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Resumo

O objetivo principal deste trabalho é analisar princípios de concentração de

compacidade para espaços de Sobolev fracionários baseados na concentração de

compacidade de P.-L. Lions e no per�l de decomposição para convergência fraca em

espaços de Hilbert devido a K. Tintarev e K.-H Fieseler. Como aplicação, abordamos

questões sobre a compacidade do funcional energia associado aos seguintes problems

elípticos não locais,$'''''''&'''''''%

p�∆qsu � fpx, uq em RN ,

p�∆qsu� apxqu � fpx, uq em RN ,$&% p�∆qsu� V pxqu� λKpxqφu � fpx, uq � gpx, uq em R3,

p�∆qαφ � Kpxqu2 em R3,

onde 0   s   1, 0   α   1, 2α � 4s ¥ 3, λ ¡ 0 e Kpxq ¥ 0 pertence a um espaço

de Lebesgue adequado. Obtemos resultados de existência para uma vasta classe de

potenciais apxq possivelmente singulares, não necessariamente limitados por baixo por

uma constante positiva e para não linearidades oscilatórias em ambos os crescimentos

subcríticos e críticos que podem não satisfazer a condição de Ambrosetti-Rabinowitz.

Palavras-chave: Concentração de compacidade; Laplaciano fracionário; expoente

crítico de Sobolev; métodos variacionais.
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Abstract

The main goal of this work is to analyze concentration-compactness principles for

fractional Sobolev spaces based on the concentration�compactness principle of P.-L.

Lions and in the pro�le decomposition for weak convergence in Hilbert spaces due to

K. Tintarev and K.-H Fieseler. As application, we address questions on compactness

of the associated energy functional to the following nonlocal elliptic problems,$'''''''&'''''''%

p�∆qsu � fpx, uq in RN ,

p�∆qsu� apxqu � fpx, uq in RN ,$&% p�∆qsu� V pxqu� λKpxqφu � fpx, uq � gpx, uq in R3,

p�∆qαφ � Kpxqu2 in R3,

where 0   s   1, 0   α   1, 2α � 4s ¥ 3, λ ¡ 0 and Kpxq ¥ 0 belongs to

a suitable Lebesgue space. We obtain existence results for a wide class of possible

singular potentials apxq, not necessarily bounded away from zero and for oscillatory

nonlinearities in both subcritical and critical growth range that may not satisfy the

Ambrosetti-Rabinowitz condition.

Keywords: Concentration-compactness; fractional Laplacian; critical Sobolev

exponent, variational methods.
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�I wish it need not have happened in my time,� said

Frodo. `So do I', said Gandalf, �and so do all who live

to see such times. But that is not for them to decide.

All we have to decide is what to do with the time that is

given us.�

J.R.R. Tolkien, The Fellowship of the Ring.
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Introduction

The main goal of the present work is to analyze concentration-compactness

principles for fractional Sobolev spaces. As an application, we address questions on

compactness of the associated energy functional to the following nonlocal equation,

p�∆qsu � hpx, uq � Lpuq in RN , (Ps)

where 0   s   1, p�∆qs is the fractional Laplacian, hpx, tq is a given function and Lpuq

is a nonlocal integral operator.

During the past years there has been a considerable amount of research involving

nonlocal nonlinear stationary Schrödinger problems. This equation arises in the study

of the fractional Schrödinger equation when looking for standing waves. Indeed, when

u is a solution of Eq. (Ps), it can be seen as stationary states (corresponding to solitary

waves) in nonlinear equations of Schrödinger type

iφt � p�∆qsφ� hpx, φq � 0 in RN .

Fractional Schrödinger equations are also of interest in quantum mechanics (see e.g.

the appendix in [31] for details and physical motivations). Moreover, we refer to [4], [5]

and [18], where equations involving the operator p�∆qs arise from several areas of

science such as biology, chemistry or �nance.

Roughly speaking, the approach to obtain solutions for Eq. (Ps) using variational

methods and critical point theory relies in associating Eq. (Ps) with a functional

I (usually called energy functional), de�ned in a appropriated in�nite dimensional

Banach space of functions H. One de�nes as weak solutions the critical points of I,

and with aid of additional results it is expected that these weak solutions satisfy Eq.

(Ps) in each point of RN . For an introduction to variational methods and critical point

theory we suggest [6, 26,32,72,101].
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In this context, in order to �nd critical points for I, one can use minimax

theorems, such as the mountain pass theorem with the so called compactness conditions.

It is considered that H is continuously embedded in a Banach space L (typically

L � LppRNq) and with the help of suitable other assumptions on hpx, tq and Lpuq,

one can �nd a bounded sequence pukq in H satisfying Ipukq Ñ c ¡ 0 and I 1pukq Ñ 0.

The next step is to prove that pukq satis�es the Palais-Smale compactness condition at

the level c, that is, pukq converges in H, up to subsequence. However, if I is invariant

under the action of a non-compact group (such as translations or dilations) with respect

to the embedding H ãÑ L, it is expected that the Palais-Smale condition does not

hold for all c ¡ c0, for some non-negative c0. Also, when a constrained minimization

problem is considered (whose minimizers give critical points for I) a similar di�cult

appears, more precisely, the problem admits bounded minimizing sequences that do not

converge, even in a subsequence. One shall notice that convergence of these involved

functional sequences are not di�cult to be obtained whenever the embedding H ãÑ L

is compact.

Problems like Eq. (Ps), where there is a priori di�culty of dealing with the fact

that the aforementioned sequences do not posses adherent points in the strong topology

or more generally that the convergence Ipukq Ñ Ipuq is not guaranteed, are called with

lack of compactness. Fortunately, the same non-compact group of invariances that

generates lack of compactness can be employed to restore it, precisely, to obtain the

convergence Ipukq Ñ Ipuq. This approach to get compactness through the study of

convergence of sequence under the action of invariant non-compact groups is called

in the literature concentration-compactness principle, and was �rst introduced in the

1980's by P.-L. Lions in a series of works [65�68], for problems like Eq. (Ps) where

s � 1, H � H1pRNq or H � D1,2pRNq, and L � LppRNq or L � L2�s pRNq are the

standard Sobolev spaces, and 2� � 2N{pN � 2q is the critical Sobolev exponent.

A lot of research about concentration-compactness has been made since those

works of P.-L. Lions (see, e.g., [53, 99] and the references therein). Some of them

describe the concentration-compactness phenomena by means of pro�le decomposition

of weak convergence for bounded sequences in the considered space of functions and

they can be seen as extensions of the celebrated Banach-Alaoglu-Bourbaki Theorem.

This kind of pro�le decomposition has been widely investigated in various settings, for

2



instance we may cite the ones in [55,57,71,87,89]. It describes how the convergence of

a bounded sequence fails under a continuous embedding of the considered space.

In this thesis we develop a concentration-compactness principle via pro�le

decomposition of weak convergence for the fractional Sobolev spaces HspRNq and

Ds,2pRNq, for 0   s   N{2 and 0   s   1, respectively, considering their corresponding

embedding in LppRNq, 2   p   2�s and L2�s pRNq, where 2�s � 2N{pN � 2sq is

the fractional critical Sobolev exponent, following the abstract version of pro�le

decomposition in Hilbert spaces due to K. Schindler and K. Tintarev [99] and the

recent advances due to G. Palatucci and A. Pisante [71]. As an application, under our

settings, we prove that Palais-Smale compactness condition holds at the mountain pass

level. We also use the speci�c description of our concentration-compactness principle

to improve some well known existence results for Eq. (Ps), and with this, we expect

that our results can lead to a new way to study existence of solutions for nonlocal

problems like (Ps).

It is well known that Eq. (Ps) admits a variational setting in fractional Sobolev

spaces, and the solutions are constructed with a variational method by a minimax

procedure on the associated energy functional. However, we note that the usual

variational techniques cannot be applied straightly because of a lack of compactness,

which roughly speaking, originates from the invariance of RN with respect to translation

and dilation and, analytically, appears because of the non-compactness of the Sobolev

embedding. For instance, it is not possible to apply the minimax type arguments used

by P. Felmer et al. [51] and R. Servadei and E. Valdinoci [80] and [81] because their

approach rely strongly on the sub-criticality of the nonlinear terms or the boundedness

of the domain.

To be more speci�c about our results, in the following lines, we describe each

chapter of this thesis.

In Chapter 0, we give the basic concepts and results that are used through the

text, turning ou exposition self contained.

In Chapter 1, it is proved our pro�le decomposition of weak convergence for the

fractional Sobolev spaces Ds,2pRNq and HspRNq, Theorems 1.1.1 and 1.1.2. These

results are proved in [41, 43]. In [55] and [71, Theorem 4] the authors introduced the

subject in the fractional framework, and also, the problem of cocompactness in the

3



sense of [29] was extensively discussed. It seems for us that these new abstract results

are more appropriated to study the existence of non-trivial solutions for nonlocal elliptic

equations (Ps) than the pro�le decomposition developed in [71]. It is not clear how one

can apply [71, Theorem 4] to obtain such a result for nonlinearities with asymptotically

self-similar oscillations about the fractional critical growth (see Sect. 1.5 for precise

de�nitions).

It is also worth to mention that Theorem 1.1.1 can be used to prove the

fractional version of Lions concentration-compactness principle proved in [71, Theorem

5]. Indeed, Theorem 1.1.1 improves [71, Theorem 5] for the case Ω � RN , since the

sums of Dirac masses that appears in this result comes from the pro�les given in (1.1.4).

We also call attention to the fact that Theorem 1.1.2 is an alternative to the well known

fractional Lions Lemma of compactness (see [51, Lemma 2.2]), as can been seen in Sect.

3.6. Finally, we point out some di�erences from our Theorem 1.1.1 and some results

on pro�le decompositions contained in [55,71]. The decomposition in Theorem 1.1.1 is

based in a discrete group of operators, that is, the dilations in the following form

δjupxq � γ
N�2s

2
jupγjxq, γ ¡ 1, j P Z. (0.0.1)

From (0.0.1), we can decompose (in a similar way as in [99, Theorem 5.1]) the collection

of the �dislocated pro�les� wpnq in three: dilation by �enlargement� (N�), dilation by

�reducement� (N�), and no dilation (pure translation N0). This allow us to study

scalar �eld equations involving nonlinearities with critical growth more general than

the pure critical power (see Sect. 1.5), the so called asymptotic self-similar functions

(assumption pf5q in Sect. 2.1). On the other hand in [55,71] was considered continuous

dilations of the form

δλupxq � λ
N�2s

2 upλxq, λ ¡ 0,

and their decomposition holds for all 0   s   N{2. We should mention that Theorem

1.1.1 holds for 0   s ¤ 1 and at this point arise a natural question which is to prove

this result for 1   s   N{2. In [71, Proposition 1] it was proved that DRN�weak

convergence is equivalent to strong convergence in L2�s pRNq, for 0   s   N{2 (see Sect.

0.5), where for γ ¡ 1 given,

DRN :�
!
dy,j : Ds,2pRNq Ñ Ds,2pRNq : dy,jupxq � γ

N�2s
2

jupγjpx� yqq, y P RN , j P R
)
.
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From this we can conclude that the answer to that question is analogously to prove

thatDRN�weak convergence is equivalent to theDZN�weak convergence inDs,2pRNq, for

1   s   N{2, where DZN :�
 
dy,j : y P ZN , j P Z

(
. In the a�rmative case, Theorem

1.1.1 can be seen as a corollary of the decomposition given in Theorem [71, Theorem

4, Theorem 8], with minor changes (provided also in Sect. 1.2). Nevertheless, for the

case that 0   s   1, we present a proof of this fact (given in Proposition 1.2.3), which

can also be seen as an alternative proof of Theorem 1.1.1.

In Chapter 2, which relates to the study made in [41], we discuss the existence of

non-trivial weak solutions for the equation

p�∆qsu � fpx, uq in RN , (Es)

where fpx, tq is assumed to have critical growth. It corresponds to the case where we

take Lpuq � 0 and hpx, tq � fpx, tq in Eq. (Ps), with ftpx, 0q � 0 .

A lot of work has been devoted to the existence of solutions for nonlinear scalar

�eld equations like Eq. (Es), both for local case ps � 1q and nonlocal case 0   s   1,

since the celebrated works of H. Berestycki and P.-L. Lions [11,12]. In these two papers,

the authors discuss the existence of radial solutions of the semi-linear elliptic equation

�∆u � gpuq, u P H1pRNqpN ¥ 3q, (0.0.2)

where g : R Ñ R is a continuous odd function with subcritical growth. Under some

appropriate conditions on gptq, they used minimizing arguments to prove (in part I)

the existence of a positive radial ground state for (0.0.2), that is, solution having the

property of the least action among all possible solutions. In [98], K. Tintarev has

treated the non-autonomous problem

�∆u � gpx, uq, u P D1,2pRNqpN ¥ 3q,

when the nonlinearity gpx, tq is allowed to have critical growth with asymptotically

self-similar oscillations about the critical power |t|2
��2t. Recently, using some minimax

arguments, X. Chang and Z-Q. Wang [24] proved the existence of a positive ground

state for fractional scalar �eld equations of the form (Es) when fpx, tq � fptq has

subcritical growth and satis�es the Berestycki�Lions type assumptions. In [110], J.

5



Zhang et al., established the existence of ground state solutions to the fractional scalar

�eld equation (Es), when fpx, tq � fptq has critical growth.

Motivated by the results cited above, another important purpose of this chapter is

to prove the existence of a ground state solution for the nonlinear scalar �eld equation

(Es) in the �zero mass case� with nonlinearities in the critical growth range. The

idea for proving such kind of result for Eq. (Es) in the autonomous case is based

in a constrained minimization argument similar to [11]. We obtain the result by

using the invariance of the problem with respect to action of the translation and

dilation group in RN , thanks to our concentration-compactness principle and a speci�c

Pohozaev identity. Our argument allow us to avoid the typical assumption that

t�1fpx, tq is an increasing function, which is usually required in the approach of

constrained minimization over a Nehari manifold. Moreover, to prove the existence

for the autonomous case fpx, tq � fptq, we do not require the well known Ambrosetti-

Rabinowitz condition.

The proof of that Pohozaev type identity is essentially based in the use of the

so called s-harmonic extension introduced by L. Ca�arelli and L. Silvestre [19] and

remarks contained in [47] and [59]. To the best of our knowledge, this is the �rst work

that shows a Pohozaev type identity for the homogeneous Sobolev space Ds,2pRNq and

for fptq in the critical growth range. Our method is very convenient in the sense that

with our arguments we can always derive a Pohozaev type identity in the fractional

framework without relying in global regularization of the solutions. In the present

literature, there are only Pohozev type identities for solutions in the inhomogeneous

fractional Sobolev space HspRNq, 0   s   mint1, N{2u, and for fptq with subcritical

growth (cf. [24]). Moreover, the argument for the proof relies in obtaining the behavior

of solutions in the whole space RN (cf. [54]).

Our main results may be seen as the nonlocal counterpart of some theorems of

K. Tintarev et al. [97�99]. In comparison with the local case [98], we also mention

some additional di�culties: the Pohozaev type identities for the fractional framework

available in the literature (cf. [24,54,75]) do not match with our settings; an additional

hypothesis (assumption pf4q) must be considered in order to achieve the concentration-

compactness for the non-autonomous case. In fact, the asymptotic additivity pf4q

takes the role to describe precisely the behavior of weak convergence under our settings

6



(Proposition 2.4.1). At this point a natural question arises: Is hypothesis pf4q necessary

to describe the limit of the pro�le decomposition terms (see Theorem 1.1.1)? Indeed,

we believe that without condition pf4q it is possible to �nd examples for which this

description fails.

Additionally, in Chapter 2, we introduce a new class of nonlinearities of the

critical growth type for the fractional framework, that include the power |t|2
�
s as

an example. We believe that this new notion of criticality together with our

concentration-compactness, can lead to a new way to approach elliptic problems

involving nonlinearities with critical growth and the fractional Laplacian, for instance,

replacing the well known nonlinearity fpx, tq � Kpxq|t|2
�
s�2t, which is often considered

to studied existence of solutions for Eq. (Ps) with aid of [71, Theorem 5], for a general

self-similar function under our settings,

fpx, tq � fptq � exptb0psinpln |t|q � 2qupb0 cospln |t|q � 2�s q|t|
2�s�2t, b0 ¡ 0, fp0q � 0,

see also Example 2.2.8 in Chapter 2. For the local case a class of self-similar function

was introduced in [78,97�99].

Moreover, as it is well known, one of the main di�culties in leading with

nonlinearities with critical growth condition is proving that the minimax level of

the functional associated to Eq. (Es) avoids levels of non-compactness, which usually

requires additional description of the nonlinearity growth. We avoid this by considering

that fpx, tq has appropriated limits consistent with our concentration-compactness and

comparing the minimax level of functional associated to Eq. (Es) with the limit ones.

In Chapter 3, which relates to the study made in [43], we consider the following

nonlocal Schrödinger equation

p�∆qsu� apxqu � fpx, uq in RN , (Hs)

where fpx, tq is assumed to have either subcritical or critical growth. It corresponds to

the case where Lpx, uq � 0 and hpx, tq � fpx, tq� apxqt in Eq. (Ps), with ftpx, 0q � 0 .

First, we would like to mention the progress involving potentials apxq bounded

away from zero and nonlinearities with subcritical growth. In [79] S. Secchi investigated

the existence of ground state solutions for fractional Schrödinger equations by using

a minimization argument on the Nehari manifold. He proved existence results under
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suitable assumptions on the behavior of the potential apxq and superlinear growth

conditions on the nonlinearity. See also [52], where B. Feng proved the existence of

ground state solutions of (Hs), for the particular case fpx, tq � |t|p�2t, where 2  

p   2pN�2sq{N, N ¥ 2, by using the P.-L. Lions concentration-compactness principle

(see [66]). R. Lehrer et al. [61] studied the existence of solutions through projection over

an appropriated Pohozaev manifold, assuming that fpx, tq � apxqf0ptq, where f0ptq is

asymptotically linear, that is, limtÑ8 f0ptqt
�1 � 1 and lim|x|Ñ8 apxq � a8 ¡ 0. For the

local case (s � 1), R. de Marchi [33] studied existence of non-trivial solutions for (Hs)

assuming that apxq and fpx, tq are asymptotically 1�periodic in each xi, i � 1, . . . , N,

combining variational methods and the concentration-compactness principle, and also

proved existence of ground state solutions when apxq and fpx, tq are 1�periodic in each

xi, i � 1, . . . , N, without assuming that t ÞÑ fpx, tqt�1 is an increasing function. By

using similar approach, H. Zhang et al [106], studied existence of ground state and

in�nitely many geometrically distinct solutions for Eq. (Hs), based on the method

of Nehari manifold and Lusternik-Schnirelmann category theory. Moreover, for recent

works on nonlinear Schrödinger equations where the classical Ambrosetti-Rabinowitz

condition is not required we cite [33,61,106].

Problems involving potentials bounded away from zero and critical Sobolev

exponent, precisely, when fpx, tq � gpx, tq � |t|2
�
s�2t, where gpx, tq have subcritical

growth, we may refer to [62, 82, 83] and the references given there. In these works, it

was crucial the presence of perturbation gpx, tq of the critical power |t|2
�
s�2t. Moreover,

it was assumed the following condition on the potential

0   inf
xPRN

apxq   lim inf
|x|Ñ8

apxq

which was introduced by P.L. Rabinowitz in [73] to study the local case of Eq. (Ps)

(see also for the critical case [69]). We cite [27, 35, 86] for works on local Schrödinger

equations with nonlinearities of the pure critical power type (without subcritical

perturbation term) and inverse square type potentials. For the fractional case we

cite [39], where it was studied the existence qualitative properties of positive solutions.

Motivated by the above works, we obtained existence of non-trival solutions for

Eq. (Hs) in several cases, which were not considered by the aforementioned papers.

Our potential apxq may change sign, can have singular points of blow up and even
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vanish at the in�nity, and the nonlinearity can be considered with critical or subcritical

oscillatory growth. In the subcritical case we assume a condition on the potential apxq

which ensures the continuous embedding of the associated space of functions similar

to [85]. Nevertheless di�erently from [85], we do not impose assumption on apxq to

guarantee the compactness of the Sobolev embedding. To compensate, we ask that

the limit of apxq, as |x| goes to in�nity, exists and is positive, or alternatively, that

apxq is 1�periodic in xi, i � 1, . . . , N. Moreover, by considering similar assumptions

made in [34], the potential does not need to be bounded from below by a constant.

We also take account the case where the nonlinearity has oscillatory behavior and

does not satis�es the typical assumption of Ambrosetti-Rabinowitz. Similar to the

aforementioned papers, the nonlinearity fpx, tq is supposed to has a periodic asymptote

fPpx, tq, which allow us to �transfer� the usual assumptions to it. Also we mention

that we complement and improve some results of [33], since we consider the nonlocal

equation (Hs) and a case where we do not need the monotonicity of t ÞÑ fPpx, tqt
�1.

In the critical case, inspired in some ideas contained in [27], we treated in this

chapter a class of potentials somehow di�erent, since we consider a general class that

include as a particular case the inverse fractional square potential apxq � �λ|x|�2s,

where 0   λ   ΛN,s and ΛN,s is the sharp constant of the Hardy-Sobolev inequality

ΛN,s

»
RN

|x|�2su2 dx ¤

»
RN

|ξ|2s |Fu|2 dξ, @u P C8
0 pRNq. (0.0.3)

Moreover, the sharp constant is precisely given by

ΛN,s :� 22sΓ2
�
N�2s

4

�
Γ2

�
N�2s

4

� , 0   s   1, N ¡ 2s, (0.0.4)

where Γ is the well known Gamma function. Further details about (0.0.3) can be

found in [56] and [103]. In that case, the nonlinearities are suppose to be �self-similar

functions�, in the sense introduced in Sect. 1.5.

In this chapter, we also proved a more suitable and general version of the Pohozaev

identity studied in Chapter 2 (Proposition 3.5.1), which is used to study existence of

ground state solution for the case where the potential apxq has singularities. As a

consequence of this Pohozaev type identity, we also proved some non-existence results

for Eq. (Hs). Moreover, using this kind of identity and our concentration-compactness

principle, we could avoid the use of monotonicity t ÞÑ fPpx, tqt
�1 and prove some

9



existence results by comparing the minimax level of the associated energy functional

of Eq. (Hs) with the one of the associated limit problem.

It is worth to mention that in this chapter we prove the existence of ground

states in three cases: First when (Ps) is invariant under the action of translations in

ZN (subcritical growth), second when (Ps) is invariant under dilations γpN�2sqj{2upγ�q

(critical growth), and third when the monotonicity of t ÞÑ fpx, tqt�1 is considered.

In Chapter 4, which relates to the study made in [44], we are concerned

with existence and non-existence of solutions for the following nonlinear fractional

Schrödinger-Poisson System$&% p�∆qsu� apxqu� λKpxqφu � fpx, uq � gpx, uq in R3,

p�∆qαφ � Kpxqu2 in R3,
(SP)

where 0   s   1, 0   α   1, 2α � 4s ¥ 3, λ ¡ 0. Under suitable conditions over

Kpxq, apxq, fpx, tq and gpx, tq it can be proved that System (SP) is equivalent to the

following nonlinear Schrödinger equation with a non-local term,

p�∆qsu� apxqu� λKpxqφαrusu � fpx, uq � gpx, uq. (SNL)

It corresponds to the case where Lpuq � λKpxqφαrusu, hpx, tq � fpx, tq�gpx, tq�apxqt

in Eq. (Ps), also fpx, tq and gpx, tq are assumed to have subcritical growth and critical

growth respectively, and ftpx, 0q � gtpx, 0q � 0. In particular, when Kpxq � 0, the

system (SP) turns in to the fractional Schrödinger equation (Hs).

When α � s � 1, the System (SP) reduces to the classical Schrödinger-Poisson

System $&%�∆u� apxqu� λKpxqφu � fpx, uq � gpx, uq in R3,

�∆φ � Kpxqu2 in R3,
(0.0.5)

which describes systems of identically charged particles interacting each other in the

case where magnetic e�ects can be neglected (see [10]). System (0.0.5) was extensively

studied in the past years by many authors, mainly concerning existence and multiplicity

of solutions by using variational methods. Here we would like to cite some related

results, for instance the ones in [1, 3, 22,25,76,90,104,105,107,109,111].

