta classe de
potenciais a(z) possivelmente singulares, nao necessariamente limitados por baixo por
uma, constante positiva e para nao linearidades oscilatérias em ambos os crescimentos

subcriticos e criticos que podem nao satisfazer a condicao de Ambrosetti-Rabinowitz.

Palavras-chave: Concentracao de compacidade; Laplaciano fracionéario; expoente

critico de Sobolev; métodos variacionais.

iv



Abstract

The main goal of this work is to analyze concentration-compactness principles for
fractional Sobolev spaces based on the concentration-compactness principle of P.-L.
Lions and in the profile decomposition for weak convergence in Hilbert spaces due to
K. Tintarev and K.-H Fieseler. As application, we address questions on compactness
of the associated energy functional to the following nonlocal elliptic problems,

-

(—=AY*u = f(r,u) in RY,
(=AYu+a(z)u = f(z,u) in RY,

(—A)Yu + V(z)u + A\K(2)du = f(z,u) + g(zr,u) in R?

(—A)*¢ = K(z)u? in R

\

where 0 < s < 1, 0 < a < 1, 2a+4s = 3, A > 0 and K(z) > 0 belongs to
a suitable Lebesgue space. We obtain existence results for a wide class of possible
singular potentials a(z), not necessarily bounded away from zero and for oscillatory
nonlinearities in both subcritical and critical growth range that may not satisfy the

Ambrosetti-Rabinowitz condition.

Keywords: Concentration-compactness; fractional Laplacian; critical Sobolev

exponent, variational methods.
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Frodo. ‘So do I, said Gandalf, “and so do all who live
to see such times. But that is not for them to decide.
All we have to decide is what to do with the time that is

given us.”

J.R.R. Tolkien, The Fellowship of the Ring.
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Introduction

The main goal of the present work is to analyze concentration-compactness
principles for fractional Sobolev spaces. As an application, we address questions on

compactness of the associated energy functional to the following nonlocal equation,
(=A)*u = h(z,u) + L(u) in RY, (Ps)

where 0 < s < 1, (—A)® is the fractional Laplacian, h(x,t) is a given function and L£(u)
is a nonlocal integral operator.

During the past years there has been a considerable amount of research involving
nonlocal nonlinear stationary Schrodinger problems. This equation arises in the study
of the fractional Schrédinger equation when looking for standing waves. Indeed, when
u is a solution of Eq. , it can be seen as stationary states (corresponding to solitary

waves) in nonlinear equations of Schrodinger type
iy — (—A)°¢+ h(z,¢) =0 in R,

Fractional Schrodinger equations are also of interest in quantum mechanics (see e.g.
the appendix in 31| for details and physical motivations). Moreover, we refer to [4], [5]

S arise from several areas of

and [18], where equations involving the operator (—A)
science such as biology, chemistry or finance.

Roughly speaking, the approach to obtain solutions for Eq. using variational
methods and critical point theory relies in associating Eq. with a functional
I (usually called energy functional), defined in a appropriated infinite dimensional
Banach space of functions H. One defines as weak solutions the critical points of I,
and with aid of additional results it is expected that these weak solutions satisfy Eq.

(P.) in each point of RY. For an introduction to variational methods and critical point
theory we suggest |6,126,32}72,/101].



In this context, in order to find critical points for I, one can use minimaz
theorems, such as the mountain pass theorem with the so called compactness conditions.
It is considered that H is continuously embedded in a Banach space L (typically
L = LP(RY)) and with the help of suitable other assumptions on h(z,t) and L£(u),
one can find a bounded sequence (uy) in H satisfying I(uy) — ¢ > 0 and I'(u) — 0.
The next step is to prove that (uy) satisfies the Palais-Smale compactness condition at
the level ¢, that is, (uy) converges in H, up to subsequence. However, if I is invariant
under the action of a non-compact group (such as translations or dilations) with respect
to the embedding H — L, it is expected that the Palais-Smale condition does not
hold for all ¢ > ¢y, for some non-negative c¢y. Also, when a constrained minimization
problem is considered (whose minimizers give critical points for I) a similar difficult
appears, more precisely, the problem admits bounded minimizing sequences that do not
converge, even in a subsequence. One shall notice that convergence of these involved
functional sequences are not difficult to be obtained whenever the embedding H — L
is compact.

Problems like Eq. (Pg), where there is a priori difficulty of dealing with the fact
that the aforementioned sequences do not posses adherent points in the strong topology
or more generally that the convergence I(ux) — I(u) is not guaranteed, are called with
lack of compactness. Fortunately, the same non-compact group of invariances that
generates lack of compactness can be employed to restore it, precisely, to obtain the
convergence I(u;) — I(u). This approach to get compactness through the study of
convergence of sequence under the action of invariant non-compact groups is called
in the literature concentration-compactness principle, and was first introduced in the
1980’s by P.-L. Lions in a series of works [65-68]|, for problems like Eq. where
s =1, H=H(RY) or H=DY®R"M), and L = LP(R"Y) or L = L*(R") are the
standard Sobolev spaces, and 2* = 2N /(N — 2) is the critical Sobolev exponent.

A lot of research about concentration-compactness has been made since those
works of P.-L. Lions (see, e.g., [53,/99] and the references therein). Some of them
describe the concentration-compactness phenomena by means of profile decomposition
of weak convergence for bounded sequences in the considered space of functions and
they can be seen as extensions of the celebrated Banach-Alaoglu-Bourbaki Theorem.

This kind of profile decomposition has been widely investigated in various settings, for



instance we may cite the ones in [55,57,71,87,89|. It describes how the convergence of
a bounded sequence fails under a continuous embedding of the considered space.

In this thesis we develop a concentration-compactness principle via profile
decomposition of weak convergence for the fractional Sobolev spaces H*(RM) and
Ds2(RY), for 0 < s < N/2 and 0 < s < 1, respectively, considering their corresponding
embedding in LP(RN), 2 < p < 2* and L* (RY), where 2* = 2N/(N — 2s) is
the fractional critical Sobolev exponent, following the abstract version of profile
decomposition in Hilbert spaces due to K. Schindler and K. Tintarev [99] and the
recent advances due to G. Palatucci and A. Pisante [71]. As an application, under our
settings, we prove that Palais-Smale compactness condition holds at the mountain pass
level. We also use the specific description of our concentration-compactness principle
to improve some well known existence results for Eq. , and with this, we expect
that our results can lead to a new way to study existence of solutions for nonlocal
problems like ([PJ).

It is well known that Eq. admits a variational setting in fractional Sobolev
spaces, and the solutions are constructed with a variational method by a minimax
procedure on the associated energy functional. However, we note that the usual
variational techniques cannot be applied straightly because of a lack of compactness,
which roughly speaking, originates from the invariance of R™ with respect to translation
and dilation and, analytically, appears because of the non-compactness of the Sobolev
embedding. For instance, it is not possible to apply the minimax type arguments used
by P. Felmer et al. [51] and R. Servadei and E. Valdinoci [80] and [81] because their
approach rely strongly on the sub-criticality of the nonlinear terms or the boundedness
of the domain.

To be more specific about our results, in the following lines, we describe each
chapter of this thesis.

In Chapter [0 we give the basic concepts and results that are used through the
text, turning ou exposition self contained.

In Chapter[i] it is proved our profile decomposition of weak convergence for the
fractional Sobolev spaces D*?*(RY) and H*(RY), Theorems and [1.1.2] These
results are proved in [41,43]. In [55] and |71, Theorem 4] the authors introduced the

subject in the fractional framework, and also, the problem of cocompactness in the



sense of |29] was extensively discussed. It seems for us that these new abstract results
are more appropriated to study the existence of non-trivial solutions for nonlocal elliptic
equations than the profile decomposition developed in [71]. It is not clear how one
can apply [71, Theorem 4| to obtain such a result for nonlinearities with asymptotically
self-similar oscillations about the fractional critical growth (see Sect. for precise
definitions).

It is also worth to mention that Theorem [[.I.I] can be used to prove the
fractional version of Lions concentration-compactness principle proved in |71, Theorem
5|. Indeed, Theorem improves |71, Theorem 5| for the case Q = R” since the
sums of Dirac masses that appears in this result comes from the profiles given in (1.1.4)).
We also call attention to the fact that Theorem is an alternative to the well known
fractional Lions Lemma of compactness (see [51, Lemma 2.2|), as can been seen in Sect.
.6l Finally, we point out some differences from our Theorem and some results
on profile decompositions contained in [55,/71]. The decomposition in Theorem is

based in a discrete group of operators, that is, the dilations in the following form
dju(x) = 'y%ju(fij), v>1, jeZ. (0.0.1)

From ({0.0.1)), we can decompose (in a similar way as in [99, Theorem 5.1]) the collection
of the “dislocated profiles” w(™ in three: dilation by “enlargement” (N_), dilation by
“reducement” (N, ), and no dilation (pure translation Ny). This allow us to study
scalar field equations involving nonlinearities with critical growth more general than
the pure critical power (see Sect. , the so called asymptotic self-similar functions
(assumption [(f5)]in Sect. 2.1). On the other hand in [55]71] was considered continuous
dilations of the form

N—

hu(z) = A2

2Su()\m), A >0,

and their decomposition holds for all 0 < s < N/2. We should mention that Theorem
holds for 0 < s < 1 and at this point arise a natural question which is to prove
this result for 1 < s < N/2. In |71, Proposition 1| it was proved that Dpy—weak
convergence is equivalent to strong convergence in L% (RY), for 0 < s < N /2 (see Sect.

0.5, where for v > 1 given,

N—-2s .

Dgn = {dy,j : D2 (RY) - D¥2(RY) 1 dyju(x) =7 2 ‘u(y/(z —vy)), ye RN je R} :

4



From this we can conclude that the answer to that question is analogously to prove
that Dy~ —weak convergence is equivalent to the D;~—weak convergence in D*?(RY), for
1 < s < N/2, where Dyn := {dy,j cyeZV, je Z}. In the affirmative case, Theorem
can be seen as a corollary of the decomposition given in Theorem |71, Theorem
4, Theorem 8|, with minor changes (provided also in Sect. . Nevertheless, for the
case that 0 < s < 1, we present a proof of this fact (given in Proposition , which
can also be seen as an alternative proof of Theorem [I.1.1]

In C’hapter@, which relates to the study made in [41], we discuss the existence of

non-trivial weak solutions for the equation
(=A)u = f(x,u) inRY, (&)

where f(z,t) is assumed to have critical growth. It corresponds to the case where we
take £(u) = 0 and h(z,t) = f(z,t) in Eq. (Pg), with fi(z,0) =0.

A lot of work has been devoted to the existence of solutions for nonlinear scalar
field equations like Eq. (&), both for local case (s = 1) and nonlocal case 0 < s < 1,
since the celebrated works of H. Berestycki and P.-L. Lions [11,12|. In these two papers,

the authors discuss the existence of radial solutions of the semi-linear elliptic equation

—Au = g(u), uwe H'RY)(N = 3), (0.0.2)

where g : R — R is a continuous odd function with subcritical growth. Under some
appropriate conditions on ¢(t), they used minimizing arguments to prove (in part I)
the existence of a positive radial ground state for (0.0.2)), that is, solution having the
property of the least action among all possible solutions. In [98|, K. Tintarev has

treated the non-autonomous problem
~Au = g(r,u), ueD?RY)(N =3),

when the nonlinearity g(z,t) is allowed to have critical growth with asymptotically
self-similar oscillations about the critical power [t|**~2¢. Recently, using some minimax
arguments, X. Chang and Z-Q. Wang [24] proved the existence of a positive ground
state for fractional scalar field equations of the form when f(x,t) = f(t) has

subcritical growth and satisfies the Berestycki-Lions type assumptions. In [110], J.



Zhang et al., established the existence of ground state solutions to the fractional scalar
field equation (&), when f(z,t) = f(t) has critical growth.

Motivated by the results cited above, another important purpose of this chapter is
to prove the existence of a ground state solution for the nonlinear scalar field equation
in the “zero mass case” with nonlinearities in the critical growth range. The
idea for proving such kind of result for Eq. in the autonomous case is based
in a constrained minimization argument similar to [11]. We obtain the result by
using the invariance of the problem with respect to action of the translation and
dilation group in R¥, thanks to our concentration-compactness principle and a specific
Pohozaev identity. Our argument allow us to avoid the typical assumption that
t~!f(x,t) is an increasing function, which is usually required in the approach of
constrained minimization over a Nehari manifold. Moreover, to prove the existence
for the autonomous case f(z,t) = f(t), we do not require the well known Ambrosetti-
Rabinowitz condition.

The proof of that Pohozaev type identity is essentially based in the use of the
so called s-harmonic extension introduced by L. Caffarelli and L. Silvestre [19] and
remarks contained in [47] and [59]. To the best of our knowledge, this is the first work
that shows a Pohozaev type identity for the homogeneous Sobolev space D*?(R") and
for f(t) in the critical growth range. Our method is very convenient in the sense that
with our arguments we can always derive a Pohozaev type identity in the fractional
framework without relying in global regularization of the solutions. In the present
literature, there are only Pohozev type identities for solutions in the inhomogeneous
fractional Sobolev space H*(RY), 0 < s < min{1, N/2}, and for f(t) with subcritical
growth (cf. [24]). Moreover, the argument for the proof relies in obtaining the behavior
of solutions in the whole space RY (cf. [54]).

Our main results may be seen as the nonlocal counterpart of some theorems of
K. Tintarev et al. [97-99]. In comparison with the local case [98], we also mention
some additional difficulties: the Pohozaev type identities for the fractional framework
available in the literature (cf. [24,54,75]) do not match with our settings; an additional
hypothesis (assumption must be considered in order to achieve the concentration-
compactness for the non-autonomous case. In fact, the asymptotic additivity

takes the role to describe precisely the behavior of weak convergence under our settings



(Proposition . At this point a natural question arises: Is hypothesis necessary
to describe the limit of the profile decomposition terms (see Theorem ? Indeed,
we believe that without condition it is possible to find examples for which this
description fails.

Additionally, in Chapter [2] we introduce a new class of nonlinearities of the

2% as

critical growth type for the fractional framework, that include the power [t
an example. We believe that this new notion of criticality together with our
concentration-compactness, can lead to a new way to approach elliptic problems
involving nonlinearities with critical growth and the fractional Laplacian, for instance,

replacing the well known nonlinearity f(z,t) = K (z)[t|? %, which is often considered

to studied existence of solutions for Eq. with aid of [71, Theorem 5|, for a general

self-similar function under our settings,

f(x,t) = f(t) = exp{by(sin(In |t]) + 2)} (bo cos(In |t]) + 2¥)[¢t[** 2, by > 0, f(0) =0,

see also Example in Chapter [2J For the local case a class of self-similar function
was introduced in [78,97-99).

Moreover, as it is well known, one of the main difficulties in leading with
nonlinearities with critical growth condition is proving that the minimax level of
the functional associated to Eq. avoids levels of non-compactness, which usually
requires additional description of the nonlinearity growth. We avoid this by considering
that f(x,t) has appropriated limits consistent with our concentration-compactness and
comparing the minimax level of functional associated to Eq. with the limit ones.

In C’hapter@ which relates to the study made in [43], we consider the following

nonlocal Schrédinger equation
(—A)u+ a@)u = fw,u) in RY, (H.)

where f(x,t) is assumed to have either subcritical or critical growth. It corresponds to
the case where L(z,u) = 0 and h(z,t) = f(x,t) —a(z)t in Eq. [Py, with f;(z,0) =0.

First, we would like to mention the progress involving potentials a(x) bounded
away from zero and nonlinearities with subcritical growth. In |[79] S. Secchi investigated
the existence of ground state solutions for fractional Schrédinger equations by using

a minimization argument on the Nehari manifold. He proved existence results under

7



suitable assumptions on the behavior of the potential a(x) and superlinear growth
conditions on the nonlinearity. See also [52]|, where B. Feng proved the existence of
ground state solutions of (H), for the particular case f(z,t) = [t[P~2¢, where 2 <
p <2(N+2s)/N, N = 2, by using the P.-L. Lions concentration-compactness principle
(see [66]). R. Lehrer et al. [61] studied the existence of solutions through projection over
an appropriated Pohozaev manifold, assuming that f(z,t) = a(z)fo(t), where fo(t) is
asymptotically linear, that is, limy_, fo(t)t ™' = 1 and limj,| e a(x) = as > 0. For the
local case (s = 1), R. de Marchi 33| studied existence of non-trivial solutions for ()
assuming that a(z) and f(z,t) are asymptotically 1—periodic in each x;,i =1,..., N,
combining variational methods and the concentration-compactness principle, and also
proved existence of ground state solutions when a(z) and f(x,t) are 1—periodic in each
x;, 1 = 1,..., N, without assuming that ¢ — f(z,t)t™! is an increasing function. By
using similar approach, H. Zhang et al |[106], studied existence of ground state and
infinitely many geometrically distinct solutions for Eq. , based on the method
of Nehari manifold and Lusternik-Schnirelmann category theory. Moreover, for recent
works on nonlinear Schrédinger equations where the classical Ambrosetti-Rabinowitz
condition is not required we cite 33,61, 106].

Problems involving potentials bounded away from zero and critical Sobolev

2=2¢ where g(x,t) have subcritical

exponent, precisely, when f(x,t) = g(x,t) + |t
growth, we may refer to [62,82,[83] and the references given there. In these works, it

*_
25-2¢. Moreover,

was crucial the presence of perturbation g(x,t) of the critical power |t
it was assumed the following condition on the potential

0 < inf < liminf
A ) < fpafate)

which was introduced by P.L. Rabinowitz in 73| to study the local case of Eq.
(see also for the critical case [69]). We cite [27,35,86] for works on local Schrédinger
equations with nonlinearities of the pure critical power type (without subcritical
perturbation term) and inverse square type potentials. For the fractional case we
cite [39], where it was studied the existence qualitative properties of positive solutions.

Motivated by the above works, we obtained existence of non-trival solutions for
Eq. in several cases, which were not considered by the aforementioned papers.

Our potential a(x) may change sign, can have singular points of blow up and even

8



vanish at the infinity, and the nonlinearity can be considered with critical or subcritical
oscillatory growth. In the subcritical case we assume a condition on the potential a(x)
which ensures the continuous embedding of the associated space of functions similar
to [85]. Nevertheless differently from [85], we do not impose assumption on a(z) to
guarantee the compactness of the Sobolev embedding. To compensate, we ask that
the limit of a(z), as |z| goes to infinity, exists and is positive, or alternatively, that
a(x) is 1—periodic in x;, i = 1,..., N. Moreover, by considering similar assumptions
made in [34], the potential does not need to be bounded from below by a constant.
We also take account the case where the nonlinearity has oscillatory behavior and
does not satisfies the typical assumption of Ambrosetti-Rabinowitz. Similar to the
aforementioned papers, the nonlinearity f(z,t) is supposed to has a periodic asymptote
fp(z,t), which allow us to “transfer” the usual assumptions to it. Also we mention
that we complement and improve some results of |33|, since we consider the nonlocal
equation and a case where we do not need the monotonicity of t — fp(x,t)t 1.
In the critical case, inspired in some ideas contained in [27], we treated in this
chapter a class of potentials somehow different, since we consider a general class that
include as a particular case the inverse fractional square potential a(x) = —\|z| =%,

where 0 < A < Ay and Ay, is the sharp constant of the Hardy-Sobolev inequality
AN,SJ 2| 2 u? dz < J €12 |.Zul” d¢, Yue CP(RN). (0.0.3)
RN RN

Moreover, the sharp constant is precisely given by
2 (N42
()
N 25\’
2 (53%)

where T' is the well known Gamma function. Further details about (0.0.3) can be

Ay = 2% 0<s<1, N >2s, (0.0.4)

found in [56] and [103]. In that case, the nonlinearities are suppose to be “self-similar
functions”, in the sense introduced in Sect. [I.5]

In this chapter, we also proved a more suitable and general version of the Pohozaev
identity studied in Chapter [2| (Proposition , which is used to study existence of
ground state solution for the case where the potential a(z) has singularities. As a
consequence of this Pohozaev type identity, we also proved some non-existence results
for Eq. . Moreover, using this kind of identity and our concentration-compactness

principle, we could avoid the use of monotonicity ¢ — fp(x,t)t™' and prove some
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existence results by comparing the minimax level of the associated energy functional
of Eq. with the one of the associated limit problem.

It is worth to mention that in this chapter we prove the existence of ground
states in three cases: First when (Py)) is invariant under the action of translations in
ZN (subcritical growth), second when (PJ) is invariant under dilations vV=25)/2y,(v.)
(critical growth), and third when the monotonicity of ¢t — f(x,t)t™! is considered.

In Chapter [}, which relates to the study made in [44], we are concerned
with existence and non-existence of solutions for the following nonlinear fractional
Schrédinger-Poisson System

(—A)u + a(x)u + AK (2)pu = f(z,u) +g(zr,u) in R
(SP)

(—A)*¢ = K(z)u? in R?
where 0 < s <1, 0 < a <1, 2a+4s = 3, A > 0. Under suitable conditions over
K(z),a(z), f(x,t) and g(z,t) it can be proved that System (SP) is equivalent to the

following nonlinear Schrodinger equation with a non-local term,
(—A)Yu+ a(z)u + AK(2)po[ulu = f(x,u) + g(x,u). (Snr)

It corresponds to the case where L(u) = AK (x)do[u]u, h(z,t) = f(z,t)+g(z,t) —a(x)t
in Eq. (P, also f(z,t) and g(z,t) are assumed to have subcritical growth and critical
growth respectively, and f;(z,0) = ¢:(x,0) = 0. In particular, when K(x) = 0, the
system turns in to the fractional Schrodinger equation (H).

When o = s = 1, the System (SP) reduces to the classical Schrédinger-Poisson

System

—Au+ a(z)u + AK(z)pu = f(x,u) + g(z,u) in R
(0.0.5)

~A¢ = K(z)u? in R?
which describes systems of identically charged particles interacting each other in the
case where magnetic effects can be neglected (see [10]). System was extensively
studied in the past years by many authors, mainly concerning existence and multiplicity
of solutions by using variational methods. Here we would like to cite some related

results, for instance the ones in [1,3}22}25}76,90,(104.|105,/107,109,[111].
First, we would like to mention the progress concerning involving

potentials a(x) bounded away from zero and nonlinearities f(z,¢) with subcritical
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growth (g(z,t) = 0). In [76], D. Ruiz proved (for the local case) existence and non-
existence results by considering that f(x,t) = [t|P7%, 2 <p < 6, K(z) = V(z) =1
and analyzing the relation between parameters p and . He also proved non-existence
of non-trivial solutions of if2<p<3and A= 1/4. In [90] J. Sun and S. Ma

obtained existence of ground state solution if a(z) is a continuous and 1—periodic in

x;, @ = 1,...,N. In this work it was assumed that f(z,t) has 4-superlinear growth,
that is
F(x,t ¢
lim (2,9 =00, where F(x,t) = J flz,7)dr.
[t|—00 t4 0

Some results concerning sign—changing potentials have appeared in [105] and
the references given there, where the authors proved existence and multiplicity of
solutions for by using a linking type theorem when f(x,t) is either 4-superlinear
or sublinear at the infinity. They also considered the case where a(x) satisfies the
following conditions: there exists M > 0 such that [{z € R?: a(z) < o0}| < o0, and
Q = intV ~1(0) is nonempty, Q = V1(0) and has smooth boundary.

For the progress involving nonlinearities with critical growth, we start by citing
the work of J. Zhang [109]. In this paper, it was proved existence of non-trivial radial
solutions when it is taken into account autonomous g(z,t) = g(¢) with critical growth
at the infinity, and in particular, it is possible to consider nonlinearities perturbations
of the form f(x,t) + g(x,t) = [t|P~%t + |t|*t, for 2 < p < 6. By using the method of
Nehari manifold and concentration compactness principle of P.-L. Lions [66], in [107]
H. Zhang et al. considered the case that a(x) is asymptotically periodic and bounded
away from zero. They proved existence of ground state with 4-superlinear nonlinearity
asymptotically periodic f(x,t) and with critical perturbation g(z,t) = Q(z)[t|*" ~2t,
where Q(z) € L*(R?) is bounded away from zero and 2* = 6 is the critical Sobolev
exponent.

Regarding System (SP), to the best of our knowledge, there are few papers
in the literature which considered it. Here we cite [93,/94,/108,|110]. In [110] it was
considered nonlinearities satisfying the almost optimal condition introduced in the
work of Berestycki-Lions [11] to study when K(z) = 0. The authors in |110]
have proved existence of non-trivial solutions with critical nonlinearities at the infinity,

more precisely, they assumed that lim,_,q, g(t)/t* ' > 0, where 2* = 6/(3 — 2s) is the
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fractional critical Sobolev exponent. Their approach allow the consider nonlinearities

in the form f(x,t) + g(x,t) = [Pt + |t|* 7%, 2 < p < 2, but it is required that

a(xr) = ap > 0. It is also worth to mention that recently K. Teng [93,94] studied
existence of ground states for under general assumptions for the potential
a(z), for K(z) = 1, f(z,t) = [¢t[7' for 2 < p < 2% — 1, with 3/4 < s < 1, and
gl t) =t

We point out that unlike the local case s = a = 1, the critical exponent 27 is close

2;‘—1t

to 2, as s approaches to 0. This increases the particular difficult that appears in the
Eq. , since even with the Ambrosetti-Rabinowitz assumption, it is not know in
general, if the Palais-Smale sequences associated with the functional of Eq. are
bounded, for instance, when f(z,t) = [t|[P"*t, 3 <p < 4, and g(z,t) = 0. To overcome
this difficulty, one can attempt to use the abstract result due to L. Jeanjean [58|
to construct a bounded sequence at the Mountain Pass level. Nevertheless, the lack
of compactness associated with the boundedness of the domain or criticality of the
nonlinearity still has to be compensated.

Motivated by the above works, mainly in the formulation made in [1,76], our goal
is to obtain existence of non-trivial solutions for Eq. under general assumptions
following the same ideas of Chapters [2] and [3]

We deal with the case where a(x) is not necessarily bounded away from zero and
the nonlinearity g(x,t) is supposed to be a general self-similar function. Our approach
relies in assuming that K (x), a(x), f(x,t) and g(z,t) have periodic asymptotes Kp(x),
ap(x), fp(x,t) and go(t), respectively. We study the limit problem

(=A)’u+ ap(z)u + AKp(x)du = fp(x,u) + goo(u) in R3, 0.0.6
(A6 = Kp(a)u? in R (0:0:0)

and then compare with the minimax level associated with the energy functional of
the respectively problems. In order to prove one of the existence results (the case
where f(z,t) and g(z,t) are nonidentical to zero), we used some ideas of [42]. More
precisely, we estimate the minimax level of the functional associated with System
to avoid levels of non-compactness for the functional associated with the standard
System . This approach allows to “transfer” the usual assumptions made in

the nonlinearity to it periodic asymptote, in particular, avoiding the monotonicity
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of t — t71(f(x,t) + g(z,1)).

We also studied the autonomous case of (Syi)), precisely, when f(z,t) = f(¢t)
and g(z,t) = g(t), does not depends on z. In this case it is not necessary that the
nonlinearity has f(t) has 4-superlinear growth. Under general assumptions we proved
that Palais-Smale sequences at the mountain pass level are indeed bounded, avoiding
the use of L. Jeanjean Theorem [58, Theorem 1.1] to construct one.

Additionally, this chapter provides some non-existence results. Following the
ideas developed in the previous chapters, we establish an improved version of a
Pohozaev type identity given in [94] for System (Syi)). As a consequence, we prove
a general version of the non-existence result establish in [93, Theorem 1.6]. Another
important issue of this chapter is the study of the existence of ground state solutions
for Eq. (Syz)). We prove existence of ground states following the basic ideas of Chapter
Bl by considering that Eq. is invariant under action of translations in Z3.
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Notation and terminology

C, Cy, Cy, Cy,... denotes positive constants (possibly different) that are

independent of the given parameters of the context;
e We consider RY ™ = {z = (z,y) e RV*1 . ¢y > 0};
e Given R,6 > 0 we set
Brs={z= (z,y) € Rf“ z|? < R? y > 6},
Frs={z=(z,y) e RY" : |2]" < R?, y =4},
Frs=1{r=(z,y) e RI o + 3 = B2, y > o)
e Given R > 0 we set
Br = {z = (z,y) e RN*' . || < R?},
B} = Br n RY*! and

BY ={z=(z,y) e RY*" . |2]* < R?, y = 0};
e |A| denotes the Lebesgue measure of a set A in RY;

e X, denotes the characteristic function of the set A;

e We use the notation ®(u) = {nx F(z,u)dz and @, (u) = { n Fi(u)dz for
Kk =0,+,—, (see for instance Sect. ;

e Given u: RN — R we consider u_(z) = min{u(x),0} and u,(z) = max{u(z),0};
e supp(u) denotes the support of the function w;
e ((Q) denotes the space of continuous real functions in Q < R¥;

e Cy(Q2) denotes the subspace of C'(£2) consisting of functions u whose support

supp(u) is compact in 2;
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Let & > 1 be a integer and Q an open subset of RY. C*(Q), denotes the
space of k-times continuously differentiable real functions defined over 2 and
C™(Q) = iy O ()

CE(Q) = C*(Q) n Cy(Q) and CL(2) = C®(2) N Co(Q);

Let 0 < a < 1, we denote

Coe (@) = {u e C@): sup LD U] _ oo}

x,ye |x - y|a

as the standard Holder space. C%%(Q) are the functions in C*(Q) whose all

derivatives up order k belongs to C%*(9);

Given u : RY — R we use the notation

n N—25 :(n) () n
dPu(z) =577 (3 (@ - y)),

to indicate the action of dilations and translations given by the profile

decomposition of Theorem [I.1.1}
| - |, denotes the standard norm of the space LP(RY), for 1 < p < oo;
| - | denotes the standard norm of the space L*(RY);

We denote (see Sect.
[, 0], — f (—AY2u(—A)2pdz,  u,ve D2RY),
RN

(u,v) = JRN(—A)S/Q@L(—A)S/% +uvdr = [u,v]s + (u,v)2, u,ve H3(RY).

We denote ay = o(by), when ay/b, — 0, as k — oo.
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Chapter O

Preliminaries

For the reader convenience, we dedicate this chapter to review some basic concepts
and results that are used through the text. Here, for the sake of discussion, we restrict
ourself to state without proofs the results that we find most suitable for this work,
considering that the reader is familiarized with basic concepts of Functional Analysis
and Measure Theory. Thus making our exposition self-contained. For the interested
reader we refer the classical books [7,[45,88,92] and the “Hitchhiker” to the fractional

Laplacian [36], which inspired the development of this chapter.

0.1 Fourier Analysis

In this section we develop some of the theory for the Fourier transform, which
is a essential concept needed to study nonlinear Schrodinger equations involving the
fractional Laplacian. The Fourier transform is also powerful tool used to study
linear partial differential equations, turning them into either algebraic equations or
else differential equations involving fewer variables. In this section all functions are
complex-valued, and — denotes the complex conjugate.

Definition 0.1.1 (Fourier transform). The Fourier transform of u € L*(RY), is defined

by
1

w(x) = Fu(x) = R JRN u(§)e™®*d¢, e RY,

and its inverse Fourier transform by

1 )
= W JRN U(ﬁ)@lg.x dg, T e RN.
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Since |e*@¥| = 1 these integral are finite for all z € RY. The Fourier transform
and its inverse can be extended to functions in L?(R") through the next well known

result.

Theorem 0.1.2 (Plancherel’s Theorem). Assume u € LY(RYN) n L*(RY). Then

i,u € L*(RY) and
J |ﬁ|2dx:J |a|2dx:f ul? de.
RN RN RN

This means that through Plancherel’s Theorem the restriction of the Fourier

transform % ‘ LLEN can be uniquely extended to a unitary isomorphism in

)NLA(RY)
L*(RY), with inverse .#~! (inverse Fourier transform). As an consequence of

Plancherel’s Theorem we have the following well known formula,
f u@dxzf FuFvdr, Yu,ve *(RY).
RN RN

We now pass to define a suitable space of functions that is used in some density

arguments in the proof of some of our results.

Definition 0.1.3 (Schwartz space). For any non-negative integer m and any multi-
index o we define
[t m.ay = sup (1 + |2])™]0%u(z)]

zeRN
and the Schwartz space . (RY) as
S (RY) = {u e C°(RY) || (m,0) < 00, ¥ m,oz}.
Thus, the Schwartz space .%(RY) is defined consisting of rapidly decaying C*®

functions in RY which, together with all their derivatives, vanish at infinity faster than

any power of |z|.

Remark 0.1.4. If u belongs to .7 (RY) then it belongs to LP(R"), for any 1 < p < 0.

The space . (RY) is related to the Fourier transform due to the fact that .7 is

an isomorphism from . (RY) onto itself, with inverse .Z ! (inverse Fourier transform).

The fractional Laplacian

We are now in condition to make a brief discussion about the operator (—A)*.

Definition 0.1.5. Let v any real valued function defined in R and s > 0. The
fractional Laplacian (—A)*u is defined by the relation

(—AYu(x) = F *(|¢)* Fu) (z), zeRV.
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As an example that makes (—A)*u well defined as a real number, we can take
any u € (RY). That is, .(RY) is the suitable space of functions that makes the
fractional Laplacian well defined. For the special case that 0 < s < 1 the fractional

Laplacian of u € .7(R"), can be computed by the following singular integral,

. u(z) — u(y) N
—A)Yu(zr) = C(N,s) lim —————dy, zeR", for0<s<l,
(Ayue) = OWs) i | PO

and a suitable positive normalizing constant

1 —cosg -1
C(N, S) = (J;RN W d§) . (011)

It is worth to define as well, the Riesz Potential of a function v : RY — R,

Z[ul(e) = o | ulwle =y,

where

In a sense, the Riesz potential defines an inverse (or solution operator) for a power of
the Laplace operator on Euclidean space and this concept is often used in Chapter [4]
More precisely,

(A (ZaleD) = . Ve S(RY).
The next result describes the conditions needed to consider the Riesz Potential as an
operator on Lebesgue spaces.

Proposition 0.1.6. Let 0 < 2a < N and 1 < p < ¢ < o0 such that 1/qg = 1/p—2a/N.
Then for u e LP(RYN), the Riesz potential converges for almost every x and, moreover,

if p# 1, there exists a positive constant C' such that

[Zoully < Cllup.

0.2 Fractional Sobolev Spaces

This section is devoted to the definition (as well to describe some properties) of
the function spaces that are used in this text.

Definition 0.2.1 (Homogeneous fractional Sobolev space). Let 0 < s < N/2. The
Homogeneous fractional Sobolev space D%?(R") is defined as the completion of the

space C(RY) with respect to the norm

o= | P17l e
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Thus, by the well known inequality

Jot
RN

where

2% /2
Zdr < K, (J |§|25|ﬁ’u|2d§> . YueCPMRY), 0<s<N/2,
RN

Ky =

LTSy vy \ 2
SN (F(N/2)> ] :

2

the space D%2(RY) is well defined with continuous embedding
D*2(RY) — L#(RY), for 0<s< N/2. (0.2.1)
By Placherel Theorem, for 0 < s < N /2, we have

s

[u]2 = J |(—A)S/2u|2 dx, Vue CSO(RN).
RN

Consequently we can consider D*?(RY) as a separable Hilbert space when equipped

with the inner product
|u, v]s = JRN(_A)S/ZU(_A)S/% dr, Y u,ve D¥*(RY),
as well the characterization
D2 (RY) = {u e X [RY): (—A)ue L?(RN)} .

It is of our interest as well to consider the closed subspace of D*?(RY) consisting of

radial functions, that is,

DS72

rad

(RY) := {ue D**(R"Y) : u(z) = u(y), provided that |z| = |y|}.

In opposition to the integer case, it is not true in general that (—A)%?u has compact
support wherever u € C(RY). To overcome this particular difficulty when dealing
with fractional Sobolev spaces and use a suitable approximation by smooth functions

argument, we consider another space of functions, which we describe next.

Definition 0.2.2. We define ./ (RY) as the subspace of .(RY) consisting in all
function u such that Fu e C°(RM\{0}).

Remark 0.2.3. For 0 < s < N /2, the space .#(R") is dense in D*?(RY). Consequently,
the space 7 (RY) is also dense in D%?(RY).

We now pass to introduce our second main space of functions dealt in this text.
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Definition 0.2.4 (Inhomogeneous fractional Sobolev space). Let 0 < s < N/2. The

inhomogeneous fractional Sobolev space is defined as
HY(RY) = {ue L*RY): [ Fue L*(RV)},

with norm
fulf s= | eI Ful + u de.
RN

Notice that H*(RY) is defined in a similar way as the integer Sobolev space
H'(RY). More precisely, it is required that |{|*Zu is well defined and belongs to
L*(RY), replacing the weak gradient in the definition of H(RY).

By Plancherel’s Theorem, we have that
H'(RY) = {ue L*RY) : (-A)ue L*(RY)}.
Moreover, H*(RY) is a separable Hilbert equipped with the norm
Jul]? = J (=AY Pup d + 2 de,
RN
which is induced by the inner product
(u,v) := f (=A)*Pu(=A)*v + uwvdr = [u,v]s + (u,v)s.
RN
Although the nonlocal aspect of the previous concepts, some local properties of

H*(RY) can be obtained by considering the next definition.

Definition 0.2.5. For 2 < RY open set and 0 < s < 1, the inhomogeneous fractional

Sobolev space is defined as

H(Q) = {UELQ(Q) :J Mdazdy<oo},

aldo |v—ylVT2

with the norm

2
filey = [ e [ [ D=z,
& QJa

|.73 _ y|N+25

Concerning the density of smooth functions in the above fractional Sobolev spaces

we have the following result.

Proposition 0.2.6. For 0 < s < N/2 the space C(RY) is dense in H*(RY), and for
0 <s<1itis dense in H*(RV).
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For the case that 0 < s < 1, we have

C(N,s )|
2 N
[u]? JRNJRN |x_ |N+2 dedy, ¥ ueCP®RY),

where the positive constant C'(NN, s) is given in (0.1.1). Thus, when Q = RY, we see
that H*(RN) = H*(R") and the norms | - | and | - |

fs(ry) are equivalents.