First, we would like to mention the progress concerning (0.0.5) involving

potentials apxq bounded away from zero and nonlinearities fpx, tq with subcritical
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growth (gpx, tq � 0). In [76], D. Ruiz proved (for the local case) existence and non-

existence results by considering that fpx, tq � |t|p�2t, 2   p   6, Kpxq � V pxq � 1

and analyzing the relation between parameters p and λ. He also proved non-existence

of non-trivial solutions of (0.0.5) if 2   p   3 and λ ¥ 1{4. In [90] J. Sun and S. Ma

obtained existence of ground state solution if apxq is a continuous and 1�periodic in

xi, i � 1, . . . , N. In this work it was assumed that fpx, tq has 4-superlinear growth,

that is

lim
|t|Ñ8

F px, tq

t4
� 8, where F px, tq �

» t

0

fpx, τq dτ.

Some results concerning sign�changing potentials have appeared in [105] and

the references given there, where the authors proved existence and multiplicity of

solutions for (0.0.5) by using a linking type theorem when fpx, tq is either 4-superlinear

or sublinear at the in�nity. They also considered the case where apxq satis�es the

following conditions: there exists M ¡ 0 such that |tx P R3 : apxq ¤ 8u|   8, and

Ω � intV �1p0q is nonempty, Ω � V �1p0q and has smooth boundary.

For the progress involving nonlinearities with critical growth, we start by citing

the work of J. Zhang [109]. In this paper, it was proved existence of non-trivial radial

solutions when it is taken into account autonomous gpx, tq � gptq with critical growth

at the in�nity, and in particular, it is possible to consider nonlinearities perturbations

of the form fpx, tq � gpx, tq � |t|p�2t � |t|4t, for 2   p   6. By using the method of

Nehari manifold and concentration compactness principle of P.-L. Lions [66], in [107]

H. Zhang et al. considered the case that apxq is asymptotically periodic and bounded

away from zero. They proved existence of ground state with 4-superlinear nonlinearity

asymptotically periodic fpx, tq and with critical perturbation gpx, tq � Qpxq|t|2
��2t,

where Qpxq P L8pR3q is bounded away from zero and 2� � 6 is the critical Sobolev

exponent.

Regarding System (SP), to the best of our knowledge, there are few papers

in the literature which considered it. Here we cite [93, 94, 108, 110]. In [110] it was

considered nonlinearities satisfying the almost optimal condition introduced in the

work of Berestycki�Lions [11] to study (0.0.5) when Kpxq � 0. The authors in [110]

have proved existence of non-trivial solutions with critical nonlinearities at the in�nity,

more precisely, they assumed that limtÑ8 gptq{t2
�
s�1 ¡ 0, where 2�s � 6{p3 � 2sq is the
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fractional critical Sobolev exponent. Their approach allow the consider nonlinearities

in the form fpx, tq � gpx, tq � |t|p�2t � |t|2
�
s�2t, 2   p   2�s , but it is required that

apxq � a0 ¡ 0. It is also worth to mention that recently K. Teng [93, 94] studied

existence of ground states for (0.0.5) under general assumptions for the potential

apxq, for Kpxq � 1, fpx, tq � |t|p�1t for 2   p   2�s � 1, with 3{4   s   1, and

gpx, tq � |t|2
�
s�1t.

We point out that unlike the local case s � α � 1, the critical exponent 2�s is close

to 2, as s approaches to 0. This increases the particular di�cult that appears in the

Eq. (SNL), since even with the Ambrosetti-Rabinowitz assumption, it is not know in

general, if the Palais-Smale sequences associated with the functional of Eq. (SNL) are

bounded, for instance, when fpx, tq � |t|p�2t, 3   p   4, and gpx, tq � 0. To overcome

this di�culty, one can attempt to use the abstract result due to L. Jeanjean [58]

to construct a bounded sequence at the Mountain Pass level. Nevertheless, the lack

of compactness associated with the boundedness of the domain or criticality of the

nonlinearity still has to be compensated.

Motivated by the above works, mainly in the formulation made in [1,76], our goal

is to obtain existence of non-trivial solutions for Eq. (SNL) under general assumptions

following the same ideas of Chapters 2 and 3.

We deal with the case where apxq is not necessarily bounded away from zero and

the nonlinearity gpx, tq is supposed to be a general self-similar function. Our approach

relies in assuming that Kpxq, apxq, fpx, tq and gpx, tq have periodic asymptotes KPpxq,

aPpxq, fPpx, tq and g8ptq, respectively. We study the limit problem$&% p�∆qsu� aPpxqu� λKPpxqφu � fPpx, uq � g8puq in R3,

p�∆qαφ � KPpxqu
2 in R3.

(0.0.6)

and then compare with the minimax level associated with the energy functional of

the respectively problems. In order to prove one of the existence results (the case

where fpx, tq and gpx, tq are nonidentical to zero), we used some ideas of [42]. More

precisely, we estimate the minimax level of the functional associated with System (0.0.6)

to avoid levels of non-compactness for the functional associated with the standard

System (SP). This approach allows to �transfer� the usual assumptions made in

the nonlinearity to it periodic asymptote, in particular, avoiding the monotonicity
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of t ÞÑ t�1pfpx, tq � gpx, tqq.

We also studied the autonomous case of (SNL), precisely, when fpx, tq � fptq

and gpx, tq � gptq, does not depends on x. In this case it is not necessary that the

nonlinearity has fptq has 4-superlinear growth. Under general assumptions we proved

that Palais-Smale sequences at the mountain pass level are indeed bounded, avoiding

the use of L. Jeanjean Theorem [58, Theorem 1.1] to construct one.

Additionally, this chapter provides some non-existence results. Following the

ideas developed in the previous chapters, we establish an improved version of a

Pohozaev type identity given in [94] for System (SNL). As a consequence, we prove

a general version of the non-existence result establish in [93, Theorem 1.6]. Another

important issue of this chapter is the study of the existence of ground state solutions

for Eq. (SNL). We prove existence of ground states following the basic ideas of Chapter

3, by considering that Eq. (SNL) is invariant under action of translations in Z3.
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Notation and terminology

• C, C0, C1, C2, . . . denotes positive constants (possibly di�erent) that are

independent of the given parameters of the context;

• We consider RN�1
� � tz � px, yq P RN�1 : y ¡ 0u;

• Given R, δ ¡ 0 we set$''''&''''%
BR,δ � tz � px, yq P RN�1

� : |z|2   R2, y ¡ δu,

F 1
R,δ � tz � px, yq P RN�1

� : |z|2   R2, y � δu,

F 2
R,δ � tz � px, yq P RN�1

� : |x|2 � y2 � R2, y ¡ δu;

• Given R ¡ 0 we set$''''&''''%
BR � tz � px, yq P RN�1 : |z|2   R2u,

B�
R � BR X RN�1

� and

BN
R � tz � px, yq P RN�1

� : |z|2   R2, y � 0u;

• |A| denotes the Lebesgue measure of a set A in RN ;

• XA denotes the characteristic function of the set A;

• We use the notation Φpuq �
³
RN F px, uq dx and Φκpuq �

³
RN Fκpuq dx for

κ � 0,�,�,8 (see for instance Sect. 3.1);

• Given u : RN Ñ R we consider u�pxq � mintupxq, 0u and u�pxq � maxtupxq, 0u;

• supppuq denotes the support of the function u;

• CpΩq denotes the space of continuous real functions in Ω � RN ;

• C0pΩq denotes the subspace of CpΩq consisting of functions u whose support

supppuq is compact in Ω;
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• Let k ¥ 1 be a integer and Ω an open subset of RN . CkpΩq, denotes the

space of k-times continuously di�erentiable real functions de�ned over Ω and

C8pΩq �
�8
k�1C

kpΩq;

• Ck
0 pΩq � CkpΩq X C0pΩq and C8

0 pΩq � C8pΩq X C0pΩq;

• Let 0   α   1, we denote

C0,αpΩq �

"
u P CpΩq : sup

x,yPΩ

|upxq � upyq|

|x� y|α
  8

*
as the standard Hölder space. Ck,αpΩq are the functions in CkpΩq whose all

derivatives up order k belongs to C0,αpΩq;

• Given u : RN Ñ R we use the notation

d
pnq
k upxq � γ

N�2s
2

j
pnq
k u

�
γj

pnq
k px� y

pnq
k q

�
,

to indicate the action of dilations and translations given by the pro�le

decomposition of Theorem 1.1.1;

• } � }p denotes the standard norm of the space LppRNq, for 1 ¤ p   8;

• } � }8 denotes the standard norm of the space L8pRNq;

• We denote (see Sect. 0.2)

ru, vss �

»
RN
p�∆qs{2up�∆qs{2v dx, u, v P Ds,2pRNq,

pu, vq �

»
RN
p�∆qs{2up�∆qs{2v � uv dx � ru, vss � pu, vq2, u, v P HspRNq.

• We denote ak � opbkq, when ak{bk Ñ 0, as k Ñ 8.

15



Chapter 0

Preliminaries

For the reader convenience, we dedicate this chapter to review some basic concepts

and results that are used through the text. Here, for the sake of discussion, we restrict

ourself to state without proofs the results that we �nd most suitable for this work,

considering that the reader is familiarized with basic concepts of Functional Analysis

and Measure Theory. Thus making our exposition self-contained. For the interested

reader we refer the classical books [7, 45, 88, 92] and the �Hitchhiker� to the fractional

Laplacian [36], which inspired the development of this chapter.

0.1 Fourier Analysis

In this section we develop some of the theory for the Fourier transform, which

is a essential concept needed to study nonlinear Schrödinger equations involving the

fractional Laplacian. The Fourier transform is also powerful tool used to study

linear partial di�erential equations, turning them into either algebraic equations or

else di�erential equations involving fewer variables. In this section all functions are

complex-valued, and � denotes the complex conjugate.

De�nition 0.1.1 (Fourier transform). The Fourier transform of u P L1pRNq, is de�ned

by

ûpxq � Fupxq �
1

p2πqN{2

»
RN
upξqe�iξ�x dξ, x P RN ,

and its inverse Fourier transform by

qupxq � F�1upxq �
1

p2πqN{2

»
RN
upξqeiξ�x dξ, x P RN .
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Since |e�ix�y| � 1 these integral are �nite for all x P RN . The Fourier transform

and its inverse can be extended to functions in L2pRNq through the next well known

result.

Theorem 0.1.2 (Plancherel's Theorem). Assume u P L1pRNq X L2pRNq. Then

û, qu P L2pRNq and »
RN

|û|2 dx �

»
RN

|qu|2 dx �

»
RN

|u|2 dx.

This means that through Plancherel's Theorem the restriction of the Fourier

transform F
��
L1pRN qXL2pRN q can be uniquely extended to a unitary isomorphism in

L2pRNq, with inverse F�1 (inverse Fourier transform). As an consequence of

Plancherel's Theorem we have the following well known formula,»
RN
uv̄ dx �

»
RN

FuFv dx, @ u, v P L2pRNq.

We now pass to de�ne a suitable space of functions that is used in some density

arguments in the proof of some of our results.

De�nition 0.1.3 (Schwartz space). For any non-negative integer m and any multi-

index α we de�ne

}u}pm,αq � sup
xPRN

p1� |x|qm|Bαupxq|

and the Schwartz space S pRNq as

S pRNq �
 
u P C8pRNq : }u}pm,αq   8, @ m,α

(
.

Thus, the Schwartz space S pRNq is de�ned consisting of rapidly decaying C8

functions in RN which, together with all their derivatives, vanish at in�nity faster than

any power of |x|.

Remark 0.1.4. If u belongs to S pRNq then it belongs to LppRNq, for any 1 ¤ p ¤ 8.

The space S pRNq is related to the Fourier transform due to the fact that F is

an isomorphism from S pRNq onto itself, with inverse F�1 (inverse Fourier transform).

The fractional Laplacian

We are now in condition to make a brief discussion about the operator p�∆qs.

De�nition 0.1.5. Let u any real valued function de�ned in RN and s ¡ 0. The

fractional Laplacian p�∆qsu is de�ned by the relation

p�∆qsupxq � F�1
�
|ξ|2s Fu

�
pxq, x P RN .
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As an example that makes p�∆qsu well de�ned as a real number, we can take

any u P S pRNq. That is, S pRNq is the suitable space of functions that makes the

fractional Laplacian well de�ned. For the special case that 0   s   1 the fractional

Laplacian of u P S pRNq, can be computed by the following singular integral,

p�∆qsupxq � CpN, sq lim
εÑ0�

»
RN zBεp0q

upxq � upyq

|x� y|N�2s
dy, x P RN , for 0   s   1,

and a suitable positive normalizing constant

CpN, sq �

�»
RN

1� cos ς1
|ς|N�2s

dς


�1

. (0.1.1)

It is worth to de�ne as well, the Riesz Potential of a function u : RN Ñ R,

Iαruspxq :� cα

»
R3

upyq|x� y|2α�N dy,

where

cα �
Γp3

2
� 2αq

π
3
2 22αΓpαq

.

In a sense, the Riesz potential de�nes an inverse (or solution operator) for a power of

the Laplace operator on Euclidean space and this concept is often used in Chapter 4.

More precisely,

p�∆qαpIαrϕsq � ϕ, @ϕ P S pR3q.

The next result describes the conditions needed to consider the Riesz Potential as an

operator on Lebesgue spaces.

Proposition 0.1.6. Let 0   2α   N and 1 ¤ p   q   8 such that 1{q � 1{p� 2α{N.

Then for u P LppRNq, the Riesz potential converges for almost every x and, moreover,

if p � 1, there exists a positive constant C such that

}Iαu}q ¤ C}u}p.

0.2 Fractional Sobolev Spaces

This section is devoted to the de�nition (as well to describe some properties) of

the function spaces that are used in this text.

De�nition 0.2.1 (Homogeneous fractional Sobolev space). Let 0   s   N{2. The

Homogeneous fractional Sobolev space Ds,2pRNq is de�ned as the completion of the

space C8
0 pRNq with respect to the norm

rus2s :�

»
RN

|ξ|2s|Fu|2 dξ.
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Thus, by the well known inequality»
RN

|u|2
�
s dx ¤ K�

�»
RN

|ξ|2s|Fu|2 dξ


2�s {2
, @ u P C8

0 pRNq, 0   s   N{2,

where

K� �

�
2�2sΓpN�2s

2
q

ΓpN�2s
2
q

�
ΓpNq

ΓpN{2q


2s{N�2�s {2

,

the space Ds,2pRNq is well de�ned with continuous embedding

Ds,2pRNq ãÑ L2�s pRNq, for 0   s   N{2. (0.2.1)

By Placherel Theorem, for 0   s   N{2, we have

rus2s �

»
RN

|p�∆qs{2u|2 dx, @ u P C8
0 pRNq.

Consequently we can consider Ds,2pRNq as a separable Hilbert space when equipped

with the inner product

ru, vss �

»
RN
p�∆qs{2up�∆qs{2v dx, @ u, v P Ds,2pRNq,

as well the characterization

Ds,2pRNq �
!
u P L2�s pRNq : p�∆qs{2u P L2pRNq

)
.

It is of our interest as well to consider the closed subspace of Ds,2pRNq consisting of

radial functions, that is,

Ds,2radpR
Nq :�

 
u P Ds,2pRNq : upxq � upyq, provided that |x| � |y|

(
.

In opposition to the integer case, it is not true in general that p�∆qs{2u has compact

support wherever u P C8
0 pRNq. To overcome this particular di�culty when dealing

with fractional Sobolev spaces and use a suitable approximation by smooth functions

argument, we consider another space of functions, which we describe next.

De�nition 0.2.2. We de�ne S0pRNq as the subspace of S pRNq consisting in all

function u such that Fu P C8
0 pRNzt0uq.

Remark 0.2.3. For 0   s   N{2, the space S0pRNq is dense in Ds,2pRNq. Consequently,

the space S pRNq is also dense in Ds,2pRNq.

We now pass to introduce our second main space of functions dealt in this text.
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De�nition 0.2.4 (Inhomogeneous fractional Sobolev space). Let 0   s ¤ N{2. The

inhomogeneous fractional Sobolev space is de�ned as

HspRNq �
 
u P L2pRNq : |ξ|sFu P L2pRNq

(
,

with norm

}u}2 :�

»
RN

|ξ|2s|Fu|2 � u2 dξ.

Notice that HspRNq is de�ned in a similar way as the integer Sobolev space

H1pRNq. More precisely, it is required that |ξ|sFu is well de�ned and belongs to

L2pRNq, replacing the weak gradient in the de�nition of H1pRNq.

By Plancherel's Theorem, we have that

HspRNq �
 
u P L2pRNq : p�∆qs{2u P L2pRNq

(
.

Moreover, HspRNq is a separable Hilbert equipped with the norm

}u}2 �

»
RN

|p�∆qs{2u|2 dx� u2 dx,

which is induced by the inner product

pu, vq :�

»
RN
p�∆qs{2up�∆qs{2v � uv dx � ru, vss � pu, vq2.

Although the nonlocal aspect of the previous concepts, some local properties of

HspRNq can be obtained by considering the next de�nition.

De�nition 0.2.5. For Ω � RN open set and 0   s   1, the inhomogeneous fractional

Sobolev space is de�ned as

ĤspΩq �

#
u P L2pΩq :

»
Ω

»
Ω

|upxq � upyq|2

|x� y|N�2s
dxdy   8

+
,

with the norm

}u}2
ĤspΩq :�

»
Ω

u2 dx�

»
Ω

»
Ω

|upxq � upyq|2

|x� y|N�2s
dxdy.

Concerning the density of smooth functions in the above fractional Sobolev spaces

we have the following result.

Proposition 0.2.6. For 0   s ¤ N{2 the space C8
0 pRNq is dense in HspRNq, and for

0   s   1 it is dense in ĤspRNq.
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For the case that 0   s   1, we have

rus2s �
CpN, sq

2

»
RN

»
RN

|upxq � upyq|2

|x� y|N�2s
dxdy, @ u P C8

0 pRNq,

where the positive constant CpN, sq is given in (0.1.1). Thus, when Ω � RN , we see

that HspRNq � ĤspRNq and the norms } � } and } � }ĤspRN q are equivalents.

It turns out that the de�nition of HspRNq given in De�nition 0.2.4 is more

appropriated for the general case s ¥ 0, than De�nition 0.2.5, because for s ¥ 1,

the integral in (0.2.5) is �nite if and only if u is constant (see [13, Proposition 2]). Also

we have the continuous embedding

HspRNq ãÑ

$&%LppRNq, 2 ¤ p ¤ 2�s , for 0   s   N{2,

LppRNq, 2 ¤ p   8, for s � N{2,

and the following compact embedding, for Ω open set of class C0,1 with bounded

boundary,

ĤspΩq ãÑ LppΩq, 1 ¤ p   2�s , for 0   s   mint1, N{2u. (0.2.2)

Since the restriction of functions u in Ds,2pRNq to Ω, belongs to ĤspΩq, we have as

well the following compact embedding,

Ds,2pRNq ãÑ LplocpR
Nq, 1 ¤ p   2�s , for 0   s   mint1, N{2u. (0.2.3)

Thus, every bounded sequence in HspRNq has subsequence that converges strong in

LppΩq, for any compact set Ω of RN .

We also consider the closed subspace of HspRNq consisting of radial functions,

that is,

Hs
radpRNq �

 
u P HspRNq : upxq � upyq, provided that |x| � |y|

(
,

which has the well known compact embedding (see [64]),

Hs
radpRNq ãÑ LppRNq, 2   p   2�s , for 0   s   N{2.

We �nish this section emphasizing that the Plancherel Theorem also gives the

next identity, which is used several times throughout this text»
RN
p�∆qs{2up�∆qs{2v dx �

»
RN
p�∆qsuv dx, @ u P H2spRNq, v P HspRNq. (0.2.4)
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0.3 The s-harmonic extension

We now introduce the harmonic extension following [59, Sect. 2] and for that we

begin de�ning a class of weighted Sobolev spaces suitable to work with this harmonic

extension. First, observe that, for any 0   s   1, the function z � px, yq ÞÑ |y|1�2s

belongs to the Muckenhoupt class A2 of weights in RN�1, that is�
1

|B|

»
B

|y|1�2s dxdy


�
1

|B|

»
B

|y|2s�1 dxdy



¤ C, for all ball B in RN�1.

More details can be found in [46]. Let Q be a open set in RN�1, we consider

L2pQ, |y|1�2sq as the Banach space of the Lebesgue measurable functions v de�ned

in Q such that

}v}L2pQ,|y|1�2sq �
�»

Q

|y|1�2sv2 dxdy


1{2
  8.

We also consider the space H1pQ, |y|1�2sq of the functions w in L2pQ, |y|1�2sq such that

its weak derivatives wzi exists and belongs to L2pQ, |y|1�2sq for i � 1, . . . , N � 1. It is

easy to see that H1pQ, |y|1�2sq is a Hilbert space with inner product

pv1, v2qH1pQ,|y|1�2sq �
»
Q

|y|1�2s x∇v1,∇v2y � |y|1�2sv1v2 dxdy,

and the induced norm

}v}H1pQ,|y|1�2sq �
�»

Q

|y|1�2s
��∇v��2 � |y|1�2sv2 dxdy


1{2
.

We call attention to the fact that the space of smooth functions C8pQqXH1pQ, |y|1�2sq

is dense in the weighted Sobolev space H1pQ, |y|1�2sq (see [100] for further details).

Regarding the space H1pQ, y1�2sq with Q � Ω�p0, Rq, where Ω � RN is a domain

with Lipschitz boundary, it is well known the existence of a well-de�ned trace operator

tr : H1pQ, y1�2sq Ñ HspΩq

with

}trpvq}HspΩq ¤ C}v}H1pQ,y1�2sq, @ v P H1pQ, y1�2sq,

where C ¡ 0, depends only on N, s and Ω (see also [70]). Moreover, by the continuous

embedding HspΩq ãÑ L2�s pΩq, we have

}trpvq}L2�s pΩq ¤ C}v}H1pQ,y1�2sq, @ v P H1pQ, y1�2sq. (0.3.1)
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Let

Pspx, yq � βpN, sq
y2s

p|x|2 � y2q
N�2s

2

,

where βpN, sq is such that »
RN
Pspx, 1q dx � 1,

and 0   s   1. For u P Ds,2pRNq let us set the s�harmonic extension of u,

wpx, yq � Espuqpx, yq :�

»
RN
Pspx� ξ, yqupξq dξ, px, yq P RN�1

� .

Then, for any compact subset K of RN�1
� , we have w P L2pK, y1�2sq, ∇w P

L2pRN�1
� , y1�2sq and w P C8pRN�1

� q. Moreover, w satis�es$'''''&'''''%
divpy1�2s∇wq � 0, in RN�1

� ,

� lim
yÑ0�

y1�2swypx, yq � κsp�∆qsupxq in RN ,

}∇w}2
L2pRN�1

� ,y1�2sq � κsrus
2
s,

(0.3.2)

where we understand (0.3.2) in the distribution sense, where κs � 21�2sΓp1 � sq{Γpsq,

and Γ is the gamma function. Precisely,»
B�R

y1�2s x∇w,∇ϕy dxdy � κs

»
BNR

p�∆qs{2up�∆qs{2ptrϕq dx, @ ϕ P C8
0 pB

�
R YBN

R q,

where for R ¡ 0. More generally, given h : RN � R Ñ R we say that a function

v P H1pB�
R , y

1�2sq is a weak solution of the problem$'&'%
divpy1�2s∇vq �0 in B�

R ,

� lim
yÑ0�

y1�2svypx, yq �κshpx, trpvqpxqq in BN
R ,

(0.3.3)

if, for all ϕ P C8
0 pB

�
R YBN

R q, we have»
B�R

y1�2s x∇v,∇ϕy dxdy � κs

»
BNR

hptrpvqqtrpϕq dx, (0.3.4)

and the above integrals are �nite.

0.4 Regularity results

Following the approach made in [59] we now describe how the s-harmonic

extension can be used to obtain regularity for solutions of elliptic problems involving
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the fractional Laplacian. For this purpouse we state some results of [59]. Next, we

consider QR � BN
R �p0, Rq and C

αpΩq to denote Crαs,α�rαspΩq, where rαs is the integer

part of the number α ¡ 0. We always assume that 0   s   1.

Proposition 0.4.1. (i) [59, Proposition 2.6] Let Apxq, Bpxq P LppBRq, for some

p ¡ N{2s. There exists α P p0, 1q depending only on N, s, p, }apxq}LppBRq such

that any weak solution v of (0.3.3), with hpx, tq � Apxqt�Bpxq, is in CαpQR{2q.

(ii) [59, Theorem 2.14] Let v P H1pQR, y
1�2sq be a weak solution of (0.3.3) and

hpx, tq � hpxq P CαpBN
R q for some 0   α R N. If 2s � α is not an integer, then

trpvq is in C
2s�αpBN

R{4q.

(iii) [59, Proposition 2.13] Let Apxq, Bpxq P CkpBN
R q and v P H1pQR, y

1�2sq be a

weak solution of (0.3.3) in QR, with hpx, tq � Apxqt�Bpxq, where k is a positive

integer. Then ∇xv P H1pQR, y
1�2sq X CαpQ2{3Rq, for some α P p0, 1q, where

∇xv � pvx1 , . . . , vxN q.

(iv) [59, Lemma 2.18] or [17, Lemma 4.5] Let hpx, tq � hpxq P CαpBRq for some α P

p0, 1q and v P L8pQRq XH
1pQR, y

1�2sq be a weak solution of (0.3.3). Then there

exists β P p0, 1q depending only on N, s, α such that y1�2svypx, yq P C
βpQR{2q.

We can resume the previous result in the next one, turning our discussion more

clearer.

Proposition 0.4.2. Let v P H1pB�
R , y

1�2sq be a weak solution of (0.3.3). Suppose that

hptq P C1pRq satis�es

D C1, C2 ¡ 0, 2   p   2�s : |hptq| ¤ C1|t|
p�1 � C2p|t| � |t|2

�
s�1q, @t P R.

If trpvq P L
p
locpRNq, for some p0 ¡ 2�s , then for any R ¡ 0 there exists 0   y0, r   R

with BN
r � r0, y0s � B�

R , and α P p0, 1q, such that

v, ∇xv, y
1�2svy P C

0,αpBN
r � r0, y0sq. (0.4.1)

Proof. (i) In fact, since

hptrvq

1� |trv|
P LqlocpR

Nq, @ N{2s   q ¤ p0{p2
�
s � 2q,

and

hptrvq �
hptrvq

1� |trv|
sgnptrvqtrv �

hptrvq

1� |trv|
,

we can use Proposition 0.4.1�(i) to get that v belongs to CαpQR{2q, for some α P p0, 1q.

(ii) Since hptq P C1pRq, thanks to Proposition 0.4.1�(ii) we can apply a bootstrap
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argument to obtain that trpvq P Cα1pBR{4kq, α1 P p1, 2q, for some positive integer k.

(iii) To get that ∇xv P H1pQR, y
1�2sq X Cα2pQR{6kq, for some α2 P p0, 1q, we apply

Proposition 0.4.1�(iii) with Apxq � 0 and Bpxq � hpvq P C1pRq.
(iv) Finally, the fact that y1�2svypx, yq P Cα3pQR{2q, α3 P p0, 1q, follows by using

Proposition 0.4.1�(iv) in item (i) of this proof. �

Remark 0.4.3. Let v P H1pQR, y
1�2sq be a weak solution of (0.3.3). If v possess the

regularity described in (0.4.1), then v satis�es the conditions in (0.3.3) for each point

of B�
R YB

N
R (classical sense). Moreover, denoting Nvpx, yq � y1�2svpx, yq, we have that

Nvpx, 0q � κshpvpx, 0qq, @ x P BN
R . (0.4.2)

Indeed, the fact that v satis�es the �rst equation in (0.3.3) for each point in B�
R

follows by standard elliptic interior regularity arguments using the di�erence quotient

technique (see [20]). To prove that condition (0.4.2) holds, we take ϕ P C8
0 pB

�
R YBN

R q

and use integration by parts formula to get

0 �

»
BR,δ

divpy1�2s∇vq dxdy �

»
BR,δ

y1�2s x∇v,∇ϕy dxdy �

»
F 1
R,δ

y1�2svyϕ dx,

where it is used the fact that ϕ � 0 over F 2
R,δ and that η � p0, . . . , 0,�1q is the normal

vector of F 1
R,δ. Now notice that»

F 1
R,δ

y1�2svyϕ dx �

»
BN?

R2�δ2

δ1�2svypx, δqϕpx, δq dx

�

»
BNR

δ1�2svypx, δqXBN?
R2�δ2

pxqϕpx, δq dx,

Thus, by Dominated convergence theorem, we obtain that

lim
δÑ0

»
F 1
R,δ

y1�2svyϕ dx �

»
BNR

Nvpx, 0qϕpx, 0q dx.

Consequently, from de�nition (0.3.4), we have

κs

»
BNR

hpvpx, 0qqϕpx, 0q dx � κs

»
BNR

hptrpvqqtrpϕq dx

�

»
B�R

y1�2s x∇v,∇ϕy dxdy �

»
BNR

Nvpx, 0qϕpx, 0q dx.

Since, ϕ P C8
0 pB

�
R YBN

R q is arbitrary, condition (0.4.2) follows.

0.5 D-weak convergence and dislocation spaces

As already mentioned, to achieve the decomposition described in the

Introduction, we follow the abstract approach of D-weak convergence and dislocation
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spaces developed in [99]. In this section we state the basic concepts of this abstract

approach.

De�nition 0.5.1. [99, De�nition 3.1] Let D be a set of bounded linear operators on

a Hilbert space H, such that for every g P D, infuPH,}u}�1 }gu} ¡ 0. We will say that

the sequence pukq � H converges to u D-weakly in H, which we will denote as

uk
D
á u, in H,

if for any sequence pgkq � D,

pg�kgkq
�1g�kpuk � uq á 0 in H.

Let H be a Hilbert space and pgkq a sequence of bounded linear operators in H.

It is commonly used in [99] the notation gk á 0 to indicate that gku á 0 in H for all

u P H.

De�nition 0.5.2. [99, De�nition 3.2] LetH be a separable in�nite-dimensional Hilbert

space. A set D of bounded linear operators on H is a set of dislocations if

0   δ :� inf
gPD,}u}�1

}gu}2 ¤ sup
gPD,}u}�1

}gu}2   8,

pukq � H, pgkq � D, uk á 0 in H ñ g�kgkuk á 0 in H,

and, whenever pukq � H and pgkq, phkq � D,

h�kgk �á 0, pg�kgkq
�1g�kuk á 0 in H ñ ph�khkq

�1h�kuk á 0 in H.

The pair pH,Dq is called a dislocation space.

The next result give a su�cient condition to establish if a pair pH,Dq is a

dislocation space. An linear bounded operator g : H Ñ H is said to be unitary

when g� � g�1.

Proposition 0.5.3. [99, Proposition 3.1] Let H be a separable in�nite-dimensional

Hilbert space and D be a group (under the operator multiplication) of unitary operators

g : H Ñ H. If

gk �á 0 in H , gk P D ñ gku has a convergent subsequence, for all u P H,

then pH,Dq is dislocation space.

The next result provides a pro�le decomposition for bounded sequences in

separable Hilbert spaces. It is the main tool of our approach to obtain the
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decomposition described in the Introduction, and it can be seen as a generalization

of the celebrated Banach-Alaoglu-Bourbaki Theorem for Hilbert spaces. In fact, as it

can be seen, it gives further properties about the weak convergence in terms of D-weak

convergence.

Theorem 0.5.4. [99, Theorem 3.1] Let pH,Dq be a dislocation space. If pukq � H

is a bounded sequence, then there exists a set N0 � N, and sequences pwpnqqnPN0 �

H, pg
pnq
k qkPN � D, g

p1q
k � id, with n P N0, such that for a subsequence of pukq,�

g
pnq�
k g

pnq
k

	�1

g
pnq�
k uk á wpnq in H, (0.5.1)

g
pnq�
k g

pmq
k á 0 for n � m. (0.5.2)¸

nPN0

}wpnq}2 ¤ δ�1 lim sup
k

}uk}
2. (0.5.3)

uk �
¸
nPN0

g
pnq
k wpnq D

á 0 in H, (0.5.4)

where the series
°
nPN0

g
pnq
k wpnq converges uniformly in k.

Remark 0.5.5. As mentioned in [99, proof of Theorem 3.1], estimate (0.5.3) holds,

provided conditions (0.5.1) and (0.5.2) are satis�ed.

It is also convenient for our objectives to review the notion of cocompact

embedding.

De�nition 0.5.6. [29, De�nition 1.2] Let H and L be Banach spaces such that H

is continuously embedded into L. Let D be a group of continuous isomorphism on H.

We say that the embedding of H into L is cocompact relative to D if every D-weakly

convergent sequence in H converges in L.

It is proved in [29] that the embedding HspRq ãÑ LppRNq, 0   s   N{2,

2   p   2�s , is cocompact with respect to the group of translations. We prove in Chapter

1 that the embedding Ds,2pRNq ãÑ L2�s pRNq, 0   s   mint1, N{2u, is cocompact with

respect to the group of dilations. See Propositions 1.2.3 and 1.3.2 for the precise

statements.

0.6 Some variational results

In this section we review some basic variational concepts and results that are

used to prove the main results of this thesis. In what follows we always assume that I

is a C1 functional de�ned over a real Banach space E.
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De�nition 0.6.1. We say that I has the mountain pass geometry when

(i) Ip0q � 0;

(ii) There exists r, b ¡ 0 such that Ipuq ¥ b, whenever }u} � r;

(iii) There is e P E with }e} ¡ r and Ipeq   0;

We de�ne the mountain pass (or minimax) level of I as

c � inf
γPΓ

sup
tPr0,1s

Ipγptqq,

where

Γ � tγ P Cpr0, 1s, Eq : γp0q � 0, }γp1q} ¡ r, Ipγp1qq   0u .

The next theorems are the main tool used in this text to obtain existence of

non-trivial weak solutions for Eq. (Ps). They ensure the existence of a Palais-Smale

sequence at the level c.

Theorem 0.6.2 (Mountain Pass Theorem, see [2,16]). Suppose that I has the mountain

pass geometry. Then there exists pukq � E such that Ipukq Ñ c and I 1pukq Ñ 0 in E�.

Theorem 0.6.3 (see [21, 77]). Assume that I has the mountain pass geometry. Then

there exists pukq � E such that I 1pukq Ñ 0 and p1 � }uk}q}I
1pukq}� Ñ 0, where } � }�

denote the usual norm of the dual E�.

Theorem 0.6.4. [63, Theorem 2.3] If I has the mountain pass geometry and there

exists γ0 P Γ such that

c � max
tPr0,1s

Ipγ0ptqq,

then I possess a non-trivial critical point u P γ0pr0, 1sq such that Ipuq � c.
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Chapter 1

Pro�le decomposition for weak

convergence in fractional Sobolev

spaces

In this chapter we develop our concentration-compactness principle, a re�nement

of the celebrated Banach-Alaoglu-Bourbarki Theorem for the fractional Sobolev spaces

HspRNq and Ds,2pRNq.

As mentioned in [29], the abstract Hilbert space version given in Theorem 0.5.4,

states that, chosen a suitable group of linear operators D acting in a separable Hilbert

space H, every bounded sequence in H has a subsequence that D-weakly converges

with the following distinct structure: Each term in the subsequence is the sum of

a principal term and a remainder term (see assertion (0.5.4) in Theorem 0.5.4). In

particular, taking g � Id, in the de�nition of D-weak convergence in (0.5.4), we have

uk � wp1q �
¸

nPN0zt1u
g
pnq
k wpnq á 0 in H.

The corrected sequence form a sequence which converges weakly, and each principal

term is a (possibly in�nite) sum of �dislocated pro�les� wpnq. Thus, the statement of

Banach-Alaoglu-Bourbarki Theorem (for Hilbert spaces) can be seen when wpnq � 0,

for all n P N0zt1u. At the end of this chapter we discuss the class of nonlinearities in

the critical growth range dealt in this thesis.
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1.1 Statement of the results

We start by pro�le decomposition for weak convergence in the homogeneous

fractional Sobolev space Ds,2pRNq, which is used to obtain existence of solution for

Eq. (Ps) when the nonlinearity has critical growth.

Theorem 1.1.1. Let pukq � Ds,2pRNq be a bounded sequence, 0   s   mint1, N{2u

and γ ¡ 1. Then there exist N� � N, disjoints sets (if non-empty) N0,N�,N� � N, with
N� � N0YN�YN� and sequences pwpnqqnPN� � Ds,2pRNq, py

pnq
k qkPN � ZN , pjpnqk qkPN � Z,

n P N�, such that, up to subsequence of pukq,

γ�
N�2s

2
j
pnq
k uk

�
γ�j

pnq
k � �y

pnq
k

�
á wpnq, as k Ñ 8, in Ds,2pRNq, (1.1.1)��jpnqk � j

pmq
k

��� ��γjpnqk py
pnq
k � y

pmq
k q

��Ñ 8, as k Ñ 8, for m � n, (1.1.2)¸
nPN�

rwpnqs2s ¤ lim sup
kÑ8

ruks
2
s, (1.1.3)

uk �
¸
nPN�

γ
N�2s

2
j
pnq
k wpnq�γjpnqk p� � y

pnq
k q

�
Ñ 0, as k Ñ 8, in L2�s pRNq, (1.1.4)

and the series in (1.1.4) converges uniformly in k. Furthermore, 1 P N0, y
p1q
k � 0;

j
pnq
k � 0 whenever n P N0; j

pnq
k Ñ �8 whenever n P N�; and j

pnq
k Ñ �8 whenever

n P N�.

As it could be viewed, Theorem 1.1.1 describes how the convergence of bounded

sequences in Ds,2pRNq fails to converge in L2�s pRNq. This �error� of convergence is

generated, roughly speaking, by the invariance of action of the group of translation

and dilation in Ds,2pRNq. Observe that the behavior for the correction term in (1.1.4)

is precisely described in the assertions (1.1.1)�(1.1.3).

The following version of Theorem 0.5.4 for the fractional Sobolev space HspRNq is

used to study about existence of solutions for Eq. (Ps) when hpx, tq admits subcritical

growth. Next we set 2�s � 8, when s � N{2.

Theorem 1.1.2. Let pukq � HspRNq be a bounded sequence with 0   s ¤ N{2s. Then

there exist N0 � N, and sequences pwpnqqnPN0 in HspRNq, py
pnq
k qkPN in ZN , n P N0, such

that, for a subsequence of pukq,

ukp� � y
pnq
k q á wpnq, as k Ñ 8, in HspRNq, (1.1.5)

|y
pnq
k � y

pmq
k | Ñ 8, as k Ñ 8, for m � n, (1.1.6)¸

nPN0

}wpnq}2 ¤ lim sup
kÑ8

}uk}
2, (1.1.7)

uk �
¸
nPN0

wpnqp� � y
pnq
k q Ñ 0, as k Ñ 8, in LppRNq, (1.1.8)
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for any p P p2, 2�s q. Moreover, the series in (1.1.8) converges uniformly in k.

Remark 1.1.3. The pro�le decompositions in Theorems 1.1.1 and Theorem 1.1.2 are

unique up to a permutation of index, and up to constant operator. See [99, Proposition

3.4].

As it can be seen, Theorem 1.1.2 describes how bounded sequences in HspRNq

fail to converge in LppRNq, 2   p   2�s . This �error� of convergence is produced by the

invariance of action of translations in HspRNq.

1.2 Proof of Theorem 1.1.1

To prove it, roughly speaking, we takeD as the group of dilations and translations

(the precise description of D is given below) in Ds,2pRNq, 0   s   N{2, and describe

the behavior of those operators under the weak convergence. We consider

TRN :�
 
gy : Ds,2pRNq Ñ Ds,2pRNq : gyupxq � upx� yq, y P RN

(
,

and for γ ¡ 1,

δR :�
!
δj : Ds,2pRNq Ñ Ds,2pRNq : δjupxq � γ

N�2s
2

jupγjxq, j P R
)
, (1.2.1)

the groups of operators on Ds,2pRNq induced by translations and dilations on RN ,

respectively. One can easily check that TRN and δR are indeed groups of unitary

operators in Ds,2pRNq, by using the following identities$&% p�∆qs{2 pup� � yqq �
�
p�∆qs{2u

�
p� � yq,

p�∆qs{2 pupτ �qq � τ s
�
p�∆qs{2u

�
pτ �q,

(1.2.2)

for u P Ds,2pRNq, y P RN and τ ¡ 0. Now, we de�ne the group

DRN �
!
dy,j : Ds,2pRNq Ñ Ds,2pRNq : dy,jupxq � γ

N�2s
2

jupγjpx� yqq, y P RN , j P R
)
,

which consists by the composition of the elements of TRN with δR, i.e., dy,j � δj �gγjy �

gy � δj. By checking that dy,j � dz,l � dy�γ�jz,j�l and pdy,jq�1 � d�γjy,�j, it is easy to see

that DRN is a group of unitary operators in Ds,2pRNq.

With the preceding notation we �rst derive the next basic result.

Lemma 1.2.1. Let pyk, jkq � RN � R, such that pyk, jkq Ñ py, jq. Then

dyk,jkuÑ dy,ju, @u P Ds,2pRNq.
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Proof. By the density of S0pRNq in Ds,2pRNq, we just need to prove in the case where

u P S0pRNq. Note that

rdyk,jku� dy,jus
2
s � 2rus2s � 2γ

N
2
pjk�jq

»
RN
p�∆qs{2upγjkpx� ykqqp�∆qs{2upγjpx� yqq dx.

Moreover, identity (0.2.4) implies»
RN
p�∆qs{2upγjkpx� ykqqp�∆qs{2upγjpx� yqqdx

�

»
RN
upγjkpx� ykqqp�∆qsupγjpx� yqq dx.

Since p�∆qsupγjp� � yqq P L1pRNq and |upγjkpx � ykqq| ¤ }u}8 almost everywhere in

RN , the assertion follows by the Dominated Convergence Theorem. �

We shall describe how the elements of DRN acts in Ds,2pRNq. This is done in the

next result, which is a slightly di�erent version of [71, Lemma 3].

Lemma 1.2.2. Let u P Ds,2pRNqzt0u. The sequence pdyk,jkuq, with pyk, jkq � RN � R,
converges weakly to zero if and only if |jk| � |yk| Ñ 8.

Proof. Suppose �rst that dyk,jku á 0 in Ds,2pRNq and assume, by contradiction, that

|jk| � |yk| Û 8. Then, up to subsequences, we may assume that yk Ñ y P RN and

jk Ñ j P R, as k Ñ 8. By Lemma 1.2.1,

0 � lim
kÑ8

rdyk,jku, dy,juss � rdy,jus
2
s � rus2s,

a contradiction with the fact that u � 0.

Conversely, assume that |jk| � |yk| Ñ 8. By density of S0pRNq in Ds,2pRNq it su�ces

to prove that

rdyk,jku, vss Ñ 0, @u, v P S0pRNq.

If we prove that every subsequence of pdyk,jkuq has a subsequence that weakly converges

to zero, the assertion follows. To do this, we divide the proof in two cases:

(i) There exists a subsequence of pjkq, such that jk Ñ �8 or �8;

(ii) There exists a convergent subsequence of pjkq, such that jk Ñ j0 and |yk| Ñ 8.

Before we start analyzing each case, we observe that by using identity (0.2.4), one has

rdyk,jku, vss �

»
RN
p�∆qsvpxqdyk,jkupxq dx. (1.2.3)

Therefore it is su�cient to study the desired convergence in the right-hand side of

(1.2.3).
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Case (i). Assume �rst that jk Ñ �8. By changing the variables under the integral we

have that

|rdyk,jku, vss| � γ
N�2s

2
jk

����»
RN
p�∆qsvpxqupγjkpx� ykqq dx

����
¤ γ�

N�2s
2

jk}p�∆qsv}8}u}1 Ñ 0, as k Ñ 8.

The same conclusion holds when jk Ñ �8. Indeed, since DRN ,R is a group

rdyk,jku, vss � ru, pdyk,jkq
�1vss � ru, d�γjkyk,�jkvss.

Hence, by interchanging u and v we get the desired conclusion.

Case (ii). Since jk Ñ j0, we have that dyk,jkupxq Ñ 0 almost every where x in RN .

Also,

|dyk,jkupxqp�∆qsvpxq| ¤ C}u}8|p�∆qsvpxq|, a.e. in RN .

Thus, by the Dominated Convergence Theorem,

rdyk,jku, vss Ñ 0, as k Ñ 8. �

Finally we take D � DZN :� tdy,j P DRN : y P ZN , j P Zu, as the aforementioned

group of unity operators in Ds,2pRNq. As already mentioned, the main reason for this

(instead of DRN ) in one of the statements in Theorem 1.1.1: it gives further properties

for the weak decomposition (cf. Theorem 0.5.4 or [71, Theorem 8]). Considering the

following cocompactness result we are able to prove Theorem 1.1.1 (a similar result

can be found in [71, Proposition 1]).

Proposition 1.2.3. Let pukq be a bounded sequence in Ds,2pRNq and 0   s  

mint1, N{2u. Then uk
D
á 0 if and only if uk Ñ 0 in L2�s pRNq.

Proof. Our proof follows the same ideas of [99, Lemma 5.3]. Since C8
0 pRNq is a dense

subset of Ds,2pRNq, by the continuous embedding of Ds,2pRNq in L2�s pRNq, we can

assume without loss of generality that the sequence pukq belongs to C8
0 pRNq. Let us

suppose �rst that uk
D
á 0. Consider ξ P C8

0 pR, r0,8qq such that

ξptq �

$&% t, if
1

4
γ
N�2s

2 ¤ t ¤
3

4
γ
N�2s

2 ,

0, if t ¤ 1 or t ¥ γ
N�2s

2 ,
and |ξ1ptq| ¤ C, @t P R,

where we can assume without loss of generality that γ ¡ 4, because we can replace it

by γn0 ¡ 4, for integer n0 large enough, if necessary. Notice that there exists a positive

constant C such that #
|ξptq|2

�
s ¤ Ct2,

|ξptq|2 ¤ C|t|2
�
s ,

@t P R. (1.2.4)
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Given any sequence pjkq in Z, denote

vk � γ
N�2s

2
jkukpγ

jk �q.

Let Qz � p0, 1qN � z, with z P ZN . By the Sobolev embedding (0.2.3), for any z P ZN ,
we get that »

Qz

|ξp|vk|q|
2�s dx ¤ C}ξp|vk|q}

2
HspQzq

�»
Qz

v2
k dx


1�2{2�s
. (1.2.5)

Moreover, embedding (0.2.1) and relations (1.2.4) implies that,

¸
zPZ

}ξp|vk|q}
2
HspQzq �

¸
zPZ

»
Qz

|ξp|vk|q|
2 dx�

»
Qz

»
Qz

|ξp|vk|qpxq � ξp|vk|qpyq|
2

|x� y|N�2s
dxdy

¤

»
RN

|ξp|vk|q|
2 dx�max

t¥0
ξ1ptq

¸
zPZ

»
Qz

»
Qz

|vkpxq � vkpyq|
2

|x� y|N�2s
dxdy

¤ Crvks
2
s.