It turns out that the definition of H*(RY) given in Definition is more
appropriated for the general case s > 0, than Definition [0.2.5] because for s > 1,
the integral in is finite if and only if u is constant (see |13 Proposition 2]). Also

we have the continuous embedding

LP(RY), 2<p<2* for 0<s<N/2
H (RN — ’
LP(RY), 2<p<ow, for s=N/2,

and the following compact embedding, for € open set of class C%! with bounded

boundary,
HY(Q) — LP(Q), 1<p<2* for0<s<min{l, N/2}. (0.2.2)

Since the restriction of functions u in D*2(RN) to €, belongs to H*(Q), we have as

well the following compact embedding,

D**(RY) — L}

loc

RY), 1<p<2f for 0<s<min{l, N/2}. (0.2.3)

Thus, every bounded sequence in H*(RY) has subsequence that converges strong in
LP(Q), for any compact set © of RY.
We also consider the closed subspace of H*(RY) consisting of radial functions,

that is,
H:G(RY) = {ue H*(RY) : u(z) = u(y), provided that |z| = |y|},

which has the well known compact embedding (see [64]),
H

rad

(RY) — LP(RY), 2<p<?2* for 0<s<N/2.

We finish this section emphasizing that the Plancherel Theorem also gives the

next identity, which is used several times throughout this text

f (=AY 2u(—A)2p dg — J (—AYuvdz, ¥ue HERY), ve H(RY). (0.2.4)

RN
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0.3 The s-harmonic extension

We now introduce the harmonic extension following [59, Sect. 2| and for that we
begin defining a class of weighted Sobolev spaces suitable to work with this harmonic
extension. First, observe that, for any 0 < s < 1, the function z = (z,y) — |y|'=%

belongs to the Muckenhoupt class Ay of weights in RNY*1, that is

1 1
(E L ly]' = dxdy) (E JB ly[*~ dxdy> < C, for all ball B in RN,

More details can be found in [46]. Let @ be a open set in R¥*! we consider

L*(Q, ly]*~%) as the Banach space of the Lebesgue measurable functions v defined

in () such that
1/2
||UHL2(Q7‘y|1—2s) = (J |y|1*28U2 d:z:dy) < 0.
Q

We also consider the space H'(Q, |y|'~%*) of the functions w in L?(Q, |y|' %) such that
its weak derivatives w,, exists and belongs to L*(Q, |y|' ™) for i=1,... N+ 1. It is

easy to see that H'(Q, |y|'=2*) is a Hilbert space with inner product

(vlv UQ)Hl(QJy\I_ZS) = J |y|172S <VU17 V’U2> + |y|172sU102 dSUdZ%
Q

and the induced norm

o] g,y —20) = (J ly[' >
Q

We call attention to the fact that the space of smooth functions C*(Q)~ H'(Q, |y|' ~2*)

, 1/2
Vo) —|—|y|1_25v2dxdy> :

is dense in the weighted Sobolev space H(Q, |y|'~%%) (see [100] for further details).
Regarding the space H'(Q, y'™2*) with Q = Qx (0, R), where 2 = R" is a domain

with Lipschitz boundary, it is well known the existence of a well-defined trace operator
fos HYQy'™) — HY(©)

with
H3(Q) < C”UHHl(Q,yl—Qs), YV ove Hl(Q7y1725),

|2 (v)]

where C' > 0, depends only on N, s and Q (see also [70]). Moreover, by the continuous

embedding H*(Q) < L* (), we have

60 ot gy < Clolmgu-2y, ¥ ve HYQ.y ™). (0.3.1)
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Let

2s

Ps(xay) :ﬁ(ng) Y N+2s )
(leP? +92)

where (N, s) is such that
J Py(z,1)dz =1,
RN

and 0 < s < 1. For u € D*?(R") let us set the s—harmonic extension of u,

w(oy) = Ba)(.9)i= | Plo=€pu@)ds (eg) <RV

RN
Then, for any compact subset K of RY*! we have w e L*(K,y'™>%), Vw €

L2RY y1=2) and w € C°(RY ™). Moreover, w satisfies

div(y' *Vw) = 0, in RN+
L= tim g2, ,) = (D)) n Y 032

N

where we understand (0.3.2)) in the distribution sense, where rk, = 2! 72T (1 — 5)/T'(s),

and I' is the gamma function. Precisely,

f y' 2 (Vw, Vi) dady = /fsf (=AY PPu(=A)(tp)dz, Ve CP(By v BR),
By By

where for R > 0. More generally, given h : R x R — R we say that a function

ve HY(Bj,y' %) is a weak solution of the problem

div(y' > Vo) =0 in B,
(0.3.3)
— lim y'~*v,(2,y) =ksh(z,t.(v)(z))  in By,
y—0
if, for all o € C°(B4 v BY), we have
J y' 2 (Vu, Vo) dzdy = HSJ h(t.(v)t () dz, (0.3.4)
By By

and the above integrals are finite.

0.4 Regularity results

Following the approach made in [59] we now describe how the s-harmonic

extension can be used to obtain regularity for solutions of elliptic problems involving
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the fractional Laplacian. For this purpouse we state some results of [59]. Next, we
consider Qr = BY x (0, R) and C*(9) to denote Clele~lod(Q)), where [a] is the integer

part of the number o > 0. We always assume that 0 < s < 1.

Proposition 0.4.1. (i) [59, Proposition 2.6] Let A(x), B(x) € LP(Bg), for some
p > N/2s. There exists o € (0,1) depending only on N, s, p, |a(z)| (g such
that any weak solution v of (0.3.3)), with h(x,t) = A(x)t + B(x), is in CO‘(@R/Q).

(ii) [59, Theorem 2.14] Let v € HY(Qg,y* %) be a weak solution of and
h(z,t) = h(z) € C*(BY) for some 0 < «a ¢ N. If 25 + « is not an integer, then
tr(v) is in C**(Bg,).

(iii)  [59, Proposition 2.13] Let A(z), B(z) € C*(BY) and v € H (Qgr,y* %) be a
weak solution of in Qr, with h(z,t) = A(z)t+ B(x), where k is a positive
integer. Then Vv € HY (Qgr,y' %) n C“(@QBR), for some a € (0,1), where

Vo = (Vgyy ooy Vsy).

(iv) |59, Lemma 2.18] or [17, Lemma 4.5] Let h(z,t) = h(x) € C*(Bgr) for some a €
(0,1) and v e L®(Qr) n H'(Qgr,y' %) be a weak solution of (0.3.3)). Then there
exists § € (0,1) depending only on N, s, « such that y* **v,(z,y) € C’ﬁ(@R/Q).

We can resume the previous result in the next one, turning our discussion more

clearer.

Proposition 0.4.2. Let ve H' (B}, y'=%) be a weak solution of (0.3.3). Suppose that
h(t) € C*(R) satisfies

3C, G >0, 2<p<2:|h(t)] <CiltfP~" + Co(Jt] + |t|* 1), VEeR.

If t.(v) € LE (RN), for some py > 2%, then for any R > 0 there exists 0 < yo, r < R

with BY x |0,vy0] < B}, and a € (0,1), such that

v, Vv, y' v, € C™(BY x [0,0]). (0.4.1)
Proof. (i) In fact, since
h(t,v)
— 7 e LI (RN N/2 < po/(2F — 2
1+ |trU| € loc( )7 v / §<4q pO/( s )7
and h(to) h(t0)
v v
h(t,w) = —" son(t,v)t,v + — "t
(o) = gy senE o)ty + 2

we can use Proposition M(l) to get that v belongs to C'* (@R/Q), for some a € (0, 1).
(ii) Since h(t) € C'(R), thanks to Proposition [0.4.1}(ii) we can apply a bootstrap
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argument to obtain that ¢,(v) € C*(Bpgui), oq € (1,2), for some positive integer k.
(iii) To get that V,v € HY (Qgr,y'™*) n C”(@Rmk), for some ay € (0,1), we apply
Proposition [0.4.1]-(iii) with A(z) = 0 and B(z) = h(v) € C'(R).

(iv) Finally, the fact that y' *v,(z,y) € C*(Qgp), as € (0,1), follows by using
Proposition [0.4.1-(iv) in item (i) of this proof. |

Remark 0.4.3. Let v € H'(Qgr,y'*) be a weak solution of (0.3.3). If v possess the
regularity described in (0.4.1)), then v satisfies the conditions in (0.3.3)) for each point
of B}, u BY (classical sense). Moreover, denoting N, (z,y) = y'=**v(x,y), we have that

Ny(2,0) = rksh(v(,0)), Ve BY. (0.4.2)
Indeed, the fact that v satisfies the first equation in (0.3.3) for each point in B

follows by standard elliptic interior regularity arguments using the difference quotient
technique (see [20]). To prove that condition (0.4.2)) holds, we take ¢ € C°(B}, u BY)

and use integration by parts formula to get

0= J div(y'~*Vo) dedy = J y' =% (Vv, Vo) dedy — J y' ", 0 dr,
Brs B

R, Fs

where it is used the fact that o = 0 over Ffw and that n = (0,...,0,—1) is the normal

vector of Fll%,é' Now notice that

N

J y' " Fu,odr = j §' %, (z, 8)p(x, 8) da
Fhs B

N
= [, 0 0y et )

Thus, by Dominated convergence theorem, we obtain that

lim y' Fupdr = N,(z,0)p(x,0) dz.

=0, By

Consequently, from definition (0.3.4)), we have

s LN h(v(, 0))e(, 0) dz — ks L Bt (o)t () da

N
R
fB*

R

Since, ¢ € CP (B}, U BY) is arbitrary, condition (0.4.2)) follows.

y' Vo, Vo) dady = | Ny(z,0)¢(x,0) dz.
By

0.5 D-weak convergence and dislocation spaces

As already mentioned, to achieve the decomposition described in the

Introduction, we follow the abstract approach of D-weak convergence and dislocation
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spaces developed in [99]. In this section we state the basic concepts of this abstract

approach.

Definition 0.5.1. [99, Definition 3.1] Let D be a set of bounded linear operators on
a Hilbert space H, such that for every g € D, inf,cp jyj=1 [|gu] > 0. We will say that

the sequence (uy) € H converges to v D-weakly in H, which we will denote as
Uy, N u, in H,
if for any sequence (gx) < D,
(9596) " gk (e —u) — 0 in H.

Let H be a Hilbert space and (gx) a sequence of bounded linear operators in H.
It is commonly used in [99] the notation g, — 0 to indicate that gyu — 0 in H for all

u e H.

Definition 0.5.2. [99, Definition 3.2] Let H be a separable infinite-dimensional Hilbert

space. A set D of bounded linear operators on H is a set of dislocations if

0<d:= inf |gul®*< sup |gul® < oo,
geD, Ju=1 geD,|u|=1
(ug) < H, (9x) < D, u — 0in H = g gpur — 0 in H,
and, whenever (uy) < H and (gx), (hy) < D,
hige + 0, (gige) 'giur, — 0in H = (hfhy) 'hjup — 0 in H.
The pair (H, D) is called a dislocation space.

The next result give a sufficient condition to establish if a pair (H,D) is a

dislocation space. An linear bounded operator ¢ : H — H is said to be unitary

when ¢g* = g 1.

Proposition 0.5.3. /99, Proposition 3.1] Let H be a separable infinite-dimensional
Hilbert space and D be a group (under the operator multiplication) of unitary operators
g:H—H If

g+ 0in H, g. € D= gru has a convergent subsequence, for all ue H,

then (H, D) is dislocation space.

The next result provides a profile decomposition for bounded sequences in

separable Hilbert spaces. It is the main tool of our approach to obtain the
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decomposition described in the Introduction, and it can be seen as a generalization
of the celebrated Banach-Alaoglu-Bourbaki Theorem for Hilbert spaces. In fact, as it
can be seen, it gives further properties about the weak convergence in terms of D-weak
convergence.

Theorem 0.5.4. [99, Theorem 3.1] Let (H, D) be a dislocation space. If (uy) € H

15 a bounded sequence, then there exists a set Ny < N, and sequences (w(”))neNO c
H, (g,g”))keN c D, g,(;) = id, with n € Ny, such that for a subsequence of (uy),

* (n -1 n)* n) -
(g,(:b) g,g )) g,i Y up — w™ in H, (0.5.1)
g gtm o for n # m. (0.5.2)
D) P <5t lim sup . (0.5.3)
neNg
up— Y giPw™ 20 in H, (0.5.4)
neNg

where the series ZneNo g,i")w(”) converges uniformly in k.

Remark 0.5.5. As mentioned in [99, proof of Theorem 3.1], estimate (0.5.3) holds,
provided conditions (0.5.1) and (0.5.2) are satisfied.

It is also convenient for our objectives to review the notion of cocompact
embedding.
Definition 0.5.6. [29, Definition 1.2] Let H and L be Banach spaces such that H
is continuously embedded into L. Let D be a group of continuous isomorphism on H.

We say that the embedding of H into L is cocompact relative to D if every D-weakly

convergent sequence in H converges in L.

It is proved in [29] that the embedding H*(R) — LP(RM), 0 < s < N/2,
2 < p < 2%, is cocompact with respect to the group of translations. We prove in Chapter

that the embedding D*?(RY) < L% (RV), 0 < s < min{1, N/2}, is cocompact with

respect to the group of dilations. See Propositions [1.2.3| and [1.3.2] for the precise

statements.

0.6 Some variational results

In this section we review some basic variational concepts and results that are
used to prove the main results of this thesis. In what follows we always assume that [

is a C! functional defined over a real Banach space E.
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Definition 0.6.1. We say that I has the mountain pass geometry when

(ii) There exists r, b > 0 such that I(u) = b, whenever |jul| = r;
(iii) There is e € E with |e| > r and I(e) < 0;

We define the mountain pass (or minimax) level of I as

¢ =inf sup I(y(t)),

7€l te[0,1]

where

['={yeC([0,1], E) : 7(0) = 0, |[y(1)]| > r, I(r(1)) < 0}.

The next theorems are the main tool used in this text to obtain existence of

non-trivial weak solutions for Eq. (Pg). They ensure the existence of a Palais-Smale

sequence at the level c.

Theorem 0.6.2 (Mountain Pass Theorem, see [2,/16]). Suppose that I has the mountain

pass geometry. Then there exists (ux) < E such that I(ug) — ¢ and I'(ug) — 0 in E*.

Theorem 0.6.3 (see [21,77]). Assume that I has the mountain pass geometry. Then
there exists (uy) < E such that I'(ug) — 0 and (1 + |Jug|)[|I'(ug)|« — 0, where | - |«

denote the usual norm of the dual E*.

Theorem 0.6.4. (63, Theorem 2.3 If I has the mountain pass geometry and there

exists vo € I' such that

— T(o(t
¢ = mnax (70(t)),

then I possess a non-trivial critical point u € vo([0,1]) such that I(u) = c.
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Chapter 1

Profile decomposition for weak
convergence in fractional Sobolev

spaces

In this chapter we develop our concentration-compactness principle, a refinement
of the celebrated Banach-Alaoglu-Bourbarki Theorem for the fractional Sobolev spaces
H*(RY) and D**(RN).

As mentioned in [29], the abstract Hilbert space version given in Theorem [0.5.4]
states that, chosen a suitable group of linear operators D acting in a separable Hilbert
space H, every bounded sequence in H has a subsequence that D-weakly converges
with the following distinct structure: Each term in the subsequence is the sum of
a principal term and a remainder term (see assertion in Theorem [0.5.4). In
particular, taking g = Id, in the definition of D-weak convergence in (0.5.4), we have

wy — w — Z g,g")w(") —01in H.
neNo\{1}

The corrected sequence form a sequence which converges weakly, and each principal
term is a (possibly infinite) sum of “dislocated profiles” w(™. Thus, the statement of
Banach-Alaoglu-Bourbarki Theorem (for Hilbert spaces) can be seen when w(™ = 0,
for all n € No\{1}. At the end of this chapter we discuss the class of nonlinearities in

the critical growth range dealt in this thesis.
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1.1 Statement of the results

We start by profile decomposition for weak convergence in the homogeneous
fractional Sobolev space D*?(RY), which is used to obtain existence of solution for
Eq. when the nonlinearity has critical growth.

Theorem 1.1.1. Let (u;,) < D*2(RY) be a bounded sequence, 0 < s < min{l, N/2}
and vy > 1. Then there exist N, < N, disjoints sets (if non-empty) No,N_ /N, c N, with
N, = NguN, UN_ and sequences (w'™) e, = D¥2(RV), (y,g"))keN c 7N, (j,g"))keN c Z,

n € Ny, such that, up to subsequence of (uy),

77N52SJ'1(@")UR (773’1(@”) : +y;(fn)) —w™, as k — o0, in D**(RY), (1.1.1)
(n -(m i(n) n m

e =0 P = )| = 0, as koo, form #n, (1.1.2)
Z [w™]? < lim sup[ug]?, (1.1.3)
neNy k=00

wp— Y A A W (P (= M) 0, as ko0, in LERY), (1.14)

HEN*

and the series in (L.1.4) converges uniformly in k. Furthermore, 1 € Ny, y,(gl) = 0;

j]i") = 0 whenever n € Ny; j,gn) — —oo whenever n € N_; and j,gn) — +00 whenever

neN,.

As it could be viewed, Theorem describes how the convergence of bounded
sequences in D*?(RM) fails to converge in L% (RY). This “error” of convergence is
generated, roughly speaking, by the invariance of action of the group of translation
and dilation in D*?(R"). Observe that the behavior for the correction term in (1.1.4)
is precisely described in the assertions (1.1.1)-(1.1.3).

The following version of Theorem [0.5.4|for the fractional Sobolev space H*(RY) is
used to study about existence of solutions for Eq. when h(x,t) admits subcritical
growth. Next we set 2* = oo, when s = N/2.

Theorem 1.1.2. Let (uy) = H*(RY) be a bounded sequence with 0 < s < N/2s. Then

there exist Ng N, and sequences (w™),en, in H*(RY), (y,g,n))keN in Z", n € Ny, such

that, for a subsequence of (uy),

wel- +y"M) = w™, as k — oo, in H*(RY), (1.1.5)
|y,(€n) - y,im)| — 00, as k — oo, for m #n, (1.1.6)
D [P < limsup fu?, (1.1.7)
neNg k—a0
U — Z w™ (- + y,in)) — 0, as k — oo, in LF(RY), (1.1.8)
neNg
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Jor any p € (2,2%). Moreover, the series in (1.1.8]) converges uniformly in k.

Remark 1.1.3. The profile decompositions in Theorems and Theorem [[.1.2] are
unique up to a permutation of index, and up to constant operator. See [99, Proposition
3.4].

As it can be seen, Theorem describes how bounded sequences in H*(RY)
fail to converge in LP(RY), 2 < p < 2*. This “error” of convergence is produced by the

invariance of action of translations in H*(RY).

1.2 Proof of Theorem [1.1.1]

To prove it, roughly speaking, we take D as the group of dilations and translations
(the precise description of D is given below) in D*?(RY), 0 < s < N/2, and describe

the behavior of those operators under the weak convergence. We consider
Tex = {g, : D**(RY) —» D**(RY) : gyu(z) = u(x —y), ye R},
and for v > 1,
Op 1= {(5j : DS2(RY) - D2(RY) : Sju(z) = ”y%ju('ij), Jje R}, (1.2.1)

the groups of operators on D*?(RY) induced by translations and dilations on RY,
respectively. One can easily check that Trny and dx are indeed groups of unitary

operators in D*?(R”), by using the following identities
(=22 (u(- — ) = ((=4)"u) (- — ),
(=A)2 (u(r)) = 7 ((-A)"u) (),

for u e D*?*(RY), y € R and 7 > 0. Now, we define the group

(1.2.2)

Dgv = {dy,j : D2(RY) —» D2(RY) : dyju(z) =7 Ju(y/(z —y)), yeRY, je R} ,

which consists by the composition of the elements of Tr~y with o, i.e., dy; = 009, =
gy ©dj. By checking that d, jod,; = d,-i. ;4 and (dy ;) ' = d_., _;, it is easy to see
that Dy is a group of unitary operators in DS2(RY).

With the preceding notation we first derive the next basic result.

Lemma 1.2.1. Let (i, ji) € RY x R, such that (yx, jx) — (y,5). Then

dy, 5.t — dy ju, Yu € D¥*(RY).
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Proof. By the density of #(RY) in D*2(RY), we just need to prove in the case where
u e S (RY). Note that

[dyy gt — dyju]? = 2[u]? — 292 06+ J (=) Pu(y* (z — y)) (= A)Pu(+ (z — ) da.

RN

Moreover, identity (0.2.4)) implies

| Ay = ) ) Pu( @ = )
- | e e = )8y u o = ) e

Since (—A)u(y?(- —y)) € LY(RY) and |u(+*(z — y))| < |ulle almost everywhere in

R¥, the assertion follows by the Dominated Convergence Theorem. |

We shall describe how the elements of Dy~ acts in D*?(RY). This is done in the
next result, which is a slightly different version of |71, Lemma 3].

Lemma 1.2.2. Let u € D**(RV)\{0}. The sequence (dy, j,u), with (yx,jr) < RY x R,

converges weakly to zero if and only if |jx| + |yx| — 0.

Proof. Suppose first that d,, ;, u — 0 in D**(RY) and assume, by contradiction, that
|7k] + |yx| = c0. Then, up to subsequences, we may assume that y, — y € RY and
Jr — j€R, as k — co. By Lemma [1.2.1

0= ]}E{)lo[dyk,jkuad%ju]s = [dy,ju]g = [u]g’

a contradiction with the fact that u # 0.
Conversely, assume that |j.| + |yx| — 00. By density of % (RY) in D*2(RY) it suffices
to prove that

[dy, it v]s = 0, Yu,ve %(RY).

If we prove that every subsequence of (d,, ;, u) has a subsequence that weakly converges

to zero, the assertion follows. To do this, we divide the proof in two cases:
(i) There exists a subsequence of (j), such that j, — +o0 or —oo;
(ii) There exists a convergent subsequence of (j;), such that j, — jo and |yx| — oo.

Before we start analyzing each case, we observe that by using identity (0.2.4]), one has

(ol = | (=200 (o) de (123

RN

Therefore it is sufficient to study the desired convergence in the right-hand side of
(11.2.3)).
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Case [(i)} Assume first that j, — +c0. By changing the variables under the integral we
have that

N-2s .
|[dyk7jku7v]5| =7 2 L

| carv@utr - w)d
]RN
<A (=AY 0] ufy — 0, as k — .

The same conclusion holds when j, — —oo0. Indeed, since Dgn g is a group

[dyimjku?U]S = [U, (dykvjk)ilv]s = [u7d—7jkyk,—jkv]s'

Hence, by interchanging v and v we get the desired conclusion.
Case [(ii)] Since ji — jo, we have that d, j,u(z) — 0 almost every where z in R,
Also,

|y t(2)(=A)0(@)] < Cllufleo| (=A)"v(2)], ae. in RY.

Thus, by the Dominated Convergence Theorem,

[dyhij,’U]s - 0, as k — oo. n

Finally we take D = Dy~ :={d,; € Dgn : y € Z", j € Z}, as the aforementioned
group of unity operators in D%?(R"). As already mentioned, the main reason for this
(instead of Dgx) in one of the statements in Theorem [I.1.1} it gives further properties
for the weak decomposition (cf. Theorem or |71, Theorem 8]). Considering the
following cocompactness result we are able to prove Theorem m (a similar result
can be found in |71, Proposition 1]).

Proposition 1.2.3. Let (uj) be a bounded sequence in D*?(RM) and 0 < s <
min{1, N/2}. Then u, 2 0 if and only if we — 0 in L2 (RY).

Proof. Our proof follows the same ideas of [99, Lemma 5.3]. Since C*(RY) is a dense
subset of D**(RY), by the continuous embedding of D*?(RY) in L% (R"), we can
assume without loss of generality that the sequence (uy) belongs to C°(RY). Let us
suppose first that w, = 0. Consider & € CP(R, [0, 0)) such that

3, vz
4 and |¢'(t)] < C, VteR,

N—-2s

0, ift<lort=~ 2 |

where we can assume without loss of generality that v > 4, because we can replace it
by 7" > 4, for integer ng large enough, if necessary. Notice that there exists a positive
constant C' such that

2% 2
{ SO < o VteR. (1.2.4)

E0P < O,
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Given any sequence (ji) in Z, denote

vy, = ,}/NEQSJ'kuk (,-yjk )

Let Q. = (0,1)Y + 2, with z € Z¥. By the Sobolev embedding (0.2.3)), for any z € Z",

we get that
1-2/2%

Moreover, embedding (0.2.1)) and relations (|1.2.4)) implies that,

2
S ey = 3 J (o) dz + f f |Uk||x— |N<+'§§'><y>' dady

< Cl¢(foxl)]

2€Z 2€Z
2
v,
<J R dx—i—maxf ZJ J |k|x— |N+25)| dxdy
2€Z
<C[Uk]s.

Thus, we can take the sum over z € Z" in (1.2.5) to obtain

1-2/2%
JRN (o)) dz < © sup (J i da:) : (1.2.6)
2€ P

For each k, let 2, € Z" such that

1-2/2% 1-2/23
sup (J V3 dx) <2 J vi da : (1.2.7)
ZEZN z sz

Since uy = 0, we have that vy(- — 2;) — 0 in D*%(R"), which allow us to apply
embedding (0.2.3) and obtain that

)

Replacing (1.2.7) and (1.2.8) in (1.2.6) we conclude that

vide = J vi(-— z,)dr — 0, as k — oo, (1.2.8)
CHYR

%k

lim | |€(juk])|* dz = 0. (1.2.9)

k—o0 ]RN

Now let

From convergence (1.2.9)), we get

. ' 2% T ®
tim [ 16 de = Jim | (i)
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Now the embedding D*?(RY) < L* (R"™) enable us to get the following estimate,

1—2/2%
) . (1.2.11)

e = Cl Qb [ le(uD ao

| e

For j € Z, let

D = {z e RY 1 775 < fug(w)| < 7~ "F°0D

7—”;2%'—1)} :

Since uy is smooth and has compact support, there exists jy in Z and [ in N such that

E;r = (D; x RY) U (RY x Dj);

w

N-—2s

1 .
Lj,k: = {ZL’ € RN : Z’Y_ z J < |Uk(ZL’)| <

e~ |

supp (ux) U Ljijok < U Dt jo ks
We also have that the sets
J
Sik = U Eivjiok O Emsjors J=1,...,1,
m=0

are disjunct as well E;,  and E;4j, £\Sjx, for j = 1,... 1. Thus we may write

|Uk — U y |Uk Uk y)|2
20 fj |I’ _ |N+25 d dy Z f |l’ _ |N+25 dZL’dy
J

J+m k
|Uk — Uk y d d |Uk - Uk(y)|2 dad
|x_y|N+2 x y+2 |$_y|N+2 rdy,
J+Jo k S]k
Jur(z) — u(y)|” Jur(z) — ur(y)]”
= J P dxdy + PRWIEE dxdy
Al,k: Bl,k'
where

l !
Ak = Ejor 0 | Bjijons\Si and By = | ] Sjn,
7j=1

Jj=1

to get that the estimate

l 2
165 (ur])(2) = & (Jur]) ()]
;} 5] |uk| = 4 |;Ij _ |]\.77+23 dl’dy
C(N,s ! u uk(y
< (— max Z | ’“ |N’1(28)| dedy < 2max €' (1)[u]?
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Moreover,

J b

EJ

In view of that, we take the sum over j =0,...,l in (1.2.11]) to conclude that

1-2/23%
|Uk .
J;RN )

Similarly as before, we choose (ji) such that
1-2/2%
2 d£B> ,

1-2/2%
sop ([ tgmdPras) <2 ([ et
which, from (1.2.10) implies that [uy/x — 0.

Now assume that u; — 0 in L% (R"Y). Let us argue by contradiction and suppose
that there exists (yx) in Z" and (ji) in Z such that d,, j, ur — u # 0 in D**(RY). The

with respect to the L% norm leads to

das+f €5 (Jux])
Dji\Ljk

% dz < C'sup (J &5 (Jug ) [ dz
JEZ RN

invariance of d,, ;,

Julog < limin dy, kg =0,

which is a contradiction with the fact that u # 0. [ |

Proof of Theorem [I.1.1] completed. By Theorem we first need to prove that
(D*2(RY), Dzn z) is a dislocation space. To do so, we use Proposition [0.5.3] Let
(dy, ju) © Dgn g, such that dy, ;, 4+ 0 in D*?(R"). Hence by Lemma [1.2.2} y, — y
and j, — 7, up to a subsequence, and by Lemma dy, it — dyju, for all
u € D**(RYN). Therefore Theorem holds with H = D**(R") and D = Dy~ 5. It
follows immediately assertions and . The assertion ([1.1.2)) is guaranteed

by Lemma [1.2.2] and (1.1.4) follows from Proposition [1.2.3] Finally, for each n € N,,

if (j,in)) is unbounded we can replace it by a subsequence convergent to 4o or

—o0, by checking either 1imsupkj,(€") = 4w or limsupkj,({”) = —o. If (j (n)) is

bounded, we can replace it by a constant subsequence, say j™. Moreover, by taking
( ) N—2s

ol = Ty () +y](€”)), the convergence (1.1.1]) implies

ur(- + ys”

) = (5_]‘(77,)1}]5;”) _— 5_j(n)w(n) in DS’Q(RN),

The proof now follows by setting 7 = 0 and renaming 5_j(n>w(”) as w™. In fact, let
us denote
N = {n eN,: (™) is bounded} :
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and set

ot = —j(n)w(n)7 ?;(gn) = ?//(gn), jz(cn) =0, for neN,
w™ = w™, glg") = y](gn), 5}(;1) = j]g,”), for n e N\Ny.

It is clear that (w™) satisfies conditions (T.1.1)-(1.1.3). To conclude that (w™) also
fulfills condition ([1.1.4]), we take into account the following estimate

wuy — Z (_l](cn)m(n) < |lug — Z d’g")w(n)
HEN* 2;: 7L€N* 2’:
ST A - 3 Pt (1.2.12)
neNy neNy 2?

where it is used the notation

—(n —2s5(n) , =(n) n
dyu =y T (P (), ue DRRY).

The first term in the right-hand side of inequality ((1.2.12]) goes to zero due to (|1.1.4]).

To prove that the second one goes to zero, we start by noticing that, up to subsequence

> ™,

neENy

in n € N, the series

is uniformly convergent in k, which can be proved by a standard diagonal argument
extracting successive subsequences in n € N,. This, together with the uniform
convergence of (L.1.4)), allows us reduce to the case that N, is finite. Since

S ) - 3 aP

< X fo G = g™

2%
neNy neNy 2;!4 neN s
= Z 6.(n)w(n) — 5, '(n)w(n)
= I 2%
neN

we have that the convergence to zero for the second term in (1.2.12)) follows by using
Lemma and the Brezis-Lieb Lemma. |

1.3 Proof of Theorem 1.1.2

In this section we shall prove the mentioned profile decomposition for bounded

sequences in H*(RY), 0 < s < N/2. To achieve that we start by considering
D = Dyn :={g, : H*(R") - H*(R") : gyu(z) = u(z —y), ye Z"},

which turns to be a unitary group of operators in H*(RY). Once again, the idea is to

obtain Theorem by means of Theorem [0.5.4] For that, we need first to determine
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how elements of H*(RY) become asymptotically orthogonal in H*(R") with respect to
any fixed other function under a sequence of dislocations.

Lemma 1.3.1. Let be (yi.) a sequence in RY and 0 # u € H*(RY). The sequence
(u(- —yx)) converges weakly to zero in H*(RN) if, and only if |yx| — oo.

Proof. Suppose first that u(- —y,) — 0 in H*(R"), and by contradiction, that y;, — ¥
on a subsequence. By density argument we may assume that u € Ci°(RY), also using
Lemma we obtain that u(- — yx) — u(- — y) in D*?*(RY). Thus

0= Jim (u- = ye), - — )

= i | [ AP - AP =) =l = )| = T (1)

k—o0

where the convergence of the second term in (L.3.1)) follows by the Dominated
Convergence Theorem. This leads to a contradiction with the assumption that u # 0.

Conversely, assume that |yx| — oo0. Again, by density argument we may assume
u e CP(RY), and use Lemma to obtain that u(- — yx) — 0 in D*?(RY). Thus

k—o0

lim URN(—A)S/QU(- — i) (=A)20 + u(- — yp)v dx] =0, Yve COP(RY),

where we have used in the second term that suppu(- — yx) N suppv = ¢, for k large

enough. [

Next, we complement the discussion made in [29] by establishing a equivalence
between the convergence in LP(RY) and Dy~-convergence. The proof of Theorem [1.1.2]

follows next by the same argument found in [99, Corollary 3.3].

D
Proposition 1.3.2. Let (uz) be a bounded sequence in H*(RN). Then u, = 0 in
H*(RY), if and only if up — 0 in LP(RY), for all 2 < p < 2.

Proof. The first part is proved in |29, Theorem 2.4]. Thus, let us suppose that uy — 0
in LP(RY), 2 < p < 2*. Take a arbitrary sequence (g,,) in Dzv and let ¢ € CP(RY).
Using identity (0.2.4) we have

p—1

< e (JRN (=A)*p(- — ) |71 dx) z

Thus, using Holder inequality again in the L? term of the inner product of H*(RY),
we conclude that g¥ uy — 0 in H*(RY). |

| CarHe ) ay e d

Proof of Theorem[1.1.9 completed. We prove by applying Theorem In fact, let
(9y,) in Dz~ such that g, + 0in H*(RY). By Lemma yr — 1, up to subsequence,
and by [41, Lemma 5.2| g,, — g,. Thus, by Proposition [0.5.3] (H*(RY), Dzv) is
a dislocation space. Assertions and follows by Lemmas and

Proposition respectively. [
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1.4 Additional Properties

We reserve this section to give some additional description about the profiles w(

in Theorems [1.1.1] and [1.1.2l We start by proving that one can consider D2 (RY) to

obtain more compactness.

52 (RN) be a bounded sequence and (w™) and (y,in))

be the collection of profiles given in Theorem . Then (y,(g )i = 0 for all n € No\{1},
w™ e DZ2(RN) and Ny = {1}.

Proposition 1.4.1. Let (uy) in D>

Proof. The proof of this fact follows similar arguments as in |99, Proposition 5.1]. The
idea is to find a new profile that satisfies the desired conditions and use the uniqueness
of the profiles (see Remark D Indeed, let (y (n)), (j,(j”)) the sequences provided by
Theorem [L.1.1] and define the set

Ny = {n e N,\{1}: |7jlgn)y,(€")| is bounded} :

Passing a subsequence and using a diagonal argument if necessary, we may assume that

each sequence (vjk y( )) n € Ny, is convergent and we denote

) — jl(c") (n)
a Jim 7 g n € Nj.

Suppose that n € Ny and notice that

I () =T (7 (= ) 4 y7) — 0 i DUHRY), as k- oo,

Since, the map u — u(- — a®™) is linear and continuous in D*>?(RY), we get

N—2s .(n) -(n)

VR (7 (= a®) 4 ) = w0 (= o) in DARY), as ks — oo,

Therefore

() — w™ (= a®) in D2(RY), as k — oo.

o

We now proceed in a similar way as made in the proof of Theorem Set

T = W™~y ™ =, 7 = g for n € Ny,
o™ = w™, _(n) = y,(cn), 3;(;1) = j,ﬁ ) forme N, A\Nj.

It is easy to see that (w™) satisfies conditions (T.1.1)~(T.1.3). To see that (w™) also
satisfies (1.1.4]), we consider the following estimate

nENy neENy 2:9!:
M dPw™ - 3 @) (1.4.1)
nENy n€EN o
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where we used the notation

—(n) N—2s=(n) =(n)

& u =y w7 (=), we DP(RY),

The first term in the right-hand side of inequality (1.4.1)) goes to zero due to (|1.1.4).

To prove that the second one goes to zero, we start by noticing that, up to subsequence

S @

neNy

in n € N, the series

is uniformly convergent in k, which can be proved by a standard diagonal argument
extracting successive subsequences in n € N,. This, together with the uniform
convergence of (1.1.4)), allows us reduce to the case that N, is finite. Since

(n) (n =(M)_(n n n
Z dk: w™ — Z dk w™ < Z 6jl(€n) (w( )_ga(n)—fyjl(cn)y(n)w( )) .
neNy neNy 2% neNy c 25
= Z w™ —g i (n)w(”)
nENﬁ @ TR Yk 23:

we have that the convergence to zero for the second term in (1.4.1]) follows by using
Lemma [[.2.3] and the Brezis-Lieb Lemma.
Now let n be an element of O(N), the group of distance-preserving linear

isomorphisms of R". For n € N;, we have that

N—257(n) =(n) N—257(n) =(n)

v R (YR () =T T (weon) (7T 1)
_25=(n) =(n)
=y gy (R ). (1.4.2)

In view of the fact that the operator T} (u) = u o n is continuous in D*?(R"), we can
pass the weak limit in (1.4.2) to conclude that

o™ on =", VneN, neO(N).

That is, @™ belongs to Df;ji(RN ) provided that n € Ny. To conclude the proof we now
show that w™ = 0 for all n € N*\Nﬁ. Let us argue by contradiction and assume the
existence of w") # 0 for some ng € N, \Nj. Once again, using the continuity of 7,1

we obtain

_ N-—2s%(n) =(n) (n)

y 2 Jk uk(fy*]k +77gk ) =
Ty (v T (7 - 43,)) —~ won ™ in DARY), as k- oo,
Let Oy = {n; € O(N)\{1}:i=1,..., M} be an arbitrary distinct collection in O(N).

, —(n)
Since 4 [7{™| — o0, we have that

A g™ — g - o0, Vi g
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Consequently, from Remark we get the following estimate,

=

limsup[u]2 = Y [w™ on; ' ]2
k—coo i—1

_ ST - M.

Since M is arbitrary we have a contradiction with the fact that (uy) is bounded in
Ds2(RN). n

We now can prove the well known compact embedding of H2 ,(R") into LP(RY),

rad
for 2 < p < 2%, by means of Theorem [1.1.2]

s (RN) and the profiles (y,in))

and (w™) given by Theorem . Then (™) = 0 for all n € No\{1}, w® ¢
HS ,(RY) and Ny = {1}.

Corollary 1.4.2. Let (uy) be a bounded sequence in H?

Proof. Consider j( ™) = 0 in the proof of Proposition and replace [ - ]s by [|-[. W

From the abstract result |99, Corollary 3.2|, which is a direct consequence of
Theorem [0.5.4] we also have the next additional property, which might be seen as
a Brezis-Lieb type result for the corrected sequences in the convergences and
(1.1.8]).

Proposition 1.4.3. Assume that the same assumptions of Theorem hold. Set
N—2s :(n) S(n) n
re=up— Yy e w (3 (=)

Then,

[ur]2 = > [w™12 =[] — 0 in D¥*(RY)

Similarly, suppose that the conditions of Theorem[1.1.9 are satisfied. Set

Tk = Up — 2 M+ ).

neNg

Then,
Jur)? = D7 Jw™ P 7] — 0 in H*(RY)

neNg
We end this chapter with the next result, which establish a way to prove Theorem
by using Theorem It is a key result to develop our results in Chapter

when we are dealing with nonlinearities h(z,t) in Eq. that possess critical growth.
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Proposition 1.4.4. Let (u) be a bounded sequence in H*(RM), 0 < s < 1, and
(w(”))N* provided by Theorem . Then w™ = 0 for all n € N_. Moreover, for
pe(2,29),
up— Y w™(—y) >0 in LP(RY), (1.4.3)
neNg

the series in (L4.3) converges absolutely in H*(RN) uniformly in k, and w™ are the
weak limits of (ug(- + y,(cn))) in H*(R3).

Proof. This is proved by using similar arguments as in [99, Lemma 5.4|, together with

Proposition In fact, the last assertions follows from the fact that the translated

sequence (ug(- — y,(gn))) is still bounded in H*(R"). By Fatou Lemma, we have

lw™]3 < lim inff 2 i ™12 dg = lim 25 f uidz =0,
RN RN

k—ao0 k—o0

from this, we get that N_ = ¢f. Moreover, by Remark [0.5.5) mwe obtain estimate ,
which ensures the uniform convergence in k for the series in (1.4.3). It remains to prove

the convergence (1.4.3)). Let ¢ in C°(RY) and (yx) an arbitrary sequence in Z". In
view of Proposition |1.3.2] to obtain (1.4.3) it suffices to prove that

(4= 3 et =) 0 s

neNg

Indeed,

(uk - Z dy' _yk)>
- <uk— 25w+ ) —yk> (Z " —yk>>. (1.4.4)

neNy neN4

The term in the left-hand side of equation (1.4.4) goes to zero as k — oo due to
convergence (1.1.4) together with the fact that

‘(Uk - Z d;(gn)w(n)AO) < |ug — Z dl(gn)w( ) ”SOHLQ(supp@D)
neNx 2 el L2 (supp )
< C(o) |lug — Z d,g”)w(”) — 0,
neNs L2% (supp ¢)

where C(p) is a positive constant that only depends in ¢. In order to prove that the
second term in the right-hand side of ({ - goes to zero as k — o0, we observe that
the uniform convergence of the series in enable us to reduce to the case that N,
is finite. Thus, the desired convergence follows by Lemmas[1.2.1| and [1.2.2] with aid of
the compact embedding (0.2.3). |
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1.5 Self-similar functions

We now pass to study a class of non-linearity consistent with our profile

decomposition. As it can be seen in the following examples, this class of nonlinearity

2%

can been seen as asymptotically oscillatory about the critical power |t

Definition 1.5.1. We say that F'(t) € C(R) is fractional self-similar if there exist 7 > 1
and 0 < s < min{1, N/2} such that

F(t) =y NMF(y 29t), VjeZ, teR.
In this case we use to say that F'is fractional self-similar with factor v and fraction s.
Erxample 1.5.2. Typical examples of self-similar functions are

28

(i) F(t) = [t
min{l, N/2};

, which is self-similar for every factor v and fraction 0 < s <

(ii) H(t) = cos(In [t|)|t|*, H(0) := 0, which is self-similar with factor e*™(N=25) and
every fraction 0 < s < min{l, N/2}.

Remark 1.5.3. The function F(t) € C'(R) is self-similar if, and only if

Fi(t) =y i (7¥jt)  VjeZ, andteR.

In the next result we derive the basic properties of self-similar functions.

Lemma 1.5.4. Assume that F(t) is self-similar.

(i) For each ue L* (RN) and j € Z, we have

J F (7N52Sju(7j-)) dz = J F(u)dx; (1.5.1)
RN RN
(1) There exists C > 0 such that

|F(t)] < CJt|*, VteR. (1.5.2)

Moreover, if F € C*(R), then there exists C > 0, such that

|F(t)| + |F'(t)t] + |F"(1)1?] < C|t|*, Yt eR; (1.5.3)

(15i) If F(t) is locally Lipschitz then for each real numbers ai,...,ay, there erist
C = C(M) > 0 such that

F (Z an> - Z Fl(ay)

n=1

2;“71|am|'

ey ) a

m#ne{l,....M}
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Proof. The identity follows immediately by using the change of variables
theorem in the integral on the left side of the equation.

Fix the interval L = [y~ 2,y 2 ]. By continuity, there exists C' = C(L)
such that |F(t)] < Ct¥, forallt € L. Now, let 0 <t <~y "2 ort >~ 2, then (in

any case) there exists j € Z such that 7N525jt € L, and consequently,

WNIF(#)] = |[F(y" 791 < AN ot

The case where ¢t < 0 is analogous. The proof of ([1.5.3)) follow a similar argument.
The proof is by induction in M. So we just need to prove that there exits
C > 0 such that

[F(ar +az) = Flar) = Flaz)| < C (JarlJaal " + Jar[* "ol ) (1.5.4)

N—QSk
Y

To do so, we first fix the interval I = [—y 2

~"2°%], where k € Z is taken such
that 7¥U€_1) > 2, to use the Lipschitz assumption. The proof follows by considering
several cases.

Case 1: Suppose that |a1]| < 1 < |ag| and a1 + a2 € I. Thus there exists C' = C'(I) such
that

|F(ay + az) — F(ar) — F(az)| < C(lar| + |[F(a1)]).
By condition (|1.5.2) we can estimate

a1 | + | F(ar)| < C(lar||as|® ™ + a1 [* 7 as)).

Case 2: Assume that |aq], |az| = 1 and ay + ay € I. Then, there exists j; € Z, j; < 0,
such that |b1] < 1, where b, := 7N525j1a1. It is easy to see that b; + ay € I, hence by

the first case, we have the following estimate

N—-2s

v 2 O(|ay
O(|CL1

|F'(by + az) — F(by) — F(az)|

2;“71)

% ag| + Jas||as

<
< 2;‘—1)

% Yag| + |as||as

Therefore we can estimate as follows
|[F(ar + az) — Far) — Faz)| <
|F(bl + CLQ) — F(bl) — F(a2)| + |F(a1 + CLQ) — F(bl + 0/2) + F(bl) — F(a1)| s

with
|F(a1 + CLQ) — F(CLl) - F(bl + CLQ) + F(b1)| < 2C|CL2| < C|CL1|2§<|CL2|.

Case 3: Suppose that |aq],|as| < 1. Since

R=|]JI;ulf,

JEZ
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N—-2s . N—2s N—-2s

where I = [— Yy 2 ], — 2 G-1) and I = Yy 2 (G 1), NEQS]' there exists jg e Z
such that

7 ey +ar) € [_7%12 —VNEQS(’H)} v [7N525(’“’”77N525’“]

Let by = 7 2 90q; and by = v 2 0y, with the necessity |b1] = 1 or |by| = 1, because
’yNEQS (k=1) > 9. Consequently we can use the first or the second case to get that

YNO|F (a1 + as) — F(a1) — F(ag)| = |F(by + b)) — F(b1) — F(by)]

<V C(|ay =),

% Yag| + |as|as

The general case follows by a similar argument as above, thus we conclude that (|1.5.4))
holds. |
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Chapter 2

Concentration-compactness principle
for nonlocal scalar field equations with

critical growth

In this chapter, we study the existence of non-trivial weak and ground state

solutions for the nonlinear scalar field equation
(_A)Su = f(l’,U) in RN? (58)

in the “zero mass case” with nonlinearities in the critical growth range.

Outline. The chapter is organized as follows. In Sect. we list our assumptions
on the nonlinearity f(z,t) to give in Sect. some applications of Theorem to
study the existence of mountain-pass solutions of Eq. , for the autonomous and
non-autonomous case. In Sect. we prove that weak solutions of Eq. satisfy
a Pohozaev type identity and have the regularity described in Proposition In
Sect. using the properties obtained in the Sect. [1.5] we describe the limit of
the profile decomposition of the Palais-Smale sequence at the mountain pass level of
the energy functional related to Eq. (EJ). In Sect. 2.5 we prove the results given in
Subsect. and describe some properties regarding the minimax levels associated
with the functional energy of Eq. , for the autonomous case. In Sect. we
prove our result about the existence of non-trivial weak solution of Eq. in the
non-autonomous case, and for the sake of discussion, we establish a sufficient condition

that ensures one of our hypothesis, precisely, the assumption
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2.1 Hypothesis

In order to describe our results on the energy functional of in a more precisely

way, we will make the following assumptions:

(f1) f(z,t) is a Carathéodory function and there exists C' > 0 such that

2~1 almost everywhere (a.e.) z € RY, YVt e R.

|, 1) <

(f2) There exists u > 2 such that,

pF(z,t) —MJfIT < f(z,t)t, ae zeRY, VteR.

(f3) There exists R > 0, ty > 0, 2o € RY such that

Bg| inf Fl(z,ty) + |B B inf F(x,t) >0,
| R|BR (x0) (o) + [Bra\ R' (1) B i1 (20)\ B (0)) X [0,to] (1)

In the study of the autonomous case f(z,t) = f(t) we consider a weak version of [(f3)|

(f}) There exists ¢y > 0 such that F(t) > 0.

(f4) For each real numbers ay, ..., ayr, there exist C' = C'(M) > 0 such that

n=1

< C(M) Z |0 am| ae. zeRV.

m#ne{l,...,M}

(f5) The following limits exist and are uniformly convergent in = and in compact sets
for t,

fot) := lim f(z,1),

|z|—0

+2s 5 —j N=2s,
fe(t) = lm " ff(v T,y )

JEZL,j—>+00

™
N
~
N—
'||'

forsomey >1land 0 < s < min{l N/2}. Moreover, the functions F,,, k = 0,4+, —

satisfies condition |( f}), where F( So fo(T

(fo) fo(t), fi(t), f_(t) are continuously differentiable.
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We consider associated with Eq. (£]), the functional I : D*?(R") — R given by

I(w) = 1JRN |(—A)S/2u|2dx—J Fla, u) dz.

2 N
Assuming that f(x,t) satisfies and using the same arguments of [72]|, I €
CH(D**(R")) and
I'(u) -v = J (=A)2u (=A)* v de — flx,u)vde, wu,ve D¥*(RY).
RN RN
Thus critical points of I correspond to weak solutions of Eq. and conversely.

Regarding the minimax level, we consider

t—00

Iy = {7 € C([0,0), D*2(®Y)) : 1(0) = 0, Jim I(3()) = ~o0}

and

c(I) = inf sup I(y(t)). (2.1.1)

vel'y t=0
For the nonlinearities fo(t), fi(t), f_(t), we consider the associated energy functionals
given by
1 s/2, 12
I(u) = = [(=A)*2u|" dz —
2 RN

RN

Fo(u)dz, Fu(t) = JO fu(r)dr

and the respectively minimax levels

¢ = inf sup L(+(t))

velx =0
where
FK, = {7 € C([O,OO),DS:Q(RN)) . 7(0) == 0, thm ],ﬁ(’}/(t)) — _oo} ,
—0
for kK = 0,4, —. Next, we assume a condition that compares the mountain pass levels

defined above, precisely,
(f7) c(I) < (), for each k =0, +, —.
We also consider the additional assumption for k = 0, +, —,
(f7) The following inequalities holds,
F.(t) < F(z,t), a.e. e RY, VteR. (2.1.2)

Moreover, there exists ¢ > 0 such that the inequality (2.1.2)) is strict for all

t € (—0,0) and almost everywhere z € RY.
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We are going to prove in Proposition [2.6.1] that [(f7)] implies [(f7)] To obtain our main

result, we first study the autonomous case. For that we assume that f(¢) is self-similar:

(fs) There exists v > 1, 0 < s < min{1l, N/2} such that

F(t)=yNiF (VNEQS%)  YjeZ, VteR

This allow us to derive some basic results concerning the behavior upon the functional

I as we pass the limit over corrected sequences given in Theorem [1.1.1}

2.2 Statement of main results

Next, we state the main result abouts the autonomous case f(z,t) = f(t).

Theorem 2.2.1. Suppose that f(t) is locally Lipschitz and satisfies |(fi) |(f3)l |(fs)}

Consider

S = sup J F(u)dz. (2.2.1)
[u]3=l JRN

Then, for any mazimizing sequence (uy) of ([2.2.1) there exists (ji) < Z and (yx) < ZN
such that (y="2 Iy, (y % - +yi)) contains a convergent subsequence in D¥2(RN). In
particular, the supremum in (2.2.1) is attained. Moreover, the same conclusion holds
for

S+ = sup f Fi(u)dz and S;,- = sup J F_(u)dz,
[u]3=1 JRY [u]3=l JRN

ol [(fl [(f5)] with S >

provided that f(t) is locally Lipschitz and satisfies
max{S; 4,51}

Our next result proves that maximizers of (2.2.1]) are indeed non-trivial solutions

of Eq. (£J). Moreover, the mountain pass level (2.1.1) is attained. The main tool to
achieve these facts is a Pohozaev type identity proved in Section which holds under

the condition 0 < s < 1 and taking into account the smoothness of the nonlinearity.

Theorem 2.2.2. Assume that f(t) € C'(R) satisfies and |(f4)l
(i) If v is a nonzero critical point of I, then c(I) < I(v);

(ii) If w is a mazimizer of Sy, for ly := (2:8)) "=, then w is a critical point of I.
Moreover

0 < max [(w(-/t)) = I(w) = ¢(I).

t=0
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From Theorem [2.2.2] we conclude that to obtain weak solutions for the

autonomous case, only assumptions |(fi)} [(f3)|and ((fs)]) are needed. Moreover, we are
able to prove that the minimax level is attained without the Ambrosetti-Rabinowitz
condition

Another way to approach Eq. is by the means of constrained minimization.
In fact, due Theorem[I.1.1]we can argue as in [99], and thanks to the Pohozaev identity,
reasoning as in [11], we can derive existence of a ground state solution (or least energy)
for Eq. (EJ), that is, a solution u of such that I(u) < I(v), for any other solution

V.

Theorem 2.2.3. Suppose that f(t) € CY(RY) satisfies[(f1) and[(fs)l Let
g = {ue D=*(RY) : f

RN

F(u)da = 1}

and consider

T — inf J (—A)u(z)* d. (2.2.2)
ueg RN

Then, for any minimizing sequence (uy) of (2.2.2)) there exists (ji) < Z and (yx) < ZN
such that (y="2 ey, (y % - +yi)) contains a convergent subsequence in D¥2(RN). In

particular, there exists a minimizer w for (2.2.2)). Furthermore, u = w(-/f3) is a ground

state solution for Eq. for some > 0.

In the following result we prove that Palais-Smale condition at the mountain pass

level holds for the general non-autonomous case.

Theorem 2.2.4. If f(x,t) satisfies |(f1)H(f6)| and (2.1.2)), then Eq. has a non-
trivial weak solution u in D¥*(RY) at the mountain pass level, that is, 1(u) = c(I).

Moreover, if we assume that[(f7)] holds true instead of (2.1.2)), then any sequence (uy)
in D**(RY) such that I(uy) — c(I) and I'(ux) — 0 has a convergent subsequence.

Remarks on the hypothesis and in the main results

Remark 2.2.5. Next we give several helpful comments concerning our

assumptions.

(i) On assumption [(f1)} we recall that f : RY x R — R satisfies the Carathéodory
conditions, if for each fixed t € R, f(-,t) is measurable, and for a.e. = €

RN, f(z,-) is continous in R.

(ii) Condition includes in particular nonlinearites with critical growth.
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(i)

(iv)

(vii)

(viii)

(ix)

(x)

Assumption is a weak version of the well-known Ambrosetti-Rabinowitz

condition in the sense that we do not require that F'(x,t) is positive. (see [2[73]).

In order to prove that the functional associated with Eq. has the mountain
pass geometry we consider Furthermore, since we deal with constrained

minimization, an autonomous version of is needed (see [11]).

The asymptotic additivity given in ensure the convergence of the functional
I under the weak profile decomposition for bounded sequences in D*?(RY)
described in Theorem 1.1l

The smoothness condition f(¢) € C'(R) is the natural hypothesis used in the
literature to prove that weak solutions of Eq. satisfies a Pohozaev type
identity.

Once the limits in exist, to obtain compactness of Palais-Smale sequences at
the minimax levels we need to require the additional conditions over the minimax
levels ¢y, cy,c given in assumption . In fact, we do not believe that it
is possible, in general, to achieve the compactness described in Theorem [2.2.4]
without these conditions. We mention that this kind of approach was introduced
by P.-L. Lions in [65-68].

Observe that the approach to obtain concentration-compactness for the

autonomous case f(x,t) = f(t) needs to be different since in this case, f(¢)

does not satisfies
We also consider the case when do not hold. Precisely, when it is allowed

c(I) = ¢(I,), for some k = 0,+, —. In this case, the concentration-compactness
argument at the mountain pass level cannot be used. We apply [63, Theorem 2.3]
to overcome this difficulty and prove existence of solution at the mountain pass

level.

If f(x,t) satisfies then

Fo(t) = lim F(x,t).

|z| >0

Fy(t)= _lim V_NjF(W_j%W#jt),
JEZL,j—+00

F ()= 1lim ~MF (V’j:c,fy%jt),

JEZL,j—>—0

uniformly convergent in z and in compact sets for ¢. Furthermore, F';(t) and
F_(t) are self-similar. Thus, functions f(x,t) that satisfies can be seen as

being asymptotically self-similar at +oo.
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(xi) Our main results hold, replacing D*2(R") by D>%(RY), and assuming that

rad

f(z,t) = f(|z|,t) is radial in x instead of the existence of the asymptote fy(t) or
fo(t). This fact can be easily verified considering Proposition [1.4.1]

(xii) In Lemma we proved that 'y # & is equivalent to: 3¢, such that F,(¢,.) > 0.
Consequently ((f3)) is the most general assumption to ensure that ¢(I) given in

(2.1.1)) is well defined (possible valuing +0).

Remark 2.2.6. We have that G # & and S; > 0, provided and hold. In fact,
this follows as in |40, Lemma 2.6 and Remark 2.8]. Let vg € C°(R), R > 0, such that
0 < wg(t) < tp and

*) to, if [t| < R,
v =
f 0, if|t|>R+1.

For all z € RY | taking pr(x) := vg(|z|), we have pr € D**(RY). Moreover,

f F(pr)dr = J F(to) dz + J F(pr)dz
RN Br(zo) Br+1(z0)\Br(zo)

> F(to)|Br] — B \Bxl (max |F<t>|) |

te[0,to]

Thus there exist two positive constants C; and C5 such that
J F(pg)dz = C1RY — CoRN™! > 0,
RN

provided that R is taken large enough. Taking a suitable o > 0, we may conclude that
®(pr(-/0)) = 1.
Remark 2.2.7. Using the s-harmonic extension, it can be proved the existence of non-

negative weak solutions of if f(x,t) = 0 for all ¢ > 0 and almost everywhere z in

RY. For that one can consider the truncation

_ ) fat), i 20
f(x’t)_{ 0, if t<O0.

Thus for u a weak solution of (Py), with f(z,t) replaced by f(z,t), we have that u is
also a weak solution for and is non-negative. To see that, let £ € C°(R : [0,1])
such that

-1 T ML emi<cveer

= an < G e R.
0, if [t[/=2

For each n € N, define &, : RV ™! — R by &,(2) = £(|z[*/n?). Then &, € CP(RN+1) and
verifies

IVE(2)] <C and 12||VE(2)] < C, ¥z e RV
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By a density argument, we can take ¢ = {,w_ in (0.3.4), where w_(z) = min{w(z), 0}.
Since w_(z) = Es(u_), we have that

JRN+1 y1_28§n|vw—|2 + y1—25£n <Vw+7 VUJ_> + yl_QS <vw+ + VU}_, w—v§n> dIdy
N
= K f(x, w)éu_ dx,

RN

and we may apply the Dominated Convergence Theorem and (0.3.2)) to get

el = | Fewu-do =0,

which implies that u_ = 0. On the other hand, if v has sufficient regularity one can
show that u is positive, by applying the maximum principle for the fractional Laplacian
as described in [84] (see also [38, Chapter 5|).

Ezample 2.2.8. Typical examples (see Section and the proof of Lemma [1.5.4) of a
functions satisfying are given by

(i) f(z,t) = b(z)|t|* ~2t, where b(z) € C(RY), b(0) > 0 and

b(z) > b(0) = inf b(x) = lim b(x). (2.2.3)

zeRN |z|] =00

(i) f(z,t) = exp{b(z)(sin(In [t|) + 2)}(b(x) cos(In |t]) 4+ 2¥)[¢|* ~2t, with f(x,0) = 0;
where b(z) € C(R") satisfies (2.2.3), b(0) = 0 and moreover

sup b(x) < 2% — o, forsome o€ (2,2F).

s
zeRN

2%

The primitive is given by F(x,t) = exp{b(z)(sin(In |t]) + 2)}|¢

Remark 2.2.9. The function f(t) = (2* cos(In|¢t|)—sin(In [¢])) |t
the assumptions of Theorems [2.2.1H2.2.3

252 f(0) := 0, satisfies

2.3 Local regularity and Pohozaev Identity

We are in the position to prove that weak solutions of autonomous form of Eq.
are C'(RY) and satisfies the Pohozaev identity

2N
— APl da = F 2.3.1
| JeayPaPan = 25| P, (2.3.1)

under suitable assumptions on f(t) (see Proposition for the precise statement).
We refer to [24], where the identity was studied for solutions in H*(R") and when

23



f(t) satisfy a fractional version of the H. Berestycki and P.-L. Lions assumptions. The
main idea for that, it is to use the so called Caffarelli-Silvestre extension (see [19] for
more details) which transform the autonomous non-local Eq. in a local one and
use recent regularity results to develop the resultant expression in a such way to apply
the argument of |11, Section 2]. Our approach is in some way different from the usual
one. Although we continue using Caffarelli-Silvestre extension (also know as harmonic
extension), by the results of [47,59], we can derive a local regularity for weak solutions
in D%2(RY) in a more suitable way to get the desired identity by applying a truncation
argument. For bounded domains we refer to [74].

In order to apply Proposition we need to prove a Brezis-Kato type result
(see [14]) for solutions of Eq. (€)). Although a similar result can be found in [47, Lemma
3.5], the absence of singularity in Eq. allows us to obtain a simpler proof. To
achieve that, we strongly rely in the following lemmas, which enable us to proceed as
in [14] (cf. [8, Proposition 5.1] or [102, Theorem 1.2]).

Before we start to develop our regularity results, we find worth to mention the
fact that w = E,(u) is a weak solution of with g(t) = f(t) if, and only if, u is a
weak solution of Eq. (&J).

Lemma A. [0, Theorem 1.3] For any R > 0, there exists 0 > 1 and Cr > 0
depending on R, such that

1/o
(], w2tk asay) < cn [ it 2wer sy, voe (5w,
Br Bgr

Lemma B. [{7, Lemma 2.6/ Let & € C(RN*Y) such that £(z) = 0 for all |2| = R.
There exist C' > 0 such that

(ngf

Proposition 2.3.1. Assume that condition holds. Let uw € D**(RY) be a weak
solution of Eq. for the autonomous case, then ue LY (RY), for all p > 1.

2/2%
2 dxdy) < Cf y' |V (0€) P dady, Yv e H' (B, y' ).
B+

R

loc

Proof. Let w = Ey(u) and £ € CP(RYN*L : [0, 1]) such that

1, if|2| < R/2
£(z) = < / and IVE(2)| < C Yz e RV
0, if|z|=R

for some C' > 0. Since the map t — tmin{[t|°, L}, B, L > 0, is Lipschitz in R,

considering wg z, := minf{|w|?, L} we have wwg € H'(B},y' %), consequently using
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inequality (0.3.1)) in a density argument one can see that ww3 £* can be taken as a
test function in definition (0.3.4). The main idea is to get the estimate

f Vw16 dedy < . (2.3.2)
B

R

for a suitable g and C' > 0 which does not depend on L. The next step is to use Fatou

Lemma and Lemma [Bl to obtain

J u|PHD2 4z < C.
By

This leads to a iteration procedure in 3 which implies in u € LP(BY) for all p > 1. To

do so, we start taking
f(u)| ELN/QS(RN)7

]
CL(Q}) T 1+ |u| loc
which implies
J Y2 (Vw, V(ww? 1€2)) daedy < 2ﬁsf a(w)(L+u)uf & de,  (233)
B} By

where we used that (1+)t < 2(1+¢*), ¢t > 0 and t,(wwj3 ;&%) = uu3 ;£(-,0)*. We now
compute the left side of the inequality ([2.3.3) and use the following identity
w (T, V() = S0 ),

to conclude

J y' % min{|w[*?, L?}|Vw|?¢? dzdy
Bf
B iy _
+5 y' POV (w?) 26 dady

{lw[26<L2}nB}

< 2/£Sf a(z)(1 + u?)uj & do
By

— ZJ y' 2w minf{|w|??, L2}¢(Vw, VE) dady.  (2.3.4)

Br

Using the Cauchy inequality (with e = 1/4) we have

—2 f y' 2w min{|w|??, L2} (Vw, VE) dady
By
< f y =2 mind[w]??, L2}|Vaw2e? dady
.

Br

DN | —

+CJ y' "% w? min{|w|*, L*}|VE)2 dady, (2.3.5)
N

Br
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where C' > 0 is independent of L. From replacing (2.3.5) in (2.3.4)), we obtain

1
! j v mindjw]?, L2} V|22 dady
B+

2
LB
2 Jyuwps<rL2ynBy,

< CJ y' 2 w? minf{|w|*, L*}VEP dady
+

Br

R

y' 2w PPV (w?) €2 dady

+ 2K, J a(z)(1 +v?)uj £ dx. (2.3.6)
By

Now using
FlufC 0 V@) = 40? [V ()
together with inequality ([2.3.6)), we can finally estimate ([2.3.2)),

| o V@ Py <€ |y mingfu, 2 Ve dady
Bt +

R BR

+ 2K, J a(@)(1 + v’)uj £ dz. (2.3.7)
By
It remains to estimate the last two terms in (2.3.7). Assuming |u?*! € L2(BY), we get

f N a(z)u?uf & de < Lof N |u[2PHDe2 dg + f a(z)uiuj & dx
BR

By {a(z)=Lo}

R

2/2%
< C1Lo + Cie(Lo) (J . YV (wwg L€) dxdy) ;
B

where
2s/N
e(Lo) = (J a™N/? (z) da:) — 0, as Ly — .
{a(z)=Lo}

By the same calculation and using min{|t|®, L} < |t|min{|¢t|®, L} + 1, L > 1, we obtain

f a(x)uj & de < CoLg
By

2/2% 2/2%
T Coe(Lo) (f y”S|V<ww5,L£>|2dxdy> +< f |£|2fdx> |
Bg BN

R

Thus, we can take Ly large enough such that

J y' 5|V (wwgs, €))? dedy < Cs f y' % w? min{|w|*, L*}|VE[? dady.
By By
Finally, assume that § + 1 < o, where o is given in Lemma [A] Using the operator

extension by reflection R : H' (B}, y' %) — H(Bg, |y|' %) given by

w(z,y), if y > 0,

R(w)(z,y) = {

w(l’, _y)7 1fy<07
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(see for instance |19} Section 4]), we may apply Lemma |A]for an appropriated sequence
of functions in CF(RY*1), converging to R(w) in H'(Bg, ly|'™%) to get

)

R

2o minf[uf??, 12| V¢ dedy < Co | |yl 9 (R(w)) P dedy < C.
Br

We take 8 = ) = min{2¥/2,0} — 1 and $;;1 = min{2*/2,0}(2%/2)' - 1,i =0,1,...,
to obtain that u € L (RY). |

loc

Summing up all the previous results we can finally conclude the validity of identity

(2.3.1) and the desired local regularity.

Proposition 2.3.2. If f(t) € CY(R) and satisfies then every weak solution of
Eq. for the autonomous case belongs to C*(RY). Moreover, the Pohozaev identity

(2.3.1)) holds true.

Proof. Let u € D¥*(RY) be a weak solution of Eq. for the autonomous case
with f(t) satisfying . Consider w = E (u). Then by Propositions , w Possess
the regularity (0.4.1). In particular, Vu = Vw(z,0) € C(BY) for any r > 0. Let
£ e CP(R:[0,1]) such that

1, if te[-1,1]
=4 " ! d ') <C VteR,
£(t) { 0. it | >2 and  [¢€'(t)]

for some C' > 0. For each n € N, define &, : R¥*™! — R by &,(2) = £(]2|?/n?). Then
&, € CF(RNT1Y and verifies

VE(2)|<C and  |2||VEL(2)] <O Vze RN (2.3.8)

for some C' > 0. Now observe that,

div(y' **Vw) {(z, Vw) ¢, =

2 N —2
div [y1_25§n <<Z,Vw>Vw— Vol Z>] i y' | Vw|?E,

2 2

1-2s |Vw|2 1-2s
+y (2,V&)y —y ~# (NVw, 2)(Vw,VE&,y. (2.3.9)
Note that 0B 5, ; = F1 5O s Letn(z) = (0,...,—1) be the unit outward normal
vector of B s, s on F Smce §n =0 on F2 by condltlon , identity (2.3.9)
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and Divergence Theorem we get

0= f div(y' *Vw){z, Vw) &, dedy
B

\/En,ts
V 2
=J y' e, [<27Vw><Vw7n>— | ;U | <z7n>] dzdy + 0,5
Fxl/in,(;
- | a@Vad iy ru)d
F\l/im
2
_ y1_2s§nwjydx+f 1_285n|vw| ydz + 0, 5
Fl Fl 2

at 2 3
- In,5 [n,6 In,(i + 9”757
where

N -2
On s :J —5 i y' 2| V|, dedy
B\/ﬁn,é

1— 23|Vw|2 1-2s
+ y (2, V&) —y 7 (Vw, 2){Vw, VE,) dzdy.
B\/inﬁ

Using the same arguments as in [47, proof of Theorem 3.7| we deduce that there exists

a sequence 0 — 0 such that

12

3
ws, T s, — 0, as k — 0.

Some computations leads to
&n(,0) <z, V) f(u) = div(§n(z, 0)F(u)z) — F(u)(Vén(x,0), 2) — &n(x, 0)F (u) N.

By condition (0.3.2)), the Divergence Theorem and Remark we have

k—0

lim I, 5 = ks JBN n(2,0)(x, Vu) f(u)dz

2n

= K JB div(&,(z,0)F(u)z)) — F(u) (V& (x,0),2) — & (x, 0) F(u)N dz

Van
Nk, J £ (0 F(u) dr — @f Fu) (V& (2,0), 25 de.

Summing up, we get that

0= lim [I,5 + In 5 + Lus + Ons,]

N —2
= — K, NEF(u) + F(u) V&, o) dx+f S22 gy e, dady
B%n Bj;in 2
1— 23|Vw|2 1-2s
+ Yy (2,V&,) dady — y = (Vw, 2)(Vw, V§,) dzdy.
BT BT

V2n V2n
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Consequently taking n — oo and using conditions ([2.3.8), we conclude

N =2
i f y' | Vw|? dedy = NKJSJ F(u)dex,
Rf'*'l RN

2

which together with condition (0.3.2) implies (2.3.1), and the proof is complete. W

2.4 Behavior of weak decomposition convergence

under nonlinearities

Concerning the assumptions and [(fs)} we have the following results,
which provides a way to link the weak convergence decomposition (as also the latter
lines of Theorem and the limit over the energy functional I for bounded sequences
in D*2(RY). They are mainly used to prove the existence results stated in Sect.

Also, the next result can be seen as a generalization of the well know Brezis-Lieb

Lemma [15] (see Corollary [2.4.3)).

Proposition 2.4.1. Let 0 < s < min{1, N/2} and assume that f(x,t) satisfies
and|(fs). Let (ug) in D¥2(RY) be a bounded sequence and (w'™),en, in D>2(RY),
n € N,, provided by Theorem |1.1.1. Then

lim F(z,u)dx = J F(z,w®)dz

k—co RN RN
+ > f Fy(w™)dz + ) J Fr(w™)dz+ )] J dz. (2.4.1)
neNg,n>1 neN4 neN_

Proof. By condition the functional
B(u) f Flo,u)de, ueD*2(RY),
RN

is uniformly continuous in bounded sets of L (RY), which implies (by assertions (1.1.3)
and ([1.1.4)) of Theorem [1.1.1)) that
— < Z d;(gn)w(”)>] =
'I”LEN*

lim [(ID U
k—c0

To prove (2.4.1)) we observe that the uniform convergence of the series in allows
us to reduce to the case where N, = {1,..., M}. Thus,

lim | 7@ (w( - ") ~ )~ Y dofw <">>] 0

| neNg neNg,n>1
lim | > e(dPw™) - Y @ (w ] =0,
ko0 | neN4 neENyt
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follows immediately from the assumption by change of variables and the use of

Dominated Convergence Theorem. Therefore it is sufficient to prove that

. (n), () \ _ (), | —
Jim [@(Z dMw ) > o(dw )] 0. (2.4.2)

TLEN* nEN*

Indeed, by we have for all m # n,

. <Z d,@w(")) = > d(dw™)
nENy n€Ny

But by a change of variable we can see that

| B e = [
RN RN

2 de™| da.

< %,

m#neNy

2 gu(jw™]) da,

where

N—2s -(m) -(n)

ge(lu ™)) = 55 G0 (A7 (=g (M — 7)) — 0 in D2(RY),
due to assertion (1.1.2)) of Theorem and Lemma Since
a)= [ P
RN

is a continuous linear functional in D**(RY) we conclude (2.4.2). |

vdx

Corollary 2.4.2. Let (ui,) be a bounded sequence in D¥*(RY), 0 < s < min{1, N/2},
and (W™),en, in D¥AHRY), n € N,, provided by Theorem |1.1.1. If F(x,t) = F(t)
satisfies and is locally Lipschitz then, up to subsequence,

i [ Fl)de= Y JRN F(w™) dz. (2.4.3)

k—o0
- RN TLEN*

Proof. In this case F(t) satisfies and (1.5.2), also F(t) = F.(t) = F.(t) =
Fo(t). |

Corollary 2.4.3. Let up — u in D¥*(RY) and F(t) be as in Corollary then, up
to subsequence,

lim F(ug) — F(u—ug) — F(u)dz = 0.

k—o0 RN

Proof. Let vy, = uy, —u = uj, — w™. The profiles of Theorem for (vy) are given by
M =0, 9™ = w™ neN\{1}. Thus by Corollary we have

lim [ Fluy—w)dr= > f F(w™) de. (2.4.4)
ka0 Jry neNyg,n>1 RN
Taking the difference between (2.4.3) and ({2.4.4) we get the desired result. |

60



2.5 The autonomous case

The aim of this section is to prove Theorems [2.2.1] [2.2.2| and [2.2.3]

Remark 2.5.1. By embedding (0.2.1), we have §; < . Also §; is attained for some
[ if and only if it is attained for all [. Indeed, this can be checked by considering the
rescaling v = u;(I"YW=2)) and u = v(IYN=29.), where [u;]> = 1 and [v]? = [

respectively. In particular,

7S =S, (2.5.1)

2.5.1 Proof of Theorem 2.2.1

Proof. Suppose that F'(t) is self-similar and satisfies Let (ur) < D**(RY) be a
maximizing sequence for (2.2.1) with [ = 1, that is, ||Jugx|? = 1 and ®(u) — Si. Let
be (w™),en,, (y,(c”))keN and (j,(cn))keN, the sequences provided by Theorem m By

Corollary [2.4.2]
Sy = lim ®(u) = > o(w™), (2.5.2)

k—0o0
neNy

and at the same time by assertion (1.1.3) of Theorem [1.1.1]

Z [w™]? < lim sup[u;]? < 1. (2.5.3)

neNy k—o0

The identity (2.5.2) also implies that there exists n € N, with w™ % 0. We may write
o™ = w™(7,-) where 7, = [w™]¥V %) Consequently [v™]? = 1, ®(v() < S; and

S = Z No(w™) < S Z .

neNy neNy
Moreover,
1< Yy (2.5.4)
TZEN*
From (2.5.3) we have
PR (2.5.5)
TIGN*

Relations (2.5.4) and (2.5.5) can hold simultaneous provided that there is a ny € N,
such that 7,, = 1, while 7, = 0, whenever n # ng. Therefore, by assertion (1.1.4) of
Theorem we obtain

N—2s .(ng)

Up — Y 2 Ik w(no)(fyjignm(. — y’(gno))) — 0 in L2§ (RN)

Since F(t) is self-similar, the sequence

~ N—2s :(ng) _ :(ng)

we=n (),
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is a maximizing sequence for (2.2.1) and v, — w(™) in L% (RY™). Furthermore, the
continuity of ® in L% (RY) implies ®(w™) = S;, and since [w(™)]? = 1, w) is a
maximizer.