Thus, we can take the sum over z P ZN in (1.2.5) to obtain»
RN

|ξp|vk|q|
2�s dx ¤ C sup

zPZN

�»
Qz

v2
k dx


1�2{2�s
. (1.2.6)

For each k, let zk P ZN such that

sup
zPZN

�»
Qz

v2
k dx


1�2{2�s
¤ 2

�»
Qzk

v2
k dx

�1�2{2�s
. (1.2.7)

Since uk
D
á 0, we have that vkp� � zkq á 0 in Ds,2pRNq, which allow us to apply

embedding (0.2.3) and obtain that»
Qzk

v2
k dx �

»
p0,1qN

v2
kp� � zkq dxÑ 0, as k Ñ 8. (1.2.8)

Replacing (1.2.7) and (1.2.8) in (1.2.6) we conclude that

lim
kÑ8

»
RN

|ξp|vk|q|
2�s dx � 0. (1.2.9)

Now let

ξjptq � γ�
N�2s

2
jξpγ

N�2s
2

jtq, j P Z.

From convergence (1.2.9), we get

lim
kÑ8

»
RN

|ξjkp|uk|q|
2�s dx � lim

kÑ8

»
RN

|ξp|vk|q|
2�s dx � 0, @ pjkq � Z. (1.2.10)
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Now the embedding Ds,2pRNq ãÑ L2�s pRNq enable us to get the following estimate,»
RN

|ξjp|uk|q|
2�s dx ¤ Crξjp|uk|qs

2
s

�»
RN

|ξjp|uk|q|
2�s dx


1�2{2�s
. (1.2.11)

For j P Z, let $''''&''''%
Dj,k �

!
x P RN : γ�

N�2s
2

j ¤ |ukpxq|   γ�
N�2s

2
pj�1q

)
;

Ej,k � pDj,k � RNq Y pRN �Dj,kq;

Lj,k �

"
x P RN :

1

4
γ�

N�2s
2

j ¤ |ukpxq| ¤
3

4
γ�

N�2s
2

pj�1q
*
,

Since uk is smooth and has compact support, there exists j0 in Z and l in N such that

supppukq �
l¤

j�0

Lj�j0,k �
l¤

j�0

Dj�j0,k,

We also have that the sets

Sj,k �
j¤

m�0

Ej�j0,k X Em�j0,k, j � 1, . . . , l,

are disjunct as well Ej0,k and Ej�j0,kzSj,k, for j � 1, . . . , l. Thus we may write

ļ

j�0

¼
Ej�j0,k

|ukpxq � ukpyq|
2

|x� y|N�2s
dxdy �

ļ

j�1

¼
Sj,k

|ukpxq � ukpyq|
2

|x� y|N�2s
dxdy

�

¼
Ej0,k

|ukpxq � ukpyq|
2

|x� y|N�2s
dxdy �

ļ

j�1

¼
Ej�j0,kzSj,k

|ukpxq � ukpyq|
2

|x� y|N�2s
dxdy,

�

¼
Al,k

|ukpxq � ukpyq|
2

|x� y|N�2s
dxdy �

¼
Bl,k

|ukpxq � ukpyq|
2

|x� y|N�2s
dxdy

where

Al,k � Ej0,k Y
l¤

j�1

Ej�j0,kzSj,k and Bl,k �
l¤

j�1

Sj,k,

to get that the estimate

ļ

j�0

rξjp|uk|qs
2
s �

CpN, sq

2

ļ

j�0

¼
Ej,k

|ξjp|uk|qpxq � ξjp|uk|qpyq|
2

|x� y|N�2s
dxdy

¤
CpN, sq

2
max
t¥0

ξ1ptq
ļ

j�0

¼
Ej,k

|ukpxq � ukpyq|
2

|x� y|N�2s
dxdy ¤ 2 max

t¥0
ξ1ptqruks2s.
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Moreover,

»
RN

|uk|
2�s dx ¤

ļ

j�0

»
Lj,k

|uk|
2�s dx

¤
ļ

j�0

»
Lj,k

|uk|
2�s dx�

»
Dj,kzLj,k

|ξjp|uk|q|
2�s dx �

ļ

j�0

»
RN

|ξjp|uk|q|
2�s dx.

In view of that, we take the sum over j � 0, . . . , l in (1.2.11) to conclude that»
RN

|uk|
2�s dx ¤ C sup

jPZ

�»
RN

|ξjp|uk|q|
2�s dx


1�2{2�s
.

Similarly as before, we choose pjkq such that

sup
jPZ

�»
RN

|ξjp|uk|q|
2�s dx


1�2{2�s
¤ 2

�»
RN

|ξjkp|uk|q|
2�s dx


1�2{2�s
,

which, from (1.2.10) implies that }uk}2�s Ñ 0.

Now assume that uk Ñ 0 in L2�s pRNq. Let us argue by contradiction and suppose

that there exists pykq in ZN and pjkq in Z such that dyk,jkuk á u � 0 in Ds,2pRNq. The

invariance of dyk,jk with respect to the L2�s norm leads to

}u}2�s ¤ lim inf
kÑ8

}dyk,jkuk}2�s � lim
kÑ8

}uk}2�s � 0,

which is a contradiction with the fact that u � 0. �

Proof of Theorem 1.1.1 completed. By Theorem 0.5.4, we �rst need to prove that

pDs,2pRNq, DZN ,Zq is a dislocation space. To do so, we use Proposition 0.5.3. Let

pdyk,jkq � DZN ,Z, such that dyk,jk �á 0 in Ds,2pRNq. Hence by Lemma 1.2.2, yk Ñ y

and jk Ñ j, up to a subsequence, and by Lemma 1.2.1, dyk,jku Ñ dy,ju, for all

u P Ds,2pRNq. Therefore Theorem 0.5.4 holds with H � Ds,2pRNq and D � DZN ,Z. It

follows immediately assertions (1.1.1) and (1.1.3). The assertion (1.1.2) is guaranteed

by Lemma 1.2.2, and (1.1.4) follows from Proposition 1.2.3. Finally, for each n P N�,

if pjpnqk q is unbounded we can replace it by a subsequence convergent to �8 or

�8, by checking either lim supk j
pnq
k � �8 or lim supk j

pnq
k � �8. If pjpnqk q is

bounded, we can replace it by a constant subsequence, say jpnq. Moreover, by taking

v
pnq
k � γ�

N�2s
2

jpnqukpγ
�jpnq � �ypnqk q, the convergence (1.1.1) implies

ukp� � y
pnq
k q � δ�jpnqv

pnq
k á δ�jpnqw

pnq in Ds,2pRNq,

The proof now follows by setting jpnq � 0 and renaming δ�jpnqw
pnq as wpnq. In fact, let

us denote

N �
!
n P N� : pj

pnq
k q is bounded

)
,
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and set $&%wpnq � δ�jpnqw
pnq, y

pnq
k � y

pnq
k , j

pnq
k � 0, for n P N,

wpnq � wpnq, y
pnq
k � y

pnq
k , j

pnq
k � j

pnq
k , for n P NzN7.

It is clear that pwpnqq satis�es conditions (1.1.1)�(1.1.3). To conclude that pwpnqq also

ful�lls condition (1.1.4), we take into account the following estimate�����uk � ¸
nPN�

d
pnq
k wpnq

�����
2�s

¤

�����uk � ¸
nPN�

d
pnq
k wpnq

�����
2�s

�

����� ¸
nPN�

d
pnq
k wpnq �

¸
nPN�

d
pnq
k wpnq

�����
2�s

, (1.2.12)

where it is used the notation

d
pnq
k u � γ

N�2s
2

j
pnq
k u

�
γj

pnq
k p� � y

pnq
k q, u P Ds,2pRNq.

The �rst term in the right-hand side of inequality (1.2.12) goes to zero due to (1.1.4).

To prove that the second one goes to zero, we start by noticing that, up to subsequence

in n P N�, the series ¸
nPN�

d
pnq
k wpnq,

is uniformly convergent in k, which can be proved by a standard diagonal argument

extracting successive subsequences in n P N�. This, together with the uniform

convergence of (1.1.4), allows us reduce to the case that N� is �nite. Since����� ¸
nPN�

d
pnq
k wpnq �

¸
nPN�

d
pnq
k wpnq

�����
2�s

¤
¸
nPN

���gypnqk
pδ
j
pnq
k
wpnq � δ�jpnqw

pnqq
���

2�s

�
¸
nPN

���δjpnqk
wpnq � δ�jpnqw

pnq
���

2�s
.

we have that the convergence to zero for the second term in (1.2.12) follows by using

Lemma 1.2.1 and the Brezis-Lieb Lemma. �

1.3 Proof of Theorem 1.1.2

In this section we shall prove the mentioned pro�le decomposition for bounded

sequences in HspRNq, 0   s ¤ N{2. To achieve that we start by considering

D � DZN :�
 
gy : HspRNq Ñ HspRNq : gyupxq � upx� yq, y P ZN

(
,

which turns to be a unitary group of operators in HspRNq. Once again, the idea is to

obtain Theorem 1.1.2 by means of Theorem 0.5.4. For that, we need �rst to determine
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how elements of HspRNq become asymptotically orthogonal in HspRNq with respect to

any �xed other function under a sequence of dislocations.

Lemma 1.3.1. Let be pykq a sequence in RN and 0 � u P HspRNq. The sequence

pup� � ykqq converges weakly to zero in HspRNq if, and only if |yk| Ñ 8.

Proof. Suppose �rst that up� � ykq á 0 in HspRNq, and by contradiction, that yk Ñ y

on a subsequence. By density argument we may assume that u P C8
0 pRNq, also using

Lemma 1.2.1 we obtain that up� � ykq Ñ up� � yq in Ds,2pRNq. Thus

0 � lim
kÑ8

pup� � ykq, up� � yqq

� lim
kÑ8

�»
RN
p�∆qs{2up� � ykqp�∆qs{2up� � yq � up� � ykqup� � yq dx

�
� rus2s, (1.3.1)

where the convergence of the second term in (1.3.1) follows by the Dominated

Convergence Theorem. This leads to a contradiction with the assumption that u � 0.

Conversely, assume that |yk| Ñ 8. Again, by density argument we may assume

u P C8
0 pRNq, and use Lemma 1.2.2 to obtain that up� � ykq á 0 in Ds,2pRNq. Thus

lim
kÑ8

�»
RN
p�∆qs{2up� � ykqp�∆qs{2v � up� � ykqv dx

�
� 0, @ v P C8

0 pRNq,

where we have used in the second term that suppup� � ykq X supp v � H, for k large

enough. �

Next, we complement the discussion made in [29] by establishing a equivalence

between the convergence in LppRNq and DZN -convergence. The proof of Theorem 1.1.2

follows next by the same argument found in [99, Corollary 3.3].

Proposition 1.3.2. Let pukq be a bounded sequence in HspRNq. Then uk
DZNá 0 in

HspRNq, if and only if uk Ñ 0 in LppRNq, for all 2   p   2�s .

Proof. The �rst part is proved in [29, Theorem 2.4]. Thus, let us suppose that uk Ñ 0

in LppRNq, 2   p   2�s . Take a arbitrary sequence pgykq in DZN and let ϕ P C8
0 pRNq.

Using identity (0.2.4) we have����»
RN
p�∆qs{2pg�ykukqp�∆qs{2ϕ dx

���� ¤ }uk}p

�»
RN

|p�∆qsϕp� � ykq|
p
p�1 dx


 p�1
p

.

Thus, using Hölder inequality again in the L2 term of the inner product of HspRNq,

we conclude that g�ykuk á 0 in HspRNq. �

Proof of Theorem 1.1.2 completed. We prove by applying Theorem 0.5.4. In fact, let

pgykq inDZN such that gyk �á 0 inHspRNq. By Lemma 1.3.1, yk Ñ y, up to subsequence,

and by [41, Lemma 5.2] gyk Ñ gy. Thus, by Proposition 0.5.3, pHspRNq, DZN q is

a dislocation space. Assertions (1.1.6) and (1.1.8) follows by Lemmas 1.3.1 and

Proposition 1.3.2 respectively. �
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1.4 Additional Properties

We reserve this section to give some additional description about the pro�les wpnq

in Theorems 1.1.1 and 1.1.2. We start by proving that one can consider Ds,2radpRNq to

obtain more compactness.

Proposition 1.4.1. Let pukq in Ds,2radpRNq be a bounded sequence and pwpnqq and pypnqk q

be the collection of pro�les given in Theorem 1.1.1. Then py
pnq
k qk � 0 for all n P N0zt1u,

wpnq P Ds,2radpRNq and N0 � t1u.

Proof. The proof of this fact follows similar arguments as in [99, Proposition 5.1]. The

idea is to �nd a new pro�le that satis�es the desired conditions and use the uniqueness

of the pro�les (see Remark 1.1.3). Indeed, let pypnqk q, pj
pnq
k q the sequences provided by

Theorem 1.1.1 and de�ne the set

N7 �
!
n P N�zt1u : |γj

pnq
k y

pnq
k | is bounded

)
.

Passing a subsequence and using a diagonal argument if necessary, we may assume that

each sequence pγj
pnq
k y

pnq
k q, n P N7, is convergent and we denote

apnq � lim
kÑ8

γj
pnq
k y

pnq
k , n P N7.

Suppose that n P N7 and notice that

γ�
N�2s

2
j
pnq
k ukpγ

�jpnqk �q�γ�
N�2s

2
j
pnq
k ukpγ

�jpnqk p��apnqq� ypnqk q á 0 in Ds,2pRNq, as k Ñ 8.

Since, the map u ÞÑ up� � apnqq is linear and continuous in Ds,2pRNq, we get

γ�
N�2s

2
j
pnq
k ukpγ

�jpnqk p� � apnqq � y
pnq
k q á wpnqp� � apnqq in Ds,2pRNq, as k Ñ 8,

Therefore

γ�
N�2s

2
j
pnq
k ukpγ

�jpnqk �q á wpnqp� � apnqq in Ds,2pRNq, as k Ñ 8.

We now proceed in a similar way as made in the proof of Theorem 1.1.1. Set$&%wpnq � wpnqp� � apnqq, y
pnq
k � 0, j

pnq
k � j

pnq
k , for n P N7,

wpnq � wpnq, y
pnq
k � y

pnq
k , j

pnq
k � j

pnq
k , for n P N�zN7.

It is easy to see that pwpnqq satis�es conditions (1.1.1)�(1.1.3). To see that pwpnqq also

satis�es (1.1.4), we consider the following estimate�����uk � ¸
nPN�

d
pnq
k wpnq

�����
2�s

¤

�����uk � ¸
nPN�

d
pnq
k wpnq

�����
2�s

�

����� ¸
nPN�

d
pnq
k wpnq �

¸
nPN�

d
pnq
k wpnq

�����
2�s

, (1.4.1)
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where we used the notation

d
pnq
k u � γ

N�2s
2

j
pnq
k u

�
γj

pnq
k p� � y

pnq
k q, u P Ds,2pRNq.

The �rst term in the right-hand side of inequality (1.4.1) goes to zero due to (1.1.4).

To prove that the second one goes to zero, we start by noticing that, up to subsequence

in n P N�, the series ¸
nPN�

d
pnq
k wpnq,

is uniformly convergent in k, which can be proved by a standard diagonal argument

extracting successive subsequences in n P N�. This, together with the uniform

convergence of (1.1.4), allows us reduce to the case that N� is �nite. Since����� ¸
nPN�

d
pnq
k wpnq �

¸
nPN�

d
pnq
k wpnq

�����
2�s

¤
¸
nPN7

����δjpnqk
pwpnq � g

apnq�γj
pnq
k y

pnq
k

wpnqq

����
2�s

�
¸
nPN7

����wpnq � g
apnq�γj

pnq
k y

pnq
k

wpnq
����

2�s

.

we have that the convergence to zero for the second term in (1.4.1) follows by using

Lemma 1.2.1 and the Brezis-Lieb Lemma.

Now let η be an element of OpNq, the group of distance-preserving linear

isomorphisms of RN . For n P N7, we have that

γ�
N�2s

2
j
pnq
k ukpγ

�jpnqk ηpxqq � γ�
N�2s

2
j
pnq
k puk � ηqpγ

�jpnqk xq

� γ�
N�2s

2
j
pnq
k ukpγ

�jpnqk xq. (1.4.2)

In view of the fact that the operator Tηpuq � u � η is continuous in Ds,2pRNq, we can

pass the weak limit in (1.4.2) to conclude that

wpnq � η � wpnq, @ n P N7, η P OpNq.

That is, wpnq belongs to Ds,2radpRNq provided that n P N7. To conclude the proof we now

show that wpnq � 0 for all n P N�zN7. Let us argue by contradiction and assume the

existence of wpn0q � 0 for some n0 P N�zN7. Once again, using the continuity of Tη�1

we obtain

γ�
N�2s

2
j
pnq
k ukpγ

�jpnqk � �ηy
pnq
k q �

Tη�1pγ�
N�2s

2
j
pnq
k ukpγ

�jpnqk � �ykqq á w � η�1 in Ds,2pRNq, as k Ñ 8.

Let OM � tηi P OpNqzt1u : i � 1, . . . ,Mu be an arbitrary distinct collection in OpNq.
Since γj

pnq
k |y

pnq
k | Ñ 8, we have that

γj
pnq
k |ηiy

pnq
k � ηjy

pnq
k | Ñ 8, @ i � j.
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Consequently, from Remark 0.5.5 we get the following estimate,

lim sup
kÑ8

ruks
2
s ¥

M̧

i�1

rwpnq � η�1
i s2s

�
M̧

i�1

rwpnqs2s �M rwpnqs2s.

Since M is arbitrary we have a contradiction with the fact that pukq is bounded in

Ds,2pRNq. �

We now can prove the well known compact embedding of Hs
radpRNq into LppRNq,

for 2   p   2�s , by means of Theorem 1.1.2.

Corollary 1.4.2. Let pukq be a bounded sequence in Hs
radpRNq and the pro�les py

pnq
k q

and pwpnqq given by Theorem 1.1.2. Then py
pnq
k qk � 0 for all n P N0zt1u, w

p1q P

Hs
radpRNq and N0 � t1u.

Proof. Consider jpnqk � 0 in the proof of Proposition 1.4.1 and replace r � ss by } � }. �

From the abstract result [99, Corollary 3.2], which is a direct consequence of

Theorem 0.5.4, we also have the next additional property, which might be seen as

a Brezis-Lieb type result for the corrected sequences in the convergences (1.1.4) and

(1.1.8).

Proposition 1.4.3. Assume that the same assumptions of Theorem 1.1.1 hold. Set

rk � uk �
¸
nPN�

γ
N�2s

2
j
pnq
k wpnq�γjpnqk p� � y

pnq
k q.

�
Then,

ruks
2
s �

¸
N�

rwpnqs2s � rrks
2
s Ñ 0 in Ds,2pRNq

Similarly, suppose that the conditions of Theorem 1.1.2 are satis�ed. Set

r̄k � uk �
¸
nPN0

wpnqp� � y
pnq
k q.

Then,

}uk}
2 �

¸
nPN0

}wpnq}2 � }r̄k}
2 Ñ 0 in HspRNq

We end this chapter with the next result, which establish a way to prove Theorem

1.1.2 by using Theorem 1.1.1. It is a key result to develop our results in Chapter 4,

when we are dealing with nonlinearities hpx, tq in Eq. (Ps) that possess critical growth.
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Proposition 1.4.4. Let pukq be a bounded sequence in HspRNq, 0   s   1, and

pwpnqqN� provided by Theorem 1.1.1. Then wpnq � 0 for all n P N�. Moreover, for

p P p2, 2�s q,

uk �
¸
nPN0

wpnqp� � y
pnq
k q Ñ 0 in LppRNq, (1.4.3)

the series in (1.4.3) converges absolutely in HspRNq uniformly in k, and wpnq are the

weak limits of pukp� � y
pnq
k qq in HspR3q.

Proof. This is proved by using similar arguments as in [99, Lemma 5.4], together with

Proposition 1.3.2. In fact, the last assertions follows from the fact that the translated

sequence pukp� � y
pnq
k qq is still bounded in HspRNq. By Fatou Lemma, we have

}wpnq}2
2 ¤ lim inf

kÑ8

»
RN

|γ
N�2s

2
j
pnq
k wpnq|2 dx � lim

kÑ8
γ�2sj

pnq
k

»
RN
u2
k dx � 0,

from this, we get that N� � H. Moreover, by Remark 0.5.5 we obtain estimate (1.1.7),

which ensures the uniform convergence in k for the series in (1.4.3). It remains to prove

the convergence (1.4.3). Let ϕ in C8
0 pRNq and pykq an arbitrary sequence in ZN . In

view of Proposition 1.3.2, to obtain (1.4.3) it su�ces to prove that�
uk �

¸
nPN0

wpnqp� � y
pnq
k q, ϕp� � ykq

�
Ñ 0, as k Ñ 8.

Indeed,�
uk �

¸
nPN�

d
pnq
k wpnq, ϕp� � ykq

�

�

�
uk �

¸
nPN0

wpnqp� � y
pnq
k q, ϕp� � ykq

�
�

� ¸
nPN�

d
pnq
k wpnq, ϕp� � ykq

�
. (1.4.4)

The term in the left-hand side of equation (1.4.4) goes to zero as k Ñ 8 due to

convergence (1.1.4) together with the fact that�����
�
uk �

¸
nPN�

d
pnq
k wpnq, ϕ

�
2

����� ¤
�����uk � ¸

nPN�
d
pnq
k wpnq

�����
L2psuppϕq

}ϕ}L2psuppϕq

¤ Cpϕq

�����uk � ¸
nPN�

d
pnq
k wpnq

�����
L2�s psuppϕq

Ñ 0,

where Cpϕq is a positive constant that only depends in ϕ. In order to prove that the

second term in the right-hand side of (1.4.4) goes to zero as k Ñ 8, we observe that

the uniform convergence of the series in (1.1.4) enable us to reduce to the case that N�
is �nite. Thus, the desired convergence follows by Lemmas 1.2.1 and 1.2.2, with aid of

the compact embedding (0.2.3). �
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1.5 Self-similar functions

We now pass to study a class of non-linearity consistent with our pro�le

decomposition. As it can be seen in the following examples, this class of nonlinearity

can been seen as asymptotically oscillatory about the critical power |t|2
�
s .

De�nition 1.5.1. We say that F ptq P CpRq is fractional self-similar if there exist γ ¡ 1

and 0   s   mint1, N{2u such that

F ptq � γ�NjF pγ
N�2s

2
jtq, @j P Z, t P R.

In this case we use to say that F is fractional self-similar with factor γ and fraction s.

Example 1.5.2. Typical examples of self-similar functions are

(i) F ptq � |t|2
�
s , which is self-similar for every factor γ and fraction 0   s  

mint1, N{2u;

(ii) Hptq � cospln |t|q|t|2
�
s , Hp0q :� 0, which is self-similar with factor e4π{pN�2sq and

every fraction 0   s   mint1, N{2u.

Remark 1.5.3. The function F ptq P C1pRq is self-similar if, and only if

F 1ptq � γ�
N�2s

2
jF 1

�
γ
N�2s

2
jt
	
, @j P Z, and t P R.

In the next result we derive the basic properties of self-similar functions.

Lemma 1.5.4. Assume that F ptq is self-similar.

(i) For each u P L2�s pRNq and j P Z, we have»
RN
F
�
γ
N�2s

2
jupγj�q

	
dx �

»
RN
F puq dx; (1.5.1)

(ii) There exists C ¡ 0 such that

|F ptq| ¤ C|t|2
�
s , @t P R. (1.5.2)

Moreover, if F P C2pRq, then there exists C ¡ 0, such that

|F ptq| � |F 1ptqt| � |F 2ptqt2| ¤ C|t|2
�
s , @t P R; (1.5.3)

(iii) If F ptq is locally Lipschitz then for each real numbers a1, . . . , aM , there exist

C � CpMq ¡ 0 such that�����F
�

M̧

n�1

an

�
�

M̧

n�1

F panq

����� ¤ CpMq
¸

m�nPt1,...,Mu
|an|

2�s�1|am|.
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Proof. (i) The identity (1.5.1) follows immediately by using the change of variables

theorem in the integral on the left side of the equation.

(ii) Fix the interval L � rγ�
N�2s

2 , γ
N�2s

2 s. By continuity, there exists C � CpLq

such that |F ptq| ¤ Ct2
�
s , for all t P L. Now, let 0   t   γ�

N�2s
2 or t ¡ γ

N�2s
2 , then (in

any case) there exists j P Z such that γ
N�2s

2
jt P L, and consequently,

γNj|F ptq| � |F pγ
N�2s

2
jtq| ¤ γNjCt2

�
s .