Consider now the case where §; > max{S; ., S; _}. Let again (u;) be a maximizing
sequence for (2.2.1)) with [ = 1. Since f(t) verifies we can apply Proposition [2.4.1]
to get

Sy = lim o(w) = > (™) + > o (w)+ Y @, (w™),

k—o0
neNg neN_, neNy

where (w™), (yt™), (), are given by Theorem Considering again v{™ =

w™(7,), with 7, = [w™]¥N ) we get
T NRr Ll S E (25.6)
n 81 n Sl n
neNg neN_ neNy o

Since S; . /S; < 1 and S;_/S; < 1 by assertion of Theorem [I.1.1] inequalities
and can hold simultaneously if and only if there is a ng € Ny such that
Tno = 1, while 7,, = 0, whenever n # ng. Therefore, by assertion of Theorem
LTI},

w, = w) (- —y™) = 0 in L (RY),

and using a similar argument as in the previous case, we conclude that w(™) is a

maximizer. ]

Remark 2.5.2. One always has S; > max{S; ;,S;_}. Indeed, as discussed above, it
suffices to prove this in the case that [ = 1, so let u € D*?*(RY) with [u], = 1 and
vj := d0ju, where 0; is given in (1.2.1), and j € Z. Then [v;]; = 1 implies that
®(v;) < Sy, and by condition we conclude ®(v;) — @, (u) as j — +oo. The
case for the inequality &; > S _ follows by using the same argument. Moreover, the
inequality &) > max{S; +,S1 —} holds whenever F(t) = F.(t) and F(t) > F_(t) with
the strict inequality in a neighborhood of zero. In fact, since F, (t) and F_(t) are self-

similar, we may consider w; and w_ the maximizers of S;; and §;_, respectively, to

obtain, by Theorem Proposition and Remark [2.5.1} that S, < ®(w;) < &
and Sl’_ < @(w_) < Sl.

2.5.2 Characterization of the minimax level

We pass now to the study of the minimax level of the energy functional associated
with Eq. (&J), proving some useful results. This is made by considering the class of
paths ¢ : [0, +) — D*2(RY) defined by (,(t)(z) = u(z/t) for any u € D?(RY),

because of it homogeneous property with respect to the norm in D%2?(RY),
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Lemma 2.5.3. Suppose that F(t) satisfies the growing condition (|1.5.2)).
D*2(RY) is such that ®(u) > 0, then the path (, belongs to T';. Thus Ty

and only if holds.

Proof. Let t,,ty > 0, n € N, be such that t, — to and u € % (RY). Since
(@IS =" [ull, ¥t >0,
using we have
[Cultn) — Cu(to)]2 =

s

tN=25 ]2 — 2t °to° j (—A)S/Qu(x/tn)(—A)S/2u(x/t0) dx + téV_QS[u]Q.

RN

Also, up to a set of Lebesgue measure zero, by identity (0.2.4)) we obtain

(A ulz/to)uz/t)] < Julle |(=2) ulz/to)],

tim (- ulafto)ulo/t)] = (-B)uleftohuCero),

If u e
# & if

(2.5.7)

(2.5.8)

Thus by the Dominated Convergence Theorem the left-hand side of the identity (2.5.8])
goes to zero as n — oo. By identity (2.5.7) we conclude ¢, € C([0,0), D*?(R")). The

general case follows by a density argument.

Now suppose that holds. Then there exists u € C(RY) such that ®(u) > 0 and

consequently ¢, € I'y, since

(Ga(t)) = %tNQS[u]i C D (u) >~ as t — .

Conversely, assume that I'; # &. If does not hold, then we would have that

I(u) = 0, for all u e D**(RY). Hence I'; = ¢, which is impossible.

Remark 2.5.4. Let u € D**(R") be such that ®(u) > 0. Then

N—-2s
(Dl e (Ll N
I(C.(t) = = 2 - 3 P(u).
o 1(G0) = 5 (5o ) B () o
Lemma 2.5.5. Assume that conditions|(f3)| and (1.5.2]) holds. Consider

¢(I) := inf sup I({(t)).

Cef‘; t=0

where
Ly:={CeT;:¢=C, for someue D**(RY) with ®(u) > 0}

Then c(I) = ¢&(I).
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Proof. Since I' ¢ T' we have ¢(I) < &I). Suppose the contrary, that ¢(I) < &I).
Then, there exists ¢ € I'; such that ¢(/) < sup,q I(¢(t)) < &(I). Observe now that, by
embedding (0.2.1) and |(f1)} the continuous function

(t) = SICOT ~ S 2 (0), +> 0,

changes sign. Hence, there exists ¢, > 0 such that g(ty) = 0 and ((¢y) # 0, which
implies that [((tg)]? = 2*®({(t0)). Now taking u = ((to) in (2.5.9) we get

sup I(Gu(1)) = 5C(ta)]2 — B(C(t0)) < sup 1(C(0),

t=0 t=0

which leads to a contradiction with the definition of ¢([7). |

Remark 2.5.6. In order to prove our nonlocal counterpart of |98, Proposition 2.4], we

have to reduce the class of admissible paths. This is made by noticing that

Sup [(gv (t)) = Sup [(Cv(7 (t))7

t=0 t=0

for any rescaling v,(x) = v(xz/0), o > 0, and taking account the set
rl.= {Cel;:(=¢, forsome ue D**(RY) with ®(u) > 0 and [u], > 1},
and the associated minimax level

¢1(I) = inf sup I({(t)),

cel'} 20

to obtain that ¢(I) = & (1).

2.5.3 Proof of Theorem 2.2.2

Proof. Let v € D**(RY) be a non-trivial critical point of I. By Proposition [2.3.2]
we have (, € I'; and ¢ = 1 is a maximum point for the function ¢t — I((, (1)) =
(1/2)tN25[v]? — tN¥®(v). Hence () < maxy=o [((,(t)) = I(v).

Since w is a maximizer for (2.2.1) we have

fw)vde = QAJ (=A)w(=A)vdz, VYve D¥?RY),
RN RN

where A is a Lagrange multiplier. We claim that A # 0. Indeed, on the contrary, we
get f(w) = 0 a.e in RY, which leads to a contradiction with ®(w) > 0. Thus, we can

apply Proposition to get



which together with relation (2.5.1)) implies 2\l = 2*SllN/ (V=29 “and the explicit value
of lp gives A = 1/2. In particular,

Let us prove now the last statement of By the part it is sufficient to prove
that I(w) < c(I). Let u € D*?3(RY) with ®(u) > 0, and denote & = u(a-) where
a = [u]?™?) Then [@]? = 1 and consequently

D(G(1)) = B(Galta)) < [COF 7S, =0,

from which we can deduce, by Lemma [2 and Remark [2.5.6] that

o) = jnt sup[i[cu@)]i—@«u(t))]

B(u)>0,
[wls>1 20

> it s GO - (G017

P(u)>0, t=0
[u]s =1

Moreover, we have

[Cu( - (OIS

[;(2 S) T - 8(288)) ] [u]>*0=9, Yu e D**(RY) with ®(u) > 0.

Consequently,

inf sup[ GO — (Gl >]N2581]—1<2 8 s (208

B(u)>0, 4>
uf =1 0

On the other hand, by the explicit value of [y and relation (2.5.1) we have that

I(w) = 2(2 S)TE —Si(288)

Thus ¢(/) = I(w) and by the proof of the statement the path ¢, € I'y is

minimal. ]

2.5.4 Proof of Theorem 2.2.3

Proof. We start by noting that the embedding (0.2.1) together with condition
implies Z > 0. Let (uy) be a minimizing sequence, that is, ®(u;) = 1 and [uz]? — Z.
Since this sequence is bounded, we may apply Theorem to obtain the weak profile

described in (1.1.1)—(1.1.4). By the Corollary [2.4.2] we have



which implies that there exists n € N, with 0 < ®(w(™) < 1. If ®(w(™) = 1, considering
dj, as the element of Dy~ g given by assertion ([1.1.1)), we have by the weak lower semi-

continuity of the norm that

T <[]} <lminf[diud? =7 and - [diu]] = [u]] — [w™];,
—00

which proves the first part of Theorem Hence, let us assume that ®(w™) < 1.
Set vy, = dfuy, — w, where w = w™. By Corollary we have

lim [1 - JRN F(vg) d;z;] = JRN F(w)dz (2.5.10)

k—o0

Denote § = ®(w) and set @ = w(§/"N-). Thus ®(&) = 1 and consequently

N-—2s 2 N—-2s

[wW2=0"% [@]?=6~ T (2.5.11)

s

Now consider
O = vp(]1 — 5|1/N5]1/N,), where 8, = ®(by,) and by = vi(|]1 — 67N,

Since (B, = |1 — 6| '®(v), by convergence (2.5.10) we have 8, — 1, and we conclude
®(vy,) = 1 for large k. This leads to

N

N—2s
N

—2s N—2s —2s
[oe2 = 1= 0] % B, ™ [0x]2 = 167 B, ¥ T, (2.5.12)

for large k. In the other hand, since [u;]? = [d}ui]?, by relations (2.5.11)) and (2.5.12))

we may infer

[ui]? = [or]? + 2[v, w]s + [w]?

N-2s N N=2s

> [5 10 B, Y }IJF?[Uk,w]s’

and passing the limit we finally conclude

2s

1>6" % +|1—6]" 7,

which leads to a contradiction since 0 < 0 < 1. Thus w is the minimizer in (2.2.2)) and

consequently we have
J (=AY w(=A)vdz = A fwyvdz, VYoveD*?*RY),
RN RN

where A\ € R is a Lagrange multiplier. Taking v = w in the above identity we have
A # 0, which allows us to apply Proposition to get A = Z/2% which by an easy
computation using identities leads us to conclude that v = w(-/f) is a non-
trivial weak solution of Eq. (&), where 8 = A/ = (T/2¥)1/%.
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Let us prove now that u = w(-/f) is a ground state solution of Eq. (£J). We start by
applying Proposition [2.3.2 again to obtain

0 = (5= 3 ) B = 5207wl (25.13)

Now let v € D*?(R") be any non-trivial weak solution of Eq. (€. For any o > 0 denote
vy = v(-/o). Choose o such that ®(v,) = 1, that is, o = (®(v))~"/N. Replacing this
value of ®(v) in the identity [v]2 = 2:®(v), we get o = (25)/V[v]s*". Consequently,

we obtain

[v,]? = (25) "% ([v]?)>/Y,

S

which implies

S S % _N-2s s
1) = S[ol? = S @) ) (25.14)
Comparing identities (2.5.13)) and (2.5.14)), we conclude that I(u) < I(v), i.e, u is a
ground state solution for Eq. (£j). [ |

2.6 The non-autonomous case

For the sake of discussion, we are going to compare the minimax level of the
asymptotic functional I, with the minimax of the Lagrangian associated with Eq. (&),
for k =0,+, —.

Proposition 2.6.1. Suppose that f(x,t) satisfies conditions|([fOH(fe)l If Fo(t) is self-
similar or (Fp).(t) < Fi(t), for allt, kK = +,—, then c(I) < c¢(I,), for K = 0,4+, —.

Moreover, under these assumptions, implies .

Proof. Let be S, the associated constrained maximum similar to (2.2.1)) relative to

the primitive F}, precisely,

S = sup J Fo(u)dx for k=0,+,—.
[u]3=l JRN

For each k = +,—, the primitive of the nonlinearity F} is auto-similar, thus using

Theorems [2.2.1| and [2.2.2] we conclude that there exists w, maximizer of S such that

C([/f) = [H(wli) = I?%X[n(gwn(t)) > 0.

=

For each k = +, —, let us consider the sequence

N—=2s -k e
w;“; = /y 2 jnwlﬁl (7]”.) ,

where the sequence (j¥) < Z is chosen in such a way that ;% — +oo0 and j, — —c0.

Since for each kK = +, —,

MMMM—@@NM<WJ

RN

N—-2s :x

o (5 s
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the uniformity assumption on the limits in , guarantees (by a density argument)
that

lim 7 (Cus(t)) = 14(Cw,(t)), uniformly in compact sets of R. (2.6.1)

n—o0

We also have that the path ., K = +, —, belongs to I'y, for n large enough. In fact,
by the uniformly convergence in x of and Proposition there exists ny > 0
such that

" " 2 1
J NI (’y*j”tx,nyf ]nw,{) dz > —J F.(w,)dx, ¥Yn > ng and ¢t > 0.
RN 2 RN

Thus, for each n there exist ¢, > 0 such that

1(Gug (1)) = max (G (1)) > 0.

t=0

We claim that the sequence (¢,,) is bounded. On the contrary, up to subsequence, we
get the following contradiction

1 A . 2 .
0 < I(Cw:; (tm)) _ _tN—Qs[w]Q o tNJ 'V_NMF ('Y_Jntmffa 7N72]nwﬁ) dx — —0,
RN

S m

as m — oo. Therefore, up to subsequence, t,, — ty, and we have

lim max I (Cur (tn)) = Le(Cu, (t0)),

m—oo t=0

because of (2.6.1). Thus we may conclude

c(I) < lim max I (Cur (1)) < max [,.(Cu, (1)) = c(Ly).

n—oo t=0 t=0

If there exists maximizer wy for Sl% , then an similar argument as above leads to
c(I) < c¢(1p). In fact, for each n, define the path

An(t) = 1wy ( _ty”) . t=0,

where (y,) is taken in a such way that |y,| — c0. As before, we consider the estimate
10u(0) = Talwo0)] < ¢ | Pt + i) = Fo(uo)| d
R

to obtain that

lim I(\,(t)) = Io(wo(-/t)), uniformly in compact sets of R.

n—aco

We also have that the path A, belongs to I';, for n large enough. Indeed, assuming the
contrary, we would obtain ny and a sequence [, — oo such that I(\,,(l,)) > 0, for all
n. On the other hand, we would have that

lim F(lpx + Yngy, wo) do = f Fo(wp) dez,
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which, by taking n large enough, leads to the contradiction I(A,,(l,)) < 0. Let ¢, > 0
such that
I(An(tn)) = max I(A,(t)) > 0.

=0
Once again we get that the sequence (t,) is bounded. On the contrary, there is a
subsequence (tx,) that implies in the following contradiction
1
0 < I(M\u(tr,)) = §tﬁ_28[w0]§ —ty fRN F(tg,x + yn, wo) dr — —o0, as n — 0.

Thus, up to subsequence, t,, — t; and we obtain that

Tim max (A() = Io(un(-/fo)).
As a consequence we conclude that

(1) < Tim max T((t)) < max To(un(/1) = (7o),
where we used Proposition to induce that ¢ = 1 is the unique critical point of
Iy(wo(-/t)). Thus, let us assume that S is not attained. By Remarks [2.5.1] and [2.5.2;
and Theorem if S is not attained then S) = S or S = S, . Thus, using the

definition of &) we get

c(l.) < I(u), k= +,—, Y ue D¥*(RY) with [u]? = l,.

Let u € D*?(RY), u # 0, and denote a = [u]?, then considering the rescaling
ug, = u(ty-), where to = (a/lp) "V N=29) we have [u;,]> = lp and consequently
1 ne s
els) < I(wy) = 5t~ [ulf = t5' @o(u)
< ntaaoxlo(Cu(t)), for Kk = +, —.

=

By Lemma we conclude ¢(I,) < c¢(lp), k= +,—.
Now suppose that holds. As seen above, (,, belongs to I';, thus

() < max I((y, (1)) < I?;&()XIH(CwK(t)) =c(ly), Kk =+,—.

t=0

We claim that Sl% is attained, from which we conclude the desired inequality in
Assume the contrary, by arguing as before, we have Sl% = 813 or Sl% = §,,- Taking
|z| — oo in we get that Fy(t) > F.(t), k = +,—, for all t € R. Consequently, in
any case,

j Fy(w,) dx < supj Fy(u)dx
RN RN

[u]=lo
:f F(w,) dng Fo(w)de, 5=+ —  (262)
RN RN
a contradiction, because relation (2.6.2)) implies that S} is attained. |

Summarizing all the discussion until now we can finally prove Theorem [2.2.4]
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2.6.1 Proof of Theorem [2.2.4

In order to treat the case without compactness condition that is not
considered in the local counterpart 98|, where the case c¢(I,) = c¢(I), kK = 0,+, —,
may occur, we need Theorem [0.6.4], which states that the existence of a critical point
of I is guaranteed whenever the minimax level is attained.

Remark 2.6.2. We define
e(D) = inf sup 1(+(0),

V€T 4efo0,1]

where

1= {yeC([0,1],D**(R")) : 7(0) = 0, [v(1)]s >r, I(~(1)) <0},
as the usual minimax level. We have that ¢;(I) = ¢(I).

Proof of Theorem completed. For the reader convenience, we divide the proof in
several steps.

(i) We start observing that the assumptions and implies that the
functional I has the mountain pass geometry. In particular, I'y # ¢f and 0 < ¢(/) < c0.
In fact, set v = pgr(z) := vr(|z — x0|), where vg as defined as in Remark Then
¢or € D*?(RY) and we have

J F(x,v)dazzf F(x,to)dx—i—J F(z,v)dx
RN Br(zo)

Br+1(z0)\Br(zo)

> |Bg| inf F(xz,ty) + |B B inf F(x,t) >0
| R'BR<xo> (: t0) + [ B R|(x,t)e<BR+1<xo>\BR<xo>>x[o,to] (%)

Since is equivalent to d/dt(F(x,t)t ) = 0, t > 0, we have for ¢t > 1 that

f F(z,tv)dx = t“f F(z,v)dx.
RN

RN

Hence

t? t2
() = D12 - f F(a, to) de < [o]? - tﬂf Flz,v)de — —o, as  — o,
RN RN

In the other hand, by the growth condition and the embedding

= [l (5 - Ol we D)

Thus, choosing [u]s sufficiently small, we have I(u) > 0. The same can be concluded

for the functionals I, since F}, satisfies and
Let (uy) in D*?(RY) be such that I(uz) — c(I) and I'(uz) — 0, which the existence

can be guaranteed by the Mountain Pass Theorem (see Theorem [0.6.2]).
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(ii) By assumption this sequence is bounded in D*?(R"), since for large k,

we have

I'(ug) - uy,

(% _ _> _ JRN Fla,up) — %f(:c, g d

c(I)+ 1+ [ugls = I(ug) —

Let (w™), (3™) and (j™) be the sequences p10v1ded by Theorem L If w™ =0
for all n > 2, then by assertions and (1.1.4) of Theorem m,

u, — wb in L (RY) and uj, — w® in D>?(RY).

Therefore we conclude that w( is a critical point of I such that, up to subsequence,
u — w) in D2(RY).

(iii) Let us assume first that condition [(f7)] holds true. We argue by contradiction
and assume that there exists ng > 2, such that w(™) # 0. By the estimate ) and
Proposition we have, up to subsequence, that

o(I) = lim Buku? - JRN Flz, ur) dx]

k—o0

>IwM)+ > L™)+ > L)+ Y I_(w™). (2.6.3)

neNg,n>1 neN4 neN_

Let ¢ € CP(RY) and n > 1. Since

‘7 N+25J](Cn)f( Jlivz)x +y( n) 7 -(n) )‘

by the embedding (0.2.3), we can take the limit

1 VzeRY and t e R,

N—2s (n) (") n
I'(uy) - (v o (- = <>>>)
(n) ) n
=[y " (v ), ¢l
N+2s A(n) _ :(n) (n) N-—2s :(n)
— L f( oz oy, 72]kv )(pd:c,
]RN
where
n _ N=2s () ) n
o™ = v s g, (7 +y;(€ )),

to conclude that w() is a critical point of I and w™ is a critical point of Iy, I, or I_,

provided that n € Ny, N, or N_| respectively. Consequently, using assumption

1

I.(w™) = 5

f( M) da — J F.(w™)dz =0, Vn > 2,
]RN
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and I(w™) > 0. On the other hand, the assumption c¢(I) < ¢(I.) and the estimate
(2:6.3) implies I, (w™)) < ¢(I,), which leads to a contradiction with Theorem [2.2.2] (or
Proposition [2.3.2)).

(iv) Suppose now that relation holds instead of [(f7)] Condition (2.1.2)
implies that the path (e belongs to I'; and c(I) < IL.(w™)), where k is the
corresponding index for which ny belongs. In view of the above discussion and estimate
(2.6.3), we conclude that

u, — wY in a subsequence or ¢(I) = max I{w™(-/t)).

If the minimax level ¢(I) is attained then we can apply Theorem to obtain the
existence of critical point u € (o) ([0, 20)) such that I(u) = c(I). |
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Chapter 3

Concentration-compactness at the
mountain pass level for nonlocal

Schrodinger equations

In this chapter, we study the existence of non-trivial weak and ground state

solutions for the following class of fractional Schrodinger equation
(=A)’u + a(x)u = f(z,u) in RY. (Hs)

We obtain existence results for a wide class of possible singular potentials a(z), not
necessarily bounded away from zero and for oscillatory nonlinearities in both subcritical
and critical growth range that may not satisfy the Ambrosetti-Rabinowitz condition.
Outline. The chapter is organized as follows. In Sect. we describe the assumptions
on the potential a(x) and nonlinearity f(z,t) in Eq. that are used to state our
results in Sect. In Sect. we provide a suitable variational settings to prove our
main results, more precisely, we prove that the energy functional associated with
possess the mountain pass geometry and Palais-Smale sequences at the mountain pass
level are bounded. In Sect. [3.4 we describe the limit under the profile decomposition of
the Palais-Smale sequence at the mountain pass level of the energy functional related

to (H). In Sect. we prove that weak solutions of Eq. (H) in the autonomous
case f(x,t) = f(t) satisfy a Pohozaev type identity. Sections and

are dedicated to the proof of our main results concerning existence of mountain pass

solutions for Eq. (H).
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3.1 Hypothesis

In order to describe our results on the energy functional of (H)) in a more precise
way, next we state the main assumptions on the potential a(z) and the nonlinearity

f(z,t) respectively. We always assume that N > 2s and 0 < s < 1.

Subcritical case
e Assumptions on a(z) = V{(x) — b(z).

(V1) V(z) € LE (RYN), for some 0 > 2N/(N + 2s) and V(z) is 1—periodic in z;,

i=1... N
(V2) The following infimum

Cy = inf f [(—A)*ul* + V(z)u® dx
RN

ueCq (RN ), Jlu2=1

is positive and V(z) = —B a.e. x € RV, for some B > 0.
(V3) 0 < b(z) e LARYN), for some 8> N/2s, and ||b(z)]5 < C, where

¢ = i J (=A)"uf® + V(z)u* dz, 5= B/(5—1).
RN

ueH (RN ), [ufyp =1

(Va) V(z) e Lf

loc

(RY), for some o > N/2s and there exists the limit 0 < V, :=

hmmﬁw V(l’)
e Assumptions on f(z,t).

(fi) f:RY xR — R is a Carathéodory function. Moreover, for every ¢ > 0 there

exists pe € (2,2%) and C. > 0 such that

|z, t)| < e(ft] + [t + Cole==",  ae. zeRY and VteR.

(f2) There exists u > 2 such that,

¢
wF (z,t) :z,uf f(z,7)dr < f(z,t)t, ae. zeRY andVteR.
0

(f3) There exists R > 0, ty > 0, 2o € RY such that

Bg| inf F(x,tg) + |B B inf F(x,t) > 0,
| R'BR<xo> (o) + [Bre1\ P‘|(x,t>e<BR+1<xo>\BR<xo>>x[o,to] (z,4)
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In the autonomous case, where f(z,t) = f(t), we consider the following variant of
(f4) There exists ¢ty > 0 such that F(to) > 0.
(f1) The following limits are uniform in z,

lim M =0 and lim

t—0 ¢ t|>ao 12

Moreover, for any compact set K in R, there is a positive constant C' = C(K)
such that
|f(z,t)| <O, ae zeRY andVie K.

(f5) Let F(z,t) := 5f(x,t)t — F(x,t). For any 0 < a < b, we have that

inf inf F(x,t) > 0.

zeRN a<|t|<b

(f6) There exists pyp > max{l, N/2s} and agy, Ry > 0 such that

|f(z, )" < ag|t|° F(z,t), ae zeRY, and Y|t| > Ro.

(f7) There exists a 1—periodic function fp(z,t)in z; i = 1,..., N such that

lim |f($,t) - fP(x>t)| =0,

|| —oc0
uniformly in compact sets of R. In addition, we assume that fp(x,t) satisfies
and either |[( f2)H(f3)| or [(f1)]

(fs) For a.e. x € RY the function

. fP(x7 t)
I

t is strict increasing in R.

For the next condition we are assuming that fp(x,t) in is independent of ¢ and we
denote f(t) = fp(t).

(fo) fo(t) belongs to C*(R) and there exists ¢y > 0 such that

Vio '
Fo(to) — 715(2) >0, where F,(t) = L fo(T)dT.
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We look for solutions in the space H$(RY™) which is defined as the completion of

CP(RY) with respect to the norm
Juf = f (~A)2uf? + V() da.
RN

If we assume V(z) € Li (RY) and |[(V5), then H; (RY) is well defined, also || - ||y is

loc

induced by the inner product
(u,v)y = J (=A)Pu(=A)*"v + V(z)uv dz,
RN

and in view of Proposition [3.3.1] we have that H$ (RY) is a Hilbert space.
Writing, a(z) = V() — b(x), we consider associated with the problem (H)), the
functional I : H(RY) — R given by

1 1
I(u) = §HUH%/ b JRN b(w)u2 dz — JRN F(z,u)dz.

If in addition we assume and then I € C*(H$(RY)) and
I'(u)w = J (—=A)*u(=A) o+ (V(z)=bx))uwwde— |  f(z,u)vde, u,ve H*(RY).
RN

RN

Thus critical points of I correspond to weak solutions of (H/) and conversely. We

define the minimax level as

o(l) = vigFfz stlig[(*y(t)), (3.1.1)
where
;= {7 e C([0,00), Hy (RY)) : 4(0) = 0, Tim I(y(1)) = —oo} . (3.1.2)

We also consider the following C! functionals associated with the limits given in |(V})

and [(fo)}

1
In(u) = g ul}y - fRN Fp(x,u)de, ue H:(RY),

1
() = L lul}, - JRN Fo(u)dz, ue Hy(RY),

where Fp(x,t) = S(t) f(z,7)dr. Similarly, as in (3.1.1)) and (3.1.2)), we can define ¢(Ip),

c(Iy), ', and I'; . Next we finally state the assumption relative to the minimax level of
the considered functionals, that guarantees compactness of the Palais-Smale sequences

at the mountain pass level.
(fi0) c(I) < c(Ip);
(flo) cI) < c(lw);
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Critical case

e Assumptions on a(x). Here we assume b(x) = 0, that is, a(z) = V().

(Vi) V(z) € L,

loc

(RY) n C(RM\O), where O is a finite set, and V(z) < 0 a.e. x € RY.
Moreover

—A)2u? + V(z)u?d
0<Ch:= inf Jo [(=2)"u (z)u” de
ueCE (RN)\{0) Sen [V (@)|u? da

< Q0.

(V5*) There exists a, € RY such that the following limits exist and are uniformly

convergent in compact sets

Vi(z) = lim A"V (A" + ay)),

A—0

Vo(z) = im A V(A 1z + a.)).

A—0

Moreover limy, . V(x) = 0, and V. (z) satisfies provided that V. (x) # 0.

(V5*) For any given sequence (\g) of positive numbers such that either |\g| — o0 or

|Ax| = 0; and sequence (y;) in RY, such that |A\zyx| — o0 we have,

klim A2V (A + y) = 0, uniformly in compact sets.
—00

e Assumptions on f(x,t).
(ff) f:RY x R — R satisfies the Carathéodory conditions. Moreover, there exists

C' > 0 such that

|f(x, )] <O, ae zeRY and VieR.

(f3) For each real numbers ay, ..., ay;, there exist C' = C(M) > 0 such that

F (x, Z an> = Z F(z,a,)

n=1 n=1

2 a,,| ae zeRY.

< C(M) Z |y,

m#ne{l,...,.M}

(f3) The following limits exist and are uniformly convergent in x and in compact sets

for t,

fo(t) :== lim f(x,t),

jaf o0
. _ N+2s s N—2s .
fot) = lim oS (7 wyy Jt),
f-(t):= Jim yEEEf (v‘jaf,vNEZ”t) ,

for some v > 1 and 0 < s < min{l, N/2}.
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(f¥) For each k =0, +, —, the function

A0
t

Observe that the assumption guarantees that | - ||y defines a norm in D*?(RY)
which is equivalent to the standard one (see Proposition [3.3.1). Thus in the critical

t

is strict increasing in R.

case we consider associated with problem () the energy functional I, : D**(RY) — R
given by

1

Lw = gl — [ P, weD2@),
2 RN

which is well defined and is C' provided holds. We can define ¢(I,) and Ty,

similarly as in (3.1.1)) and (3.1.2)), by just replacing H{(RY) by D*2?(RY).
We consider the next assumption in order to compare the minimax levels of the

resulting limiting energy functionals.

(2*) The following inequalities holds,

V(z) < Vi(z), forae zeRY, (3.1.3)

For each k = 0, +, —, F.(t) < F(z,t), ae. reR" andVteR (3.1.4)
Moreover, at least one of the next conditions hold,

(i) The inequality (3.1.3)) strict in a non-zero measure domain.
(ii) There exists § > 0 such that the inequality (3.1.4)) is strict for all ¢ € (=9, )

and a.e. x € RV,

Also, to consider the autonomous case f(x,t) = f(t), we assume that the nonlinearity

is self-similar,

(f¥) There exists v > 1 and 0 < s < N/2 such that

N-—2s

F(t):y_NjF<7 : jt), VjeZandteR.
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3.2 Statement of the main results

We first state our results concerning existence of ground states solutions for Eq.
in both subcritical and critical growth range of the nonlinearity. We say that u
is a ground state solution for (), when I(u) < I(v) for any other weak solution v in
the same considered space of functions.

Theorem 3.2.1.

(i) Suppose that f(x,t) and a(x) = V(x) are 1—periodic in x;, i = 1,...,N and

satisfy |( f1)H(f3)| or|(fs)H(f6)| and |[(V1)H(V2)| respectively. Then the equation (H.)
has a ground state solution.

(ii) Suppose that f(t) € CH(RYN) satisfies[(f3)| and [(fZ)] for some v > 1. Let
G = {u e D¥*(R") : J F(u)dz = 1},
RN

and consider
I, = inf {JRN (= A)2u? — Az|2u? dx} , (3.2.1)
where 0 < X < Ay is given by . Then, there is a radial minimizer w for

(3-2.1). Furthermore, there exists o > 0 such that u = w(-/a) is a ground state

solution for (H)), with a(z) = —\|z|7%.

Theorem [B.2.1] takes into account the invariance of I under the action
of translations and dilations in H*(RY) and D%2(R"), to obtain concentration-
compactness of Palais-Smale and minimizing sequences in each case respectively. These
properties are enough to ensure existence of ground state solutions. Moreover, our
results improve and complement 33| for the fractional framework since here we consider
a potential a(z) and nonlinearity F(x,t) which can change sign. Also in Thereom
3:2.1}-(ii) we do not require the classical Ambrosetti-Rabinowitz condition [(f3)] Our
argument to prove Thereom [3.2.1}-(ii) involves a Pohozev type identity and as usual

for this we required C! regularity.

Theorem 3.2.2. Let

e(I) = uer/l(%gV)\{O} stl;gf(tu) and cn(l) := 53{/1(“)’

where N' = {u € Hy (RN)\{0} : I(u) - u =0} . Suppose that for a.e. z € RN the function

f(z, 1)

t— i is strict increasing in R. (3.2.2)
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IfV(z) e Li (RY), a(z) = V(z) — b(z) satisfies and f(z,t) fulfills

then

c(I)=2¢(I) =cen().
In particular, any non-trivial weak solution u in H,(RY) at the mountain pass level is
a ground state solution.

Theorem [3.2.2]improves some results in [79] since we deal with the case where a(x)
may changes sign and is not necessarily bounded from below, also with nonlinearity
having the behavior at 0 described by . Moreover, Theorem m proves the
existence of ground state by replacing the aforementioned invariance by . In
fact, our results below give some conditions that guarantee existence of nontrivial
weak solutions in H; (RY) at the mountain pass level.

Our next results are on the existence of weak solutions of at the mountain-

pass level by using the concentration-compactness principle.

Theorem 3.2.3. Assume that f(x,t) satisfies|(f1)H(fs)| or|(f3)H(fo)i and additionally
[(/2)} Suppose also that a(x) and f(x,t) satisfy either one of the following conditions,

(i) b(x) = 0, [(V)[(V2)} [(fs)] and |(fro)y or
(i) V(z) =0, b(x) has compact support, (Vo)H(Va), |(fo)| and [(f],)l or

(iii) Replace conditions |(fio)| and |(fiy)] in the above items by
I(u) < Ip(u) and I(u) < Io(u), VYue HH(RY), (3.2.3)

respectively for each considered case.

Then Eq. (H,) possess a non-trivial weak solution u in H(RYN) at the mountain pass
level, that is, I(u) = c(I). Moreover, under the assumptions of items[(1) and any
sequence (uy) in HE(RY) such that I(uy) — c(I) and I'(ux) — 0 has a convergent

subsequence.

Theorems [3.2.1 and extend and complement the existence results of
[33,(79, 98] in the fractional framework. In Theorem the potential a(z) =
V(z) — b(x) is not necessarily bounded from below and in Theorem (ii)| we do
not ask as it was made in these works.

Theorem 3.2.4. Assume that f(z,t) and a(x) = V(x) satisfy [(f7)H(/DL (3.1.3),
(3.1.4), [(fo)H(f3)| and [(VI))H(VE)| respectively. Then Eg. has a non-trivial weak
solution in D*>2(RN) at the mountain pass level. If we assume additionally condition
then any sequence (uy,) in D¥2(RY) such that I.(ux) — c(I,) and I’ (uz) — 0

has a convergent subsequence.
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Theorems [3.2.1 and complement the study made in [39]. Theorem [3.2.4]
can be seen as a nonlocal generalization of |27, Theorem 5.2], since we take account that
the critical nonlinearity is not autonomous. It also can be seen as complement for many
results in the literature about existence of non-trivial weak solution for Schrédinger
equation with critical nonlinearity and singular potential (cf. [49}[50,86,95] and the

references given there).

Remarks on the hypothesis and in the main results

Remark 3.2.5. Next we give several helpful comments concerning our assumptions.

(i) Assumption can be seen as a subcritical version of [(fF)]in the sense that it
is oscillating about a subcritical power [t[P~%t, 2 < p < 2%. In fact, it is easy to

see that holds provided f(x,t) satisfies conditions and given below.

(f1) The following limit is uniform in z,

flx,t)

o e+ e

(f1') There exists a positive constant C' and a function o(t) € C(R\{0}) n L*(R)
with 2 < infer 0(t) < sup;eg 0(t) < 2%, such that

1f(z,t)] <O+ |t]4D7Y), ae zeRY and VteR;
For example of nonlinearity satisfying and consider
f,t) = k(@) [¢' ) (I [t]t) + o] [t} f(x,0) =0,
252

ot) = =g sin (In(|In [¢]])) +

2*
5%;6 and 0 < k(z) € C(R) A L2(RY),

The primitive is given by F(z,t) = k(x)[t|°®. A version of |( f,)|for the local case
appeared in [96].

(ii) Using similar arguments as in [33, Lemma 2.1], we have that and imply
(f1)|in a more restrict setting, more precisely, there is p € (2,2¥) such that for
any € > 0 there is C. > 0 with

\f(z,t)| <elt| + CotfP™, ae. zeRY and VteR.

That is, in the case that f(x,t) fulfills and we have that p. = p, for all
e > 0 in condition [(f1)|
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(i)

(vii)

(viii)

Conditions are an alternative for the Ambrosetti-Rabinowitz condition
and was first introduced in [37] for the local case. By similar arguments as

the ones made in [37], condition holds once we take account and
that there exists p € (2,2%) and ¢y, ¢, 71 > 0 such that

1 1
ol <alr md P (-

) f(z,t)t, for |t| = r.

where l <v<2if N=1,and 1l <v<N+p—pN/2sif N = 2.

In view of the boundedness of Palais-Smale sequences we point out that we
separate our studies for the subcritical case in two distinct situations: f(z,1)
satisfies|( f1)H(fs)|or [(fs)H(fs)l The first one is associated to the case where f(x,t)

has oscillatory behavior around the subcritical power and the second one refers

to the case where f(z,t) does not satisfies Ambrosetti-Rabinowitz condition.

In [33|, considering a local Schrodinger equation with asymptotically periodic

terms, in order to prove the mountain pass geometry it was assumed that
F(z,t) > 0 for all (z,t) € RY x R and This setting allow the author do not

use the classical Ambrosetti-Rabinowitz condition . Here, in this work, we
have an improvement even to the local case because we assume |( f3)| instead of
assuming that F(z,t) > 0 for all (z,t) € RN x R.

Assumption it is used to prove the boundedness of Palais-Smale sequences
of the mountain pass level for the functional of Eq. (H). In [33] to prove similar

result the author assumed the following more restrictive condition
1
F(x,t) = §f(m,t)t — F(z,t) = b()t?, V(z,t) e RY xR,
for some b(t) € C(R\{0},RT).

In our approach to study existence of weak solutions of Eq. (H) we use
assumption unlike the aforementioned papers, where the authors impose

the more tight condition
|f(2,t) — fp(z,t)] < h(x)[t]"™" ae. zin RY and YVt e R,

where h(z) belongs to the class of functions in C(RY) n L®(R") such that for
every € > 0 the set {x € RY : |h(z)| = ¢} has finite Lebesgue measure.

The smoothness condition assumed in is the natural hypothesis used in the
literature to prove that weak solutions of Eq. (H|) satisfies a Pohozaev type
identity.
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(ix) We prove in Proposition that H; (R3) is well defined and it is continuous
embedded in H*(R?). As a consequence of this we can conclude that the infimum
C‘(/B ) defined in is strictly positive.

(x) Once the limits in (Vi) [(f7) [(fo)| or |(fF)| exist, to obtain compactness of
Palais-Smale sequences at the minimax levels we need to require the additional
conditions over the minimax levels given in assumptions |(fio)} [(f1)} [((ZZ*)} In
fact, we do not believe that it is possible, in general, to achieve the compactness
described in Theorems [3.2.3|and [3.2.4] without these conditions. We mention that
this kind of approach was introduced by P.-L. Lions in [65-68|.

(xi) Similarly as made in Chapter[2] we also consider the case when [(fi0)l [([/],)} [(ZZ7)]
do not hold. Precisely, when it is allowed ¢(I) = ¢(Ip) or ¢(I) = ¢(Iy). In this
case, the concentration-compactness argument at the mountain pass level cannot
be used. We apply Theorem to overcome this difficulty and prove existence

of solution at the mountain pass level.

(xii) For problem (H/) involving critical growth we require conditions on
the potential and and on the nonlinear term f(x,t). These

assumptions are suitable for our argument, differently from because
the potential that appears in the associated limiting equation depends on the

profile decomposition of Theorem for a given Palais-Smale sequence at the
mountain pass level (for more details see estimate (3.9.1])).

(xiii) In our results, one can assume that f(x,t) = f(|z|,t) and a(x) = a(]z|) are radial
in x instead of the existence of the asymptote fo(t) or fo(t). This fact can be
easily verified by using Proposition [I.4.1]

Remark 3.2.6. Under the assumptions |(V,)|and |( f7)| we describe next conditions which
guarantee that |( fio) and |(f{,)| hold.

() The following inequalities hold,

Fp(z,t) < F(x,t), ae. reRY andteR, (3.2.4)
V(z) <V, ae. zeRY (3.2.5)

In addition, we assume that either (3.2.4) holds strictly in some open interval
contained the origin or ([3.2.5)) holds in a set of positive measure.

In Proposition under suitable conditions, we obtained the following estimates for
the minimax levels: ¢(I) < ¢(Ip) and ¢(I) < ¢(Iy). Moreover, we proved that under
condition We have that |( fi0)|and|(f],)/hold. We observe that on the corresponding

assumption of Theorem it is easy to see that inequalities (3.2.4]) and (3.2.5) imply
that (3.2.3)) is satisfied.
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Remark 3.2.7. Using the same argument of Remark it can be proved the existence
of non-negative weak solutions of if f(z,t) = 0for all t = 0 and almost everywhere
x in RY. In fact, consider the truncation

_ flz,t), if t=0,
fla,t) = ,
0, if t<0.

Assume that a(z) € L, (R"Y) and that conditions and hold true with b(z) = 0.
Thus for u a weak solution of (P, with f(z,t) replaced by f(z,t), we have that u is
also a weak non-negative solution for (Pg). To see that, let £ € C°(R : [0, 1]) such that

1, it te[-1,1]

£(t) = and  |{'(t)|<C VteR,

0, if [t =2
For each n € N, define &, : RV ™! — R by &,(2) = £(|2[2/n?). Then &, € CP(RV*1) and
verifies

VE(2)] < C and 12||VE(2)] < C Vze RVHL

By a density argument, we can take ¢ = ,w_ in (0.3.4]), where w_(z) = min{w(z), 0}.

Since w_(z) = FEg(u_), we have that

f N y172sgn|vwi|2 + y17285n <Vw+7 Vw7> + y1728 <V’u)+ =+ V’UJ,, w7V£n> dl’dy
R++1

— fRN@(x, u) — a(z)u)éu_ dz,

and we may apply the Dominated Convergence Theorem and (0.3.2)) to get

oty = | Flewudr =0,

which implies that u_ = 0. Once again, if v has sufficient regularity one can show w is
positive, by applying the maximum principle for the fractional Laplacian as described
in [84]. In order to regularize the solutions, we follow the same arguments of |79, Section
6], but as already mentioned in this paper, we need sufficient regularity in the potential

a(x) = V(z), which is beyond our scope (see also |38, Chapter 5|).

Erample 3.2.8. Our approach include the following classes of potentials:

(i) For a potential satisfying assumption and that is not bounded away from
zero, consider 0 < a(x) = Vo(x) € L _(RY) n (C(RM\O), where p > 1 and O is

a countable set, and suppose that Z = {z € RY : V(z) = 0} # ¢J is a countable
discrete set.

(i) Let Vp(x) the potential given above. For a potential the changes sign and satisfies
consider a(z) = Vy(x) — ¢, where 0 < & < Cy, /2.
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(iii) To study potential of the form a(z) = V(z) — b(x), setting

1
V(r)=2— ———— and V, =2,

1+ |z|?
and
Colz|™0, if 2] < 1,
b(z) =
0, if |x| > 1,

we can verify that a(xz) = V(x) — b(x) satisfies conditions Here Cp is a
positive normalization constant, 0 < 6 < N/f and § > N/2s.

(iv) For potential a(z) = V(x) satisfying assumptions we can consider

FN,S
2 Y

1 \;
V(x)z——zu—] with 0 <) < j=1,...,L,

— |25 )
which is well defined in view of (0.0.3).

Example 3.2.9. Note that the hypotheses of Theorems [3.2.1 are for example
satisfied by nonlinearities of the following forms:

(i) Let o(t) be as in Remark (i) and consider k(x) = |z|?/(1 + |z|?). One can
see that

fla.t) = k(z) [/ (&) (n [tt) + o(®)] [¢[4V %, f(x,0) =0,

satisfies assumptions |( f1)H(f3)b [(fo)| and |(fio)}

(ii) For a nonlinearity satisfying conditions [(f3)H(fs)l and [(f1o)| we can define

h(zx,t), fort > 0,
f(z,t) =
— h(z,—t), fort <0,

where
h(z,t) = k(z)tIn(1 +t) + ki () [(1 + cos(t))t* + 2(t + sin(t))t]

for t >0, s > N/6; k(z) = |z|?/(1 + |z|?) and 0 < ky(z) € C(RY) is such that
hmmﬁw k?l (JZ) =0.

(iii) Let 0 < ¢(x) be a continuous 1—periodic in x;, ¢ = 1,..., N, and consider
f(x,t) = c(z)[ph(t) + RLO)E] [tP7!, 2 < p < 2%, where h.(t) € C*(R) is a
non-decreasing cutoff function satisfying

()] < C/t, [h(t)] < C, VEeR,
he(t) = —¢, for t < 1/4, h.(t) =¢, fort = 1/4, with  small enough.

We empathize the fact that F(x,t) changes sign.
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(iv) Suppose that the function ko(x) is continuous and

2% — > sup ko(z) = ko(z) > ko(0) = inf ko(x) = lim ko(x) = 0.

2eRN zeRN |z| >0

The nonlinearity given below satisfies the hypothesis of Theorem [3.2.4]

f(z,t) = exp{ko(z)(sin(ln [t|) + 2)} [ko(z) cos(In |t]) + 2%] |t %2 f(z,0)=0.

3.3 Variational settings

This section is devoted to develop the basic background needed in order to apply
our variational arguments. We start by establishing the space of functions where the

solutions lies.

Proposition 3.3.1. Suppose that V(z) € L. (RY) and satisfies then Hy (RN)
is a Hilbert space continuously embedded in H*(RYN). If V(x) satisfies then the

norm || - |v is equivalent to the standard norm of D¥*(RY).

Proof. Let us prove first that there exists a positive constant C' such that
Clel: < lely, Yoe CP®Y). (3.3.1)
In fact, on the contrary, there would exist a sequence (¢,,) in C°(RY), such that
[enle > nlenlli, ¥neN.

Taking v, = ©,/[pn]s, We have

1
—> vy and Cylonf < foaly, ¥neN,

and consequently lim,, o [v, |3 = lim, e ||[0,]5 = 0. This leads to a contradiction with
the fact that
1= Blva[3 < Joalyy, VneN.

Now consider (¢,,) any sequence in CF(RY). Using inequality (3.3.1) we have
Clom — ¢uls < |om — @ult,  for any m # n.

Consequently,

1
lom = onl? < minf1,C1 (14 5 ) lom = puhy orany m#n
v
Thus H;(RY) is well defined. Moreover, Fatou Lemma and embedding (0.2.1]) implies
H(RY) {u e H¥(RY) : J V(z)u*dz < oo} ;

RN

86



with the continuous embedding H (RY) — H*(RY).
Assuming condition [[V*)] we have

[u]? + J V(z)u®dr = C{‘}f V(z)lu*dr, VYue CSO(RN),
RN R

N

from this we derive

Coluli < () + Duls + f (V(@) = Co|V(2))u* da

RN
< (@ + Dfuly, Vue CFRY).

Since V(z) < 0 a.e. in RN, we conclude that the norms [ - ], and | - | are equivalent
in DS2(RY). n

Remark 3.3.2. (i) If V(z) fulfills and [(Vy)} then Hy (RY) = H*(RY). Moreover,
the norms | - || and | - |, are equivalent. Consequently, the path \,(t) := u(-/t),
t = 0 belongs to C([0,0), H5(RY)) and u(- — y) € H(RY) for all u € H(RY)
and y € RY. Indeed, there is a ball Bg, with center at the origin such that

JRN V() de — LRl V(e)u? dz + f V() de

RN\Bp,

1/o (o—1)/o
< J V(@) de f /7= dg
Br, Br,

+ (Vo + 1)] w?dr, Yue Hi(RY),
RN\Bp,

where 2 < 20/(0 — 1) < 2*. So we can apply embedding (0.2.3) to conclude the

desired result. To obtain that the path )\, belongs to C(]0,00), Hi (RY)) we use

Lemma 2.5.3.

(ii) If we assume (V2)] then we can replace H*(R™) by H{(RY) in Theorem|1.1.2]
and the respectively norms in the assertions (1.1.5)—(1.1.8). In fact, condition
implies that Dy~ is a group of unitary operators in H: (RY).

Now we prove that our functional I, has the Mountain Pass Geometry.

Lemma 3.3.3. Suppose that f(x,t) salisfies and either |(fo)H(f3)| or [(fo)l If
a(z) = V(x) — b(z) € LL (RY) fulfills and then the functional I possess

the mountain pass geometry. Precisely,

(i) 1(0) = 0;

(1) There exists r, b > 0 such that I(u) = b, whenever |ully = r;

(iii) There is e € Hy (RN) with |e]v > r and I(e) < 0;
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In particular 0 < ¢(I) < .
Proof. Let £p € CP(R), R > 0, such that 0 < Eg(t) < tp and
enlt) = {to, if |t| < R,
0, if[¢{>R+1.
Setting v(z) := Eg(Jx — x¢|), we have v € Hi(RY) and by assumption we have

f F(:U,U)dxzf F(x,to)dx—i-f F(z,v)dz
RN Br(z0)

Br+1(20)\Br(z0)

> |Bgr| inf F(x,ty)+ |B B inf F(x,t) > 0.
| R'Bmo) (o) + [ B\ R|<x,t>e(BR+1<zo>\BR<mo>>x[o,to] (z,%)

First assume that holds. Since b(z) € LP(RY),
/B (B-1)/8
f b(z)u? dr < (J b(z)? d:c) (J || 2P/(B—1) d:v) . Yue Hi(RY),
RN RN RN

with 2 < 28/(8 — 1) < 2¥ by conditions and [(V3)] for any € we get that

1 b(z
I(u) = [5 (1 = % = 25C2> — eCox|u

for all uw € H{(RY), where Cy, Cy+ and C,. are positive constants provided by the

2% 2
V§ - CECPE

uz&”] July,  (3.3.2)

embedding described in Proposition [3.3.1] This allow us to consider € in a such way
that the first term in the right-hand side of is positive, once ||u/y is taken small
enough. Hence there exists » > 0 such that [(u) > 0 provided that |u|y, = r. Since
condition |( f2)|is equivalent to d/dt(F(x,t)t™") = 0, for t > 0, we have
J F(z,tv)dx = t"f F(z,v)dz, whenever ¢t > 1.
RN RN
Hence, as t — o0,

t2
I(t0) = Sl - J b(x)u? da — f Flz, tv) dz
RN RN
t2
< v} - t“f F(z,v)dx — —c0,as t — 0.
2 n

Now suppose that assumption holds. By Remark (ii) we can argue as above
to conclude the existence of r > 0 such that I(u) > 0 wherever |ully < r. For any given

R > 0, there exists tg > 0 such that
F(x,t) > Rt?, VY|t| >tg, Yz e R"Y.

Let be A(R,t) := {z € RN : t|lv(z)| > tg}, for t > 0. We have that

f F(a:,tv)dxzj F(m,tv)dx—i—f F(z,tv)dx
RN K A(Ryt)

> J F(z,tv)dx + Rt? J v? du, (3.3.3)
Ky A(R,t)
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where K, = (RV\A(R,t)) n supp(v). Using Remark [3.2.5-(ii), for each t > 0, we get
that

|F(z,tv)| < C, for ae. xe Ky,
where C'is a positive constant that does not depend in x and t. Consequently, for any
x € supp(v),

F(z,tv)Xg, () - 0, ast— oo,

where we have used that, for any = € supp(v),
XRN\A(R,t) (z) — XRN\Supp(v) (x) =0, ast— oo,

Thus Dominated Convergence Theorem implies that the first integral in the right-hand
side of inequality (3.3.3]) goes to zero as ¢ goes to infinity. By the same reason, we also
have

lim vide = lim UQXA(R@ dz = J 022({#0} dz = f vide
RN

t—00 A(Rt) t—c0 RN RN

In particular, there exists a positive number ¢y g such that

1
—J v?dz < J vidz, Yt >tong. (3.3.4)
2 Jry AR
Replacing (3.3.4) in (3.3.3) we obtain that
2 . 1P N
I(tv) = —=|v|y — = b(x)v*dx — F(z,tv)dx
2 2 RN RN

1
<5 (ol — RIl3) - L Fla,tv)de <0, fort > ton,

provided that R is sufficiently large enough. |
Remark 3.3.4. (i) In view of Lemma we define the set
[ = {y e O, 11, Hy (RY)) : 7(0) = 0, [1(D)y > 1, I(+(1)) <0},
and

c1(I) = inf sup I(vy(t)),

V€T 4ef0,1]

the usual minimax level. Thus have ¢;(I) = ¢({).

(i) When f(x,t) = f(t), the mountain pass geometry can be obtained by replacing

condition by In fact, let £p as in the proof of Lemma and define
nr(z) = &r(Jx|). Then, arguing as in Remark [2.2.6| we have

J F(UR) dz > 07
RN

provided that R is sufficiently enough. The mountain pass geometry now follows

as in the proof of Lemma [3.3.3
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(i)

Assume that f(x,t) satisfies and either |(fo)H(f3)| or |(f1); and additionally
Suppose also that a(x) and f(z,t) fulfills and respectively.

Then the limiting functional I, has the mountain pass geometry. In fact,
together with Lemma implies that A,(¢) := u(-/t), t = 0, is an admissible
path for ', , where u € H*(RY) is such that

"
LN Fo(u) — ?‘%ﬂ dz > 0. (3.3.5)

Using the same argument as in Remark (i) we can see that there exists
©o € CP(RY) satisfying ([3.3.5) and

Ve

oOha®) = 302 = | [ o) = 5

5 gpg]—>—oo, as t— 0.

Moreover, I(u) > 0 wherever |u|y = r, for r > 0 sufficiently small enough (see
proof of Lemma [3.3.3]).

In addition to the assumptions of Lemma , assume that F(z,t) > 0 for a.e.
€ RY and t # 0. Then, for any u € H(RY)\{0}, the path defined by ((t) = tu
belongs to I';. In fact, we make the following modification in the proof of Lemma
replacing v by u and taking into account the same notation. We have that

J F(z,tu)dz > RtQJ u? dr,
RN A(R,t)

lim J u?dz = lim uQXA(RJ) dz = J UQX{#O} dz = J u? dz,
A(R,t) RN

t—a0 1= JpN RN
which enable us to proceed as in (3.3.4) and get that
1
(1) = 1(tu) < 3 (Jul}y — Rlul3) £ — —o0, as t o0,

provided that R is large enough. Moreover, suppose that condition (3.2.2) holds.
Taking into account that

o) =t [uu?v - Mudx] >0,
RN

we infer that ((¢) has a unique critical point.

As a consequence of the previous result, we can guarantee the existence of

bounded Palais-Smale sequence at the mountain pass level ¢(I).

Proposition 3.3.5. Assume that a(z) € LL_(RY) satisfies and f(xz,t)

satisfies either

(i) (fs); or
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(i) [(f3)1(fo)f

Then there exists a bounded sequence (uy) such that I(ug) — c(I) and I'(ug) — 0 in
the dual of H{(RYN).

Proof. (i) By Lemma we may apply the standard Mountain Pass Theorem
(see |2,[16]) in order to find a sequence (uy) in Hi (RY) such that I(uy) — ¢(I) and
I'(uy) — 0. For large k, we have

1
() + 1+ |uglly = I(ug) — ;I/(Uk;) - U

11 1b(x)| 5 2 1
(1) (1 o o L IR BRI

Loy (Bl
>(3-7) (1— o) el

which implies that (uy) is bounded in H{ (RY).

(ii) The proof of this case is based in the arguments made in [33, Lemma 2.5,
which are similar to the ones used in [37]. By Lemma [3.3.3] we can apply a variant of
the Mountain Pass Theorem (see [21,/77]), to obtain the existence of a Cerami sequence

(ug) for I at the level ¢(I), more precisely,
I(ux) — c(I) and (1 + Jlug|v) |1 (we) [« — 0,

where |||, denote the usual norm of the dual of H (RY). We claim that (uy) is bounded
in H (RY). Assume by contradiction that, up to subsequence, |uy|ly — 0. Define the

sequence
Uk

Vp = ——.
" v

We have that

1 1
lim [1 — f(x’uk)vk do — —QJ b(z)us, dx] = lim [ 1" (uy,) Uk] =0.
k= ey kv k5 Jen koo | [uklf

The idea is to use indirect arguments and prove that

lim —f(a:, )

koo Jgv - [uklly

vpdr =0,
which, by assumption leads to the following contradiction,

1 1
1 = lim —J b(x)uide < =. (3.3.6)
RN 2

% Tl
For 0 < a < b < o0, defining
Qpa,b) = {z € RY :a < |ug(z)] < b},
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we are going to prove that for any given 0 < ¢ < 1, there exists k. and real numbers
a.,b. such that

f(xvuk) f(x>uk)

=y dr = J L
Ry Jlugllv Qp(0.a) | Uk|v

. f Jw), oy J J@u) <o VEs k. (337)
Q. (ae,be) HukHV Qe (be ,00) ”ukHV

v dx

In order to do that, we first make some estimates involving F(x,t). Define
g(r) =inf {F(z,t) :z e RY, |t| > r},

which is positive and goes to infinity as r — oo0. Indeed, thanks to assumptions

and , we have

apF(x,t) = ‘@

Po Po

F
F@O™ o > Ry,

t2

>‘2

Consequently, by condition [(f5)l we obtain that F(z,t) — o0, as [t| — o0, uniformly in
x. Due to assumption we also can define the positive number

mb:inf{f(x’t) crxeRY, a<|t|<b}.

a t2

Using these notations, we see that there exists kg such that
1
c(I)+ 1= I(ug) — §Il(uk) - Up
= J F(x,u) dor + J F(x,uy)de + J F(x,up)dx
Qk((],a) Qk((l,b) Qk(b,oo)

> J Flx,up) dz +mb ui dz + g(b)|Q(b,0)|, Vk > ky. (3.3.8)
Q1(0,a) Q. (a,b)

Inequality (3.3.8) implies

lim |Q(b,0)| =0, uniformly in k > k.

b—0

Moreover, fixed 2 < g < 2%, we have

f log|?dx < (J v,
Qk,(a,b) ka(avb)

lim |vg|?dz = 0, uniformly in k > k. (3.3.9)
b—0 Qk(a,b)

On the hand, it follows that

. q/2¥
2ﬁ Q4(a,b)

(2f—q)/2¥

in particular,

1
f vide = T3 f up dx
Qs (ab) Huk”v Qila,b)

<(u%)<wnimw>ﬁu%k*w'@“m
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We now pass to prove the estimate (3.3.7). By condition [(f4)] there exists a. > 0 such
that
|f(z,t)| <elt], VaoeRY, provided that |t| < a..

Thus

J ka do < f Mvg dz <¢/3, Vk> kWL,
Q(0,ac) Huk”v Q1(0,ac) {|ug|>0} |Uk|

where k" > ko is obtained by convergence (3.3.10). Taking 2qo := 2po/(po — 1) and
using assumption we have that

J f(z, uk)vk dr < J f(z, uk)v,% dx
Q Qk(b€7w)

wbeo) kv un

1/q0
< (ao(c(I) + 1))/ (J |Uk|2q0dm> <e/3, VE> kD,
Q

k(bE,OO)

where b. and k§2) > ko are taken from convergence (3.3.9). Finally, using condition

We get that
|f(x7uk)| < C€|uk|7 Vre Qk(CLE;bE)’

and some positive constant C that does not depends on k& and x. Thus,

J f(x’uk)vk dz < J f(x’uk)v,z dr < C’EJ vide <e/3, Yk > kY,
Q. (ac,be) |u||v Q. (ac,be) |ur] Q. (ac,be)

where k) > ko is obtained from (3.3.10). The contradiction from (.3.6) and (3.3.7)
|

follows by taking k. > {k{", kP k).

3.4 Behavior of weak decomposition convergence

under nonlinearities

We now pass to describe the limit of the profile decomposition (Theorems [1.1.1]
and [1.1.2)) for bounded sequences under the considered nonlinearities.

Proposition 3.4.1. Suppose that f(x,t) satisfies a(z) = V(z) € LL (RY) and
(Vo). Let (uy,) be a bounded sequence in H(RYN) such that uj, — u in LP(RY), for some
p € (2,2%), then

lim [z, up)uy, de = f(z,u)udz,

k—o JpN RN
up to subsequence. Moreover, if (vy,) is a bounded sequence in Hy (RN ) with u, — vy — 0

in LP(RYN), for some 2 < p < 2%, then, up to subsequence,

lim F(z,u;) — F(x,v)dz = 0. (3.4.1)

k—oo RN
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Proof. First observe that uy — u in LY(RY) for all ¢ € (2,2*). In fact, this follows by
a interpolation inequality, if ¢ < p then

= ully < Jur = ullglur, — ™
where 1/g = 60/2+ (1 —60)/p, and if ¢ > p then

= ully < Ju = ullplu — w5’

for 1/¢ = 0/p + (1 — 0)/2%. On the other hand, by embedding (0.2.3)) and Proposition
3.3.1, up to subsequence u € H$ (RY) with,

up(r) — u(x) as k — o0, a.e. € RY and |up(2)|, |u(z)| < ho(z) ae. e RY, ke N,

for some h. € LP<(RY). Now consider that

JRN | (2, w ) — f (2, w)u| da <J

RN

| f(z, ug) (ug —u)| dx—i—f |(f (x,u)— fx,u))u| dz.

RN

The first integral can be estimated by Hélder inequality as follows

)

+ el s —

*_
| 1w~ )l o < e (Juelabue = o + a2 o~ 0
R

De -

For the second one, consider

Ef = {x e RY : e(|up ()] + |ur(x)

#1) < Colun ()}

and

B = {x e RY : e(ju(z)| + [u(z)[Z ) < cg|u(a;)|ps*1} .

Thus
[(f(z,u) = f(z,u))uldz = J |(f (@, ur) — f(z,u))u| Xy dz.

Ef RN

Since Xg: (x) — Xp-(z) in each point of RN and

|(f (2, u) — f (@, w))ung | < 2ChE e LY(RY),

we may apply the Dominated Convergence Theorem to conclude

lim |(f(x,ug) — f(z,u))u|dz = 0.

k—o0 E}i

On the other way,

limsupf \ |(f(z,ux) — f(z,u))u]dz < Ce.
RN\E:

k—a0
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where C' is a positive constant that does not depend in € and k. Since ¢ is arbitrary,

(B-4.1) holds.

Now, let us prove (3.4.1)). Choose (uy,), (vy) in C°(RY) such that
k—o0 k—0
Thus it suffices to prove that

lim [F(x,u) — F(z,v;)] de = 0. (3.4.2)

k—00 RN

Consider F := (Co(RY),| - [,.) and the functional 8 : E — R, given by S(u) =

San F (2, u) dz with Gateaux derivative
Ba(u) - v = f(z,u)vdz.
RN

Thus, we may apply the Mean Value Theorem to get

B(u) = B)| < sup  ||Bg(w)ls fu—v],, VuveE, (3.4.3)

weE welu,v]

where [u,v] = {tu+(1—t)v : t € [0,1]}. Since (uy), (vg), (ux) and (o) lies in a bounded
set B in Hy (RY), we also have, by the continuous embedding H{ (RY) — LP:(RY),
that B n E is bounded in E. Consequently (¢, is bounded in B n E, which allows us
to take u = 4y and v = Uy in to conclude the convergence (3.4.2)). |

Our next result can be see as the nonlocal counterpart of [99, Lemma 5.1|.
Moreover, it might also be seen as an generalization of the well known Brezis-Lieb

Lemma [15].

Proposition 3.4.2. Assume that f(x,t) satisﬁesm andﬂ Let ( uk) in H*(RY)
be a bounded sequence and (w™),en, in H*(RY), given by the Theorem |1.1.4. Then

lim F(z,u)de = J

k—o0 RN RN

F(z,wM)dz + Z f Fp(z,w™)dz.

neNg,n>1

Proof. By the Proposition the functional
O(u) := J F(z,u)dz, ue H*RY),
RN

is uniformly continuous in bounded sets of LP(RY), for any 2 < p < 2%, consequently,

by assertions (1.1.7) and (1.1.8) of Theorem we have that

lim Z w(”) (n) >] 0.
k—o0 [ (nENo
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The uniform convergence in ([1.1.8)) of Theorem allows us to reduce to the case
where No = {1,..., M}. Thus taking

Pp(u) := JRN Fp(z,u)de, we H*(RY),

it follows from and Dominated Convergence Theorem that
lim [Z o (w(")(- — y,gn))) — o(w) - Z q)p(w(”))] =0.
koo n€eNg neNg,n>1

It remains to prove that

khi& [ (Z w™ (- (n) > Z o (w(”)(- — y,(fn)))] =0. (3.4.4)

neNg neNg

Since @ is locally Lipschitz in bounded sets of H*(R"), using a density argument,
we can assume without loss of generality that w(™ e CP(RY), for n = 1,..., M.
Consequently, from [I.1.6]

supp(w™ (- — y,(gn))) A supp(w™ (- — y,im))) = ¢, for m # n and k large enough,

which implies that, for k large enough,

F |z w™ (- —y™ | de = J w\" (- — dz
J;RN ( Z ( Y ) UMlsupp(w(")( (n) Z yk )

neNg

M
= Z J F(z + y( ") ("))dx,

n=1 vsupp{w())

from this, (3.4.4)) follows immediately. [
Corollary 3.4.3. Let (uy,) in H*(RY) be a bounded sequence and (w™), ey, in H*(RY),
given by Theorem . If f(x,t) is 1—periodic in x;, i =1,..., N and satisfies

lim F(z,u)dx = Z f dz. (3.4.5)

k—o0 ]RN nENO

Corollary 3.4.4. Let uy — u in H*(RY) and F(z,t) as in Corollary[3.4.5 then, up to

subsequence,
lim F(ug) — F(u—ug) — F(u)dz = 0.

k—o00 RN

Proof. Since w") = u, following the proof of Proposition we obtain

im [ Fx-wde= J Fw™) dz. (3.4.6)
k=00 Jry neNg,n>1 RN

Taking the difference between (3.4.5) and (3.4.6) we get the desired convergence. W
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We also need the following result, that can be understood as an generalization of
Fatou Lemma, or alternatively, that the functional u — SRN V(x)u? dz is sequentially
weakly lower semicontinuous with respect to the profile decomposition of Theorem

1.1.2] Moreover, it is a complement to Proposition [3.4.2]

Proposition 3.4.5. Suppose that a(z) =V (z) = 0 and that [(V3)]| holds true. Let (uy)
be a bounded sequence in H*(RN) and (w'™),en, given in Theorem[1.1.4

(i) If[(V1)] holds, we have

lim inf f V(z)upde > J V(z)|w™? dz.
RN RN

k—c0
neNg

(i) Under (Vi) we obtain,

lim inf V(z)u; dz ;J V(x)|w(1)|2 da + Z J voo|w(n)|2 de.
ko R RY neNg,n>1 RN

Proof. We prove only the second inequality, the first one follows by a similar argument.
It suffices to prove that

JRN V(z)uide = J;RN

+ J V(x)w?de + Z J Vielw™2dz + 0(1), Vm. (3.4.7)
RN IR

2

dz,

IV (@)Y (u — w®) = [V [ w™ (- — )
n=2

where with the notation a; = o(bx) we mean that ay/b;, — 0. To this end, we proceed
as in the proof of the iterated Brezis-Lieb Lemma |29, Proposition 6.7],thus the proof
of is made by induction. We start by checking that holds for m = 2. In
fact, by Proposition it is clear that, up to subsequence, the classical Brezis-Lieb
Lemma [15] and assertion implies that

f V(z)u; dz = f V()| wV?dz + J V(x)|up —w|? dz + o(1), (3.4.8)
RN RN RN
consequently and by the same reason,
f V(x)|up — w?dz =
RN
f Vg +57) = w4 ) da
R
2
# ] Ve i@ (4 o) = 004 42)) = Ve de (3.49)
R

+ f Vio|lw® 2 dz + o(1).
RN
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Replacing identity (3.4.9)) in (3.4.8) we obtain (3.4.7) for m = 2. We shall now prove
that (3.4.7) holds for m + 1 provided that it is true for m. Indeed, arguing as above,

2

J V()2 (g, — w0 Vl/QZw —y,g ") da:—f Vie|w™* D)2 da
RN RN
m+1 2
= f V(@) (up — — V2 Z w™ (- = ™M) dz+o(1). (3.4.10)
RN
Applying the induction hypothesis in (3.4.10) we obtain (3.4.7)). |

3.5 Pohozaev Identity

We finish the section by proving the aforementioned Pohozaev type identity.
The proof follows the same arguments used in Sect. with some appropriated
modifications. It complements some well known results in the present literature,

namely: [23, Theorem 2.3|, [24, Proposition 4.1] and |75, Theorem 1.1].

Proposition 3.5.1. Suppose that f(x,t) = f(t) € CY(R) and a(x) € CL{RN\O), where

O is a finite set. Let u € D¥?(RYN) be a weak solution of such that f(u)/(1+ |ul)

belongs to LY/ (RN). If F(u), f(u)u, a(z)u? and (Va(z), z)u? belongs to L*(RY), then

ue CHRMO) and

N —2s
2

N 1
J [(—A)*u)? dx—i—; a(r)u? dx+§ (Va(z),ryu*dz = N | F(u)dz.
RN

RN RN RN
Proof. Firstly we prove the local regularity of u. To do that, we consider zo € RM\O,
and observe that w = u(- + xo) is a weak solution of
(=A)*u +a(z)u = f(w) in RY,
where a(z) = a(x + x¢). Taking 7 small enough, the ball BY does not contains any

point of discontinuity of @(z) and so

|9(ﬂﬂ GLN/QS(BfV),
1+ |l

where ¢(u) := f(u) — a(z)u.

This enable us to proceed as in Proposition [2.3.1] to conclude that u € LP(BY), for all

p = 1. Moreover, since
o = ) ~atoya - |

we may apply Proposition (the regularity results of [59]) to conclude that there
exists 0 < yo, 1o <7 with BN x [0,y0] € B;f, and « € (0, 1), such that

f(@)
1+ |a]

f(@)
1+ [u]’

sgn(u) —a(zx) |w +

w, V,w, y'*w, e C¥*(BY x [0,y0]),
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where W is the s-harmonic extension of @ and V,w = (w,,,...,W,, ). In particular,

since xg is arbitrary,

w, Vyw, y' *w, e C(BMO x [0,v0]), V7,90 > 0. (3.5.1)
Consider now £ € C°(R : [0, 1]) such that
) = {17 il <1 and  [€(t)| < C VteR,
0, if [t|=2

for some C' > 0. Let O = {zM, ... 20} and 2 = (,0), i = 1,...,1. For each
n=1,..., define &, : RV*! — R by

E(l=2/n?), if |2 — 2O > 2/n?,
&nlz) = { L g(n2lz— 2OR),  if |z — 22 < 2/n2,
Then, for n large enough, &, € C(RY) and verifies
12||VE(2)| < C Vze RV (3.5.2)
for some C' > 0. Now observe that

div(y'=%Vw) {(z, Vw) £,
2
= div lylzsfn (<z,Vw>Vw — Vel z)] N =2 y' 2 | Vw3,

2 2
1gs [Vw]? 125
tyT (2, V& —y = (Vw,z)(Vw,VE,). (3.5.3)

Note that 0B s, ; = Ff 5uF\2f 5 Let n(z) = (0,...,—1) be the unit outward normal

vector of B, 3, 5 on Ff 5 Since &, =0 on F\2[ & by condltlon (0-3:2), identity (3.5.3)
and the Divergence Theorem we get

0= J div(y' 2 Vw) {z, Vw) &, dzdy
B

V2n,8
[Vw?
2

F1

[ v [<z,w><w,n>—
V2n,8

<Zv 7]>:| dl’dy + 911,5

= J &z, Vow)y (—ylf?Swy) dz

e at 2 3
- In,6 [n,5 In,é + 9n,67

where

N —2
05 :J TS 1725 | Vwl|?¢, dzdy
B

V2n,8

1 2s|vw|2 1-2s
+ (0 (z,V&D —y' 7 (Vw, 2)(Vw, V&, dady.
B\/ﬁn,é

99



We known that there exists a sequence d, — 0 such that

2 3
Lis + 15 — 0, as k — 0.

Some computations leads to

&n(,0) (x, V) (f (u) — alz)u)

_ div lfn(x, 0) (F(u) - %a(:c)uQ) x] (Ven(x, 0), ) F(u)

1
— N&o(x,0)F(u) + 5 (V& (2,0), 2) a(z)u?
1 N
+ §§n(m, 0){Va(z),r)u* + gén(x, 0)a(z)u’.
Thus, by Remark [0.4.3] condition (3.5.1)) and the Divergence Theorem we have

lim I}, =, JBN &0, 0) (o, sy (F(u) — alw)u) da
\V2n

I LN (Ven(x,0),2) F(u) + Néw(x,0)F(u) dz
+ s - (V& (2,0), 2)a(z)u® dz

+ b &n(x,0)(Va(z), z)u? + g{n(x, 0)a(z)u? dx.
B

Summing up, we get
. 1 2 3
0= lim s + Tnse + T + Ons.]

— J (V> F(u) + N&uF(u) da
B

T K JBN %<an7$>a($)u2 — %fn (Va(z),z)u? — gfna(x)lﬂ Ao

n

N -2
+ J %2 Vw2, drdy
. 2
V2n

1s | Vw? _1-2s
+ y — (2, V& —y (Vw, zy(Vw, V&, dzdy.
B\/§n

Consequently using condition (3.5.2)) to pass the limit n — oo, we conclude

N — 2s

f y' =% | Vw|? dedy
RN

s

N , 1 ,
=N| Fu)de-— 5} a(z)u” — 3 (Va(z),z)u dez,

RN RN

where in the first equality we used condition ((0.3.2]). |
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Remark 3.5.2. In previous proof we have applied |59, Theorem 2.15] and for that is

was crucial that a(z) is a C'-function in RM\O.

Corollary 3.5.3. Assume that f(x,t) = f(t) € CY(R) and that fulfills|(f1). Moreover,
that a(z) = ag > 0. If ue H*(RY) is a weak solution for (H), then

N —2
J Fu) - %2dr = Y22 Ay da
RN 2 2N RN

Corollary 3.5.4. Suppose that f(z,t) = f(t) € CYR) and that fulfills |(f{). If
u e D¥(RN) is a weak solution for ([H), then

2N
N — 2s RN

f (= A2 — Az u? dz — Fu)dz,
RN

where 0 < X < Ay, is given by (0.0.4)).

As a direct consequence of Proposition [3.5.1] we have the following non-existence
results, complementing the discussions made in [48,74].

Corollary 3.5.5 (Non-existence results). Assume that f(z,t) = f(t) € CYRY) and

either one of the following conditions are satisfied,

(i) a(x) e CLIRNO), where O is a finite set, 2sa(x) +{(Va(z),z) > 0 for all x in a

non-zero measure domain and 2¥F(t) < f(t)t, for all t € R; or

(i) a(x) € CHRNO), where O is a finite set, a(z) > 0, (Va(z),z) < 0 for all x in
a non-zero measure domain and there exists 0 < § < 2, such that 6F(t) = f(t)t,
for allt e R; or

(iii) a(z) = ag > 0 and there exists 0 < § < 2s/(N — 2s), in a such way thal
25F(t) < f(t)t + dagt?, for all t € R;

(iv) a(z) =0 and there exists 0 < p < 2¥ such that pF(t) = f(t)t for all t € R.

If u € H(RY) is a weak solution of Eq. (HJ), such that F(u), f(u)u, a(x)u?
(Va(z),z)u? belongs to L'(RY) and f(u)/(1 + |u|) belongs to LY/**(RY), then u = 0.

loc
Proof. [()] Applying Proposition [3.5.1] we get

f (=AY da
]RN
N

2
d
N 25 Jow a(x)u” dx +

=+

(Va(x),r)u*dr < J f(u)udz,

N—Qs RN RN

furthermore using that I'(u) - u = 0, we obtain
J (2sa(r) + (Va(zr),z))u® dr <0,
RN
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which leads to u = 0.
Using again Proposition we obtain that

N —2s
_ANS/2,,12
SN 4] RN|( Al de
0 2 0 2
+ = a(ryude + — | (Va(z),z)u"dz > f(u)udz,
2 RN 2N RN RN

and we can derive that © = 0, because

N —2s
. ANS/2,,12
(1 - 5)JRN|( AV’ de

0 2 ) )
2 T 9N <
i (1 2) JRN Al dr =55 RN (Va(z),z)u” dr < 0.

Once more we can use Proposition to get

N
—A)*2ul?d J 2d ZJ d
JRNK ) u)® de + N 550 ]RNu x . f(uw)udz,

which implies

N —(1 N —2
(1+9)( ) aof w?dz < 0.
N — 2s RN
In particular v = 0.