The case where t   0 is analogous. The proof of (1.5.3) follow a similar argument.

(iii) The proof is by induction in M. So we just need to prove that there exits

C ¡ 0 such that

|F pa1 � a2q � F pa1q � F pa2q| ¤ C
�
|a1||a2|

2�s�1 � |a1|
2�s�1|a2|

	
. (1.5.4)

To do so, we �rst �x the interval I � r�γ
N�2s

2
k, γ

N�2s
2

ks, where k P Z is taken such

that γ
N�2s

2
pk�1q ¡ 2, to use the Lipschitz assumption. The proof follows by considering

several cases.

Case 1: Suppose that |a1| ¤ 1 ¤ |a2| and a1 � a2 P I. Thus there exists C � CpIq such

that

|F pa1 � a2q � F pa1q � F pa2q| ¤ Cp|a1| � |F pa1q|q.

By condition (1.5.2) we can estimate

|a1| � |F pa1q| ¤ Cp|a1||a2|
2�s�1 � |a1|

2�s�1|a2|q.

Case 2: Assume that |a1|, |a2| ¥ 1 and a1 � a2 P I. Then, there exists j1 P Z, j1 ¤ 0,

such that |b1| ¤ 1, where b1 :� γ
N�2s

2
j1a1. It is easy to see that b1 � a2 P I, hence by

the �rst case, we have the following estimate

|F pb1 � a2q � F pb1q � F pa2q| ¤ γ
N�2s

2
j1Cp|a1|

2�s�1|a2| � |a1||a2|
2�s�1q

¤ Cp|a1|
2�s�1|a2| � |a1||a2|

2�s�1q,

Therefore we can estimate as follows

|F pa1 � a2q � F pa1q � F pa2q| ¤

|F pb1 � a2q � F pb1q � F pa2q| � |F pa1 � a2q � F pb1 � a2q � F pb1q � F pa1q| ,

with

|F pa1 � a2q � F pa1q � F pb1 � a2q � F pb1q| ¤ 2C|a2| ¤ C|a1|
2�s |a2|.

Case 3: Suppose that |a1|, |a2| ¤ 1. Since

R �
¤
jPZ

I�j Y I�j ,
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where I�j � r�γ
N�2s

2
j,�γ

N�2s
2

pj�1qs and I�j � rγ
N�2s

2
pj�1q, γ

N�2s
2

js there exists j0 P Z
such that

γ
N�2s

2
j0pa1 � a2q P

�
�γ

N�2s
2

k,�γ
N�2s

2
pk�1q

�
Y
�
γ
N�2s

2
pk�1q, γ

N�2s
2

k
�

Let b1 � γ
N�2s

2
j0a1 and b2 � γ

N�2s
2

j0a2, with the necessity |b1| ¥ 1 or |b2| ¥ 1, because

γ
N�2s

2
pk�1q ¡ 2. Consequently we can use the �rst or the second case to get that

γNj0 |F pa1 � a2q � F pa1q � F pa2q| � |F pb1 � b2q � F pb1q � F pb2q|

¤ γNj0Cp|a1|
2�s�1|a2| � |a1||a2|

2�s�1q.

The general case follows by a similar argument as above, thus we conclude that (1.5.4)

holds. �
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Chapter 2

Concentration-compactness principle

for nonlocal scalar �eld equations with

critical growth

In this chapter, we study the existence of non-trivial weak and ground state

solutions for the nonlinear scalar �eld equation

p�∆qsu � fpx, uq in RN , (Es)

in the �zero mass case� with nonlinearities in the critical growth range.

Outline. The chapter is organized as follows. In Sect. 2.1, we list our assumptions

on the nonlinearity fpx, tq to give in Sect. 2.2 some applications of Theorem 1.1.1 to

study the existence of mountain-pass solutions of Eq. (Es), for the autonomous and

non-autonomous case. In Sect. 2.3 we prove that weak solutions of Eq. (Es) satisfy

a Pohozaev type identity and have the regularity described in Proposition 0.4.2. In

Sect. 2.4, using the properties obtained in the Sect. 1.5, we describe the limit of

the pro�le decomposition of the Palais-Smale sequence at the mountain pass level of

the energy functional related to Eq. (Es). In Sect. 2.5, we prove the results given in

Subsect. 2.2 and describe some properties regarding the minimax levels associated

with the functional energy of Eq. (Es), for the autonomous case. In Sect. 2.6, we

prove our result about the existence of non-trivial weak solution of Eq. (Es) in the

non-autonomous case, and for the sake of discussion, we establish a su�cient condition

that ensures one of our hypothesis, precisely, the assumption pf7q.
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2.1 Hypothesis

In order to describe our results on the energy functional of (Es) in a more precisely

way, we will make the following assumptions:

(f1) fpx, tq is a Carathéodory function and there exists C ¡ 0 such that

|fpx, tq| ¤ C|t|2
�
s�1 almost everywhere (a.e.) x P RN , @ t P R.

(f2) There exists µ ¡ 2 such that,

µF px, tq :� µ

» t

0

fpx, τq dτ ¤ fpx, tqt, a.e. x P RN , @ t P R.

(f3) There exists R ¡ 0, t0 ¡ 0, x0 P RN such that

|BR| inf
BRpx0q

F px, t0q � |BR�1zBR| inf
px,tqPpBR�1px0qzBRpx0qq�r0,t0s

F px, tq ¡ 0,

In the study of the autonomous case fpx, tq � fptq we consider a weak version of pf3q.

(f 13) There exists t0 ¡ 0 such that F pt0q ¡ 0.

(f4) For each real numbers a1, . . . , aM , there exist C � CpMq ¡ 0 such that�����F
�
x,

M̧

n�1

an

�
�

M̧

n�1

F px, anq

����� ¤ CpMq
¸

m�nPt1,...,Mu
|an|

2�s�1|am| a.e. x P RN .

(f5) The following limits exist and are uniformly convergent in x and in compact sets

for t,

f0ptq :� lim
|x|Ñ8

fpx, tq,

f�ptq :� lim
jPZ,jÑ�8

γ�
N�2s

2
jf

�
γ�jx, γ

N�2s
2

jt
	
,

f�ptq :� lim
jPZ,jÑ�8

γ�
N�2s

2
jf

�
γ�jx, γ

N�2s
2

jt
	
,

for some γ ¡ 1 and 0   s   mint1, N{2u.Moreover, the functions Fκ, κ � 0,�,�

satis�es condition pf 13q, where Fκptq �
³t
0
fκpτqdτ.

(f6) f0ptq, f�ptq, f�ptq are continuously di�erentiable.
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We consider associated with Eq. (Es), the functional I : Ds,2pRNq Ñ R given by

Ipuq �
1

2

»
RN

|p�∆qs{2u|2 dx�

»
RN
F px, uq dx.

Assuming that fpx, tq satis�es pf1q and using the same arguments of [72], I P

C1pDs,2pRNqq and

I 1puq � v �
»
RN
p�∆qs{2u p�∆qs{2v dx�

»
RN
fpx, uqv dx, u, v P Ds,2pRNq.

Thus critical points of I correspond to weak solutions of Eq. (Es) and conversely.

Regarding the minimax level, we consider

ΓI �
!
γ P Cpr0,8q,Ds,2pRNqq : γp0q � 0, lim

tÑ8
Ipγptqq � �8

)
,

and

cpIq � inf
γPΓI

sup
t¥0

Ipγptqq. (2.1.1)

For the nonlinearities f0ptq, f�ptq, f�ptq, we consider the associated energy functionals

given by

Iκpuq �
1

2

»
RN

��p�∆qs{2u
��2 dx�

»
RN
Fκpuq dx, Fκptq :�

» t

0

fκpτq dτ

and the respectively minimax levels

cκ � inf
γPΓκ

sup
t¥0

Iκpγptqq

where

Γκ �
!
γ P Cpr0,8q,Ds,2pRNqq : γp0q � 0, lim

tÑ8
Iκpγptqq � �8

)
,

for κ � 0,�,�. Next, we assume a condition that compares the mountain pass levels

de�ned above, precisely,

(f7) cpIq   cpIκq, for each κ � 0,�,�.

We also consider the additional assumption for κ � 0,�,�,

(f 17) The following inequalities holds,

Fκptq ¤ F px, tq, a.e. x P RN , @t P R. (2.1.2)

Moreover, there exists δ ¡ 0 such that the inequality (2.1.2) is strict for all

t P p�δ, δq and almost everywhere x P RN .
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We are going to prove in Proposition 2.6.1 that pf 17q implies pf7q. To obtain our main

result, we �rst study the autonomous case. For that we assume that fptq is self-similar:

(f8) There exists γ ¡ 1, 0   s   mint1, N{2u such that

F ptq � γ�NjF
�
γ
N�2s

2
jt
	
, @j P Z, @t P R

This allow us to derive some basic results concerning the behavior upon the functional

I as we pass the limit over corrected sequences given in Theorem 1.1.1.

2.2 Statement of main results

Next, we state the main result abouts the autonomous case fpx, tq � fptq.

Theorem 2.2.1. Suppose that fptq is locally Lipschitz and satis�es pf1q, pf
1
3q, pf8q.

Consider

Sl � sup
rus2s�l

»
RN
F puq dx. (2.2.1)

Then, for any maximizing sequence pukq of (2.2.1) there exists pjkq � Z and pykq � ZN

such that pγ�
N�2s

2
jkukpγ

�jk � �ykqq contains a convergent subsequence in Ds,2pRNq. In

particular, the supremum in (2.2.1) is attained. Moreover, the same conclusion holds

for

Sl,� � sup
rus2s�l

»
RN
F�puq dx and Sl,� � sup

rus2s�l

»
RN
F�puq dx,

provided that fptq is locally Lipschitz and satis�es pf1q, pf4q, pf5q with S1 ¡

maxtS1,�,S1,�u.

Our next result proves that maximizers of (2.2.1) are indeed non-trivial solutions

of Eq. (Es). Moreover, the mountain pass level (2.1.1) is attained. The main tool to

achieve these facts is a Pohozaev type identity proved in Section 2.3, which holds under

the condition 0   s   1 and taking into account the smoothness of the nonlinearity.

Theorem 2.2.2. Assume that fptq P C1pRq satis�es pf1q and pf
1
3q.

(i) If v is a nonzero critical point of I, then cpIq ¤ Ipvq;

(ii) If w is a maximizer of Sl0 for l0 :� p2�sS1q
�N�2s

2s , then w is a critical point of I.

Moreover

0   max
t¥0

Ipwp�{tqq � Ipwq � cpIq.
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From Theorem 2.2.2, we conclude that to obtain weak solutions for the

autonomous case, only assumptions pf1q, pf 13q and (pf8q) are needed. Moreover, we are

able to prove that the minimax level is attained without the Ambrosetti-Rabinowitz

condition pf2q.

Another way to approach Eq. (Es) is by the means of constrained minimization.

In fact, due Theorem 1.1.1 we can argue as in [99], and thanks to the Pohozaev identity,

reasoning as in [11], we can derive existence of a ground state solution (or least energy)

for Eq. (Es), that is, a solution u of (Es) such that Ipuq ¤ Ipvq, for any other solution

v.

Theorem 2.2.3. Suppose that fptq P C1pRNq satis�es pf 13q and pf8q. Let

G �
"
u P Ds,2pRNq :

»
RN
F puq dx � 1

*
and consider

I � inf
uPG

»
RN

��p�∆qs{2upxq
��2 dx. (2.2.2)

Then, for any minimizing sequence pukq of (2.2.2) there exists pjkq � Z and pykq � ZN

such that pγ�
N�2s

2
jkukpγ

�jk � �ykqq contains a convergent subsequence in Ds,2pRNq. In

particular, there exists a minimizer w for (2.2.2). Furthermore, u � wp�{βq is a ground

state solution for Eq. (Es) for some β ¡ 0.

In the following result we prove that Palais-Smale condition at the mountain pass

level holds for the general non-autonomous case.

Theorem 2.2.4. If fpx, tq satis�es pf1q�pf6q and (2.1.2), then Eq. (Es) has a non-

trivial weak solution u in Ds,2pRNq at the mountain pass level, that is, Ipuq � cpIq.

Moreover, if we assume that pf7q holds true instead of (2.1.2), then any sequence pukq

in Ds,2pRNq such that Ipukq Ñ cpIq and I 1pukq Ñ 0 has a convergent subsequence.

Remarks on the hypothesis and in the main results

Remark 2.2.5. Next we give several helpful comments concerning our

assumptions.

(i) On assumption pf1q, we recall that f : RN � R Ñ R satis�es the Carathéodory

conditions, if for each �xed t P R, fp�, tq is measurable, and for a.e. x P

RN , fpx, �q is continous in R.

(ii) Condition pf1q includes in particular nonlinearites with critical growth.
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(iii) Assumption pf2q is a weak version of the well-known Ambrosetti-Rabinowitz

condition in the sense that we do not require that F px, tq is positive. (see [2,73]).

(iv) In order to prove that the functional associated with Eq. (Es) has the mountain

pass geometry we consider pf3q. Furthermore, since we deal with constrained

minimization, an autonomous version of pf 13q is needed (see [11]).

(v) The asymptotic additivity given in pf4q ensure the convergence of the functional

I under the weak pro�le decomposition for bounded sequences in Ds,2pRNq

described in Theorem 1.1.1.

(vi) The smoothness condition fptq P C1pRq is the natural hypothesis used in the

literature to prove that weak solutions of Eq. (Es) satis�es a Pohozaev type

identity.

(vii) Once the limits in pf5q exist, to obtain compactness of Palais-Smale sequences at

the minimax levels we need to require the additional conditions over the minimax

levels c0, c�, c� given in assumption pf7q. In fact, we do not believe that it

is possible, in general, to achieve the compactness described in Theorem 2.2.4

without these conditions. We mention that this kind of approach was introduced

by P.-L. Lions in [65�68].

(viii) Observe that the approach to obtain concentration-compactness for the

autonomous case fpx, tq � fptq needs to be di�erent since in this case, fptq

does not satis�es pf7q.

(ix) We also consider the case when pf7q do not hold. Precisely, when it is allowed

cpIq � cpIκq, for some κ � 0,�,�. In this case, the concentration-compactness

argument at the mountain pass level cannot be used. We apply [63, Theorem 2.3]

to overcome this di�culty and prove existence of solution at the mountain pass

level.

(x) If fpx, tq satis�es pf5q then

F0ptq � lim
|x|Ñ8

F px, tq.

F�ptq � lim
jPZ,jÑ�8

γ�NjF
�
γ�jx, γ

N�2s
2

jt
	
,

F�ptq � lim
jPZ,jÑ�8

γ�NjF
�
γ�jx, γ

N�2s
2

jt
	
,

uniformly convergent in x and in compact sets for t. Furthermore, F�ptq and

F�ptq are self-similar. Thus, functions fpx, tq that satis�es pf5q can be seen as

being asymptotically self-similar at �8.
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(xi) Our main results hold, replacing Ds,2pRNq by Ds,2radpRNq, and assuming that

fpx, tq � fp|x|, tq is radial in x instead of the existence of the asymptote f8ptq or

f0ptq. This fact can be easily veri�ed considering Proposition 1.4.1.

(xii) In Lemma 2.5.3 we proved that Γκ � H is equivalent to: D tκ such that Fκptκq ¡ 0.

Consequently (pf 13q) is the most general assumption to ensure that cpIq given in

(2.1.1) is well de�ned (possible valuing �8).

Remark 2.2.6. We have that G � H and Sl ¡ 0, provided pf1q and pf 13q hold. In fact,

this follows as in [40, Lemma 2.6 and Remark 2.8]. Let vR P C8
0 pRq, R ¡ 0, such that

0 ¤ vRptq ¤ t0 and

vRptq �

#
t0, if |t| ¤ R,

0, if |t| ¡ R � 1.

For all x P RN , taking ϕRpxq :� vRp|x|q, we have ϕR P Ds,2pRNq. Moreover,»
RN
F pϕRq dx �

»
BRpx0q

F pt0q dx�

»
BR�1px0qzBRpx0q

F pϕRq dx

¥ F pt0q|BR| � |BR�1zBR|

�
max
tPr0,t0s

|F ptq|



.

Thus there exist two positive constants C1 and C2 such that»
RN
F pϕRq dx ¥ C1R

N � C2R
N�1 ¡ 0,

provided that R is taken large enough. Taking a suitable σ ¡ 0, we may conclude that

ΦpϕRp�{σqq � 1.

Remark 2.2.7. Using the s-harmonic extension, it can be proved the existence of non-

negative weak solutions of (Ps) if fpx, tq ¥ 0 for all t ¥ 0 and almost everywhere x in

RN . For that one can consider the truncation

f̄px, tq �

#
fpx, tq, if t ¥ 0

0, if t   0.

Thus for u a weak solution of (Ps), with fpx, tq replaced by f̄px, tq, we have that u is

also a weak solution for (Ps) and is non-negative. To see that, let ξ P C8
0 pR : r0, 1sq

such that

ξptq �

#
1, if t P r�1, 1s

0, if |t| ¥ 2
and |ξ1ptq| ¤ C, @ t P R.

For each n P N, de�ne ξn : RN�1 Ñ R by ξnpzq � ξp|z|2{n2q. Then ξn P C8
0 pRN�1q and

veri�es

|∇ξnpzq| ¤ C and |z||∇ξnpzq| ¤ C, @ z P RN�1.
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By a density argument, we can take ϕ � ξnw� in (0.3.4), where w�pzq � mintwpzq, 0u.

Since w�pzq � Espu�q, we have that»
RN�1
�

y1�2sξn|∇w�|2 � y1�2sξn x∇w�,∇w�y � y1�2s x∇w� �∇w�, w�∇ξny dxdy

� κs

»
RN
f̄px, uqξnu� dx,

and we may apply the Dominated Convergence Theorem and (0.3.2) to get

}u�}2 �

»
RN
f̄px, uqu� dx � 0,

which implies that u� � 0. On the other hand, if u has su�cient regularity one can

show that u is positive, by applying the maximum principle for the fractional Laplacian

as described in [84] (see also [38, Chapter 5]).

Example 2.2.8. Typical examples (see Section 1.5 and the proof of Lemma 1.5.4) of a

functions satisfying pf4q�pf7q are given by

(i) fpx, tq � bpxq|t|2
�
s�2t, where bpxq P CpRNq, bp0q ¡ 0 and

bpxq ¡ bp0q � inf
xPRN

bpxq � lim
|x|Ñ8

bpxq. (2.2.3)

(ii) fpx, tq � exptbpxqpsinpln |t|q � 2qupbpxq cospln |t|q � 2�s q|t|
2�s�2t, with fpx, 0q � 0;

where bpxq P CpRNq satis�es (2.2.3), bp0q � 0 and moreover

sup
xPRN

bpxq   2�s � σ, for some σ P p2, 2�s q.

The primitive is given by F px, tq � exptbpxqpsinpln |t|q � 2qu|t|2
�
s .

Remark 2.2.9. The function fptq � p2�s cospln |t|q�sinpln |t|qq|t|2
�
s�2t, fp0q :� 0, satis�es

the assumptions of Theorems 2.2.1�2.2.3.

2.3 Local regularity and Pohozaev Identity

We are in the position to prove that weak solutions of autonomous form of Eq. (Es)

are C1pRNq and satis�es the Pohozaev identity»
RN

��p�∆qs{2u
��2 dx �

2N

N � 2s

»
RN
F puq dx, (2.3.1)

under suitable assumptions on fptq (see Proposition 2.3.2 for the precise statement).

We refer to [24], where the identity was studied for solutions in HspRNq and when
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fptq satisfy a fractional version of the H. Berestycki and P.-L. Lions assumptions. The

main idea for that, it is to use the so called Ca�arelli-Silvestre extension (see [19] for

more details) which transform the autonomous non-local Eq. (Es) in a local one and

use recent regularity results to develop the resultant expression in a such way to apply

the argument of [11, Section 2]. Our approach is in some way di�erent from the usual

one. Although we continue using Ca�arelli-Silvestre extension (also know as harmonic

extension), by the results of [47,59], we can derive a local regularity for weak solutions

in Ds,2pRNq in a more suitable way to get the desired identity by applying a truncation

argument. For bounded domains we refer to [74].

In order to apply Proposition 0.4.1 we need to prove a Brezis-Kato type result

(see [14]) for solutions of Eq. (Es). Although a similar result can be found in [47, Lemma

3.5], the absence of singularity in Eq. (Es) allows us to obtain a simpler proof. To

achieve that, we strongly rely in the following lemmas, which enable us to proceed as

in [14] (cf. [8, Proposition 5.1] or [102, Theorem 1.2]).

Before we start to develop our regularity results, we �nd worth to mention the

fact that w � Espuq is a weak solution of (0.3.3) with gptq � fptq if, and only if, u is a

weak solution of Eq. (Es).

Lemma A. [46, Theorem 1.3] For any R ¡ 0, there exists σ ¡ 1 and CR ¡ 0

depending on R, such that�»
BR

|y|1�2s|v|2σ dxdy


1{σ
¤ CR

»
BR

|y|1�2s|∇v|2 dxdy, @v P C8
0 pBRq.

Lemma B. [47, Lemma 2.6] Let ξ P CpRN�1q such that ξpzq � 0 for all |z| ¥ R.

There exist C ¡ 0 such that�»
BNR

|vξ|2
�
s dxdy

�2{2�s
¤ C

»
B�R

y1�2s|∇pvξq|2 dxdy, @v P H1pB�
R , y

1�2sq.

Proposition 2.3.1. Assume that condition pf1q holds. Let u P Ds,2pRNq be a weak

solution of Eq. (Es) for the autonomous case, then u P LplocpRNq, for all p ¥ 1.

Proof. Let w � Espuq and ξ P C8
0 pRN�1 : r0, 1sq such that

ξpzq �

#
1, if |z|   R{2

0, if |z| ¥ R
and |∇ξpzq| ¤ C @z P RN�1,

for some C ¡ 0. Since the map t ÞÑ tmint|t|β, Lu, β, L ¡ 0, is Lipschitz in R,
considering wβ,L :� mint|w|β, Lu we have wwβ,L P H1pB�

R , y
1�2sq, consequently using
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inequality (0.3.1) in a density argument one can see that ww2
β,Lξ

2 can be taken as a

test function in de�nition (0.3.4). The main idea is to get the estimate»
B�R

y1�2s|∇pwwβ,Lξq|2 dxdy ¤ C, (2.3.2)

for a suitable β and C ¡ 0 which does not depend on L. The next step is to use Fatou

Lemma and Lemma B to obtain»
BNR

|u|pβ�1q2�s dx ¤ C.