Proposition implies that
2
J [(—A)*2u)? dz = Q:J F(u)dz > —SJ flu)udr = —SJ |(—A)*2ul? d,
RN RN RN RN

which yields u = 0. |

3.6 Proof of Theorem

Proof. [(i)] Here we use the profile decomposition given by Theorem This makes
our argument easier then the one of [33, Theorem 2.1].

By Proposition we know of the existence of a bounded sequence (uy,) such
that I(ug) — ¢(I) and I'(ug) — 0. Since it is bounded, it has a profile decomposition
provided by Theorem . If we have w(™ = 0 for all n € Ny, then by assertion
(1.1.8), up, — 0 in LP(RY), for any 2 < p < 2* and by convergence (1.1.5) up — 0 in
HE(RY), up to subsequence. Consequently, by Proposition we have

1 1
o) + 1) = 1) = 3 lualy = | Faw)de = Sl +of0),

(3.6.1)
o(1) = I'(ug) - up = Jur[} — JRN fla, up)ue dz = Jugl + o(1),
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a contradiction, since ¢(I) > 0. Thus, there must be at least one nonzero w(™. Moreover,
we have that each w(™ is a critical point of I. In fact, it is well known that, up to

subsequence, we can take h(™ in L7 (supp(y)), n € Ny, such that
fu(z + y”)| < h(z), ace. z e supp(p), (3.6.2)

where 0’ = 0/(0—1) and ¢ € C(RY), which can be done thanks to Proposition [3.3.1]

Thus, for a.e. x € RY we have

{|v<x+y,i">>uk<x+y,£">> p(2)| < W™ (2)|V(2)p(x)| € L (supp(y))
V(e + g (e + y) (@) = V(e + yi)ol@) — Vie)w™ (@) (),

which, by the Dominated Convergence Theorem leads to

k—0 k—o0

lim (s, (- =)y = lim [[ukc + ). 0l + f V(e + g )us( + y")e(a) dx]
= [w™, ¢], —i—f V(z)w™edz.

By the same reason and , up to subsequence we have,

lim f(a: + yk u(- + y,g")))go dr = f(a:,w(”))go dzx.

k—o0 RN

Consequently we may pass the limit in

I'(we) - (- — y”) = (wp, (- —y,i”>>>v— Sy w4y dr,

to conclude that I’(w(™) = 0, for all n € Ny. In particular, we get that
Gs = inf {I(u) : ue Hy (RVN\{0}, I'(u) =0} >

We are going to prove that is Gs is attained and is positive. Let (ug) be a minimizing
sequence of Gs, that is I(uy) — Gs and I'(y;) = 0. Arguing as in Proposition [3.3.5]
we obtain that (uy) is bounded. Suppose by contradiction and assume that w(™ = 0
for all n € Ny. In this case we actually have that Gs > 0, because on the contrary, if
Gs = 0, then using we would conclude that ||ug|y = o(1), and at the same time,

*
July = JRN flur)ur, da < e(Collul[} + Cullunlly?) + Celurlfz

where Cy, Cox and C,, are positive constant obtained by applying the embedding
described in Proposition In particular,

272

(1 —eCy) < b2 VkeN,

+Cp U

e

which, by taking e small enough, would lead to a contradiction with the fact that

|uk|v = o(1). In view of that, in any case, we can argue as above to conclude that
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there must be a nonzero w(™) that is a critical point of I. We know from (L.1.5) that
ug(x +y,(€"0)) — w™)(z) a.e. in RY, up to subsequence, which allows us to apply Fatou
Lemma to get

Gs = klirn I(ug) = lim F,ug(- + y,§”°>)) dz
—0

k—o0 RN

—liminf | F(z,ul(- + ")) dz

k—oo RN

= f(x,w(”O)) dr = I(w(”O)),

RN

where we used or to ensure that F(z, ug(- +3")) = f(x uk) 0 a.e. in RY.
Thus, once again using or [(f5)l we can see that Gs = I(w(™)) >

From Proposition the norm
llull; = J [(=A)uf — Nz|™u?dz, uwe D (RY), 0< <Ay,
RN

is equivalent with respect to the norm [ - ], in D*?(RY). Let (u;) be a minimizing
sequence for Z,, and for each k, let u} be the Schwarz Symmetrization of uy (see [60]
for more details). Applying the fractional Polya-Szeg6 inequality (see |9, Theorem 3|),

for each k, we have that

|ui (z) — uj(y)| J J lup(z) — wi(y)[?
d d dxd
J;RN JRN |x - |N+25 vs RN JRN |33 - |N+2S s

fRN Fu?)dz — f Fluy) du.

RN

Thus (u}) < D32 (RY) and is also a minimizing sequence for (3.2.1). Now observe that
| - |, is invariant with respect to the action of dilations given in Theorem more

precisely,

Vy>1, ue D**(RY) and j e Z,

2 N-—2s - 2
ully = {77 us?)|

and satisfies the homogeneity property,
lu(-/8)I5 = 6N **[ully, ¥ ue D**(RY), §> 0.

In view of Proposition and Corollary [3.5.4] we may proceed, using exactly the
same arguments, as in the proof of Theorem replacing [ - |5 by || - [ll,- |

Remark 3.6.1. (i) In the context of the proof of Theorem [3.2.1}-(i), if we assume in
addition that f(z,t) satisfies (3.2.2), then Gs = ¢(I) = I(w™) and w™ is non-
negative. Indeed the truncation given in Remark satisfies the assumptions
of Theorem M(l), and we can apply the same argument there, to conclude
that the ground state w(™) is non- negative Furthermore, Remark [3.3.4] - iv)
guarantees that the path ((t) = tw(™), ¢ > 0, belongs to I'; and ¢(I) < I(w™).
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On the other hand, considering (uy) given in the beginning of the proof of

Theorem [3.2.1) by Corollary Remark (ii) and estimate (1.1.7)), up

to subsequence, we have

i | L2 o)y,
) = i [ 31t = [ Fowyae] > 3 1o
Consequently, using or to guarantee that each I(w™) is non-negative,
we conclude that ¢(I) = Gs.

(ii) If we consider the infimum defined over D2 (RY), by Proposition we
can obtain concentration-compactness of the minimizing sequences as described in
Theorem [2.2.3] More precisely, for any minimizing sequence (u) of (3.2.1)), there
exists a sequence (ji) in Z such that the sequence (Y~ 2 Jtuy,(y %)) contains a
convergent subsequence in D% (RY), whose the limit is a minimizer of in

Dra(RY).

rad

(iii) In the context of the proof of Theorem [3.2.1}-(ii), assume that F(t) = 0 for all
t = 0. Since |||ug|lly < [luklly, without loss of generality we can assume that
each uy is non-negative. In this case, the obtained minimizer for (3.2.1)) is non-

negative.

3.7 Proof of Theorem

Proof. As mentioned, we prove Theorem by using the Nehari manifold method

(see |91]). For convenience of the reader we divide the proof in several steps.

(i) For each u € H{\{0} there exists a unique 7(u) > 0 such that 7(u)u € N and
max;>o I (tu) = I(7(u)u). In particular N # .

We proceed in a similar way as in the Remark (iv), to see that the function
hy(t) = I(tu), t > 0, has a maximum point ¢,. Moreover, h'(t,) = 0, if and only if ¢, u
belongs to N and
2 2 1
Jul?, — f bayutdr = — | f(e touyu de. (3.7.1)
RN tu RN

By condition ([3.2.2)) the right-hand side of the above identity occurs at most one point.

Thus there is a unique maximum point 7(u) = t, for the function h,(t).

(ii) The function 7 : H3\{0} — (0, 00) is continuous. Thus the map n : H\{0} — N,
defined by n(u) = 7(u)u is continuous and 77‘3 is a homeomorphism of the unit
sphere S of H{;(RY) in \V.
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Assume that u, — u in H3\{0}. It is well known that the positivity of the primitive
F(z,t) together with condition implies

F(x,t) = Cy|t|* — Cot?, for a.e. z€ RY and Vi e R.
Thus, from identity we obtain that
all = | Manide = Culru)P? [ fualtdo = Calualf, ¥ne N
RN RN
That is, (u,) < L*(RY) with

funlf > Clrtun) P~ |

|un|* dz, VneN.
RN

Moreover, since u # 0, the sequence (u,) is bounded below in the norm | - |, by a
positive constant. Thus (7(u,)) is a bounded sequence. We now pass to prove that any
given subsequence for (7(u,)) has a convergent subsequence with the same limit 7(u),
from this we obtain the convergence 7(u,) — 7(u). It is clear that for a subsequence
7(u,) — to. We actually have that ¢, is positive. In fact, using conditions and
in identity we get the following estimate,

*
lun ¥ — J N b(z)u? dr < eC (||unH%/ + T(un)2;"—2||un %/) + C’aT(un)pe—Quun||1€f,
R

for all n € N. From which, we obtain

b(x ®_ * —
(1 —eCy — | é(ﬂ))”5> Jun]? < €Cort (1) "2 |unlsr + CoCp 7 (un )P 2|unlfs,  (3.7.2)
v

for all n € N, which implies ¢, > 0, by taking ¢ small enough. Thus we may apply
the Dominated Convergence Theorem in (3.7.1)) to conclude that ¢y = 7(u) and the
continuity of the function 7. Using (3.7.1) to compute 7(u/|u|y) we obtain that

1
Julfy - f o) do = s f i (m w) wde,
RN TW/jullv) oy

[l F Julv

which by uniqueness gives 7(u/|ulv) = 7(u)u. Consequently the inverse of 7 is the
u

retraction map given by o: N — S, o(u) = u/|ul|y.

(iii) NV is away from the origin, that is, there exists Ry > 0 such that [ully > Ry,

whenever u e N.

Indeed, estimate (3.7.2)) implies that

e, @)l

)

2 0.C, [ult YueN.

< eCox|lu

Taking e small enough we see that |ul| > Ry, for all ue N.
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(iv) For all ¢ € I'; we have that (([0,%0)) " N # .

Let us suppose that this assertion is false, that is, there exists (y € I'; which does not
intercepts A in any point. Let ¢t > 0 such that I((y(to)) < 0 and ({y(¢) # 0, for all
(0, tg]. We prove now that 7({(t)) > 1 for all t € (0, to]. In fact, by continuity, there is a
positive number § such that |(o(¢)|| < Rar, for all ¢ € [0, d]. At the same time, we have
that |7(Co(t))Co(t)|v > Rar, which implies 7((o(t)) > 1, for all ¢ € (0, 6]. The continuity
of 7(t) and the fact that (o(t) ¢ N, for all ¢, allow us to choose 0 = ty. On the other
hand, by conditions |(f5)|and (3.2.2)), we have that

@ > 5 |16 - [ oolateapas -2 [ L8800 60 ) pg,
I farlt)alt) o p Ftat),
5| et - S et ar

>0, Vte(0,7(¢(to))]

In particular, 0 < hew)(1) = I(¢o(to)), which is a contradiction with the choice of
Co(to)-

(v) en(l) = e(I).

In fact, since n‘ s 1s @ homeomorphism, we have

¢(I)= inf I(r(u)u)=inf I(r(u)u) = car().

ueH\{0} ues
(vi) ¢(I) = ¢(1).
Given u € H{\{0}, define the path ((t) = ttou, where ¢ty > 0 is chosen in such way that
I(tyu) < 0. Then, by Remark [3.3.4}-(iv), it is easy to see that ( € I'; and
max [ (tu) = max I(((t)) = c(I).

=0 120
Consequently ¢(I) < ¢(I). On the other hand, given ( € I';, we know about the
existence of ty such that ((¢y) belongs to N. Thus,

max [(((t)) = 1(C(to)) = en () = e(]).

t=0

Since ¢ € I'y is arbitrary, we conclude ¢(I) = ¢(I). |

Remark 3.7.1. In this remark we illustrate how one can apply Theorem [3.2.2] Assume
that a(x) = a(|z|) and f(x,t) = f(|z|,t) are radial. Let E be the space defined as the
completion of Cf’,,.4(RY) with respect to the norm | - |y. In view of Proposition m
(RY), thus we consider Iy = I 1 (@)
the energy functional associated with (] . ) under the considerate settings. By Remark
3.3.41(iv), it is also clear that Proposition [3.3.5] holds true in this case, that is, there is

it is clear that £ is a closed subspace of H; ,
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a sequence (uy) in E such that Iy(ux) — ¢(p) and I} (u;) — 0. Moreover by Corollary
the sequence (uy) has a convergent subsequence uy — w in E. Thus, applying
Proposition , we see that u is a radial ground state solution for in E. Moreover,
as a consequence of the Principle of Symmetric Criticality, we have that « is a critical

point of I.
Remark 3.7.2. In view of Remark if b(x) = 0, then the radial ground state

solution v obtained above can be considered as being non-negative.

3.8 Proof of Theorem

Before the proof of Theorem [3.2.3] for the sake of discussion, we are going to
compare the minimax level of limit functionals Ip» and I, with the minimax level of
the energy functional I associated with Eq. . Some arguments used to prove this
result of comparison are used in the proof of Theorem [3.2.3]

Proposition 3.8.1. Assume that f(x,t) satisfies either |(f1)H(f3)] or [(f3)H(fe); and
additionally [(f7)} Moreover, suppose that a(x) and f(x,t) satisfies either one of the

following conditions,
(i) b(z) = 0, [(VOHVR), [(fs)k
(i1) V(z) =0, b(x) has compact support, (Va)H(Va), |(fo)k

Then c¢(I) < c(Ip) and c¢(I) < ¢(Iy), respectively. Moreover, under these conditions, if
We assume then |(fi0)| and|(f])| holds true respectively for each considered case.

Proof. Let u € Hi(RY) be a non-negative (see Remark [3.2.7) non-trivial weak

solution for the equation

(—A)u+ V(x)u = fp(z,u),
at the mountain pass level for Ip, that is, Ip(u) = c¢(Ip). For each k, we define the path

Ce(t) = tu(- —yr), t=0.
where (yx) < Z" is taken such that |yx| — c0. The idea is to prove that

c(I) < lim max I((x(t)) < max Ip(tu) = c(Ip). (3.8.1)

k—oo t=0

In fact, taking into account that ® and ®p are locally Lipschitz in H$(RY) (they are
C' in H(RY)) and the following estimate

1G0) = Tp(tu)| < | 1F(a+ o) — oo + yostu)] do,

RN
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by using a density argument we get that

lim 7(¢x(t)) = Ip(tu), uniformly in compact sets of R.

k—00

Consequently we may proceed as in Proposition [2.6.1] First note that

lim F(x 4 yg, tu) doe = f Fp(z,tu)dz, VYt>0.
k—w JpN RN

In particular,

f F(z + yr,u)dz > 0, for k large enough.
RN

Thus, using the uniformity in x of the considered conditions |( f1)H(/3)| or [(f3)H(f6)| and
the arguments of Remark (iv), we see that (; belongs to I';, for k large enough.

As a consequence, there exist t;, > 0 such that

1(Gr(t)) = max I(G(t)) > 0.

We claim that the sequence (1) is bounded. In fact, suppose contrary to our claim

that ¢ — oo, up to subsequence. Thus, by the uniformity in = and the arguments of
Remark (iv), we get

t2
I(C(tr)) = EkHUH%/ — J N F(z + yg, tyu) do — —o0, as t — oo,
R

which leads to a contradiction with the fact that I((x(tx)) > 0 for all k. Therefore, up

to subsequence, t, — ty, and we have that

lim max I(Ck(tk)) = [p(t[)u),

k—oo t=0

which leads to (3.8.1]).
The second case is proved in a similar way. Let w € Hi (RY) = H*(RY) be

a non-trivial weak solution for the equation
(—A)Y’w + Vypw = fo(w),

at the mountain pass level, more precisely, Io(w) = ¢(I). For each k, define the path

() = w ( _ty’“> . t=0.

where (y;) is chosen in a such way that |yx| — o0. As before, we consider the estimate

[T(AK(1)) = Lo (w(-/1))]

1
< §tNJ (V(tz + y) — btz + i) — Vi w? dv
RN

N j F(t + gy w) — Fop(w)] da,
]RN
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and the fact that the following functionals,
O, Dy, Qu) :J V(z)u*dz and B(u) :f b(x)u® dz,
RN RN
are locally Lipschitz in H*(RY) to obtain, by a density argument, that

lim I(Ax(t)) = Io(w(-/t)), uniformly in compact sets of R.

k—o0

We also have that the path \; belongs to [';, for k large enough. In fact, assuming the
contrary, we would obtain k¢ and a sequence t,, — oo such that (A, (t,)) > 0, for all
n. On the other hand, we have that

1
lim | Ft,z + yry, w) — 3 [Vt + Ypy) — b(tn + ypy )] w? da

n—o RN
1
_ f F(w) — ~Vigw? da,
RN 2

which, by taking n large enough, leads to the contradiction I(Ag,(t,)) < 0. Let t;, > 0
such that
I(Ak(tx)) = max I(\g(t)) > 0.

=0
Once again we claim that the sequence (tx) is bounded. On the contrary, there is a

subsequence (t,,) that implies in the following contradiction

0 < I(A\g(tn,))
1 1
— 525’]:;—28[10] -t [J F(tn,x + yg,w) — §(V(tnkx + k) — b(tn, T + yp)w? dx]
RN

— —ao0, as k — o0.
Thus, up to subsequence, t; — to and we obtain that

lim max I(\g(t)) = I (w(-/to)).

k—oo t=0

As a consequence we conclude that

c(I) < lim max I(Agx(t)) < r?gaoxfoo(w(-/t)) = c(lyp),

k—oo t20

where we have used Corollary to induce that ¢ = 1 is the unique critical point of

Lo(w(-/1)).

Now assume Considering the above discussion, for each case, we have
c(l) < maxI(G(t)) = I(teu(- = yr)) < Ip(tyu) < max Ip(tu) = c(Ip),
c(l) < maxI(Ae(t)) = L(u((- = ye)/t)) < Loo(u(/th)) < max Loo(u(:/1)) = ¢(L0),
where k is taken large enough. [
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Similarly as it is made in Chapter [2| to prove our existence result without the

compactness condition |( fio)|and [( f{,)} we use a similar argument as made in |33} proof

of Theorem 1.2]. Thus we use Theorem [0.6.4] (see Remark (1)).

Proof of Theorem [3.2.3 completed. From Lemma [3.3.3| and Proposition we know
about the existence of a bounded sequence (uy) such that I(uy) — ¢(I) and I'(ug) —
0, in both considered cases. Let be the sequences (w(™) and (y,(gn)) provided by
the Theorem for the sequence (uy). The underlying main idea to proof the
concentration-compactness of Theorem follows the same one of Theorem [2.2.4]
and is the following: we prove that w(™ = 0 for all n > 2, which by assertions ,
and Proposition implies that u, — w® in Hy(RY), up to subsequence.
In order to prove that, we argue by contradiction and assume the existence of at least
one w(™) £ 0, ng > 2.

In view of Remark (i), by Proposition and estimate (1.1.7)), up to

subsequence, we have

c(I) = lim llﬂuk% — J F(x,uy) dx] > I(wh) + Z Ip(w™), (3.8.2)
koo | 2 RN neNg,n>1

where each term of the right-hand side of is non-negative. In fact, following as
in the proof of Theorem we notice that w™ and w™, n > 2, are critical points
for I and Ip, respectively. In view of that, it is clear that or implies that
I(w®) = 0 and Ip(w™) = 0, n > 2, respectively. On the other hand, Remark
(iv) guarantees that the path ((")(t) = tw() belongs to 'y, and c(Ip) < Ip(w(™).
This, together with and leads to a contradiction.

Following the proof of Theorem [1.1.2]it is clear that we can replace ||| by the

equivalent norm | - ||y, in assertions ([1.1.5)—(1.1.8]). Consequently, by estimate (1.1.7),
Propositions [3.4.2| and [3.4.5, up to subsequence, we have

1
c(I) = lim —||ukH%/ — J b(x)ui dz — J
k—owo | 2 RN R
> I(wY) + Z Lo (w™).

neNg,n>1

Flaw) dx]

(3.8.3)

Thus, it suffices to prove that the right-hand side of (3.8.3) is non-negative and
Io(w™) = ¢(I,) for all n > 2. In fact, in this case, we have c¢(I) = I(w(™)) > (1),
which leads to a contradiction with |(fio)l To do this, we prove that w and

w™ n > 2 are critical points for I and I, respectively. Let ¢ in CP(RY) and

h™ e L2~ (supp(p)) as in (3.6.2). By and (1.1.6), there exists ko = ko(¢) such

that
V(z + y,in)) <1+4+Vy, Vk>ky, zesupp(y) and n=>2.
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Thus,

{ V(@ + g )un(z + g )p(@)] < (e + Vio)h™(2)|p(x)| € L' (supp(y)), for k > ko,
Vi + yu(z + y)p(z) = Vew™ (z)p(z) ace. in RV,

This allow us to use Dominated Convergence Theorem to obtain

Aiﬂg(uk,so(-—y,i”)))v=gingo[[uk<-+y,i”>>,so]s+ V(e + 5" yui(- + 3o (e) da
— — RN

= [w™, ], + f View™ (2)p(z) da.

RN
And for the same reason,

i | St pds = | fulu®)pde
R

k—o0 RN

Consequently, taking the limit in

I'n) o =y") = (el = = | fla+ o ul+y”)edr,
we deduce that I'(w™) = 0 and I’;(w™) = 0, n = 2. Using [(fo)] or [(f5)] we also get
that I(w™) = 0 and I,(w™) = 0, n = 2. Finally, define the path A(")(¢) = w0 (./t),
t = 0. By Corollary we have that

Voo

1
Lo\ (1)) = étN’QS[w(”O)] — N U Flo(w™)) — 7|w(”°>|2 d:z:] — —00, as t — o0,
RN

which, by Remark allow us to conclude that A belongs to I';, . Corollary
also implies that ¢ = 1 is the unique critical point of I,(A)(¢)). Consequently,
c(Ip) < max I,(A\™) () = Lo(w™),

=

which implies the aforementioned contradiction.

iii)| Finally, assume condition (3.2.3) instead of |(fio) and |(f;,)} Consider the

existence of w(™) # 0, ng € Ny, and the paths ¢ and A() as above. Taking into
account the above discussion, by estimates (3.8.2)) and (3.8.3)), for each case we have

c(I) < max I(¢"(t)) < max In(C" (1)) = Ip(w™)) < e(D),

=0 >0
o(I) < max I (1)) < max Lo(X"(1)) = Lo (w™) < e(D),

where we have used condition to ensure that the paths ¢(™) and A" belongs to
I';. Thus, we have that the minimax level ¢(I) is attained and we can apply Theorem
to obtain the existence of a critical point u for I, with I)(u) = ¢(I)). If there is
no w'™ # 0, n € Ny, (which is the case where strict inequalities occurs) we can argue

as above and obtain that u; — w®, up to subsequence. [ |
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3.9 Proof of Theorem

Proof. The proof will be divided into three steps. Our argument follows the proof of
Theorem and |27, Theorem 5.2]. We first assume the case where V(z) and f(z,t)
satisfies

(i) Arguing in a similar way as in the proof of Lemma we see that the
functional I, has the mountain pass geometry, which guarantees the existence of
a sequence (uy) in D**(RY) such that I,(uz) — c(I,) > 0 and I.(u;) — 0. Let
(w™), (y,(Cn))7 (j,in)) the sequences provided by Theorem and define the set

N; = {n e N1} : 7 ™) is bounded} .

Passing to a subsequence and using a diagonal argument if necessary, we may assume

(n) .
that each sequence (77 y,ﬁ”)), n € Ny, is convergent and we denote

) — jl(c") (n)
a Jim 7 g n € Nj.

(ii) Now we shall prove the following estimate,

limsup Jugly = |0 O3+ ) [
k neNx\Ny

+ 0 0wy T DL 0 et ayy (B91)
neN4 ﬁNd neN_ ﬁNd

passing to a subsequence of (uy) if necessary. For each n € N,, let (gog-")) in CF(RY)
such that gpg»n) — w™ in D¥2(RY). Evaluating

2

neMy

I

\%

in a finite subset M, = {1,..., M} of N, we have

Jurlt =2 " (ui, dV o)y — D a7 (3.9.2)
neMy neMy

We are now going to study the limit in inequality (3.9.2). Let

n n  N-—2s .(n) - .(n) n
U,(f )= d,g )uk = 2 Toug(y Tk -+y,§ )).

Notice that

(wg, A7)y = [0, o]

.(n) .(n) n n n
# VO () 4 e+ )+ a
RN
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and
G = R+ [ 7V (@ ) + e+ )P e
Fixed j, we can use condition to conclude, up to a subsequence that
Tim (g, d{")y = [w®, @] and - lim (VGG = [0V (3.9.3)

provided that n ¢ Ny (this is the case when n € Ny). Similarly, up to a subsequence,
by assumption we have

]}1_{{.10(“/67 d](c )90§ )) = (w(n)v g0§ ))VH(~+a(")fa*)

and T [ 05" 5 = 165713, patnay) (3:9:4)

where k = +, —, whenever n € Ny n Ny or N_ n Ny, respectively. Since
N1} = (NAN)O [Ny~ NN AN,

up to subsequence, we can apply the limits and (3.9.4) in inequality (3.9.2) to
get

limsup fugd = [w®F + Y 2™, 0", o —agy = 19571 (a0 an)
k neMy NN NNy

0 2™, 0y o gy — ||so§-”>u2v,(.+a(n>_a*>
n€EMynN_ NNy

+ 3 2w™, ]~ [PV (3.9.5)

neMy \Nn

Since the norms | - [y, and || - ||y are equivalent to the norm [ - ], in D*?(R") we can
take the limit in j in inequality and use the arbitrariness of choice for M to
obtain ((3.9.1)).

(i) If w(™ = 0 for all n > 2, then uy — w® in D*2(RY), with w( being a critical

point of I,. Let us argue by contradiction and assume the existence of w(™) £ 0, with
no = 2. By Proposition and estimate (3.9.1)), up to subsequence, we have that

c(l) = L)+ Y L™+ > I 1 (w™) + > o ),  (3.9.6)

neN \Ny neN4 NNy neN_ NNy

where

(n 1

s

and  Io(u) — %[U]Q _ JRN Fo(u)de, ueD2(RY).
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As before, we prove that each w(™ is a critical point for the functionals in the respective
index of the sums in , and as a consequence of [( f5)| - the right-hand side of (3.9.6] -

is non-negative. In the next step we obtain that ¢(1,) < 1 (w™) in the correspondent
index, which leads to a contradiction with estimate (3.9.6). In fact, given ¢ in Cg°(RY),
by reasoning as in the proof of (3.9.1]), we get that

Tim (uy, @)y = [0, 0] and  lim (w7 0)y = (0", )y vaw ay),

provided n € N,\Ny and n € Ny n Ny, respectively. Since,

(n) N—2s .(n)

oy 2 t)so‘ Clt

‘ N+29 .(n)

v Tk f( =i I-i-y 22‘_1, a.e. xeRN, Vk,n and t,

thanks to the Dominated Convergence Theorem, up to a subsequence, we may pass

the limit in % in the following identity

I;(Uk) . (d](gn)@) _ (U]E: )’SO)V _f N+2sjlg7L) ( 7-7};)([; n y( ) ny 2s I(gn) ]E:n)) gpdaj‘7
RN

to conclude that I (w®) = (I{M)(w™) = I}(w™) = 0, in the corresponding index.

(iv) To conclude the proof, we prove now that ¢(I,) < I(inO)(w(”O)) or ¢(l,) <
ISL"O)(w(”O)), which depends on the sets N,\Ny or N n Ny that ny may belong. Define
the path

C(t) =tw™ t=0, if ngeN,\Nj
C(nO)(t) — tw(no)(' + a, — a("))7 t>=0, if npeNin Nﬁ.

By condition and Remark (iv) we have that (") belongs to I'; with
o(l.) < max], (¢ (1)) < Ip(¢™) (1)) < max I(¢") (1)) = In(w™), if ng e N,\N,.

o(L) < max L(¢"(8) < I7(¢") (D))
< max I (¢ (1)) = I (w™)), if ng e Ny A N,

20 *
where # is the maximum of I,(¢(™)(t)). This together with the estimate (3.9.6) leads
to a aforementioned contradiction.

(v) We now assume only conditions (3.1.3) and (3.1.4)), instead of[(J#*)| Arguing
in a similar way as in the proof of Theorem we get that

w, — wY in a subsequence or ¢(l,) = max L.(CM) (1)),

If the minimax level ¢(I,) is attained then we apply Theorem to obtain the
existence of a critical point u € ((")([0,0)) such that I,(u) = c(I,). |
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Chapter 4

Existence and non-existence results
for a class of nonlocal
Schrodinger-Poisson systems with

critical growth

In this chapter, we are concerned with the existence of non-trivial weak and
ground state solutions for the following class of nonlinear fractional Schrodinger—
Poisson System

(—A)u + a(x)u + AK (2)ou = f(z,u) +g(z,u) in R
(SP)

(—A)*¢ = K(z)u? in R
where the nonlinearities f(x,t) and g(x,t) has oscillatory subcritical and critical growth
respectively, a(z) is not necessarily bounded away from zero and K (z) = 0 belongs to a
suitable Lebesgue space. Here we follow the ideas developed in the previous chapters.
Outline. The chapter is organized as follows. In Sect. [{.3] we provide a suitable
variational settings to prove our main results, more precisely, we describe the limit
under the profile decomposition of the Palais-Smale sequence at the mountain pass
level of the energy functional associated with and we prove the aforementioned
Pohozaev type identity. Moreover, we estimate the minimax level for the functional
associated with . In Sect. we study the behavior of the minimax levels of the
considerate functionals. Sections [4.4] [£.5] [4.7] and are dedicated to the proof

of Theorems [4.2.1] [4.2.2] [4.2.3] [4.2.4] and [4.2.5| respectively.
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4.1 Hypothesis

In order to describe our results in a more precisely way, next we state the main
assumptions on the weight K (z), the potential a(z) and the nonlinearities f(x,t) and
g(x,t) respectively. We always assume A > 0,0<s <1, 0 <a <1 and 2a + 4s > 3.

e Assumptions on K(x).
(K1) 0 < K(z) e L"(R?) u L*(R?), for some r > 6/(2c + 45 — 3).

(K3) There exists Kp(z) € L"(R?) u L®(R?), 1—periodic in z;, ¢ = 1,2,3, in a such
way that lim,|e |K(2) — Kp(x)| = 0.

(K3) K(z) — Kp(z) € L®

® (R?) and Kp(z) is continuous at 0.
e Assumptions on a(z) = V(x) — b(z).

(V1) V(z) e L}

loc

(R3), for some o > 3/2s.
(V2) The following infimum

Cy = inf J |(—A)*u)? + V(2z)u® dz
R3

ueCy (R?),Jlula=1

is positive and V(x) = —B a. e. z € R3, for some B > 0.

(V3) There exists Vp(z) € L7Z(R3), op > 3/2s, 1—periodic in x;, i = 1,2,3, that

loc

satisfies such that lim e [V (z) — Vp(z)| = 0.
(Vi) 0 <b(z) e LP(R3), for some 3 > 3/2s, and |b(z)||s < C‘(/B), where

¢y = inf f |(=8)Pul + V(2)u?de,  f'=p/(5-1).
R3

ueH (3),Jul =1
e Assumptions on f(z,t).

(f1) f:RY xR — R is a Carathéodory function. Moreover, for every ¢ > 0 there

exists p. € (2,2%) and C. > 0 such that
|z, )] <e(lt| + [t~ + CJtP-,  ae. zeR>and VieR,
where 2¥ = 6/(3 — 2s).

117



(f2) There exists u > 2 such that,

t
wF (z,t) :zuf f(z,7)dr < f(z,t)t ae. veR*>and VteR.
0

(f3) There exists R > 0, ty > 0, xo € R? such that

|Br| inf F(z,ty) + |Br+1\Br| inf F(z,t) > 0.
Br(zo) (

z,t)e(Br+1(z0)\Br(z0)) x[0,t0]
In the autonomous case, we consider the following variant of assumption .

(fi) There exists ¢ty > 0 such that F(to) > 0.

(f4) The following limit are uniform in x,

F
lim (z,1)

= Q0.
|t|—o0 4

(f5) There exists a function fp(x,t) that is 1—periodic in x;, i = 1,2, 3. such that the

following limit exists and is uniformly convergent in compact sets in ¢

lim |f(:13,t) - fP(xat)| = 0.

|z|—00
Moreover, fp(z,t) satisfies and either with p > 4 or [(fy)

(fs) For a.e. x € R? the function

N fp([L’,t)

t
g

is strict increasing in R.

(f7) There exists ¢g > 0 and 4 < py < 2% such that

Fp(x,t) = colt]”®, ae. zeR*and VteR.
Notice that in condition it is implicit that s > 3/4.
e Assumptions on g(z,t).

(91) g:RY x R — R satisfies the Carathéodory conditions. Moreover, there exists a

positive constant C, such that

lg(z, )| < Cu|t|* 7!, ae. zeR®and VteR.
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(92) There exists u, > 2 such that,

t
0 < Gz, t) := ,u*f g(z,7)dr < g(x,t)t, ae zeR>andVteR.
0

(g3) For each real numbers a4, ..., ayr, there exist C = C'(M) > 0 such that

‘G (x, Z an> — Z G(z,a,)

n=1 n=1

ZYa,l, ae. zeR3

< C(M) Z |lay,

m#nefl,...,M}

(g4) There exists v > 1, such that the following limits exist and are uniformly

convergent in x and in compact sets for ¢

Juo(t) := lim g(x,1),

|| —00
3+2s

g+(t) := _lim V’T”’g@’jx,v%jt)-

JEZL,j—>+0

(g95) The function g (t) is self-similar,

3-2

2Sjt>, VieR and j € Z.

Garlt) =77 Cis (v

(g96) The function

is strict increasing in R.

(g97) There exists ¢, > 0 such that

t
2 VteR, where Gy(t) := f Goo(T)dT.
0

Goo(t) = cult

(g3) g+(t) € CY(R) and there is a positive constant ¢, such that

t

G (t) = ci|t|*, VteR, where G(t):= J g+ (7)dr.
0

Moreover, c. = C,.

The functional associated with (SP)

As mentioned earlier, we compare the minimax level of the associated functional

of System (SP) and the one of the following limit problem

(=A)°u + ap(z)u + AKp(z)pu = fp(z,u) + go(u) in R? (4.1.1)
(—A)% = Kp(a)u® in R
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In a similar fashion, we consider H3,(R?) as the completion of Ci°(R?) with respect to

the norm

ul. = fRs (=AY 2uf? + V(2)u? da.

By Proposition if we assume that V() belongs to L (R?) and satisfies then

HE (RY) is well defined and we have the following continuous embedding
HY (R?) — H*(R?). (4.1.2)

Next, to make our discussion clearer, we define the notion of weak solution.

Definition 4.1.1. We say that a pair (u, ¢) € H{:(R3) x D*?(R?) is a weak solution
of the System (SP) when

JRB(—A)S/Qu(—A)S/% + (a(z) + AK(z)p)uv dz = L@(f(x,u) + g(x,u))vdx, and

J (=A)2Hp(=A)ude = | K(x)uvdz,
Rg

]R3

for all v e C°(R?) and the above integrals are finite.

Given u € H*(R?) we consider the linear operator P, : D**(R?) — R defined as
P.(v) = | K(x)u*vda.
R3
If we assume that K (z) satisfies conditionthen, by Holder inequality, this operator
is continuous (see estimate below). Thus, by Riesz Theorem, there exists a
unique ¢ [u] in D*?(R3) that solves (—A)%¢q[u] = K (z)u? in the weak sense, that is,

L@(—A)a/2(¢a[u])(—A)a/QU dr = | K(z)u®vdz, Yve DY (RY). (4.1.3)

R3
Replacing ¢ = ¢,[u] in the first equation of (SP)), we obtain the following nonlinear

fractional Schrodinger equation with a nonlocal term,
(—A)Y’u+ a(z)u + AK(2)po[ulu = f(x,u) + g(x,u). (Snr)

We consider associated with Eq. , the functional I, : H{(R*) — R given by

D) = gl 5 [ bohtds
2 2 Jos
+ A K(2)po[u]u® dz — f F(z,u)dx — | G(z,u)dx.
4 Jgs R3 R3
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Thus, if f(z,t) satisfies[(f1)} a(z) the assumptions [(V5)] [(V)]and g(z,t) the assumption
then I € C*(H; (R?)) (see Proposition [£.3.3}-(i)). Furthermore

ILu) v = ng(—A)s/Qu(—A)S/Qv - (V) — ba))uv da

+ A | K(x)po|u]uvda — J (f(z,u) + g(x,w))vdr, u,ve Hi(R?).
R3 R3
Consequently critical points of I correspond to weak solutions of (SP)) and conversely.

Regarding the minimax level, we put

c(ln) = inf sup L(y(1))- (4.1.4)
where
iy = {7 € C(0.0) Hy () :9(0) = 0, fim h((0) = =0} (4.15)

Proceeding in a similar way, we can use the same argument based on Riesz theorem

with System (4.1.1)) to obtain the following equation
(=A)u+ ap()u + AKp(2)¢y, [uu = fp(w,u) + goo(u), (SKL)

and the corresponding C* functional associated with ,
1 A

) = s, +5 | Kelo)dblul da- |
2 4 Jgs

RS

Fp(z,u) dx—f Go(u)dr, ue H(R?);

RS

where
ol = [ 1=8)"0f + V(o d,
R3
and ¢7[u] € D*?(R3), is the unique weak solution of (—A)*v = Kp(z)u?. Similarly,

we consider ¢(I]) defined in the same way as in (4.1.4) and (4.1.5).

Next we finally state the assumption relative to the minimax level of the considered

problems, which allow us to state the main results of the chapter.

(€) e(I)) < c(IP), YA > 0.

4.2 Statement of the main results

We first state our results concerning existence of ground states solutions for the
System (SP)). By a ground state solution for (Syrl), we consider a solution u that
satisfies I)\(u) < I (v) for any other weak solution v for Eq. (Syz) in the same

considered space of functions.
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Theorem 4.2.1 (Periodic subcritical case). Suppose that g(z,t) = 0 and K(z),
a(x) = V(x) and f(x,t) satisfy conditions [(K)[(K,)}, [(VOHVA)), (S} [(f2)h [(fs)] with
K(z) = Kp(x), V(z) = Vp(x) and f(x,t) = fp(x,t), respectively. If we assume that

either > 4 and or w =4 and|[(fy) then Eq. (Sni) has a ground state solution
u e Hy, (R®). If additionally we have |(fs)), then u is non-negative and IT (u) = c(I}).

Observe that Theorem deal with the case where does mnot hold.
Moreover, the potential a(x) can change sign. It is worth to mention that this result
complement the ones in [93] for the case where s > 3/4. Our next result is about

existence of solutions in the case where f(z,t) has 4-superlinear growth.

Theorem 4.2.2 (Nonautonomous subcritical case). Suppose that K(z), a(x) = V(z)—
b(x) and [(x,t) satisfy assumptions|(K (K )} [(VORVAL (UL ()} [(fs)h [(fe )] and that

g(x,t) = 0. In addition, assume either one of the following conditions holds,
(i) V(z) = Vp(x), b(z) =0 and[(€)}; or
(ii) V(z) =0, for a. e. x € R3 b(x) has compact support and ((€)|; or

(iii) Replace conditions in the aboves items by

L(uw) < I7(u), Yue Hy(R?); (4.2.1)

If we assume that either p > 4 and|(fs)| or p =4 and|(f4)l then Eq. (Syil) possess a

non-trivial weak solution u in HY,(R?) at the mountain pass level, that is, I (u) = c(I)).
Moreover, under the assumptions of items (i) and any sequence (uy) in Hi (R?)
such that I(ug) — c(I) and I'(ux) — 0 has a convergent subsequence.

Note that Theorem [4.2.2] also provides concentration-compactness of the Palais-
Smale sequences at the Mountain-Pass level. Moreover, in this result the potential
a(x) can change sign in two different ways. Consequently, it complements some results
of [105] and extend them to the fractional framework. Theorem is inspired by
Theorem Our following result deals with existence of solution for Eq.

when the nonlinearity has general oscillatory critical growth.

Theorem 4.2.3 (Nonautonomous case with critical perturbation). Assume that K (x),
a(z) = V(x) — b(z), f(z,t) and g(x,t) satisfy conditions |(K1)H(K3), [(Va)H(Va)L [(f1)l

[F2l [(FHUL [(gHgnl respectively, with 0 < V(x), Vp(z) € LP(R?) and p1 < pua.
Moreover, that the following inequality holds,

* 2; * 2 252_2
G (%) . (4.2.2)
2%c, M ) 25 =2
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Suppose also that either one of the following conditions hold,

(i) b(x) belongs to L*(R?) and has compact support, and estimate (€'); or

(it) Replace condition and[(gs)| in the above item by (4.2.1)).

If we assume that f(x,t) satisfies either p > 4 cmd or =4 and then there
exists a non-trivial weak solution u € H(R?) for Eq. (Sni)), such that I (u) = c(I)).
Moreover, under condition (€)] of item any sequence (uy) in Hy(R3) such that

In(ug) — (1)) and I{(ugx) — 0 has a convergent subsequence.

To the best of our knowledge, Theorem is the first result about existence
of solution for System (SP) with general critical nonlinearity g(z,t), therefore, it
complements the results of [94]. Moreover, it extends and improve the result of |107]
about existence of solution. Note also that in Theorem gives the compactness
for Palais-Smale sequence at the mountain pass level. Next, we state our result which

treats the case where nonlinearities does not depends on x.

Theorem 4.2.4 (Autonomous case). Assume that K(z) = Ky > 0, a(x) = V,

b(x) = 0, f(z,t) = f(t) satisfies and g(x,t) = g(t). Moreover, a > 3/4

and either one of the following conditions holds,

(i) g(t) is self-similar, ps =3, (4.2.2) and

{ SOt < (s + 1)F(2),
g(t)t < (s + 1)G(t),

e R;

Y

(4.2.3)

(i1) and with . = p and g(t) = 0.
Then there exists 0 < A\, < o0 such that, for any X € (0, \,), there exists a non-trivial
radial weak solution uy in HS 4(R?) for Eg. satisfying Iy(uy) = c(Iy).

It seems for us that Theorem is the first result concerning existence of
solutions for autonomous nonlinearities with critical growth satisfying condition
for any value of p. In fact, it is common in the present literature to use a Pohozaev
type identity in order to apply L. Jeanjean Theorem [58, Theorem 1.1] to construct a
bounded Palais-Smale sequence at the mountain pass level.

Nevertheless we prove a improved version of a Pohozaev type identity given in |93]

and improve the non-existence result of [93, Theorem 1.6].

Theorem 4.2.5 (Non-existence). Suppose that K(x) = Ky > 0, f(x,t) = f(t) €
CH(R3), g(z,t) =0 and either
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(i) a(z) € C*(R3), 2sa(x) + {(Va(z),z) > 0 for all x in a non-zero measure domain
and f(t)t = 25F(t), for all t € R; or

(ii) a(z) € CY(R3), a(x) > 0, {Va(x),z) < 0 for all x in a non-zero measure domain
and there exists 0 < § < 2, such that §F(t) = f(t)t, for all t € R; or

(i1i) a(x) = a9 > 0, there exists 0 < 0 < 2s/(3 — 2s), in a such way that
f(t)t + dapt? = 2*F(t), for allt € R; or

(iv) a(r) = ag > 0, A = 1/4, a = s and |f(t)] < A|t|P', for all t € R, where
2<p<3<2fand0< A< min{Ky,ap}.

(v) a(x) =0 and there exists 0 < p < 2¥ such that pF(t) = f(t)t for all t € R.

If (u, ¢) € H*(R3) x D**(R3) is a weak solution of the System (SP)), such that F(u),
fwu, a(z)u?, (Va(x),z)u?®, ¢u® belongs to L'(R3) and f(u)/(1 + |u]) belongs to
L3/2S(R3), then u = 0.

loc

Corollary 4.2.6. Assume that K(x) = Ky > 0, a(z) = ag > 0, f(z,t) = |t|P~*t and
g(x,t) = 0. Moreover, suppose that either one of the following conditions hold,

(i) p=2;;
(ii) p <2; or
(11i) s >1/2,2<p<3and \>1/4.

If (u, ) € H*(R3) x D¥?*(R3) is a weak solution of the System (SP)), then u = ¢ = 0.

Remarks on the assumptions and in the main results

Remark 4.2.7. Some comments on our assumptions are in order.

(i) To the best of our knowledge, it seems that our results are the first concerning a
general potential K (x) for the System (SP).

(ii) In order to get that I, has the mountain pass geometry, we use Ambrosetti-
Rabinowitz condition In this case the presence of the nonlocal term N, in
Eq. imposes that ;1 > 4 in our argument. Despise this, in the general case
of a non-autonomous linearity, we consider u = 4 and to overcome the associated
difficulty we ask for assumption The general case that p > 2 is considered
in Theorem [£.2.4
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(iii) In our approach to study existence of weak solutions for Eq. (Syz) we use
assumption unlike the aforementioned papers, where the authors impose

the more tight condition
|f(z,t) — fp(z,t)] < h(2)[t]*" a.e xin R® and all ¢ in R,

where h(x) belongs to the class of functions in C(R?) n L®(R?) such that for
every € > 0 the set {x € R?: |h(x)| = €} has finite Lebesgue measure.

(iv) The function g, (t) is self-similar. Moreover, if g(z,t) = g(t) is self-similar then
9(t) = g.(b).

(v) Once the limits in [(V3)} [(f5)] or |(g4)| exist, to obtain compactness of Palais-Smale

sequences at the minimax levels we need to require the additional condition over
the minimax level given in assumption . In fact, we do not believe that it
is possible, in general, to achieve the compactness described in Theorems [4.2.2
and without these conditions. We mention that this kind of approach was
introduced by P.-L. Lions in |65-68].

(vi) We also consider the case when do not hold. Precisely, when it is allowed
c(I) = c(I]). In this case, the concentration-compactness argument at the
mountain pass level cannot be used. We apply [63, Theorem 2.3] to overcome

this difficulty and prove existence of solution at the mountain pass level.

Remark 4.2.8. Under the assumptions |(V3)] [( f5)| and [(g4)| we describe next conditions
which guarantee that is satisfied.

(¢”) The following inequalities holds,

V(z) < Vp(z), a.e xeR’ (4.2.4)
K(r) < Kp(z), a.e xeR>. (4.2.5)
Fp(z,t) + Go(t) < F(z,t) + G(x,t), a. e zeR®andteR, (4.2.6)

Moreover, at least one of the next conditions is true,

(i) The inequality (4.2.4) strict in a non-zero measure domain.
(i) The inequality (4.2.5)) strict in a non-zero measure domain.
(iii) There exists ¢ > 0 such that the inequality (4.2.6) is strict for all t € (=6, 0)

and a. e. x € R3.

In Sect. under suitable conditions, we obtained the following estimate for the
minimax levels: ¢(/) < ¢(Ip). Moreover, we proved that under condition we have
that holds. We observe that on the corresponding assumption of Theorem [4.2.2] it

is easy to see that inequalities (4.2.4), (4.2.5) and (4.2.6) imply that (4.2.1) is satisfied.
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Remark 4.2.9. Using the same argument of Remark it can be proved the
existence of non-negative weak solutions of (Syi)). In fact, assume that h(x,t) :=
f(x,t) + g(z,t) =0 forall t > 0 and a. e. z in R3, and consider the truncation

B flz.t) +g(z,t), ift=0,
x,t) =
0, if t <0.

Assume that a(z) € L] (R?) and that conditions |(f1)} [(g1)| and |(V5)| holds true with
b(x) = 0; if u is a weak solution for (Sy;)), with f(x,t) + g(z,t) and replaced by h(z,t)
then u is also a weak solution for (Syz)) and u = 0. To see that, let { € C°(R : [0, 1])
such that

1, if te[-1,1] ,
1) = d ) <C VteR,
30 {Q ¢ o and [€/(1)

for some C positive constant. For each n € N, define &, : R* — R by &,(2) = £(]z[>/n?).
Then &, € CP(R*) and verifies

IV (2)] <C and 12[|VE(2)| < C VzeRhL

By a density argument, we can take ¢ = &,w_ in (0.3.4). Since w_(z) = E(u_), we
have that

J Y GV 4y, (VT Vs )y + y T (Vut + Vo, w_V§, ) dady
R4
=k | (i) = Vi = AR @)0ulu0) (-, 0)ud
R3

and we may apply the Dominated Convergence Theorem and (0.3.2)) to get

lu_|3 + )\JK(x)qba[u]|u_|2 do = J h(x,u)u_ d,

R3
which implies that u_ = 0.

Example 4.2.10. Our approach include the following classes of potentials

(i) For the weight K (x) that fulfills assumptions we may consider

K(z) = Q(z)Kp(x), where 0 < Q(z) < Qw := lim Q(x),

|z| >0
belongs to C(R?) and Kp(z) is any function 1—periodic in z1, 79, 23 in L#(R?) n
L(D

loc

(ii) For potential a(x) = V(z) — b(z) satisfying conditions we set

Vo) = (50 1elo)
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where Vp(x) = 0 is any function that is 1—periodic in z1, x5, 23, belongs to C'(R?);

and
b(x) = [V (2)]ewn(z),
where n(z) € CP(R3) is chosen in a such way that |[n(z)]s < C/|IV ().

Erample 4.2.11. Note that the hypotheses of Theorems 4.2.1 are for example
satisfied by nonlinearities of the following forms:

(i)

(i

(iii)

(v)

For a nonlinearity fulfilling assumptions we can chose
f(z,t) = k(z) [t 2t + exp{ko(z)(sin(In |¢]) + 2)} [ko(x) cos(In [t]) + p] |t[*>¢,
where f(z,0):=0, s > 3/4, 4 <p < 2* k(z) € C(R?),

0 < ky:= lim k(z) <k(r), VzeR® and lim ko(x) = 0.

|z[—00 |z|—a0
Moreover, ko(x) € C(R?), sup,egs ko(z) < p— p and p < p.
For a nonlinearity fulfilling conditions with = 4 and we take
h(z,t) = k(z) [t*In(1 4+ t) + (1 + cos(t))t* + 4(t + sin(t))¢*t], t =0, s > 1/2,
where k(z) is taken as above, and consider

h(z,t), fort = 0,
flz,t) =
— h(z,—t), fort<0O.

For a nonlinearity satisfying the conditions of Theorem we can take

fa,t) = co(x) [ (1) (n [t]t) + o] [H17O2¢,  f(x,0) =0,

where 0 < ¢o(z) € L®(R?) is 1—periodic in x1, 25, z3 and o(t) can be taken as in

Remark (i) with infy.eg o(t) > 4.
Let 0 < ¢(x) be a continuous 1—periodic in x;, i = 1,2, 3, and consider
f(a,t) = c(x) [phe(t) + RO [P, 4 <p <2,

where h.(t) € C*(R) is given in Remark (iii). We empathize the fact that
F(z,t) changes sign.

For a nonlinearity with critical growth satisfying the assumptions of Theorem
[4.2.3 we may take

gz, t) = exp{ci () (sin(n [t]) + 2)} [er(z) cos(In [t]) + 27T [t ~2t,  g(z,0) := 0,
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where 0 < ¢1(2) € C(R?), limjy|,q ¢1(x) = 0 and

K :=supci(z) < 2f — p,, forsome p, € (2,2F).

zeR3
For s > 3/4 we choose p, = 4 and K such that

2% 2

N |25\ pa — 2
< s
exp{3C}HIK +27) < 2! l( 5*) 2% —2]

(vi) For nonlinearities satisfying the assumptions of Theorem we may take

f(t) = exp{co(sin(In [t|) + 2)} [co cos(In |t]) + p] [t[P~%t, 2 < p < 2%, f(0) :=0,
g(t) = exp{cy(sin(In [t]) + 2)} [c1 cos(In [t]) + 2F] |¢ E-2y g(0) := 0,

where s > 3/4, 28 — 1 < pu < pe < p, 0 < ¢g < min{p — u,1 — (p — p)},
0 <c <min{2 — py,, 1 — (2 — py)} and

2% 2

2% «— 2| 2
exp{3ei ey +2%) < 2° l(—) a ]

My ) 2% =2

4.3 Variational settings

In this section we describe the variational settings that we use in this chapter.

Remark 4.3.1. Assume that conditions |(V}) holds true. Then H}(R?) = Hy, (R?)

and the norms || - |y and | - |y, are equivalents. Indeed, let R; > 0 such that
|V(z) — Vp(x)] <1, Vl|z|> R;.

Given u € CP(R?), by Holder inequality we have

1/o
j'wm#w<(f W@W®> ul3o
R3 Bg, o=l

+ J u? dz + f Vp(r)u? du,
R3\BR, R3}\Bp,

and similarly,
1/op
| velntde< ([ We@lrde) ful =,
R3 Br, op—1

+ J u? dz + f V(z)u®dx.
R3\Bpg, R3\BR,

Since 2 < 20/(0—1),20p/(op—1) < 2% we can use embedding (4.1.2) in the inequalities
above to obtain the desired result.
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4.3.1 Study of the nonlocal term

We now pass to the study of the nonlocal term of Eq. (S| and start by revisiting
the definition of the nonlocal term in Eq. (Sxyz)). Assume that holds true and let
P, : D**(R3) — R given by,

P.(v) = | K(@)u*vdr, ue H*(R?), ve D*?*(R?).
R3

Fixed v € H*(R?), we have that

Pu(v)] < K@l [l 7 = 226/25 =), ve DYRY), (4.3.1)
|K @) ul7 olag, o :=120/((3 + 20)r — 6),
provided that K (z) belongs to L*(R?) and L"(R?), respectively.
It is expected that for our general class of K(x) the unique weak solution
do[u] € D**(R3) for the equation (—A)%@,[u] = K(x)u? can be characterized in
terms of Riesz potential. In what follows, we give a briefly proof of that fact.

Proposition 4.3.2. Suppose that K(z) satisfies assumption |(Ky)| and let u € H*(R?).
Then

Galul() =ca | KE@u’(y)lr —yP*?dy, a e R

Proof. Denote Q(u) = K (x)u?. Then, by Hélder inequality and condition Q(u)
belongs to LF(R3), for p = 2%/(2* — 1). Let (¢x) a sequence in Ci°(R?) such that
or — Q(u) in LP(R?). If v € D*?*(R3), then

| arP @ = oAy Pode = | ()@l - edods

= J (o —@)vde -0 as k,l — o,
R3
where we used the well know identity,
(A (Zale]) = o, Ype L (RY).

Consequently, (Z,[¢r]) is a weakly Cauchy sequence in D*?(R?), and must weakly
converge in D*?(R?) for some v,. On the other hand, by Proposition the sequence
(Zo[or]) converges to Z,[Q(u)] in L2 (R?). This implies that v, = Z,[Q(u)], a. e., and
moreover, given ¢ € C°(R?), we conclude that

L@(—A)Q/Q(Ia[Q(u)])(—A)"/ngda: = lim | (=A)A(Z[o]) (—A) 2 dz

k—0o0 R3
= lim orpdr = | Q(u)pde.
R3 R3

k—0o0

By unicity, ¢ [u] = Z,[Q(u)] a. e. in R3, |
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We now set the nonlocal functionals

No(u) = | K(x)po[ulu®dr, ue H5(R?), (4.3.2)

R?)

NPw) = | Kp(z)¢P[u]u?dz, we H¥(R?),

]R3

and summarize their basic properties.
Proposition 4.3.3. Suppose that [(K})| holds true and let u € H*(R3). Then

(i) N belongs to C'(H*(R?)) and

N (u)-v=4]| K@)p[uluvdr, wu,ve H*(R?);
R3
(ii) If (ug) and (vy,) are bounded sequences in H*(R3), with uj, — vy, — 0 in LP(R3),
for some p € (2,2%), then N, (ux) — Nu(v) — 0;

(iii) ¢o : H*(R3) — D*2%(R3) is continuous and maps bounded sets into bounded sets;

() ¢alu] = 0 and No(u) < Colully, where ¢ = ry or q = 14 provided that
K(x)e L*(R?) or K(z) € L"(R3), respectively;

(v) No(tu) = t*N,(u), and if K(z) = Ko > 0, then N, (u(-/t)) = 372N, (u), for all
t > 0;

(vi) If up — u in H*(R3), then ¢ofur] — dolu] in D**(R3);

Proof. (i) Follows by standard arguments as in the local where it is used Fubini
Theorem (for instance, see [30]).

(i) We assume that K(x) belongs to L"(R?), since L*(R?) can be proved in a
similar way. Observe first that, by an interpolation inequality uj, — v, — 0 in LP(R?),

for all p € (2,2%). Next, we write

|Mmm—Mmm<j\Km%wmﬁ—ﬁnw

R3

T JRS K (2)(Salur] — dalvnl)v?| de. (43.3)

The first integral in the right-hand side of (4.3.3) can be estimated by using estimate
(4.3.1). In fact we have

|Mmm—me<f\Kw%wm@—ﬁnm

R3
< K@) = vi) (wr + 01) a2l Palur]lzz — 0, as k — oo,
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because 2 < 1, < 2% and where we used Proposition [0.1.6] with p = 2%/(2% — 1)

and ¢ = 2*, to guarantee that (¢,[uz]) is bounded in L% (R?). To estimate the second
integral in the right-hand of (4.3.3)) we notice first that ¢,[uxr] — ¢alvi] = dalui — vi].
Thus,

fRs K (2)(alur] — Galvil)vi| do < [ K (@) ] vrl7, |oalui — villlos

< ||K(9U)||3||Uk||§aHuk — Ullro |ur + vilr, — 0, as k — oo,

where it is used Proposition again with p = 2% /(2% — 1) and ¢ = 2%, to obtain the
second inequality.
(iii) Let up — w in H*(R3). Define the functional

Pr(v) = | K(@)uivdz, ve H(R?).
R3
In order to prove that ¢, [ur] — ¢o[u], it suffices to prove that P, — P, in the dual of
H#(R?). This actually follows by (4.3.1)) and using similar arguments as above.

(iv)—(vi) can be proved by using the definition of ¢,[u] and the estimate
(4.3.1). |

Next we establish the behaviour of the weak convergence for the functional (4.3.2)

under the profile decomposition for bounded sequences.

Proposition 4.3.4. Assume that[(K1)H(K)| holds true. Let (uy) be a bounded sequence
in H*(R3) and (w™),en, given by Theorem . Then, up to subsequence,

lim A (ug) = + > N(w (4.3.4)

neNg,n>1

Proof. By convergence ((1.1.8)) and Proposition we have that

Jlim [Nawk) - N, <Z w( = y,i">>>] -0

TLGNO

The uniform convergence in (1.1.8) allows us to reduce to prove that (up to

subsequence),

kh_r)rolo [ <Z w\™ (- — yk > N (wh) — J‘f: Nf(w(”))] =0, VM eN. (4.3.5)

Since N, is C', by density, we may assume that w(™ belongs to C®(R?), for
n =1,...,M. By condition (I.1.6), there exists ky such that supp(w™(- — y,gm))) N
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supp(w™ (- — y,ﬁ”))) = ¢, for all m # n and k > ky. Consequently,

=22 RgK(ny N w™ Pa[w™ (- — 4] (z + ™) dz.  (4.3.6)

For a. e. x in R?® and n > 2, we obtain that

lim g [w™ (- — )] (x + 3"

= lim Ky + y) ™ (y) Pz -y dy

k=% Jsupp(w®™)
= Lupp(w o Kp(y)[w™ ())*|z — y*** dy = ¢7 [w™] (=),
in fact, this convergence follows by Lebesgue Theorem, once we take account that
o K(y+ ") ()Ple =yl — Kp(y) ™ )Pz =y ae y in B and
o K(y+y”) <1+|Kp(y+y”) = 1+|Kp(y)| € L' (supp(w)), for k large enough.

By a similar argument we conclude, for n > 2, that

im | K (x4 5w Poa[w™ (- — i) (@ + yi™) do

k—ao0 R3

= JS Kp(z)|w™ P¢P [w™] dz. (4.3.7)
R
Moreover, the same argument above together with condition (1.1.6]) leads to

lim | K (@ + ™)™ Poaw® (- = 5] (@ + yi"™) do = 0. (4.3.8)

Convergence (I3.3) follows by (L3.6), (L3.7) and (I3.5). .

Corollary 4.3.5. Under the same assumptions of Proposition we have

lim [N () — N (w®) — N (ug, — w®)] = 0.

k—o0

Proof. Tt is easy to see that @™ = 0 and @™ = w™, for n > 2 corresponds to a profile
decomposition for the sequence v, = u; —w™. Thus applying Proposition “ to this

sequence we obtain

lim N (uy, —w®) = Z NT (w™). (4.3.9)
k—o0
neNg,n>1
The result follows by taking the difference between (4.3.4) and (4.3.9) |
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The next result gives the behavior of the derivative of N, under the profile
decomposition described in Theorem [I.1.1) and gives the link necessary to treat the

critical case.

Lemma 4.3.6. Assume that K(z) fulfills (KOH(KS)l Let (uy) be a bounded sequence
in H*(R?), and (w™)y,, (],i”)) and (y,(C )) given by Theorem m Then

(NDY (™) -, ifne N,

(4.3.10)
0, ifneNL.

lim A, (u) - df”p = {
k—o

Proof. Next we use the fact that N, = Ny u N, (Proposition [1.4.4). We prove (4.3.10)
by using the Dominated Convergence Theorem. We have

n _9g .(n) .(n) ~ (n) n n
N (i) - dfp = j PR ) galud (v )oY p e, (43.00)
;

where
_3-2s :(n) _+(n)
Ul(qn) =7 2 Tk Uk('Y Tk

™M), (4.3.12)
Notice that

(n)

o] o= [ 2 a0

A(n)

2
)| = Al g [u)E

Thus, by Proposition m, ( ,(C)[ x]) converges to zero in D*?(R3), if n € N; and
converges weakly, up to subsequence, for some ™ in D>2(R?), if n € Ny. Moreover,

by the Dominated Convergence Theorem we have

€. ¢], = lim [0 [ul. | = lim | K(@+ )" Peds

«a k—w0 Jp3

= J Kp(z)|w™*odz, for ne Ny.
R3

That is, the definition of ¢¥ implies £ = ¢ [w™], n € Ny. We write identity (4.3.11])

as

1 n i(n) (n) n
N () - e = j | 5w ) = K (4 ) [0 [ p e

+ | Kp(y 5 x)qﬁ( Nuplo e da.

R3
Using condition [(K3)] it is easy to see that

Kp(y~ Jlgn)x) < K(0)+1, VYVazesupp(p), *klarge enough and neN,.

Therefore, we can apply the Dominated Convergence Theorem again to obtain
(4.3.10) |
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4.3.2 Mountain Pass Settings

In the following result we prove that our functional 7, has the Mountain Pass

Geometry.

Lemma 4.3.7. Suppose that K (z), a(z) = V(z)—b(z), f(x,t) and g(z,t) satisfy[(K1)]
(VDL (V2L [(VOL [(FO)L [(g1)l [(go)l respectively. Moreover, assume either with

>4 or . Then the functional I\ possess the mountain pass geometry. Precisely,
(1) 1x(0) = 0;

(1) There exists r,b > 0 such that I (u) = b, whenever |u|y = r;

(iii) There is ey € Hy(R3) with |ley|v > r and Ix(ey) < 0;
In particular, b < ¢(I,) < oo.

Proof. We follow a similar analysis to the one made in the proof of Lemma [3.3.3]
Indeed, since b(x) € LA(RR?),

1/8 (B-1)/8
f Mxﬁﬂdxs;<f w@Qde) (f WPWW—de> Vue Hi(RY),
R3 R3 R3

with 2 < 28/(8 — 1) < 2%, by conditions |(f1)] |(g1)| and [(V4)] for any ¢ we get that

1 b(x
I(u) = [5 <1 — ” C(v‘(/ﬁ))”B — 2€C2> — (e + Ci)Cox|lu

*_ _
V= CCpuly 2] Jullv

for all u € H{(R®), where Cy, Cox and C,. are positive constants provided by the
embedding described in Proposition[3.3] This allow us to choose ¢ in a such way that the
first term in the right-hand side of the above inequality is positive, once |ul/y is taken
small enough. Hence there exists 7 > 0 such that I(u) > 0 provided that |u|y, < 7.
Let us assume first that conditions holds true. Let £ € CF(R), R > 0, such

that 0 < Eg(t) <ty and
0o, it > R+ L
Set v(z) := Ep(|r — wo|). Then v € H{(R?) and

f F(x,v)dxzj F(I,to)dx—i-j F(z,v)dz
R3 BR(xo) BR+1($0)\BR(ID)

> |Bg| inf F(x,ty) + |B B inf F(x,t) > 0.
| R'Bmo) (2, t0) + [Braa) R|<z7t>e<BR+1<zo>\BR<mo»x[o,to] (1)

Since and are is equivalent to d/dt(F(z,t)|t| "), d/dt(G(z,t)|t| **) = 0, for

t > 0, we have

J F(z,tv)dzr = t“f F(z,v)dz,
- R whenever ¢ > 1.

G(z,tv)dx = t"* | G(z,v)dx,

R3 R3
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Hence

1 1 A
I(tv) = §t2Hv||%/ = 5152 JRS b(x)u*dz + ZtA‘Na(v) = JRB F(z,tv) + G(x,tv) de

1 A
< §t2HU||%/ + Zt4Na(U> — tuf

F(z,v)dz — th* J G(z,v)dz
R3

RS

— —00, as t — 0.

Now suppose that assumption holds true. For any given R > 0, there exists tgr > 0
such that
F(x,t) > Rt*, V|t| > tg, and Vo € R®.

Let be A(R,t) := {z € R®: tlv(z)| > tgr}, for t > 0. We have that

j F(m,tv)dxzf F(x,tv)dx—i—f F(z,tv)dx
R3 K A(Ryt)

> f F(z,tv)dx + Rt4j vt da, (4.3.13)
K A(Rt)

where K; = (R®\A(R,t)) nsupp(v). Using condition [(f,)] for each ¢ > 0, we get that
|F(z,tv)| < C, fora. e ze kK,
where C' is a positive constant that does not depend in x and ¢. Consequently,
F(z,tv)Xk,(z) - 0, x€supp(v), ast— 0,
where used that
Xrs\a(re) () = Xra\supp(e)(€) = 0, @ € supp(v), ast — oo.

Thus Lebesgue Convergence Theorem implies that the first integral in the right-hand
side of (4.3.13]) goes to zero as t goes to infinity. By the same reason, we also have that

lim vide = lim U4XA(R¢) dz = J U4X{v¢0} dz = J vide.
t—00 A(R,t) t—00 R3 R3 R3
In particular, there exists a positive number ¢y g such that
1
—J vtdr < J vtdz, Yt > tog. (4.3.14)
4 Jps A(R)
Replacing (4.3.14)) in (4.3.13) we obtain that
t2 t2 ¢
L) = Sz = £ [ b@)ede + Do) — f Fla, tv) + Glx, tv) da
2 2 R3 4 R3
2 .t .
< Slolv + 7 (Walv) = Rlvfy) = | Flz,tv)de —t** | G(z,v)dz <0,
2 4 K R3
for t > tO,R-
provided R is chosen large enough. ]
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Remark 4.3.8. (i) In addition to the assumptions of Lemma assume that

(ii)

(i)

F(z,t) > 0 for a. e. z € R3 and t # 0. Then, for any u € H{(R?)\{0}, the path
defined by ((t) = tu belongs to I';. In fact, we make the following modification
in the proof of Lemma [4.3.7] replacing v by u and using the same notation. We
have that

f F(z,tu)dz > Rt4f u* du,
R3 A(R;t)

lim J utdr = lim u4XA(R7t) dx = J u4X{u¢0} de = J utde,
A(Rpt) R3

t—00 t—0o0 R3 R3

which enable us to proceed as in (4.3.14)) to get

12 4
p(t) == I\(tu) < 5\\uH2v + Z(ANa(u) — R|u|}) — —0, as t — oo,

provided that R is taken large enough. Moreover, suppose that h(z,t) =
f(x,t) + g(x,t) satisfies the following condition: for a. e. z € R? the function

h(z,1)
.

t— is strict increasing in R.

Then, taking into account that

O'(t) =t [||u||%/ + AN, (u) — Mu dz — J Mudx] , t>0,
R3

we infer that ¢ has a unique critical point.

RS

In view of Lemma we define the set

I, ={ye ([0, 1], Hy(RY)) : 7(0) = 0, [v(D] > r, Ix(v(1)) < 0},

and
ci(I) = inf sup L\(v(t)),

v€l'}, tef0,1]
as the usual minimax level. We have that ¢;(I)) = ¢(I,).

Using the same arguments of the previous chapters we can see that when
f(z,t) = f(t), the mountain pass geometry can be obtained by replacing|[(f3)| with

In fact, let x as in the proof of Lemma and define nz(x) = &r(|z|).
Then,

J F(’I]R) dx > 0,
R3

provided that R is chosen large enough.
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Proposition 4.3.9. Suppose that K(x), a(z) = V(x) —b(zx), f(x,t) and g(z,t) satisfy
(&) (V) (V2D (V) [0 720 (gl reswectively, with p < pua. Moreover, assume
either p > 4 and [(f3)] or p = 4 and [(fu)l Then there exists a bounded sequence (uy)
such that Iy(ug) — (1)) and I\(uy) — 0, in the dual of H{(R?).

Proof. In both cases, by Lemma [4.3.7, we may apply the standard Mountain Pass
Theorem [16] in order to find a sequence (ug) in H$ (R3) such that Iy(uy) — c¢(I) and
Assume first 1 > 4 and [(f3)] For large k, we have

(L) + 1+ [luefv

1
= In(ug) — ;I;\(uk) U

(1) (- (2 B

1 1
— J F(x,ug) — ;f(l’, up)upde — | G(x,uy) — ;g(m, ug ) uy, do
R3

R3
BV ALCIAYE
>(§—;)<1 o)

which implies that (ux) is bounded. The case where f(z,t) satisfies with p =4
and follows by taking ;1 = 4 in the above inequality. |

It is worth to mention here the following complement of Proposition which

the proof follows the same argument.

Proposition 4.3.10. Suppose that V(z) satisfies[[VOH(V3)| and V (z) = 0. Let (uy) be
a bounded sequence in H*(R?) and (w( Nnen, provided by Theorem . Then

liminff V(m)uidx}f V(z)|wV > dz + Z JVP )w™|? d.
R3 R3

k—o0
neNg,n>1
4.3.3 Estimate of the minimax level

Following the arguments of [42] we prove a estimate for the minimax level of the

associated functionals. This is needed in order to prove Theorems [4.6.1) and [4.2.3] As

might be seen in 28], the following infimum

s/2u|2 d:U) 1/2

. (fes (=
S.(s) ;= iInf
) L

< L (el

(4.3.15)
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is attained by the following class of functions
3-2s
g 2
us(a:) = 75, €>0,
(|2 +¢€2)

e D) TE)
2T T EE) (r<3/2>) ]

Furthermore, consider £ € C°(R : [0, 1]) a non-increasing cut-off such that

where

—1/2

S*,s =

1, if te[-1/2,1/2] ,
£(t) = and I€'(t)| < C VteR,
0, if =1
and define n(z) = £(|z|). Then nu. € H (R?), provided that V(z) € L*(R3) and

holds. Moreover, we have the following result.

Lemma C. [/2, Lemma 2.J] Let n. =

(0]l < Si(s)” + O™ ™),

s

O(e*), if 3> 4s,
[n-l5 = { O(e*log(1/e)), if 3=14s,
O(e¥72), if 3 <4s,
and
O, if p=3/(3—2s),

Inelly = (=203

OE"3™), i p<3/3-2s)
Here the notation a. = O(b.) means that a./b. is uniformly bounded with respect to ¢,

precisely, there ezists positive constants ¢y and co such that ¢; < a./b. < co, for all €.

Proposition 4.3.11. Assume that (K})| and (V2)| holds true with V(z) € L*(R?).
Moreover, suppose that f(x,t) = fp(x,t) and g(z,1) = gu(t) satisfies and
respectively. Then

s s 8/s
e(f) < 3 [%] . (4.3.16)

Proof. Define n* = n./(2*c,)"/?*. Tt is easy to see that the path ¢ > ¢n* belongs to Ty, .
We are going to prove that

sup I (tnk) <
=0 3

s [ Si(s)

(2flsgc>l<)l/2§<
By Proposition we have that

3/s
] , for € small enough.

IN(tn?) < ¢e(t) == —||77g [vt* + CAH% [gt" = colmz 5o el — 5o 1>, Ve =0,
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where C\ = \C,,. Since 9.(t) — —o0 as t — 400 and ¥.(t) > 0 for ¢ close to zero, there
exists . > 0 so that sup,.,¥:(t) = ¥.(t.). Thus ¢.(¢.) = 0 and as consequence,

[n2 1% + CXlnZllgtz — collnZ[po P~ = [t (4.3.17)

Moreover, the above identity (4.3.17) implies that 0 < ¢; < t. < ¢ for € < 1, and some

positive constants ¢; and co. Now let

1
23

1 *
Soa(t) = 5””& ”%/t2 -

which has a maximum point 7, = (|n*]?)/(3*=2). We have

SUP V() < sup e (t) + O>\02||775”4 coct’ [InZ 15

t=0

3/s (
—IIna [+ Cxchm lg = coc’InZlibe, e <1. (4.3.18)

po’

Using Lemma , we now pass to estimate each term in (4.3.18)). Also, in what follows
we use the inequality (a + 0)® < a® + a(a + b)*7'b, a > 1 and a,b > 0, and always
consider € < 1.

e For the first term we have

3/2s 3/2s
(Inz1%)™ < (213 + 1V (@)l 2 [13)

Sa(s) i 2 3-2 "
< T + cs|nk||5 + O(e°=*%), for some positive constant cs,
sCx

< 2%cy

)
_ (2*C*> S2) 4 O log(1)e)), it 3= s,
)

< 2%cy

e For the second term, we have

O(e%7%) + O(*), if 3> 4s,

O(e372%), if 3 <d4s.

12-2(3-2s)q i
(o)t = L OC )i g >3/(3-29)
O(26-2)), if ¢<3/(3—2s).

6—(3—2s)pg

e For the third term, we have |n*[P = O(e

po > 3/(3 — 2s).
Summing up, we get the following.

), since py > 4 implies that
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e For the case ¢ = 3/(3 — 2s), we get

sup I (tn}) < sup.(t) <

t=0 t=0
3/5 —(3—2s)p
(i*(8)> FOE ) +OE) +0( )= 0ETT ), i3> 4s,
s
S* 3/s
( . (S)> + 0(53723) + 0(528 lOg(l/E))
3 5 Cx
12-2(3-2s)q 6=(3-29)pg
+ 0« )=0(E =z ), if3=4ds,
S* 3/8 12—2(3—2s)q ’—(3—2s)p
( 2*(5>> +OE) + 0(8%) _ (9(5%)7 if 3 < 4s.
\ sCx
e For the case ¢ < 3/(3 — 2s),
sup Iy(tn?) < sup.(t) <
=0 20
s S, 3/s —(3=28)p,
(2*(8)) +O(E) + O(E™) + 002 — 0", i3> 45,
s Cx
S, 3/s
( 2*(8)) +O(%7%) + O(* log(1/e))
< s Cx
b 062 _ 0", i3 = 4s,
S* 3/5 —(3—2s)p
( 2*(3)) +OE2) + (9( 2(3— 28)) (9(5%% if 3 < 4s.
\ sCx
Since the following inequalities are always true
6—(3—-2 12-2(3—-2
( . S _ o _ ( 3)617
6 (3o q 0<s<1
— (3= 25)po < 3 — 2s,
2
and
6-(3—2s)pg
e—0 €25 log(1 /<) ’
the term involving the power P grows faster near zero than any other terms
involving ¢ in each considered case. Thus we obtain estimate (4.3.16)) by taking ¢ small
enough. |

4.3.4 Pohozaev identity

We now prove that weak solutions for Eq. (Sy)) satisfy a Pohozaev type identity.
The proof follows similar arguments used in Proposition with additional caution,

since we have to consider the nonlocal term in Eq. (Syy). This is the reason why we
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ask an smoothness C' in the potential a(z) instead the one in Proposition that

a(x) may have finite points of discontinuity.