This leads to a iteration procedure in β which implies in u P LppBN
R q for all p ¡ 1. To

do so, we start taking

apxq :�
|fpuq|

1� |u|
P L

N{2s
loc pRNq,

which implies»
B�R

y1�2s
@
∇w,∇pww2

β,Lξ
2q
D

dxdy ¤ 2κs

»
BNR

apxqp1� u2qu2
β,Lξ

2 dx, (2.3.3)

where we used that p1� tqt ¤ 2p1� t2q, t ¡ 0 and trpww2
β,Lξ

2q � uu2
β,Lξp�, 0q

2. We now

compute the left side of the inequality (2.3.3) and use the following identity

w
@
∇w,∇p|w|2βq

D
�
β

2
|w|2pβ�1q|∇pw2q|2,

to conclude»
B�R

y1�2s mint|w|2β, L2u|∇w|2ξ2 dxdy

�
β

2

»
t|w|2β¤L2uXB�R

y1�2s|w|2pβ�1q|∇pw2q|2ξ2 dxdy

¤ 2κs

»
BNR

apxqp1� u2qu2
β,Lξ

2 dx

� 2

»
B�R

y1�2swmint|w|2β, L2uξ x∇w,∇ξy dxdy. (2.3.4)

Using the Cauchy inequality (with ε � 1{4) we have

� 2

»
B�R

y1�2swmint|w|2β, L2uξ x∇w,∇ξy dxdy

¤
1

2

»
B�R

y1�2s mint|w|2β, L2u|∇w|2ξ2 dxdy

� C

»
B�R

y1�2sw2 mint|w|2β, L2u|∇ξ|2 dxdy, (2.3.5)
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where C ¡ 0 is independent of L. From replacing (2.3.5) in (2.3.4), we obtain

1

2

»
B�R

y1�2s mint|w|2β, L2u|∇w|2ξ2 dxdy

�
β

2

»
t|w|2β¤L2uXB�R

y1�2s|w|2pβ�1q|∇pw2q|2ξ2 dxdy

¤ C

»
B�R

y1�2sw2 mint|w|2β, L2u|∇ξ|2 dxdy

� 2κs

»
BNR

apxqp1� u2qu2
β,Lξ

2 dx. (2.3.6)

Now using

β2|w|2pβ�1q ��∇pw2q
��2 � 4w2

��∇p|w|βq��2 ,
together with inequality (2.3.6), we can �nally estimate (2.3.2),»

B�R

y1�2s|∇pwwβ,Lξq|2 dxdy ¤ C

»
B�R

y1�2sw2 mint|w|2β, L2u|∇ξ|2 dxdy

� 2κs

»
BNR

apxqp1� u2qu2
β,Lξ

2 dx. (2.3.7)

It remains to estimate the last two terms in (2.3.7). Assuming |u|β�1 P L2pBN
R q, we get»

BNR

apxqu2u2
β,Lξ

2 dx ¤ L0

»
BNR

|u|2pβ�1qξ2 dx�

»
tapxq¥L0u

apxqu2u2
β,Lξ

2 dx

¤ C1L0 � C̃1εpL0q

�»
B�R

y1�2s|∇pwwβ,Lξq|2 dxdy

�2{2�s
,

where

εpL0q :�

�»
tapxq¥L0u

aN{2spxq dx


2s{N
Ñ 0, as L0 Ñ 8.

By the same calculation and using mint|t|β, Lu ¤ |t|mint|t|β, Lu � 1, L ¡ 1, we obtain»
BNR

apxqu2
β,Lξ

2 dx ¤ C2L0

� C̃2εpL0q

���»
B�R

y1�2s|∇pwwβ,Lξq|2 dxdy

�2{2�s
�

�»
BNR

|ξ|2
�
s dx

�2{2�s
�� ,

Thus, we can take L0 large enough such that»
B�R

y1�2s|∇pwwβ,Lξq|2 dxdy ¤ C3

»
B�R

y1�2sw2 mint|w|2β, L2u|∇ξ|2 dxdy.

Finally, assume that β � 1 ¤ σ, where σ is given in Lemma A. Using the operator

extension by re�ection R : H1pB�
R , y

1�2sq Ñ H1pBR, |y|
1�2sq given by

Rpwqpx, yq �

#
wpx, yq, if y ¡ 0,

wpx,�yq, if y ¤ 0,
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(see for instance [19, Section 4]), we may apply Lemma A for an appropriated sequence

of functions in C8
0 pRN�1q, converging to Rpwq in H1pBR, |y|

1�2sq to get»
B�R

y1�2sw2 mint|w|2β, L2u|∇ξ|2 dxdy ¤ C4

»
BR

|y|1�2s|∇pRpwqq|2 dxdy ¤ C5.

We take β � β1 � mint2�s{2, σu � 1 and βi�1 � mint2�s{2, σup2
�
s{2q

i � 1, i � 0, 1, . . . ,

to obtain that u P Lβi�1

loc pRNq. �

Summing up all the previous results we can �nally conclude the validity of identity

(2.3.1) and the desired local regularity.

Proposition 2.3.2. If fptq P C1pRq and satis�es pf1q, then every weak solution of

Eq. (Es) for the autonomous case belongs to C1pRNq. Moreover, the Pohozaev identity

(2.3.1) holds true.

Proof. Let u P Ds,2pRNq be a weak solution of Eq. (Es) for the autonomous case

with fptq satisfying pf1q. Consider w � Espuq. Then by Propositions 0.4.1, w possess

the regularity (0.4.1). In particular, ∇u � ∇wpx, 0q P CpBN
r q for any r ¡ 0. Let

ξ P C8
0 pR : r0, 1sq such that

ξptq �

#
1, if t P r�1, 1s

0, if |t| ¥ 2
and |ξ1ptq| ¤ C @t P R,

for some C ¡ 0. For each n P N, de�ne ξn : RN�1 Ñ R by ξnpzq � ξp|z|2{n2q. Then

ξn P C
8
0 pRN�1q and veri�es

|∇ξnpzq| ¤ C and |z||∇ξnpzq| ¤ C @z P RN�1, (2.3.8)

for some C ¡ 0. Now observe that,

divpy1�2s∇wq xz,∇wy ξn �

div

�
y1�2sξn

�
xz,∇wy∇w �

|∇w|2

2
z


�
�
N � 2s

2
y1�2s|∇w|2ξn

� y1�2s |∇w|2

2
xz,∇ξny � y1�2s x∇w, zy x∇w,∇ξny . (2.3.9)

Note that BB?
2n,δ � F 1?

2n,δ
YF 2?

2n,δ
. Let ηpzq � p0, . . . ,�1q be the unit outward normal

vector of B?
2n,δ on F

1?
2n,δ

. Since ξn � 0 on F 2?
2n,δ

, by condition (0.3.2), identity (2.3.9)
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and Divergence Theorem we get

0 �

»
B?2n,δ

divpy1�2s∇wq xz,∇wy ξn dxdy

�

»
F 1?

2n,δ

y1�2sξn

�
xz,∇wy x∇w, ηy � |∇w|2

2
xz, ηy

�
dxdy � θn,δ

�

»
F 1?

2n,δ

ξn xx,∇xwy p�y
1�2swyq dx

�

»
F 1?

2n,δ

y1�2sξnw
2
yy dx�

»
F 1?

2n,δ

y1�2sξn
|∇w|2

2
y dx� θn,δ

� I1
n,δ � I2

n,δ � I3
n,δ � θn,δ,

where

θn,δ �

»
B?2n,δ

N � 2s

2
y1�2s|∇w|2ξn dxdy

�

»
B?2n,δ

y1�2s |∇w|2

2
xz,∇ξny � y1�2s x∇w, zy x∇w,∇ξny dxdy.

Using the same arguments as in [47, proof of Theorem 3.7] we deduce that there exists

a sequence δk Ñ 0 such that

I2
n,δk

� I3
n,δk

Ñ 0, as k Ñ 8.

Some computations leads to

ξnpx, 0q xx,∇uy fpuq � divpξnpx, 0qF puqxq � F puq x∇ξnpx, 0q, xy � ξnpx, 0qF puqN.

By condition (0.3.2), the Divergence Theorem and Remark 0.4.3 we have

lim
kÑ8

I1
n,δk

� κs

»
BN?

2n

ξnpx, 0q xx,∇uy fpuq dx

� κs

»
BN?

2n

divpξnpx, 0qF puqxqq � F puq x∇ξnpx, 0q, xy � ξnpx, 0qF puqN dx

� �Nκs

»
BN?

2n

ξnpx, 0qF puq dx� κs

»
BN?

2n

F puq x∇ξnpx, 0q, xy dx.

Summing up, we get that

0 � lim
kÑ8

�
I1
n,δk

� I2
n,δk

� I3
n,δk

� θn,δk
�

� �κs

»
BN?

2n

NξnF puq � F puq x∇ξn, xy dx�

»
B�?

2n

N � 2s

2
y1�2s|∇w|2ξn dxdy

�

»
B�?

2n

y1�2s |∇w|2

2
xz,∇ξny dxdy �

»
B�?

2n

y1�2s x∇w, zy x∇w,∇ξny dxdy.
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Consequently taking nÑ 8 and using conditions (2.3.8), we conclude

N � 2s

2

»
RN�1
�

y1�2s|∇w|2 dxdy � Nκs

»
RN
F puq dx,

which together with condition (0.3.2) implies (2.3.1), and the proof is complete. �

2.4 Behavior of weak decomposition convergence

under nonlinearities

Concerning the assumptions pf4q, pf5q, and pf8q, we have the following results,

which provides a way to link the weak convergence decomposition (as also the latter

lines of Theorem 1.1.1) and the limit over the energy functional I for bounded sequences

in Ds,2pRNq. They are mainly used to prove the existence results stated in Sect. 2.2.

Also, the next result can be seen as a generalization of the well know Brezis-Lieb

Lemma [15] (see Corollary 2.4.3).

Proposition 2.4.1. Let 0   s   mint1, N{2u and assume that fpx, tq satis�es pf1q,

pf4q and pf5q. Let pukq in Ds,2pRNq be a bounded sequence and pwpnqqnPN� in Ds,2pRNq,

n P N�, provided by Theorem 1.1.1. Then

lim
kÑ8

»
RN
F px, ukq dx �

»
RN
F px,wp1qq dx

�
¸

nPN0,n¡1

»
RN
F0pw

pnqq dx�
¸
nPN�

»
RN
F�pwpnqq dx�

¸
nPN�

»
RN
F�pwpnqq dx. (2.4.1)

Proof. By condition pf1q, the functional

Φpuq �

»
RN
F px, uq dx, u P Ds,2pRNq,

is uniformly continuous in bounded sets of L2�s pRNq, which implies (by assertions (1.1.3)

and (1.1.4) of Theorem 1.1.1) that

lim
kÑ8

�
Φpukq � Φ

� ¸
nPN�

d
pnq
k wpnq

��
� 0.

To prove (2.4.1) we observe that the uniform convergence of the series in (1.1.4) allows

us to reduce to the case where N� � t1, . . . ,Mu. Thus,

lim
kÑ8

� ¸
nPN0

Φ
�
wpnqp� � y

pnq
k q

	
� Φpwp1qq �

¸
nPN0,n¡1

Φ0pw
pnqq

�
� 0,

lim
kÑ8

� ¸
nPN�

Φpd
pnq
k wpnqq �

¸
nPN�

Φ�pwpnqq

�
� 0,
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follows immediately from the assumption pf5q, by change of variables and the use of

Dominated Convergence Theorem. Therefore it is su�cient to prove that

lim
kÑ8

�
Φ

� ¸
nPN�

d
pnq
k wpnq

�
�

¸
nPN�

Φpd
pnq
k wpnqq

�
� 0. (2.4.2)

Indeed, by pf4q we have for all m � n,�����Φ
� ¸
nPN�

d
pnq
k wpnq

�
�

¸
nPN�

Φpd
pnq
k wpnqq

����� ¤ ¸
m�nPN�

»
RN

|d
pnq
k |2

�
s�1|d

pmq
k | dx.

But by a change of variable we can see that»
RN

|d
pnq
k |2

�
s�1|d

pmq
k | dx �

»
RN

|wpnq|2
�
s�1gkp|w

pmq|q dx,

where

gkp|w
pmq|q � γ

N�2s
2

pjpmqk �jpnqk qwpmq
�
γj

pmq
k �jpnqk p� � γj

pnq
k py

pmq
k � y

pnq
k qq

	
á 0 in Ds,2pRNq,

due to assertion (1.1.2) of Theorem 1.1.1 and Lemma 1.2.2. Since

αpvq �

»
RN

|wpnq|2
�
s�1v dx

is a continuous linear functional in Ds,2pRNq we conclude (2.4.2). �

Corollary 2.4.2. Let pukq be a bounded sequence in Ds,2pRNq, 0   s   mint1, N{2u,

and pwpnqqnPN� in Ds,2pRNq, n P N�, provided by Theorem 1.1.1. If F px, tq � F ptq

satis�es pf8q and is locally Lipschitz then, up to subsequence,

lim
kÑ8

»
RN
F pukq dx �

¸
nPN�

»
RN
F pwpnqq dx. (2.4.3)

Proof. In this case F ptq satis�es pf4q and (1.5.2), also F ptq � F�ptq � F�ptq �

F0ptq. �

Corollary 2.4.3. Let uk á u in Ds,2pRNq and F ptq be as in Corollary 2.4.2 then, up

to subsequence,

lim
kÑ8

»
RN
F pukq � F pu� ukq � F puq dx � 0.

Proof. Let vk � uk � u � uk �w
p1q. The pro�les of Theorem 1.1.1 for pvkq are given by

w̃p1q � 0, w̃pnq � wpnq, n P N�zt1u. Thus by Corollary 2.4.2 we have

lim
kÑ8

»
RN
F puk � uq dx �

¸
nPN�,n¡1

»
RN
F pwpnqq dx. (2.4.4)

Taking the di�erence between (2.4.3) and (2.4.4) we get the desired result. �
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2.5 The autonomous case

The aim of this section is to prove Theorems 2.2.1, 2.2.2 and 2.2.3.

Remark 2.5.1. By embedding (0.2.1), we have Sl   8. Also Sl is attained for some

l if and only if it is attained for all l. Indeed, this can be checked by considering the

rescaling v � u1pl
�1{pN�2sq�q and u � vlpl

1{pN�2sq�q, where ru1s
2
s � 1 and rvls

2
s � l

respectively. In particular,

l
N

N�2sS1 � Sl. (2.5.1)

2.5.1 Proof of Theorem 2.2.1

Proof. Suppose that F ptq is self-similar and satis�es pf 13q. Let pukq � Ds,2pRNq be a

maximizing sequence for (2.2.1) with l � 1, that is, }uk}2 � 1 and Φpukq Ñ S1. Let

be pwpnqqnPN� , py
pnq
k qkPN and pj

pnq
k qkPN, the sequences provided by Theorem 1.1.1. By

Corollary 2.4.2,

S1 � lim
kÑ8

Φpukq �
¸
nPN�

Φpwpnqq, (2.5.2)

and at the same time by assertion (1.1.3) of Theorem 1.1.1¸
nPN�

rwpnqs2s ¤ lim sup
kÑ8

ruks
2
s ¤ 1. (2.5.3)

The identity (2.5.2) also implies that there exists n P N� with wpnq � 0. We may write

vpnq � wpnqpτn�q where τn � rwpnqs2{pN�2sq
s . Consequently rvpnqs2s � 1, Φpvpnqq ¤ S1 and

S1 �
¸
nPN�

τNn Φpvpnqq ¤ S1

¸
nPN�

τNn .

Moreover,

1 ¤
¸
nPN�

τNn . (2.5.4)

From (2.5.3) we have ¸
nPN�

τN�2s
n ¤ 1. (2.5.5)

Relations (2.5.4) and (2.5.5) can hold simultaneous provided that there is a n0 P N�
such that τn0 � 1, while τn � 0, whenever n � n0. Therefore, by assertion (1.1.4) of

Theorem 1.1.1 we obtain

uk � γ
N�2s

2
j
pn0q
k wpn0qpγj

pn0q
k p� � y

pn0q
k qq Ñ 0 in L2�s pRNq.

Since F ptq is self-similar, the sequence

vk � γ�
N�2s

2
j
pn0q
k ukpγ

�jpn0q
k � �y

pn0q
k q,
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is a maximizing sequence for (2.2.1) and vk Ñ wpn0q in L2�s pRNq. Furthermore, the

continuity of Φ in L2�s pRNq implies Φpwn0q � S1, and since rwpn0qs2s � 1, wpn0q is a

maximizer.

Consider now the case where S1 ¡ maxtS1,�,S1,�u. Let again pukq be a maximizing

sequence for (2.2.1) with l � 1. Since fptq veri�es pf5q we can apply Proposition 2.4.1

to get

S1 � lim
kÑ8

Φpukq �
¸
nPN0

Φpwpnqq �
¸

nPN�8
Φ�pwpnqq �

¸
nPN�8

Φ�pwpnqq,

where pwpnqq, pypnqk q, pj
pnq
k q, are given by Theorem 1.1.1. Considering again vpnq �

wpnqpτn�q, with τn � rwpnqs2{pN�2sq
s , we get

1 ¤
¸
nPN0

τNn �
S1,�
S1

¸
nPN�8

τNn �
S1,�
S1

¸
nPN�8

τNn . (2.5.6)

Since S1,�{S1   1 and S1,�{S1   1 by assertion (1.1.3) of Theorem 1.1.1, inequalities

(2.5.3) and (2.5.6) can hold simultaneously if and only if there is a n0 P N0 such that

τn0 � 1, while τn � 0, whenever n � n0. Therefore, by assertion (1.1.4) of Theorem

1.1.1,

uk � wpn0qp� � y
pn0q
k q Ñ 0 in L2�s pRNq,

and using a similar argument as in the previous case, we conclude that wpn0q is a

maximizer. �

Remark 2.5.2. One always has S1 ¥ maxtS1,�,S1,�u. Indeed, as discussed above, it

su�ces to prove this in the case that l � 1, so let u P Ds,2pRNq with russ � 1 and

vj :� δju, where δj is given in (1.2.1), and j P Z. Then rvjss � 1 implies that

Φpvjq ¤ S1, and by condition pf5q we conclude Φpvjq Ñ Φ�puq as j Ñ �8. The

case for the inequality S1 ¥ S1,� follows by using the same argument. Moreover, the

inequality S1 ¡ maxtS1,�,S1,�u holds whenever F ptq ¥ F�ptq and F ptq ¥ F�ptq with

the strict inequality in a neighborhood of zero. In fact, since F�ptq and F�ptq are self-

similar, we may consider w� and w� the maximizers of Sl,� and Sl,�, respectively, to
obtain, by Theorem 2.2.2, Proposition 2.3.2 and Remark 2.5.1, that Sl,�   Φpw�q ¤ Sl
and Sl,�   Φpw�q ¤ Sl.

2.5.2 Characterization of the minimax level

We pass now to the study of the minimax level of the energy functional associated

with Eq. (Es), proving some useful results. This is made by considering the class of

paths ζ : r0,�8q Ñ Ds,2pRNq de�ned by ζuptqpxq � upx{tq for any u P Ds,2pRNq,

because of it homogeneous property with respect to the norm in Ds,2pRNq.
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Lemma 2.5.3. Suppose that F ptq satis�es the growing condition (1.5.2). If u P

Ds,2pRNq is such that Φpuq ¡ 0, then the path ζu belongs to ΓI . Thus ΓI � H if

and only if pf 13q holds.

Proof. Let tn, t0 ¡ 0, n P N, be such that tn Ñ t0 and u P S0pRNq. Since

rζuptqs
2
s � tN�2srus2s, @t ¡ 0, (2.5.7)

using (1.2.2) we have

rζuptnq � ζupt0qs
2
s �

tN�2s
n rus2s � 2t�sn t�s0

»
RN
p�∆qs{2upx{tnqp�∆qs{2upx{t0q dx� tN�2s

0 rus2s. (2.5.8)

Also, up to a set of Lebesgue measure zero, by identity (0.2.4) we obtain$&% |p�∆qsupx{t0qupx{tnq| ¤ }u}8 |p�∆qsupx{t0q| ,

lim
nÑ8

rp�∆qsupx{t0qupx{tnqs � p�∆qsupx{t0qupx{t0q,
@x P RN .

Thus by the Dominated Convergence Theorem the left-hand side of the identity (2.5.8)

goes to zero as n Ñ 8. By identity (2.5.7) we conclude ζu P Cpr0,8q,Ds,2pRNqq. The

general case follows by a density argument.

Now suppose that pf 13q holds. Then there exists u P C8
0 pRNq such that Φpuq ¡ 0 and

consequently ζu P ΓI , since

Ipζuptqq �
1

2
tN�2srus2s � tNΦpuq Ñ �8 as tÑ 8.

Conversely, assume that ΓI � H. If pf 13q does not hold, then we would have that

Ipuq ¥ 0, for all u P Ds,2pRNq. Hence ΓI � H, which is impossible. �

Remark 2.5.4. Let u P Ds,2pRNq be such that Φpuq ¡ 0. Then

max
t¥0

Ipζuptqq �
1

2

�
rus2s

2�sΦpuq


N�2s
2s

rus2s �

�
rus2s

2�sΦpuq


N{2s
Φpuq. (2.5.9)

Lemma 2.5.5. Assume that conditions pf 13q and (1.5.2) holds. Consider

c̃pIq :� inf
ζPΓ̃I

sup
t¥0

Ipζptqq.

where

Γ̃I :� tζ P ΓI : ζ � ζu for some u P Ds,2pRNq with Φpuq ¡ 0u

Then cpIq � c̃pIq.
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Proof. Since Γ̃ � Γ we have cpIq ¤ c̃pIq. Suppose the contrary, that cpIq   c̃pIq.

Then, there exists ζ P ΓI such that cpIq ¤ supt¥0 Ipζptqq   c̃pIq. Observe now that, by

embedding (0.2.1) and pf1q, the continuous function

hptq �
1

2
rζptqs2s �

2�s
2

Φpζptqq, t ¡ 0,

changes sign. Hence, there exists t0 ¡ 0 such that gpt0q � 0 and ζpt0q � 0, which

implies that rζpt0qs2s � 2�sΦpζpt0qq. Now taking u � ζpt0q in (2.5.9) we get

sup
t¥0

Ipζuptqq �
1

2
rζpt0qs

2
s � Φpζpt0qq ¤ sup

t¥0
Ipζptqq,

which leads to a contradiction with the de�nition of c̃pIq. �

Remark 2.5.6. In order to prove our nonlocal counterpart of [98, Proposition 2.4], we

have to reduce the class of admissible paths. This is made by noticing that

sup
t¥0

Ipζvptqq � sup
t¥0

Ipζvσptqq,

for any rescaling vσpxq � vpx{σq, σ ¡ 0, and taking account the set

Γ̃1
I :�

 
ζ P ΓI : ζ � ζu for some u P Ds,2pRNq with Φpuq ¡ 0 and russ ¥ 1

(
,

and the associated minimax level

c̃1pIq :� inf
ζPΓ̃1

I

sup
t¥0

Ipζptqq,

to obtain that c̃pIq � c̃1pIq.

2.5.3 Proof of Theorem 2.2.2

Proof. (i) Let v P Ds,2pRNq be a non-trivial critical point of I. By Proposition 2.3.2

we have ζv P ΓI and t � 1 is a maximum point for the function t ÞÑ Ipζvptqq �

p1{2qtN�2srvs2s � tNΦpvq. Hence cpIq ¤ maxt¥0 Ipζvptqq � Ipvq.

(ii) Since w is a maximizer for (2.2.1) we have»
RN
fpwqv dx � 2λ

»
RN
p�∆qs{2wp�∆qs{2v dx, @v P Ds,2pRNq,

where λ is a Lagrange multiplier. We claim that λ � 0. Indeed, on the contrary, we

get fpwq � 0 a.e in RN , which leads to a contradiction with Φpwq ¡ 0. Thus, we can

apply Proposition 2.3.2 to get

2λrws2s � 2�s

»
RN
F pwq dx,
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which together with relation (2.5.1) implies 2λl0 � 2�sS1l
N{pN�2sq
0 , and the explicit value

of l0 gives λ � 1{2. In particular,

Ipwq �

�
1

2
�

1

2�s



rws2s ¡ 0.

Let us prove now the last statement of (ii). By the part (i), it is su�cient to prove

that Ipwq ¤ cpIq. Let u P Ds,2pRNq with Φpuq ¡ 0, and denote ũ � upα�q where

α � rus
2{pN�2sq
s . Then rũs2s � 1 and consequently

Φpζuptqq � Φpζũptαqq ¤ rζuptqs
2N
N�2s
s S1, @t ¥ 0,

from which we can deduce, by Lemma 2.5.5 and Remark 2.5.6, that

cpIq � inf
Φpuq¡0,
russ¥1

sup
t¥0

�
1

2
rζuptqs

2
s � Φpζuptqq

�
¥ inf

Φpuq¡0,
russ¥1

sup
t¥0

�
1

2
rζuptqs

2
s � rζuptqs

2N
N�2s
s S1

�
.

Moreover, we have

sup
t¥0

1

2
rζuptqs

2
s � rζuptqs

2N
N�2s
s S1

�

�
1

2
p2�sS1q

�N�2s
2s � S1p2

�
sS1q

�N
2s

�
rus2

�
s p1�sq
s , @u P Ds,2pRNq with Φpuq ¡ 0.