Proposition 4.3.12. Assume that f(x,t) = f(t) € CY(R), g(z,t) =0, K(z) = Ky > 0
and a(z) € CYR3). Let v € H*(R3) be a weak solution of Eq. (Snizl) such that
f(u)/(1 + |ul|) belongs to LljZfS(R?’). If F(u), f(u)u, a(z)u?® and {Va(zx),z)u? belongs

to LY(R?), then u e CY(R3) and

3—2s
2

1
J [(—A)*2u)? dz + 5 J a(x)u? dr + = J (Va(z), z)u? dw
R3 2 R3 2 R3
3+ 2«

K [ dufulude = 3 f Fu)dz. (43.19)
R3 R3

Proof. We divide our proof in two steps. In what follows we assume without loss of
generality that A = Ky = 1 and use that w = E,(u) is a weak solution of problem
(0.3.3), where h(x,u) := f(u) — (a(x) + ¢ofu])u.
First step (Regularity). We shall prove first that u belongs to LI _(R?®) for all r > 1. In
order to prove this, observe that, given p > 1, by Proposition ¢a|u] belongs to
L(R3), for some q > 3/2s if, and only,

3p 3 3

= > —, thatis, p> .
3—2ap 2s 25 + 2«

As seen in Proposition 4.3.2) we know that p = 2% /(2% — 1), hence (4.3.20]) holds true.
Furthermore, we have that

q (4.3.20)

|7 (w)] c ngo/fs(Rg)-
1+ |u

Thus, from now on we can follow exactly the same lines as in Proposition to

(R3). Moreover, since ¢,[u] is a weak solution of (—A)*@,[u] =

Kou? the same conclusion follows for ¢,[u], once is known that u belongs to L (R?)

loc
for all » > 1. Writing

conclude that uw e Lj,.

f(u)
1+ |ul’

bl = | 0 senl) — o) = ouli | +

1+ |ul

we see that the regularity follows by applying the results of [59] and proceeding as
described in Proposition Thus, for any R > 0 there exists 0 < yo,r < R with
B2 x [0,y0] < Bj; and 0 < pr < 1 such that

Ey(u), V,.Ey(u), y' > E,(u),
Eo(9a), VaEa(da), Y Ea(¢a) € CO*(B2 x [0,y0]). (4.3.21)
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Second step (Local computation). Let &, as in Remark [4.2.9] As before, we have

div(y'"*Vw) {z, Vw) £,

2 N -2
= div [yl%fn (<z,Vw> Vw — |V;U| z)] i y' | Vw*E,

2

1— 25|VUJ|2

{2,V —y' P (Vw, 2)(Vw,VE,). (4.3.22)

Note that 0B 5,5 = Fl5, 5o F 5 Let n(z) = (0,0, —1) be the unit outward normal

vector of B 5, 5 on F\l/ﬁn ;- Since &, = 0 on F\zf , by condition (0.3.2)), identity (4.3.22)
and Divergence Theorem we get

0= J div(y'"*Vw) {z, Vw) &, dzdy
B

V2n,8
[Vw?
2

— J Y e, [<z, Vw)y{(Vw,n)y — (z, 77>] dzdy + O

1
F\/?n,é

= f &z, Vaw) (—yl_QSwy) dz

Fﬁn,&
- s [V
— f y' B wiy de + J y' e,
F1 F1 2
V2n,8 \2n,8
71 2 3
- In7§ + In,5 + ]n’(; + 07115,

ydx + 0,5

where

N -2
On s :J —5 i y' 2| V|, doedy
B\/ﬁn,é

1-2s |Vw|2 1723
+ Y (2, V&) — (Vw, z)y(Vw, V&, dedy.
B\/inﬁ

We know that there exists a sequence 5, — 0 such that
s 415 —0, as k— .
Some computations leads to
&n(2,0) <z, V) (f (u) — (a(z) + ¢olu])u)
— div [gn(x, 0) (F(u) _ %(a(x) + e [u])u2) ac]
—(V&u(2,0),2) F(u) — 3&(z,0)F(u) + % (VEa(w,0), 2) (a() + dalul)u
b 26,0 (T (al@) + duful). )0 + 26 w,0)(a(w) + duful).
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Thus, by Remark [0.4.3 conditions (00.3.2), (4.3.21)) and the Divergence Theorem we

have

fim I, = | €0(0.0) G V) (7(0) = (ala) + duful)u) do

3
B zn

= —K, J V&, 2y Fu) + 3¢, F(u) de

+ 5| | (V6w (@) + o lulutdr
+ 6 (V(a@) + dalu)). ) w* + 36n(a(@) + a[u)u da

Summing up, we get

T 1
0= lim [1,

+ I’VZL,(Sk + [7?;,,5k + env(sk]

- f (Vén, 2y F(u) + 36, F (u) d

25 [ ) () + ol o
5[ T + b+ 6ufate) + ol

V2n

3_9
+ J 2T 2 =2\ 2, da
B+

1
+ f 5(7;1_25|Vw|2 (2,VE&) —y' 72 (Vw, 2)(Vw, VE,) da. (4.3.23)
B

2

Since v = ¢4[u] is a weak solution for the equation (—A)*v = w?, similar arguments

also can be applied to w, = E,(¢.[u]). Hence,

0= —Ka J 26,00 [u]u (Vu, ) + 36, do[u]u® dz
B

3-2 1
+ f —ay1_2°‘|Vwa|2§n + §y1_20‘|Vwa|2<z, V&) da
B

9
V2n
— J y' VW, 2)(Vw,, V&) do. (4.3.24)
B+

n

On the other hand, integrating by parts, we have
£ (Voo[u], z)u* dz =

— JBS U Po[u] (VEp, x) da — J i 26 udo[u] (Vu, ) + 3&udo[u] do.  (4.3.25)

V2n B\/§n
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Using identity (4.3.24) in (4.3.25) we obtain

fis En (Vpo[u], 2y u® do =
2 B3
\/E’l’l
-2
S5 el ar- B2 g e,
g . " (4.3.26)
- e [J —y172a|V’wa|2 <Za an> - yliza <Vwom Z> <Vwa7 V£n> dx
2Ha Bj}§ 2

On the other hand, by a density argument, we can choose wg&, as a test function in
definition (0.3.4) and get as consequence,

J y1_2°‘|Vw¢|2£n dzdy
B+

n

= /faf Endalulu® do — J y' 2wy (Vwg, VE)Y dady.  (4.3.27)
B3 5 Bj}in

It follows, replacing identity (4.3.27)) in (4.3.26)), that

Rs
7 , fnu2 <V¢a[u]7$> dz =

B

Rs
B 5 3 <v£n; x> u2¢a[u] dz

B,

3 — 2a) K, —2a

_ (—% ) [naf Endalulu® dz — f YT we(Vwg, V) dxdy] (4.3.28)
« B\S/En Bx/in

s 1, _
_ “ —y' 2|\ Vw, |* (2, V&) — y' 2 (Vwe, 2) (Vw,, VE) dxdy].
2'({"/04 Bj}ﬁ 2

Finally, replacing expression (4.3.28)) in (4.3.23)) we obtain

0=—kKs J (V&,,x) F(u) + 3¢, F(u) de + 5 —22& Ks J Enthaulu? dz
BS

2n n

+ — (V& vya(z)u? + &, (Va(z), z)u® + gﬁna(:v)u2 dz

1
_ T “ §y172a|Vwa|2<z,V§n>—y1*2a<Vwa,z><Vwa,V§n> dxdy]
B+
V2n

3—2
+ f —Sy1_28|Vw|2§n dx
B

+ 2
V2n
L s —2s
+ f . §y1 #IVw|? (2, V&) — y =2 (Vw, 2)(Vw, VE,) do
B san
3—2
+ %KSJ . y' 2wy (Vwg, VE,) drdy. (4.3.29)
B
‘\/577/
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Thus the identity (4.3.19]) follows from (4.3.29) by applying the Dominated Convergence
Theorem and using (0.3.2)). |

4.4 Proof of Theorem 4.2.1]

Proof. Our argument follows the same one in the proof of Theorem [3.2.1}-(i). For the
reader convenience we divide the proof in several steps.

(i) By Proposition we known of the existence of a bounded sequence (uy) in
a such way that I (ug) — c(I]) and (IT)'(us,) — 0. Since it is bounded, it has a profile
decomposition provided by Theorem If we have w(™ = 0 for all n € Ny, then
by assertion (L.1.8), ux — 0 in LP(R?), for any 2 < p < 2* and by convergence (L.1.5)
up — 0 in Hy, (R3), in a subsequence. Consequently, by Propositions and
4.3.4], we have

-

0 c(IPY = 1T (u) = 1 Ik é ug) — x, ug) dx
(1) + ely) = Iy () = 5lunl, + 4/\55( k) fRs Fp(x, u)
_ 2
. = glwlv, +o(b); (4.4.1)
o(1) = (I7) (ur) - we = Jugly, + W (we) — | fr(w, up)ug da

R3

= e, + o(1),

\

a contradiction, since ¢(I}) > 0. Thus, there must be at least one nonzero w(™,
(ii) Moreover, we have that each w(™ is a critical point of I]. In fact, it is well

known that, up to subsequence, we can take 2™ in L% (supp(y)), n € Ny, such that
|uk(z + y )| < h™(z) a. e xesupp(y), (4.4.2)

where 0’ = o/(c — 1) and ¢ € C&(R?), which can be done thanks to Proposition [3.3.1]

Thus, for a.e. € R3, we have

{H¢@+yﬁﬂﬁw+ﬁ% ()| < W™ (@) |Vo(2)p(x)| € L (supp(y))
Vo(a + 4 ui(z + y)p(@) = Va(@)ur(z + 5 p(x) — Vp(2)w™ (2)p(z),

which by the Lebesgue Convergence Theorem leads to
B G- 57 Do = fim B4 )1+ [ Voo ol ot |
—0 k—co R3

= [w™, o], + f Vp(@)uepdr.
R

By the same reason and [(f1)]| up to subsequence we have,

lim fp( (M ede = | fp(r,w™)pda.

k—o0 ]R3
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Consequently, by Lemma |4.3.6, we may pass the limit in

DY (ur) - o(- = y) = (s (- — "))

+ANDY () - ol — 4 f P+ 5wl + g de,

to conclude that (I7)'(w™) = 0, for all n € Ny.

(iii) In particular, we get that
Gs = inf {I(u) : u e Hy (R)\{0}, (I)'(u) = 0} >0,

We are going to prove that is Gs is attained and is positive. Let (ug) be a minimizing
sequence of Gs, that is I (ux) — Gs and (I])'(ux) = 0. Arguing as in Proposition
4.3.9] we obtain that (uy) is bounded. We argue again by contradiction and assume
that w™ = 0 for all n € Ny. In this case we actually have that Gs > 0, because on the
contrary, if Gs = 0, then using we would conclude that |ug|v, = o(1), and at
the same time,

*
vp) + Cellurl

¥ < Nl + AN () = L Fp(ur)u dz < e(Colux[[y,
R

where Cy, Cox and C,. are positive constant obtained by applying the embedding
described in Proposition In particular,

2—2

(1 — eCy) < eCys +Cp lurl?%, VkeN,

which, by taking ¢ small enough, would lead to a contradiction with the fact that
|uklv, = o(1). In view of that, in any case, we can argue as above to conclude that
there must be a nonzero w(™) that is a critical point of I7.

(iv) Let us denote

1
F(z,t) = Zf(x,t)t—F(x,t), reR?and t e R.

We know from convergence (L.1.5) that wu(z + y") — w™)(z) a. e. in R3, up to

subsequence, which allows us to apply Fatou Lemma to get

|1 n n
G = Jim | o+ )+ [ Pl o)) e
1 (n n
> liminf —ug(- + vy 0))||V + hmlnf Fla,ug(- + y,i ) da
k—wo 4 k—a0 R3

1
> 10, + [ Fau™)do = £,

where we used |(f2)| to ensure that F(z, ug(- +3.")) = F(z,ux) = 0 a. e. in R®. Thus,
once again by |(fo)l we have Gs = I (w(™)) > 0.
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(v) Now assume in addition that fp(x,t) satisfies then Gs = c(I]) =
I7 (w™)), and w(™) is non-negative. Indeed, the truncation given in Remark
satisfies the assumptions of Theorem and we can apply the same arguments of
this remark to Conclude that the ground state w(™) is non-negative. Furthermore,
Remark i) guarantees that the path ((t) = tw™), t > 0, belongs to ['yp and
c(I7) < IZ\D( ”0)) On the other hand, considering (uy) the above sequence, by Remark
3.3.2(-(ii), Propositions|[3.4.2|and [4.3.4|and estimate ([1.1.7]), up to subsequence, we have

. 1 A .
o) = i [ Moty + N7~ [ Fotuas] > 3 1)

nENo

Consequently, using we can guarantee that each IT(w(™) is non-negative and
conclude that ¢(I7) = Gs. |

4.5 Proof of Theorem 4.2.2

In order to prove our existence result without the compactness condition
once again we use a similar argument as made in the previous chapters. Thus we need
Theorem which states that the existence of a critical point of I is guaranteed
whenever the minimax level is attained (see Remark [4.3.8(ii))

Proof of Theorem completed. From Lemma [£.3.7 and Proposition we know
about the existence of a bounded sequence (uy) such that Iy(ux) — c(I)) and
I4(u) — 0, in all considered cases. Let be the sequences (w™) and ( ) provided
by Theorem for the sequence (uy). The underlying main idea to proof the
concentration-compactness of Theorem follows the same one of Theorem [2.2.4]
and and is the following: we prove that w™ = 0 for all n > 2, which by assertions
(L.1.5), and Propositions [3.4.2] and [4.3.4| implies that u, — w® in K (R3), up
to subsequence. In order to prove that, we argue by contradiction and assume the

existence of at least one w(™) £ 0, ng > 2.
In view of Remark (ii), estimate ([1.1.7), Propositions 3.4.2]and 4.3.4] up
to subsequence, we have

1 A
c(I)) = lim —||ukH%/ + = Ny(ug) — J F(x,uy)dx
k—oo | 2 4 R3

> L)+ > I (™) (4.5.1)

neNg,n>1

Each term of the right-hand side of (4.5.1) is non-negative. In fact, following as in the
proof of Theorem m (using Lemma [4.3.6) we notice that w(®) and w(™, n > 2, are
critical points for I, and I7, respectively. In view of that, it is clear that implies
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that 7,(w) > 0 and IT(w™) > 0, n > 2. On the other hand, Remark [4.3.8}(i)
guarantees that the path ¢(")(t) = tw(™) belongs to Typ and ¢(I) < 17 (w(™)). This,
together with and leads to a contradiction.

In this case we follow a similar argument, we apply estimate (L1.1.7),
Propositions [4.3.4] [3.4.2| and [4.3.10, to get up to subsequence, that

1 1
(1) = tim |2l — 2 [ byt + 2N - [ Flesw) de
k—0o0 2 2 R3 4 R3
> L)+ > I (™) (4.5.2)
neNg,n>1

Reasoning as in ([4.4.2)), we see again that w™ and w(™, n > 2, are critical points for
I, and I], respectively. In fact, by assertion (1.1.6]), there exists kg = ko(¢) such that

|V (z + y,g"))| <1+ |Vp(x)|, Yk>ko xesupp(y) and n > 2.

V(e +y”) = (Vi +5") = Valw +4")) + Vp(e) = Vo(2),  ac. in supp(p).

Thus, using again together with we can guarantee that I,\(w(l)) > 0
and I7(w™) = 0, n = 2. Once more, Remark (1) guarantees that the path
¢o)(t) = tw™) belongs to I'/p and c(Ip) < I7 (w™)). This, together with and
leads to a contradiction.

Finally, assume that inequality (4.2.1)) holds true instead condition in
the items |(i)| and |(ii)l If there exists w(™) # 0, ny € Ny, then

(1) < max [ () < max IT (1) = I (™) < e(L), o € Ny,

where we used condition to ensure that the paths (") belongs to I';,. Thus, we
have that the minimax level (1)) is attained by the path ¢ — tw(™) and we can apply
Theorem to obtain the existence of a critical point u for I, with I)(u) = ¢(Iy). If
there is no w(™ # 0, n € Ny, (which is the case where strict inequalities occurs) we can

argue as above and obtain that u, — w(, up to subsequence. [ |

4.6 Study of the asymptotic problem

In order to prove Theorem we first need to study the existence of weak
solutions for the limiting problem . This provides a way to compare the minimax
level of the functionals associated with systems and (4.1.I), as mentioned in
Remark [£.2.8

Theorem 4.6.1 (Periodic case with critical perturbation). Assume that
(VOHVa)L [ORUE) [(F)IIg0)H(gs )k [(g7)] hold true and 0 < V(x) € L*(R?). Moreover,
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Suppose that K(x) = Kp(z), V(z) = Vp(x), blz) = 0, f(z,t) = fp(z,t) and
g(z,t) = guo(t). If we assume that either p > 4 and [(f3)] or p = 4 and[(f1)] then Eq.
(Sni) possess a non-trivial weak solution w in Hy, (R®). Furthermore, if additionally

we have and[(ge)}, then IT (u) = c(I]).

Proof. We divide the proof in several steps.

(i) By Lemma and Proposition we get the existence of a bounded
sequence (uy) such that I7 (ux) — c(I) and (I7)(ux) — 0, in all considered cases.
Let be the sequences (w(™), (y,gn)) and (j,gn)) provided by the Theorem for the
sequence (ug).

(ii) If there is some w(™) # 0, for some ny € Ny, then, as proved in Theorem
, w(™) is a critical point of IT. Let us assume, by contradiction, that w™ = 0 for
all n € Ny. Thus, by Propositions [4.3.4] [3.4.1] and [3.4.2| we have,

1
(IF) = gl = | Geofun) o+ o(0),

(4.6.1)
0=k, — | galwuds + o)
R3
In particular, up to subsequence,
by := limsup |u[[3,, = lim Supf Goo (g )uy, d,
k—0 k—c0 R3
which combined with and (4.3.15)) leads to
2
bO > (C*(S*(S))72§> 25 —2 )
Consequently from (4.6.1)) and we can conclude that
P Mo — 2 _9% _2;‘%2
c(Iy) = Ca(Sa(s)) ™ : (4.6.2)
2y
a contradiction, because condition (4.2.2) do not allows that (4.3.16]) and (4.6.2) holds

simultaneously.

(iii) Assume additionally and [(gs)} By estimate (1.1.3), Propositions [1.4.4]

P41, B47 and 3.4 we get

. 1 A
() = Jim | g1l + AT (w0~ [ Folo ) do -

> 3 ™)+ Y J(w™),

neNp neN4

Goo (1) dx]

R3
where J,, is the following C* functional in D%?(RR?)
1
To(u) = -f (= A)2y)? da —J Go(u)dz, e D 2(RY).
R3

2 R3
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(iv) Since go(t) is self-similar, each w™, n € N, | is a critical point of Jy. In fact,
let @ in CP(R?). Tt is easy to see that (d\”¢) is bounded in Hy, (R?). Applying the

Dominated Convergence Theorem we get

lim Vp(x)ukd,(;)go dr = klim [7—28j£n) J Vp(y_ji(cn)x)v,(gn)go dx] =0, neN,,
—00 R3

where v,g") is defined in (4.3.12)). Also, given € > 0 we can use to get the following

estimate,

. k s :(n) (n) n 3=2s n
lim sup f o Rl fp(y ™ x + y/E; )77322 Ul(c ))Sde
k—o0 R3

Therefore, by Lemma [4.3.6] it follows that

<e, mnelN..

0= lim | (1) (ws) - (") | = T (™) -5, meN,.

k—0o0

(v) Hence, by assumption |( f5), we obtain that J,(w™) = 0, n € N,. This allows
to conclude that 17 (w™)) < ¢(I]). On the other hand, considering Remark (i),
assumptions and implies that c(I]) < I (w™). |

In what follows, we prove what is stated in Remark It is also worth to

mention that we use the next proposition to prove Theorem [4.2.3
Proposition 4.6.2. Assume that K(z), a(x) = V(z)—b(x), f(x,t) and g(x,t) satisfies

either

() ()N, [(VOHVDL (b [(F2)h (U5 [(fe)] and that g(x,t) = 0. Moreover,
suppose either p > 4 and or p=4 and .

(i) (KOs [(VOHMVL ()} ()l [(5)HUf2)) [(9)H(gn)h respectively, with Vp(z) €
L*®(R3) and p < ps. Furthermore, suppose either u > 4 and or i =4 and

[(fo)l Also that the inequality (£.2.2)) holds.
Then c(1y) < c(I]) respectively. Moreover, under these assumptions, implies|(€),
In addition, consider the following C functional in D**(R3)

T (u) = JRB (CA)PuPde= | G, ue DR, (4.6.3)

2

If the following conditions are true,

(i) [(B)[CS)) (Vo) [(Va)h [(Vadh U] [(F2)h [g0)lH(ga)) (g8

then c(Iy) < c(J;), where

c(J5) = inf sup J.((t)).

Y€lsy 20

and
Ly, = {7€ 0([0,00) D*(B)) - 7(0) = 0, Jim J.(3(1)) = —on}.
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Proof. Let u in Hy, (R?) be a non-negative (see Theorem [4.2.1)) non-trivial weak

solution for the equation
(=A)*u + Vp(2)u + ANKp(2)ol [ulu = fp(x,u),

at the mountain pass level for I, that is, I (u) = ¢(I]). For each k, we define the
path

where (yy) is taken such that |y,| — oo. The idea is to prove that

c(I) < lim max I,(¢x(t)) < I?%X[Z\)(tu) = c(I7). (4.6.4)

k—o0 t=0

In fact, taking account that the following functionals,
(1)7 (I)’P7 NCU Nfa

Qu) = V(z)u?dz, Qp(u) = Vp(z)u® dr and B(u) = J b(z)u? du,
RN RN RN
are locally Lipschitz in H{ (R3) (they are C! in H;,(R?)) and the following estimate

t2 t2
‘I,\(Ck(t)) — ]f(tu)‘ < 3 f ) \V(z +y) — Vp(z + yp)|u? dz + 7] b(z + yp)u? do
R R

+ 2t4 Wa(u( = i) = N (w)]

+ JN |F'(z + yg, tu) — Fp(tu)| dz,
by using a density argument we get that
khlglo I (G(1)) = I7 (tu), uniformly in compact sets of R.
Consequently we may proceed as in Proposition [3.8.1} Before that, notice first that

lim | F(x+ yg, tu)de = J Fp(z,tu)dz, for each ¢t > 0.
k—w Jp3 R3
In particular,

J F(z +yg,u)dz > 0, for k large enough.
R3

Thus, using the arguments of Remark (i), we see that (; belongs to I'y,, for k
large enough. As a consequence, for each k that is large enough, there exist ¢, > 0
such that

L(Ge(tr)) = max I (G () > 0.

The sequence (t) is bounded. In fact, on the contrary, up to subsequence, we have the

following contradiction

1 A
0 < DG (1) < 5Ty + TN =) = | P+t do

— —o0, as k — oo,
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where, as above, we used a density argument and the arguments used to prove Lemma
4.3.7] Therefore, up to subsequence, t, — ty, and we have that

lim max I)\(Ck(tk)) = [f(to'd),

k—oo t20

which leads to (4.6.4]).
The second case is proved in a similar way, since the existence of a solution

for the equation
(=A)Y*u + Vp(2)u + AKp(2)d” [u]u = fp(z,u) + goo(u),

at the Mountain Pass level is guaranteed by Theorem Now assume that condition
holds true. Considering the above discussion, we have that

c(I)) < T?ggCIA(Ck(t)) < I?SOXIZ\)(Ck(t)) = max I3 (tu) = o(I),

=

where we used that (; belongs to I';, for k large enough.
Let ug in D*?(R3) be a non-negative weak solution for the equation

(—A) uo = g4 (uo),

at the mountain pass level, more precisely, J.(ug) = ¢(Jy). We refer to one of the
existence results in Sect. and Remark about the existence of such ug. Define
the sequence u,, = up&,(+,0), where &, is given by Remark . For each k, we consider
the path

Np(t) =% Ty (YN, £=0,

where (j;) is a sequence in Z chosen in a such way that j — co. Now observe that

lim | Gy(u,)de = J G (u)dx > 0,

n—oo R3 R3
where the positivity of the right-hand side of this limit is guaranteed by a Pohozaev
type identity. On the other hand,

im [ P A0) + Gla, \(e) de = f G (tw)dr, Vi3 0.

k—o0 R3 R3

Therefore, arguing as in Remark (i), we can fix first ng large enough and conclude
that A} belongs to I';, for £ large enough. Moreover, using the same density argument

as above and the estimate
n 1 2 n 2 )\ 4 n
[ (1) = T (tun, )| < 5t i A (D dar+ N (" (1)
R

# | PO+ |G (0 = Gt de,
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we may conclude that
klgrolo L\(A°(t)) = J4(tuy,), uniformly in compact sets of R.
Moreover, for each k that is large enough, there exist ¢;° > 0 such that
BOGE() = max L (6) > 0.

This sequence (¢,°) is bounded, because on the contrary, up to subsequence, if |¢}}°| —
then

0 < L () < Sl PN (DI + Z 1T Na (G0 (1)

— |t;50|ﬂj F(z, Ao (1)) da — |70 | f Gz, A" (1)) dz — —o0 as k — oo,
R3 R3

a contradiction. Consequently, up to subsequence ¢,° — a,, and we have
c(Iy) < lim max Iy (A2 (%)) = J4(angting) < max Jy (tun,) = Ji (Englng )-
ko0 120 =0
If t,, — oo as ng — oo, then we get

1
0 < Ji(tnytn,) = 575,210 [tng ]2 — tH JRS G4 (Up,) dz — —00 as ng — o0,

where we used Proposition and that

llm [uno]i = n{)linw |:K/s||$novu + UVSNOH%Z(R:{,?]I_ZQ)] = [u]§7

nog—>0
lim J Gy (U, ) dz = f G4 (u)dx.
no—% Jp3 R3

Therefore, the sequence (t,,) is bounded and it converges, up to subsequence, that
tno — bo. ThllS,

n
ng—>0 no—>ao 2 0

< Jy(boug) < max J i (tug) = Jy (ug) = ¢(Jy),

o(I)) < lim [Jo(thtn,)] = lim [1t3_25[un0]§—J G+(tn0un0)dx]
R?)

where we used condition to guarantee that ¢ = 1 is a maximum point of the
function (t) = J; (tug). In fact, it suffices to prove that
1 ES * 1
o(t) < S2[ug)? —c+t25J 2 Az < 2ug)? —f Gi(u)de, Vt>0. (465)
2 R3 2 R3
Using the Pohozaev type identity (Proposition [2.3.2)) we observe that the second
inequality (4.6.5)) is equivalent to
2* * ES
[—S(t2 1)+ 1] f G () dz < oy 2 f W, V=00 (46.6)
2 R3 R3

Since ¢y > C, we have that

2
which ensures the validity of inequality (4.6.6]). |

2% .
[—S(t2 — 1)+ 1] Co <cit®™, Vt=0,
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4.7 Proof of Theorem

Proof. The proof uses similar arguments as the one used in Theorem [1.6.1] and we
repeat some of them for completeness. Once again we may apply Lemma and
Proposition in order to get the existence of a bounded sequence (uy) such that
Iy(ug) — o(I,) and I} (u) — 0, in all considered cases. Let (w™), (y™) and (j) be
the sequences given by the Theorem for the sequence (ug).

We start by noticing that assumption guarantees that w™ = 0, for all
n € Nog\{1}. Indeed, assume by contradiction that there exists with w(™) = 0, with
no € No\{1}. Using estimate (1.1.3), Propositions [1.4.4} 2.4.1] [3.4.2] and [4.3.4] we get

(L) = lim BHWV _ %JR by + 3Na(uk) _ JRS Fla,uy) dz — JRS Gl uy) dx]
> L)+ > L)+ Y T (w™). (4.7.1)

neNg,n>1 neN4

where J, is the C' functional in D*?(R?) given by (4.6.3). Similarly as argued
before, each term in (4.7.1) is non-negative, because w(!) is a critical point of Iy;
w™ n e No\{1} is of IT and w(™, n e N, is of J,. In fact, let ¢ in C*(R?). Since V()
belongs to L®(R3), it is easy to see that (d\” ) is bounded in Hj (R3). Moreover, up
to subsequence, applying the Dominated Convergence Theorem we get

lim V(x)uk(d,(fn)go) dz = klim [7—%]’,&") J V(y‘jx(cn)m + y,&n))vén)go dx] =0, ne N,.
e s

k—o0 R3
Also, given € > 0 we can use to get the following estimate,

-(n) 3—2s

s () n 3=2s (p
Lvﬁf Wy o) da
R

lim sup <e, nelN,.

k—o0

Therefore, by Lemma {4.3.6] it follows that

0= lim | B(w) - (@) | = (™) -, men,,
where v,(cn) is taken as in (4.3.12). Hence, using assumption [(g2), we obtain that
Jy(w™) = 0, n € N;. Furthermore, as argued in the proof of Theorem by
condition we have that IT (w(™) = 0, n € Ny. Thus estimate (4.7.1) and Remark
4.3.8/-(i) implies that c(I)) = ¢(I7), a contradiction with assumption |(%)

Let us argue by contradiction and suppose that w(® = 0. By Propositions m
13.4.1 and |3.4.2| we have,

1
() = luelf = | Gow) do + o(0),
R (4.7.2)
0= luslh ~ | gz + of0),
R3
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In particular, up to subsequence,

bo := limsup |ux|? = lim supf g(x, ug)uy de,
k—o0 k—00 R3

which combined with and (4.3.15)) leads to
bo > (@(5*(3))—2?)*22‘*-2 . (4.7.3)
Using inequality (4.7.3) in (4.7.2) and condition we obtain the following estimate

for the minimax level

2

o(I) = “;M_* 2 (eu(su(o) T (4.7.4)

This leads to a contradiction with Proposition [4.3.11] because condition (4.2.2)) together
with Proposition do not allows that (4.3.16)) and (4.7.4) holds simultaneously.

We are going to prove now that w(™ = 0, for all n € N,. In order to do this, we

argue by contradiction again and we assume the existence of w(™) # 0, with ny € N;.. In
fact, considering the path t +— w(™(-/t), t > 0, it is easy to see, applying the Pohozaev

identity Proposition that c¢(J,) < J. (w™). By Proposition and estimate
(4.7.1) we can conclude that

o(Ji) = Lw®) + Y7 T (w™).

neN4

This leads to the contradiction that J, (w(™)) < ¢(J;). The convergence u;, — w" in
H: (R?) now follows by applying Propositions [3.4.1] [3.4.2] and |4.3.4

Assume now that inequality (4.2.1) holds true instead condition [(4)] As

discussed above, taking account the existence of w(™) # 0, ng € Ny, we have

c(I)) < max L (tw™)) < max I (twt™) = IT (w™)) < (1),

where we used estimate to obtain the last inequality and condition to
ensure that the path ((") = tw(™) belongs to I'7,. Thus, we have that the minimax
level c(I,) is attained by the path ¢ — tw(™) and we can apply Theorem m to obtain
the existence of a critical point u for I, with Iy(u) = c(I)). If there is no w™ # 0,
n € Ny, (which is the case where strict inequalities occurs) we can argue as above and

obtain that u;, — w®, up to subsequence. |

4.8 Proof of Theorem 4.2.4

In this section we always consider that the assumptions of Theorem holds

true. Moreover, we are going to assume that 2 < u < 4 since the case p > 4 is treated

in Theorems [4.2.2]and [4.2.3] We restrict the energy functional I to the closed subspace
rsad (RS)
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Lemma 4.8.1 (Geometry). There exists 0 < A\, < o0 and a positive constant b, such
that ¢y > b, for all A€ (0, \,).

Proof. We only prove case , since case follows the same argument. Also we
start assuming that g > 3. Consider the radial function v € C§°(R?) given by Remark
[£.3.8}-(iii) and define the paths

Coo(t) = t°v(t?-), where ¢, 6 are positive constant to be determined.
A simple computation shows that
No(Gp(t)) = t722039N (), Vt=0,
Since a > 3/4, we may select ¢ and 6 in such way that
3/2 <e/f < 2a/(4 — )
in order to get that for each A > 0, we have

1 1 A
I)\(Ca,e(t)) < §t2879(372a) [’U]z + 5%1525730”1}“3 + ZZ54579(37204)./\/'0((2))

_ t/t€—3‘9j F(v)dz — t“*‘f—?’af G(v)dx <0, Vt large enough.
R3 R3

On the other hand, arguing as in the proof of Lemma [4.3.7] we obtain the existence of

b,r > 0, which does not depend in the parameters A, such that
1, 9 A
b < §||u||v(J + ZNa(u) — | F(u) +Gu)dr < Iy(u), for |uly, =r and A > 0.
R3

Therefore for . > 3, we chose \, = oo in order to get that ¢\ > b.

Finally, assume that 2 < g < 3. We know that there is vy in H2 ;(R?) such that
Iy(vy) < 0. Since A — I(v1) is continuous, there exists A, > 0 such that I(v;) < 0 for
all A€ (0, \,). |

Hence, from the Mountain Pass Theorem, for each A\ € (0,\,) there exists a
sequence (up) in H2,(R?) such that I (up) — ¢y and I§(u) — 0 in the dual of
Hfad (RS)

Lemma 4.8.2. (Boundedness) The sequence (up) is bounded in HE  (R3).
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Proof. In fact, considering first the case (i)| we use condition (4.2.3) to get that

(te + D) (e(D0) + 1) + vy
> (pe + DIn(ui) — I3 (ug) - (up)

o — 2 P — 3
= e 2 ke )

# | G+ DPGR) = Sl de

# | G DGR = gyt do

My — 2
> *2 luzly,,  for k large enough.
For the case , we take any p, = p in the previous estimate. |

Proof of Theorem completed. In view of the results of this chapter, the proof of
follows the same argument as the one used in the proof of Theorem In fact, let
(w™), ( ,gn)) and (j,(cn)) be the sequences given by the Theorem for the sequence

(k)
e In view of Corollary we have that w(™ = 0 for all n € Np\{1}.
e w® is a critical point of I.

o If w) = 0 we use the same argument of the proof of Theorem condition
(4.2.2)) leads to a contradiction with Proposition [4.3.11]

e We now use estimate ([1.1.3]), Propositions [1.4.4] 2.4.1] [3.4.2| and |4.3.4] to obtain the

following estimate

o) = (1) = L) + 3 S(w™),

neN4

where J is the following C! functional in D*?(R?)
1
) = - f (=A)2uf? de — f Gu)de, ueD™2(RY).
R3

2 23

e w™ neN,, is a critical point of J.

e We use condition (4.2.3)) to get that
(e + DIwD) = (i + DIz = L (D) - (D) = 0,

and by a Pohozaev type identity J(w™) =0, n e N..
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o If there exists w(™) # 0, ng € N, then

c(J) = Lw™M) + Y7 Jy(w™), (4.8.1)
TLGN+
where we used that c¢(J) < J(w™). Identity (4.8.1) leads to the contradiction ¢(J) >
J,\(w(”o)).

e Convergence u;, — w in H?  (R*) now follows by applying Propositions
3.4.2 and 4.3.41

e The case is proved by taking the profiles in Theorem and using the
fact (given by Corollary [1.4.2) that w™ = 0 for all n € Ng\{1}. In particular, the

convergence uy, — w in H2 (R?) follows. |

4.9 Proof of Theorem 4.2.5

Proof. Applying Proposition [4.3.12] we get

3
_AS/Q 2d f 2d
JRSK JPuf e+ 5= | aleytdr

1 2
+ m - <Va(x),x>u dx +

3+ 2«

mwa(u) < » f(u)udz,

from which, using that I'(u) - u = 0, we obtain
1
J (2sa(x) +(Va(z),))u® dv + 5(2@ + 4s — 3) AN, (u) <0,
R3

which leads to u = 0.

Using Proposition [4.3.12] again we get that

5 285 [(=A)*2ul?dx + 0 J a(z)u? do + 0 J (Va(z),z)u* dz = J f(u)ude,
6 R3 2 R3 6 R3 R3

and we can derive that v = 0, because

(1 _3 _6255> ng (= A0 dg + (1 - g) fRs a(z)u? du

- gJR (Va(z), zyu? dz + (1 _

Applying identity (4.3.19), we obtain
f (—A)uf? de
R3

3 9 3+ 2« 9
2 do + — 2% < d dz,
35,4 JRSu T+ 2(3_25)/\Na(u) . f(w)udz + dag L@u T

3+ 2«

5) AN () < 0.
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which leads to
1
(25 + (25 — 3)) aof u?dz + 5 (2 4+ 4s — 3) M, (u) <0,
R3

that implies u = 0.
Since @ = s, we can choose v = |u| as test function in definition (4.1.3) to
get

1 _ af . af
Ko Jufde< ] [ 1A FouldPdot | 1A PuPde, @0

where we used Cauchy inequality (with ¢ = 1). Now taking v = ¢,[u] in definition
(4.1.3) it follows that N,(u) = [¢a[u]]?. Moreover, using that A > 1/4 in (4.9.1]) we

have
NAOE KOJ |u|3d:c—f (=AY dz. (4.9.2)
R3 R3

Using estimate (4.9.2) in the equation I'(u) - u = 0 we obtain
J aou® + Kolul® — AlulP dz <0,
R3

which implies that u = 0, since the function t — Vyt? + Kyt> — AtP, t > 0, is non-
negative.

Following the same above arguments we have

3+ 2« 2%
A s/2 2d N, > = d
L@ |(—=A)Y*ul* dz + 203 = 25) N (u) b ) (w)udx
which yields v = 0, because
2% 2% 3+ 2«
Zs AP 2yl2qd = — ———— ) MK N, (u) <0. |
(p )L@'( ) x+(p 2(3—28)> oMol
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