Consequently,

inf
Φpuq¡0,
}u}¥1

sup
t¥0

�
1

2
rζuptqs

2
s � rζuptqs

2N
N�2s
s S1

�
�

1

2
p2�sS1q

�N�2s
2s � S1p2

�
sS1q

�N
2s .

On the other hand, by the explicit value of l0 and relation (2.5.1) we have that

Ipwq �
1

2
p2�sS1q

�N�2s
2s � S1p2

�
sS1q

�N
2s .

Thus cpIq � Ipwq and by the proof of the statement (i), the path ζw P ΓI is

minimal. �

2.5.4 Proof of Theorem 2.2.3

Proof. We start by noting that the embedding (0.2.1) together with condition pf1q

implies I ¡ 0. Let pukq be a minimizing sequence, that is, Φpukq � 1 and ruks2s Ñ I.
Since this sequence is bounded, we may apply Theorem 1.1.1 to obtain the weak pro�le

described in (1.1.1)�(1.1.4). By the Corollary 2.4.2, we have

1 �
¸
nPN�

»
RN
F pwpnqq dx,
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which implies that there exists n P N� with 0   Φpwpnqq ¤ 1. If Φpwpnqq � 1, considering

dk as the element of DZN ,R given by assertion (1.1.1), we have by the weak lower semi-

continuity of the norm that

I ¤ rwpnqs2s ¤ lim inf
kÑ8

rd�kuks
2
s � I and rd�kuks

2
s � ruks

2
s Ñ rwpnqs2s,

which proves the �rst part of Theorem 2.2.3. Hence, let us assume that Φpwpnqq   1.

Set vk � d�kuk � w, where w � wpnq. By Corollary 2.4.3 we have

lim
kÑ8

�
1�

»
RN
F pvkq dx

�
�

»
RN
F pwq dx (2.5.10)

Denote δ � Φpwq and set ŵ � wpδ1{N �q. Thus Φpŵq � 1 and consequently

rws2s � δ
N�2s
N rŵs2s ¥ δ

N�2s
N I. (2.5.11)

Now consider

v̂k � vkp|1� δ|1{Nβ1{N
k �q, where βk � Φpbkq and bk � vkp|1� δ|1{N �q.

Since βk � |1 � δ|�1Φpvkq, by convergence (2.5.10) we have βk Ñ 1, and we conclude

Φpv̂kq � 1 for large k. This leads to

rvks
2
s � |1� δ|

N�2s
N β

N�2s
N

k rv̂ks
2
s ¥ |1� δ|

N�2s
N β

N�2s
N

k I, (2.5.12)

for large k. In the other hand, since ruks2s � rd�kuks
2
s, by relations (2.5.11) and (2.5.12)

we may infer

ruks
2
s � rvks

2
s � 2rvk, wss � rws2s

¥
�
δ
N�2s
N � |1� δ|

N�2s
N β

N�2s
N

k

�
I � 2rvk, wss,

and passing the limit we �nally conclude

1 ¥ δ1� 2s
N � |1� δ|1�

2s
N ,

which leads to a contradiction since 0   δ   1. Thus w is the minimizer in (2.2.2) and

consequently we have»
RN
p�∆qs{2wp�∆qs{2v dx � λ

»
RN
fpwqv dx, @ v P Ds,2pRNq,

where λ P R is a Lagrange multiplier. Taking v � w in the above identity we have

λ � 0, which allows us to apply Proposition 2.3.2 to get λ � I{2�s , which by an easy

computation using identities (1.2.2) leads us to conclude that u � wp�{βq is a non-

trivial weak solution of Eq. (Es), where β � λ1{2s � pI{2�s q1{2s.
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Let us prove now that u � wp�{βq is a ground state solution of Eq. (Es). We start by

applying Proposition 2.3.2 again to obtain

Ipuq �

�
1

2
�

1

2�s



rus2s �

s

N
p2�s q

�N�2s
2s rwsN{s

s . (2.5.13)

Now let v P Ds,2pRNq be any non-trivial weak solution of Eq. (Es). For any σ ¡ 0 denote

vσ � vp�{σq. Choose σ such that Φpvσq � 1, that is, σ � pΦpvqq�1{N . Replacing this

value of Φpvq in the identity rvs2s � 2�sΦpvq, we get σ � p2�s q
1{N rvs�2{N

s . Consequently,

we obtain

rvσs
2
s � p2�s q

N�2s
N prvs2sq

2s{N ,

which implies

Ipvq �
s

N
rvs2s �

s

N
p2�s q

�N�2s
2s rvσs

N{s
s . (2.5.14)

Comparing identities (2.5.13) and (2.5.14), we conclude that Ipuq ¤ Ipvq, i.e, u is a

ground state solution for Eq. (Es). �

2.6 The non-autonomous case

For the sake of discussion, we are going to compare the minimax level of the

asymptotic functional Iκ, with the minimax of the Lagrangian associated with Eq. (Es),

for κ � 0,�,�.

Proposition 2.6.1. Suppose that fpx, tq satis�es conditions pf1q�pf6q. If F0ptq is self-

similar or pF0qκptq ¤ Fκptq, for all t, κ � �,�, then cpIq ¤ cpIκq, for κ � 0,�,�.

Moreover, under these assumptions, pf 17q implies pf7q.

Proof. Let be Sκl , the associated constrained maximum similar to (2.2.1) relative to

the primitive Fκ, precisely,

Sκl � sup
rus2s�l

»
RN
Fκpuq dx for κ � 0,�,�.

For each κ � �,�, the primitive of the nonlinearity Fκ is auto-similar, thus using

Theorems 2.2.1 and 2.2.2, we conclude that there exists wκ maximizer of Sκl0 such that

cpIκq � Iκpwκq � max
t¥0

Iκpζwκptqq ¡ 0.

For each κ � �,�, let us consider the sequence

wκn :� γ
N�2s

2
jκnwκ

�
γj

κ
n �
�
,

where the sequence pjκnq � Z is chosen in such a way that j�n Ñ �8 and j�n Ñ �8.

Since for each κ � �,�,��Ipζwκnptqq � Iκpζwκptqq
�� ¤ tN

»
RN

���γ�NjκnF �
γ�j

κ
ntx, γ

N�2s
2

jκnwκ

	
� Fκpwκq

��� dx,
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the uniformity assumption on the limits in pf5q, guarantees (by a density argument)

that

lim
nÑ8

Ipζwκnptqq � Iκpζwκptqq, uniformly in compact sets of R. (2.6.1)

We also have that the path ζwκn , κ � �,�, belongs to ΓI , for n large enough. In fact,

by the uniformly convergence in x of pf5q and Proposition 2.3.2, there exists n0 ¡ 0

such that»
RN
γ�Nj

κ
nF

�
γ�j

κ
ntx, γ

N�2s
2

jκnwκ

	
dx ¡

1

2

»
RN
Fκpwκq dx, @n ¡ n0 and t ¡ 0.

Thus, for each n there exist tn ¡ 0 such that

Ipζwκnptnqq � max
t¥0

Ipζwκnptqq ¡ 0.

We claim that the sequence ptmq is bounded. On the contrary, up to subsequence, we

get the following contradiction

0   Ipζwκnptmqq �
1

2
tN�2s
m rws2s � tNm

»
RN
γ�NjnF

�
γ�jntmx, γ

N�2s
2

jnwκ

	
dxÑ �8,

as mÑ 8. Therefore, up to subsequence, tm Ñ t0, and we have

lim
mÑ8

max
t¥0

Ipζwκnptnqq � Iκpζwκpt0qq,

because of (2.6.1). Thus we may conclude

cpIq ¤ lim
nÑ8

max
t¥0

Ipζwκnptqq ¤ max
t¥0

Iκpζwκptqq � cpIκq.

If there exists maximizer w0 for S0
l0
, then an similar argument as above leads to

cpIq ¤ cpI0q. In fact, for each n, de�ne the path

λnptq � w0

� � � yn
t

	
, t ¥ 0,

where pynq is taken in a such way that |yn| Ñ 8. As before, we consider the estimate

|Ipλnptqq � I0pw0p�{tqq| ¤ tN
»
RN

|F ptx� yn, w0q � F0pw0q| dx,

to obtain that

lim
nÑ8

Ipλnptqq � I0pw0p�{tqq, uniformly in compact sets of R.

We also have that the path λn belongs to ΓI , for n large enough. Indeed, assuming the

contrary, we would obtain n0 and a sequence ln Ñ 8 such that Ipλn0plnqq ¡ 0, for all

n. On the other hand, we would have that

lim
nÑ8

»
RN
F plnx� yn0 , w0q dx �

»
RN
F0pw0q dx,
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which, by taking n large enough, leads to the contradiction Ipλn0plnqq   0. Let tn ¡ 0

such that

Ipλnptnqq � max
t¥0

Ipλnptqq ¡ 0.

Once again we get that the sequence ptnq is bounded. On the contrary, there is a

subsequence ptknq that implies in the following contradiction

0   Ipλnptknqq �
1

2
tN�2s
kn

rw0s
2
s � tNkn

»
RN
F ptknx� yn, w0q dxÑ �8, as nÑ 8.

Thus, up to subsequence, tn Ñ t0 and we obtain that

lim
nÑ8

max
t¥0

Ipλnptqq � I0pw0p�{t0qq.

As a consequence we conclude that

cpIq ¤ lim
nÑ8

max
t¥0

Ipλnptnqq ¤ max
t¥0

I0pw0p�{tqq � cpI0q,

where we used Proposition 2.3.2 to induce that t � 1 is the unique critical point of

I0pw0p�{tqq. Thus, let us assume that S0
l0
is not attained. By Remarks 2.5.1 and 2.5.2;

and Theorem 2.2.1, if S0
l0
is not attained then S0

l0
� S�l0 or S0

l0
� S�l0 . Thus, using the

de�nition of S0
l0
we get

cpIκq ¤ I0puq, κ � �,�, @ u P Ds,2pRNq with rus2s � l0.

Let u P Ds,2pRNq, u � 0, and denote α � rus2s, then considering the rescaling

ul0 � upt0�q, where t0 � pα{l0q
�1{pN�2sq, we have rul0s

2
s � l0 and consequently

cpIκq ¤ Ipul0q �
1

2
tN�2s
0 rus2s � tN0 Φ0puq

¤ max
t¥0

I0pζuptqq, for κ � �,�.

By Lemma 2.5.5 we conclude cpIκq ¤ cpI0q, κ � �,�.

Now suppose that pf 17q holds. As seen above, ζwκ belongs to ΓI , thus

cpIq ¤ max
t¥0

Ipζwκptqq   max
t¥0

Iκpζwκptqq � cpIκq, κ � �,�.

We claim that S0
l0
is attained, from which we conclude the desired inequality in pf7q.

Assume the contrary, by arguing as before, we have S0
l0
� S�l0 or S0

l0
� S�l0 . Taking

|x| Ñ 8 in pf 17q we get that F0ptq ¥ Fκptq, κ � �,�, for all t P R. Consequently, in
any case, »

RN
F0pwκq dx ¤ sup

rus2s�l0

»
RN
F0puq dx

�

»
RN
Fκpwκq dx ¤

»
RN
F0pwκq dx, κ � �,�, (2.6.2)

a contradiction, because relation (2.6.2) implies that S0
l0
is attained. �

Summarizing all the discussion until now we can �nally prove Theorem 2.2.4.
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2.6.1 Proof of Theorem 2.2.4

In order to treat the case without compactness condition pf7q, that is not

considered in the local counterpart [98], where the case cpIκq � cpIq, κ � 0,�,�,

may occur, we need Theorem 0.6.4, which states that the existence of a critical point

of I is guaranteed whenever the minimax level (2.1.1) is attained.

Remark 2.6.2. We de�ne

c1pIq � inf
γPΓI

sup
tPr0,1s

Ipγptqq,

where

Γ1
I �

 
γ P Cpr0, 1s,Ds,2pRNqq : γp0q � 0, rγp1qss ¡ r, Ipγp1qq   0

(
,

as the usual minimax level. We have that c1pIq � cpIq.

Proof of Theorem 2.2.4 completed. For the reader convenience, we divide the proof in

several steps.

(i) We start observing that the assumptions pf2q and pf3q implies that the

functional I has the mountain pass geometry. In particular, ΓI � H and 0   cpIq   8.

In fact, set v � ϕRpxq :� vRp|x � x0|q, where vR as de�ned as in Remark 2.2.6. Then

ϕR P Ds,2pRNq and we have»
RN
F px, vq dx �

»
BRpx0q

F px, t0q dx�

»
BR�1px0qzBRpx0q

F px, vq dx

¥ |BR| inf
BRpx0q

F px, t0q � |BR�1zBR| inf
px,tqPpBR�1px0qzBRpx0qq�r0,t0s

F px, tq ¡ 0

Since pf2q is equivalent to d{dtpF px, tqt�µq ¥ 0, t ¡ 0, we have for t ¡ 1 that»
RN
F px, tvq dx ¥ tµ

»
RN
F px, vq dx.

Hence

Iptvq �
t2

2
rvs2s �

»
RN
F px, tvq dx ¤

t2

2
rvs2s � tµ

»
RN
F px, vq dxÑ �8, as tÑ 8.

In the other hand, by the growth condition pf1q and the embedding 0.2.1,

Ipuq ¥ rus2s

�
1

2
� Crus2

�
s�2
s



, u P Ds,2pRNq,

Thus, choosing russ su�ciently small, we have Ipuq ¡ 0. The same can be concluded

for the functionals Iκ, since Fκ satis�es pf2q and pf3q.

Let pukq in Ds,2pRNq be such that Ipukq Ñ cpIq and I 1pukq Ñ 0, which the existence

can be guaranteed by the Mountain Pass Theorem (see Theorem 0.6.2).
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(ii) By assumption pf2q, this sequence is bounded in Ds,2pRNq, since for large k,

we have

cpIq � 1� rukss ¥ Ipukq �
1

µ
I 1pukq � uk

�

�
1

2
�

1

µ



ruks

2
s �

»
RN
F px, ukq �

1

µ
fpx, ukquk dx

¥

�
1

2
�

1

µ



ruks

2
s.

Let pwpnqq, pypnqk q and pjpnqk q be the sequences provided by Theorem 1.1.1. If wpnq � 0

for all n ¥ 2, then by assertions (1.1.1) and (1.1.4) of Theorem 1.1.1,

uk Ñ wp1q in L2�s pRNq and uk á wp1q in Ds,2pRNq.

Therefore we conclude that wp1q is a critical point of I such that, up to subsequence,

uk Ñ wp1q in Ds,2pRNq.

(iii) Let us assume �rst that condition pf7q holds true. We argue by contradiction

and assume that there exists n0 ¥ 2, such that wpn0q � 0. By the estimate (1.1.3) and

Proposition 2.4.1 we have, up to subsequence, that

cpIq � lim
kÑ8

�
1

2
}uk}

2 �

»
RN
F px, ukq dx

�
¥ Ipwp1qq �

¸
nPN0,n¡1

I0pw
pnqq �

¸
nPN�

I�pwpnqq �
¸
nPN�

I�pwpnqq. (2.6.3)

Let ϕ P C8
0 pRNq and n ¥ 1. Since���γ�N�2s

2
j
pnq
k f

�
γ�j

pnq
k x� y

pnq
k , γ

N�2s
2

j
pnq
k t

	��� ¤ C|t|2
�
s�1, @x P RN and t P R,

by the embedding (0.2.3), we can take the limit

I 1pukq �
�
γ
N�2s

2
j
pnq
k ϕpγj

pnq
k p� � y

pnq
k qq

	
� rγ�

N�2s
2

j
pnq
k ukpγ

�jpnqk � �y
pnq
k q, ϕss

�

»
RN
γ�

N�2s
2

j
pnq
k f

�
γ�j

pnq
k x� y

pnq
k , γ

N�2s
2

j
pnq
k v

pnq
k

	
ϕ dx,

where

v
pnq
k :� γ�

N�2s
2

j
pnq
k ukpγ

�jpnqk � �y
pnq
k q,

to conclude that wp1q is a critical point of I and wpnq is a critical point of I0, I� or I�,

provided that n P N0,N� or N�, respectively. Consequently, using assumption pf2q

Iκpw
pnqq �

1

2

»
RN
fκpw

pnqqwpnq dx�

»
RN
Fκpw

pnqq dx ¥ 0, @n ¥ 2,
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and Ipwp1qq ¥ 0. On the other hand, the assumption cpIq   cpIκq and the estimate

(2.6.3) implies Iκpwpn0qq   cpIκq, which leads to a contradiction with Theorem 2.2.2 (or

Proposition 2.3.2).

(iv) Suppose now that relation (2.1.2) holds instead of pf7q. Condition (2.1.2)

implies that the path ζwpn0q belongs to ΓI and cpIq ¤ Iκpw
pn0qq, where κ is the

corresponding index for which n0 belongs. In view of the above discussion and estimate

(2.6.3), we conclude that

uk Ñ wp1q in a subsequence or cpIq � max
t¥0

Ipwpn0qp�{tqq.

If the minimax level cpIq is attained then we can apply Theorem 0.6.4 to obtain the

existence of critical point u P ζwpn0qpr0,8qq such that Ipuq � cpIq. �
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Chapter 3

Concentration-compactness at the

mountain pass level for nonlocal

Schrödinger equations

In this chapter, we study the existence of non-trivial weak and ground state

solutions for the following class of fractional Schrödinger equation

p�∆qsu� apxqu � fpx, uq in RN . (Hs)

We obtain existence results for a wide class of possible singular potentials apxq, not

necessarily bounded away from zero and for oscillatory nonlinearities in both subcritical

and critical growth range that may not satisfy the Ambrosetti-Rabinowitz condition.

Outline. The chapter is organized as follows. In Sect. 3.1, we describe the assumptions

on the potential apxq and nonlinearity fpx, tq in Eq. (Hs) that are used to state our

results in Sect. 3.2. In Sect. 3.3, we provide a suitable variational settings to prove our

main results, more precisely, we prove that the energy functional associated with (Hs)

possess the mountain pass geometry and Palais-Smale sequences at the mountain pass

level are bounded. In Sect. 3.4 we describe the limit under the pro�le decomposition of

the Palais-Smale sequence at the mountain pass level of the energy functional related

to (Hs). In Sect. 3.5 we prove that weak solutions of Eq. (Hs) in the autonomous

case fpx, tq � fptq satisfy a Pohozaev type identity. Sections 3.6, 3.7, 3.8 and 3.9

are dedicated to the proof of our main results concerning existence of mountain pass

solutions for Eq. (Hs).
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3.1 Hypothesis

In order to describe our results on the energy functional of (Hs) in a more precise

way, next we state the main assumptions on the potential apxq and the nonlinearity

fpx, tq respectively. We always assume that N ¡ 2s and 0   s   1.

Subcritical case

• Assumptions on apxq � V pxq � bpxq.

(V1) V pxq P LσlocpRNq, for some σ ¡ 2N{pN � 2sq and V pxq is 1�periodic in xi,

i � 1, . . . , N.

(V2) The following in�mum

CV � inf
uPC80 pRN q,}u}2�1

»
RN

|p�∆qs{2u|2 � V pxqu2 dx

is positive and V pxq ¥ �B a.e. x P RN , for some B ¡ 0.

(V3) 0 ¤ bpxq P LβpRNq, for some β ¡ N{2s, and }bpxq}β   CpβqV , where

CpβqV � inf
uPHs

V pRN q,}u}2β1�1

»
RN

|p�∆qs{2u|2 � V pxqu2 dx, β1 � β{pβ � 1q.

(V4) V pxq P LσlocpRNq, for some σ ¡ N{2s and there exists the limit 0   V8 :�

lim|x|Ñ8 V pxq.

• Assumptions on fpx, tq.

(f1) f : RN � R Ñ R is a Carathéodory function. Moreover, for every ε ¡ 0 there

exists pε P p2, 2�s q and Cε ¡ 0 such that

|fpx, tq| ¤ εp|t| � |t|2
�
s�1q � Cε|t|

pε�1, a.e. x P RN and @ t P R.

(f2) There exists µ ¡ 2 such that,

µF px, tq :� µ

» t

0

fpx, τq dτ ¤ fpx, tqt, a.e. x P RN and @ t P R.

(f3) There exists R ¡ 0, t0 ¡ 0, x0 P RN such that

|BR| inf
BRpx0q

F px, t0q � |BR�1zBR| inf
px,tqPpBR�1px0qzBRpx0qq�r0,t0s

F px, tq ¡ 0,
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In the autonomous case, where fpx, tq � fptq, we consider the following variant of pf3q.

(f 13) There exists t0 ¡ 0 such that F pt0q ¡ 0.

(f4) The following limits are uniform in x,

lim
tÑ0

fpx, tq

t
� 0 and lim

|t|Ñ8
F px, tq

t2
� 8.

Moreover, for any compact set K in R, there is a positive constant C � CpKq

such that

|fpx, tq| ¤ C, a.e. x P RN and @ t P K.

(f5) Let Fpx, tq :� 1
2
fpx, tqt� F px, tq. For any 0   a   b, we have that

inf
xPRN

inf
a¤|t|¤b

Fpx, tq ¡ 0.

(f6) There exists p0 ¡ maxt1, N{2su and a0, R0 ¡ 0 such that

|fpx, tq|p0 ¤ a0|t|
p0Fpx, tq, a.e. x P RN , and @ |t| ¡ R0.

(f7) There exists a 1�periodic function fPpx, tq in xi i � 1, . . . , N such that

lim
|x|Ñ8

|fpx, tq � fPpx, tq| � 0,

uniformly in compact sets of R. In addition, we assume that fPpx, tq satis�es pf1q

and either pf2q�pf3q or pf4q.

(f8) For a.e. x P RN the function

t ÞÑ
fPpx, tq

|t|
, is strict increasing in R.

For the next condition we are assuming that fPpx, tq in pf7q is independent of t and we

denote f8ptq � fPptq.

(f9) f8ptq belongs to C1pRq and there exists t0 ¡ 0 such that

F8pt0q �
V8
2
t20 ¡ 0, where F8ptq �

» t

0

f8pτqdτ.

75



We look for solutions in the space Hs
V pRNq which is de�ned as the completion of

C8
0 pRNq with respect to the norm

}u}2
V :�

»
RN

|p�∆qs{2u|2 � V pxqu2 dx.

If we assume V pxq P L1
locpRNq and pV2q, then Hs

V pRNq is well de�ned, also } � }V is

induced by the inner product

pu, vqV :�

»
RN
p�∆qs{2up�∆qs{2v � V pxquv dx,

and in view of Proposition 3.3.1, we have that Hs
V pRNq is a Hilbert space.

Writing, apxq � V pxq � bpxq, we consider associated with the problem (Hs), the

functional I : Hs
V pRNq Ñ R given by

Ipuq �
1

2
}u}2

V �
1

2

»
RN
bpxqu2 dx�

»
RN
F px, uq dx.

If in addition we assume pV3q and pf1q then I P C1pHs
V pRNqq and

I 1puq�v �
»
RN
p�∆qs{2up�∆qs{2v�pV pxq�bpxqquv dx�

»
RN
fpx, uqv dx, u, v P Hs,2

V pRNq.

Thus critical points of I correspond to weak solutions of (Hs) and conversely. We

de�ne the minimax level as

cpIq � inf
γPΓI

sup
t¥0

Ipγptqq, (3.1.1)

where

ΓI �
!
γ P Cpr0,8q, Hs

V pRNqq : γp0q � 0, lim
tÑ8

Ipγptqq � �8
)
. (3.1.2)

We also consider the following C1 functionals associated with the limits given in pV4q,

pf7q and pf9q,

IPpuq :�
1

2
}u}2

V �

»
RN
FPpx, uq dx, u P Hs

V pRNq,

I8puq :�
1

2
}u}2

V8 �

»
RN
F8puq dx, u P Hs

V pRNq,

where FPpx, tq �
³t
0
fpx, τqdτ. Similarly, as in (3.1.1) and (3.1.2), we can de�ne cpIPq,

cpI8q,ΓIP and ΓI8 . Next we �nally state the assumption relative to the minimax level of

the considered functionals, that guarantees compactness of the Palais-Smale sequences

at the mountain pass level.

(f10) cpIq   cpIPq;

(f 110) cpIq   cpI8q;
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Critical case

• Assumptions on apxq. Here we assume bpxq � 0, that is, apxq � V pxq.

(V �
1 ) V pxq P L

1
locpRNq X CpRNzOq, where O is a �nite set, and V pxq ¤ 0 a.e. x P RN .

Moreover

0   C�V :� inf
uPC80 pRN qzt0u

³
RN |p�∆qs{2u|2 � V pxqu2 dx³

RN |V pxq|u
2 dx

  8.

(V �
2 ) There exists a� P RN such that the following limits exist and are uniformly

convergent in compact sets

V�pxq � lim
λÑ8

λ�2sV pλ�1px� a�qq,

V�pxq � lim
λÑ0

λ�2sV pλ�1px� a�qq.

Moreover lim|x|Ñ8 V pxq � 0, and V�pxq satis�es pV �
1 q, provided that V�pxq � 0.

(V �
3 ) For any given sequence pλkq of positive numbers such that either |λk| Ñ 8 or

|λk| Ñ 0; and sequence pykq in RN , such that |λkyk| Ñ 8 we have,

lim
kÑ8

λ�2s
k V pλ�1

k x� ykq � 0, uniformly in compact sets.

• Assumptions on fpx, tq.

(f�1 ) f : RN � R Ñ R satis�es the Carathéodory conditions. Moreover, there exists

C ¡ 0 such that

|fpx, tq| ¤ C|t|2
�
s�1, a.e. x P RN and @ t P R.

(f�2 ) For each real numbers a1, . . . , aM , there exist C � CpMq ¡ 0 such that�����F
�
x,

M̧

n�1

an

�
�

M̧

n�1

F px, anq

����� ¤ CpMq
¸

m�nPt1,...,Mu
|an|

2�s�1|am| a.e. x P RN .

(f�3 ) The following limits exist and are uniformly convergent in x and in compact sets

for t,

f0ptq :� lim
|x|Ñ8

fpx, tq,

f�ptq :� lim
jPZ,jÑ�8

γ�
N�2s

2
jf

�
γ�jx, γ

N�2s
2

jt
	
,

f�ptq :� lim
jPZ,jÑ�8

γ�
N�2s

2
jf

�
γ�jx, γ

N�2s
2

jt
	
,

for some γ ¡ 1 and 0   s   mint1, N{2u.
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(f�4 ) For each κ � 0,�,�, the function

t ÞÑ
fκptq

|t|
is strict increasing in R.

Observe that the assumption pV �
1 q guarantees that } � }V de�nes a norm in Ds,2pRNq

which is equivalent to the standard one (see Proposition 3.3.1). Thus in the critical

case we consider associated with problem (Hs) the energy functional I� : Ds,2pRNq Ñ R

given by

I�puq �
1

2
}u}2

V �

»
RN
F px, uq dx, u P Ds,2pRNq,

which is well de�ned and is C1 provided pf�1 q holds. We can de�ne cpI�q and ΓI�

similarly as in (3.1.1) and (3.1.2), by just replacing Hs
V pRNq by Ds,2pRNq.

We consider the next assumption in order to compare the minimax levels of the

resulting limiting energy functionals.

(H �) The following inequalities holds,

V pxq ¤ V�pxq, for a.e. x P RN , (3.1.3)

For each κ � 0,�,�, Fκptq ¤ F px, tq, a.e. x P RN and @ t P R (3.1.4)

Moreover, at least one of the next conditions hold,

(i) The inequality (3.1.3) strict in a non-zero measure domain.

(ii) There exists δ ¡ 0 such that the inequality (3.1.4) is strict for all t P p�δ, δq

and a.e. x P RN .

Also, to consider the autonomous case fpx, tq � fptq, we assume that the nonlinearity

is self-similar,

(f�5 ) There exists γ ¡ 1 and 0   s   N{2 such that

F ptq � γ�NjF
�
γ
N�2s

2
jt
	
, @ j P Z and t P R.
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3.2 Statement of the main results

We �rst state our results concerning existence of ground states solutions for Eq.

(Hs) in both subcritical and critical growth range of the nonlinearity. We say that u

is a ground state solution for (Hs), when Ipuq ¤ Ipvq for any other weak solution v in

the same considered space of functions.

Theorem 3.2.1.

(i) Suppose that fpx, tq and apxq � V pxq are 1�periodic in xi, i � 1, . . . , N and

satisfy pf1q�pf3q or pf3q�pf6q and pV1q�pV2q respectively. Then the equation (Hs)

has a ground state solution.

(ii) Suppose that fptq P C1pRNq satis�es pf 13q and pf
�
5 q for some γ ¡ 1. Let

G �
"
u P Ds,2pRNq :

»
RN
F puq dx � 1

*
,

and consider

Iλ � inf
uPG

"»
RN

|p�∆qs{2u|2 � λ|x|�2su2 dx

*
, (3.2.1)

where 0   λ   ΛN,s is given by (0.0.3). Then, there is a radial minimizer w for

(3.2.1). Furthermore, there exists α ¡ 0 such that u � wp�{αq is a ground state

solution for (Hs), with apxq � �λ|x|�2s.

Theorem 3.2.1 takes into account the invariance of I under the action

of translations and dilations in HspRNq and Ds,2pRNq, to obtain concentration-

compactness of Palais-Smale and minimizing sequences in each case respectively. These

properties are enough to ensure existence of ground state solutions. Moreover, our

results improve and complement [33] for the fractional framework since here we consider

a potential apxq and nonlinearity F px, tq which can change sign. Also in Thereom

3.2.1�(ii) we do not require the classical Ambrosetti-Rabinowitz condition pf2q. Our

argument to prove Thereom 3.2.1�(ii) involves a Pohozev type identity and as usual

for this we required C1 regularity.

Theorem 3.2.2. Let

c̄pIq :� inf
uPHs

V pRN qzt0u
sup
t¥0

Iptuq and cN pIq :� inf
uPN

Ipuq,

where N �
 
u P Hs

V pRNqzt0u : Ipuq � u � 0
(
. Suppose that for a.e. x P RN the function

t ÞÑ
fpx, tq

|t|
is strict increasing in R. (3.2.2)
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If V pxq P L1
locpRNq, apxq � V pxq� bpxq satis�es pV2q�pV3q and fpx, tq ful�lls pf1q�pf2q,

then

cpIq � c̄pIq � cN pIq.

In particular, any non-trivial weak solution u in Hs
V pRNq at the mountain pass level is

a ground state solution.

Theorem 3.2.2 improves some results in [79] since we deal with the case where apxq

may changes sign and is not necessarily bounded from below, also with nonlinearity

having the behavior at 0 described by pf 11q. Moreover, Theorem 3.2.2 proves the

existence of ground state by replacing the aforementioned invariance by (3.2.2). In

fact, our results below give some conditions that guarantee existence of nontrivial

weak solutions in Hs
V pRNq at the mountain pass level.

Our next results are on the existence of weak solutions of (Ps) at the mountain-

pass level by using the concentration-compactness principle.

Theorem 3.2.3. Assume that fpx, tq satis�es pf1q�pf3q or pf3q�pf6q; and additionally

pf7q. Suppose also that apxq and fpx, tq satisfy either one of the following conditions,

(i) bpxq � 0, pV1q�pV2q, pf8q and pf10q; or

(ii) V pxq ¥ 0, bpxq has compact support, pV2q�pV4q, pf9q and pf
1
10q; or

(iii) Replace conditions pf10q and pf
1
10q in the above items by

Ipuq ¤ IPpuq and Ipuq ¤ I8puq, @u P Hs
V pRNq, (3.2.3)

respectively for each considered case.

Then Eq. (Hs) possess a non-trivial weak solution u in Hs
V pRNq at the mountain pass

level, that is, Ipuq � cpIq. Moreover, under the assumptions of items (i) and (ii), any

sequence pukq in Hs
V pRNq such that Ipukq Ñ cpIq and I 1pukq Ñ 0 has a convergent

subsequence.

Theorems 3.2.1�(i) and 3.2.3 extend and complement the existence results of

[33, 79, 98] in the fractional framework. In Theorem 3.2.3 the potential apxq �

V pxq � bpxq is not necessarily bounded from below and in Theorem 3.2.3�(ii) we do

not ask pf8q as it was made in these works.

Theorem 3.2.4. Assume that fpx, tq and apxq � V pxq satisfy pf�1 q�pf
�
4 q, (3.1.3),

(3.1.4), pf2q�pf3q and pV
�

1 q�pV
�

3 q respectively. Then Eq. (Hs) has a non-trivial weak

solution in Ds,2pRNq at the mountain pass level. If we assume additionally condition

pH �q, then any sequence pukq in Ds,2pRNq such that I�pukq Ñ cpI�q and I 1�pukq Ñ 0

has a convergent subsequence.
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Theorems 3.2.1�(ii) and 3.2.4 complement the study made in [39]. Theorem 3.2.4

can be seen as a nonlocal generalization of [27, Theorem 5.2], since we take account that

the critical nonlinearity is not autonomous. It also can be seen as complement for many

results in the literature about existence of non-trivial weak solution for Schrödinger

equation with critical nonlinearity and singular potential (cf. [49, 50, 86, 95] and the

references given there).

Remarks on the hypothesis and in the main results

Remark 3.2.5. Next we give several helpful comments concerning our assumptions.

(i) Assumption pf1q can be seen as a subcritical version of pf�5 q in the sense that it

is oscillating about a subcritical power |t|p�2t, 2   p   2�s . In fact, it is easy to

see that pf1q holds provided fpx, tq satis�es conditions pf 11q and pf
2
1 q given below.

(f 11) The following limit is uniform in x,

lim
tÑ0

fpx, tq

|t| � |t|2
�
s�1

� 0;

(f21 ) There exists a positive constant C and a function %ptq P CpRzt0uq XL8pRq
with 2   inftPR %ptq ¤ suptPR %ptq   2�s , such that

|fpx, tq| ¤ Cp1� |t|%ptq�1q, a.e. x P RN and @ t P R;

For example of nonlinearity satisfying pf 11q and pf
2
1 q consider

fpx, tq � kpxq r%1ptqpln |t|tq � %ptqs |t|%ptq�2t, fpx, 0q � 0,

where

%ptq �
2�s � 2

16
sin plnp| ln |t||qq �

52�s � 6

8
and 0 ¤ kpxq P CpRq X L8pRNq.

The primitive is given by F px, tq � kpxq|t|%ptq. A version of pf1q for the local case

appeared in [96].

(ii) Using similar arguments as in [33, Lemma 2.1], we have that pf4q and pf6q imply

pf1q in a more restrict setting, more precisely, there is p P p2, 2�s q such that for

any ε ¡ 0 there is Cε ¡ 0 with

|fpx, tq| ¤ ε|t| � Cε|t|
p�1, a.e. x P RN and @ t P R.

That is, in the case that fpx, tq ful�lls pf4q and pf6q we have that pε � p, for all

ε ¡ 0 in condition pf1q.
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(iii) Conditions pf4q�pf6q are an alternative for the Ambrosetti-Rabinowitz condition

pf2q, and was �rst introduced in [37] for the local case. By similar arguments as

the ones made in [37], condition pf6q holds once we take account pf4q, pf5q and

that there exists p P p2, 2�s q and c1, c2, r1 ¡ 0 such that

|fpx, tq| ¤ c1|t|
p�1 and F px, tq ¤

�
1

2
�

1

c2|t|ν



fpx, tqt, for |t| ¥ r1.

where 1   ν   2 if N � 1, and 1   ν   N � p� pN{2s if N ¥ 2.

(iv) In view of the boundedness of Palais-Smale sequences we point out that we

separate our studies for the subcritical case in two distinct situations: fpx, tq

satis�es pf1q�pf3q or pf3q�pf6q. The �rst one is associated to the case where fpx, tq

has oscillatory behavior around the subcritical power and the second one refers

to the case where fpx, tq does not satis�es Ambrosetti-Rabinowitz condition.

(v) In [33], considering a local Schrödinger equation with asymptotically periodic

terms, in order to prove the mountain pass geometry it was assumed that

F px, tq ¡ 0 for all px, tq P RN �R and pf4q. This setting allow the author do not

use the classical Ambrosetti-Rabinowitz condition pf3q. Here, in this work, we

have an improvement even to the local case because we assume pf3q instead of

assuming that F px, tq ¡ 0 for all px, tq P RN � R.

(vi) Assumption pf5q it is used to prove the boundedness of Palais-Smale sequences

of the mountain pass level for the functional of Eq. (Hs). In [33] to prove similar

result the author assumed the following more restrictive condition

F px, tq �
1

2
fpx, tqt� F px, tq ¥ bptqt2, @ px, tq P RN � R,

for some bptq P CpRzt0u,R�q.

(vii) In our approach to study existence of weak solutions of Eq. (Hs) we use

assumption pf7q, unlike the aforementioned papers, where the authors impose

the more tight condition

|fpx, tq � fPpx, tq| ¤ hpxq|t|q�1 a.e. x in RN and @ t P R,

where hpxq belongs to the class of functions in CpRNq X L8pRNq such that for

every ε ¡ 0 the set tx P RN : |hpxq| ¥ εu has �nite Lebesgue measure.

(viii) The smoothness condition assumed in pf9q is the natural hypothesis used in the

literature to prove that weak solutions of Eq. (Hs) satis�es a Pohozaev type

identity.
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(ix) We prove in Proposition 3.3.1 that Hs
V pR3q is well de�ned and it is continuous

embedded in HspR3q. As a consequence of this we can conclude that the in�mum

CpβqV de�ned in pV3q is strictly positive.

(x) Once the limits in pV4q, pf7q, pf9q or pf�3 q exist, to obtain compactness of

Palais-Smale sequences at the minimax levels we need to require the additional

conditions over the minimax levels given in assumptions pf10q, pf 110q, pH
�q. In

fact, we do not believe that it is possible, in general, to achieve the compactness

described in Theorems 3.2.3 and 3.2.4 without these conditions. We mention that

this kind of approach was introduced by P.-L. Lions in [65�68].

(xi) Similarly as made in Chapter 2, we also consider the case when pf10q, pf 110q, pH
�q

do not hold. Precisely, when it is allowed cpIq � cpIPq or cpIq � cpI8q. In this

case, the concentration-compactness argument at the mountain pass level cannot

be used. We apply Theorem 0.6.4 to overcome this di�culty and prove existence

of solution at the mountain pass level.

(xii) For problem (Hs) involving critical growth we require conditions pV �
1 q�pV

�
3 q on

the potential and pf�3 q, pf
�
4 q and pH �q on the nonlinear term fpx, tq. These

assumptions are suitable for our argument, di�erently from pf10q�pf 110q, because

the potential that appears in the associated limiting equation depends on the

pro�le decomposition of Theorem 1.1.1 for a given Palais-Smale sequence at the

mountain pass level (for more details see estimate (3.9.1)).

(xiii) In our results, one can assume that fpx, tq � fp|x|, tq and apxq � ap|x|q are radial

in x instead of the existence of the asymptote f8ptq or f0ptq. This fact can be

easily veri�ed by using Proposition 1.4.1.

Remark 3.2.6. Under the assumptions pV4q and pf7q we describe next conditions which

guarantee that pf10q and pf 110q hold.

(H ) The following inequalities hold,

FPpx, tq ¤ F px, tq, a.e. x P RN and t P R, (3.2.4)

V pxq ¤ V8, a.e. x P RN . (3.2.5)

In addition, we assume that either (3.2.4) holds strictly in some open interval

contained the origin or (3.2.5) holds in a set of positive measure.

In Proposition 3.8.1, under suitable conditions, we obtained the following estimates for

the minimax levels: cpIq ¤ cpIPq and cpIq ¤ cpI8q. Moreover, we proved that under

condition pH q we have that pf10q and pf 110q hold. We observe that on the corresponding

assumption of Theorem 3.2.3, it is easy to see that inequalities (3.2.4) and (3.2.5) imply

that (3.2.3) is satis�ed.
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Remark 3.2.7. Using the same argument of Remark 2.2.7 it can be proved the existence

of non-negative weak solutions of (Ps) if fpx, tq ¥ 0 for all t ¥ 0 and almost everywhere

x in RN . In fact, consider the truncation

f̄px, tq �

#
fpx, tq, if t ¥ 0,

0, if t   0.

Assume that apxq P L1
locpRNq and that conditions pf1q and pV2q hold true with bpxq � 0.

Thus for u a weak solution of (Ps), with fpx, tq replaced by f̄px, tq, we have that u is

also a weak non-negative solution for (Ps). To see that, let ξ P C8
0 pR : r0, 1sq such that

ξptq �

#
1, if t P r�1, 1s

0, if |t| ¥ 2
and |ξ1ptq| ¤ C @ t P R,

For each n P N, de�ne ξn : RN�1 Ñ R by ξnpzq � ξp|z|2{n2q. Then ξn P C8
0 pRN�1q and

veri�es

|∇ξnpzq| ¤ C and |z||∇ξnpzq| ¤ C @ z P RN�1.

By a density argument, we can take ϕ � ξnw� in (0.3.4), where w�pzq � mintwpzq, 0u.

Since w�pzq � Espu�q, we have that»
RN�1
�

y1�2sξn|∇w�|2 � y1�2sξn x∇w�,∇w�y � y1�2s x∇w� �∇w�, w�∇ξny dxdy

� κs

»
RN
pf̄px, uq � apxquqξnu� dx,

and we may apply the Dominated Convergence Theorem and (0.3.2) to get

}u�}2
V �

»
RN
f̄px, uqu� dx � 0,

which implies that u� � 0. Once again, if u has su�cient regularity one can show u is

positive, by applying the maximum principle for the fractional Laplacian as described

in [84]. In order to regularize the solutions, we follow the same arguments of [79, Section

6], but as already mentioned in this paper, we need su�cient regularity in the potential

apxq � V pxq, which is beyond our scope (see also [38, Chapter 5]).

Example 3.2.8. Our approach include the following classes of potentials:

(i) For a potential satisfying assumption pV2q and that is not bounded away from

zero, consider 0 ¤ apxq � V0pxq P L
p
locpRNq X pCpRNzOq, where p ¥ 1 and O is

a countable set, and suppose that Z � tx P RN : V pxq � 0u � H is a countable

discrete set.

(ii) Let V0pxq the potential given above. For a potential the changes sign and satis�es

pV2q, consider apxq � V0pxq � ε, where 0   ε   CV0{2.
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(iii) To study potential of the form apxq � V pxq � bpxq, setting

V pxq � 2�
1

1� |x|2
and V8 � 2,

and

bpxq �

#
Cb|x|�δ, if |x| ¤ 1,

0, if |x| ¡ 1,

we can verify that apxq � V pxq � bpxq satis�es conditions pV2q�pV4q. Here Cb is a
positive normalization constant, 0   δ   N{β and β ¡ N{2s.

(iv) For potential apxq � V pxq satisfying assumptions pV �
1 q�pV

�
3 q we can consider

V pxq � �
1

L

Ļ

j�1

λj
|x� xj|2s

, with 0   λj  
ΓN,s

2
, j � 1, . . . , L,

which is well de�ned in view of (0.0.3).

Example 3.2.9. Note that the hypotheses of Theorems 3.2.1�3.2.4 are for example

satis�ed by nonlinearities of the following forms:

(i) Let %ptq be as in Remark 3.2.5�(i) and consider kpxq � |x|2{p1 � |x|2q. One can

see that

fpx, tq � kpxq r%1ptqpln |t|tq � %ptqs |t|%ptq�2t, fpx, 0q � 0,

satis�es assumptions pf1q�pf3q, pf9q and pf 110q.

(ii) For a nonlinearity satisfying conditions pf3q�pf8q and pf10q we can de�ne

fpx, tq �

#
hpx, tq, for t ¥ 0,

� hpx,�tq, for t   0,

where

hpx, tq � kpxqt lnp1� tq � k1pxq
�
p1� cosptqqt2 � 2pt� sinptqqt

�
,

for t ¥ 0, s ¡ N{6; kpxq � |x|2{p1 � |x|2q and 0 ¤ k1pxq P CpRNq is such that

lim|x|Ñ8 k1pxq � 0.

(iii) Let 0 ¤ cpxq be a continuous 1�periodic in xi, i � 1, . . . , N, and consider

fpx, tq � cpxq rphεptq � h1εptqts |t|
p�1, 2   p   2�s , where hεptq P C8pRq is a

non-decreasing cuto� function satisfying#
|h1εptq| ¤ C{t, |hεptq| ¤ C, @t P R,

hεptq � �ε, for t ¤ 1{4, hεptq � ε, for t ¥ 1{4, with ε small enough.

We empathize the fact that F px, tq changes sign.
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(iv) Suppose that the function k0pxq is continuous and

2�s � µ ¡ sup
xPRN

k0pxq ¥ k0pxq ¡ k0p0q � inf
xPRN

k0pxq � lim
|x|Ñ8

k0pxq � 0.

The nonlinearity given below satis�es the hypothesis of Theorem 3.2.4,

fpx, tq � exptk0pxqpsinpln |t|q � 2qu rk0pxq cospln |t|q � 2�s s |t|
2�s�2t, fpx, 0q � 0.

3.3 Variational settings

This section is devoted to develop the basic background needed in order to apply

our variational arguments. We start by establishing the space of functions where the

solutions lies.

Proposition 3.3.1. Suppose that V pxq P L1
locpRNq and satis�es pV2q, then Hs

V pRNq

is a Hilbert space continuously embedded in HspRNq. If V pxq satis�es pV �
1 q, then the

norm } � }V is equivalent to the standard norm of Ds,2pRNq.

Proof. Let us prove �rst that there exists a positive constant C such that

Crϕs2s ¤ }ϕ}2
V , @ϕ P C8

0 pRNq. (3.3.1)

In fact, on the contrary, there would exist a sequence pϕnq in C8
0 pRNq, such that

rϕns
2
s ¡ n}ϕn}

2
V , @n P N.

Taking vn � ϕn{rϕnss, we have

1

n
¡ }vn}

2
V and CV }vn}2

2 ¤ }vn}
2
V , @n P N,

and consequently limnÑ8 }vn}2
V � limnÑ8 }vn}2

2 � 0. This leads to a contradiction with

the fact that

1� B}vn}2
2 ¤ }vn}

2
V , @n P N.

Now consider pϕnq any sequence in C8
0 pRNq. Using inequality (3.3.1) we have

Crϕm � ϕns
2
s ¤ }ϕm � ϕn}

2
V , for any m � n.

Consequently,

}ϕm � ϕn}
2 ¤ mint1, Cu�1

�
1�

1

CV



}ϕm � ϕn}

2
V , for any m � n.

Thus Hs
V pRNq is well de�ned. Moreover, Fatou Lemma and embedding (0.2.1) implies

Hs
V pRNq �

"
u P HspRNq :

»
RN
V pxqu2 dx   8

*
,
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with the continuous embedding Hs
V pRNq ãÑ HspRNq.

Assuming condition pV �
1 q, we have

rus2s �

»
RN
V pxqu2 dx ¥ C�V

»
RN

|V pxq|u2 dx, @u P C8
0 pRNq,

from this we derive

C�V rus2s ¤ pC�V � 1qrus2s �

»
RN
pV pxq � C�V |V pxq|qu2 dx

¤ pC�V � 1q}u}2
V , @u P C8

0 pRNq.

Since V pxq ¤ 0 a.e. in RN , we conclude that the norms r � ss and } � }V are equivalent

in Ds,2pRNq. �

Remark 3.3.2. (i) If V pxq ful�lls pV2q and pV4q, then Hs
V pRNq � HspRNq. Moreover,

the norms } � } and } � }V are equivalent. Consequently, the path λuptq :� up�{tq,

t ¥ 0 belongs to Cpr0,8q, Hs
V pRNqq and up� � yq P Hs

V pRNq for all u P Hs
V pRNq

and y P RN . Indeed, there is a ball BR1 with center at the origin such that»
RN
V pxqu2 dx �

»
BR1

V pxqu2 dx�

»
RN zBR1

V pxqu2 dx

¤

�»
BR1

|V pxq|σ dx

�1{σ�»
BR1

|u|2σ{pσ�1q dx

�pσ�1q{σ

� pV8 � 1q

»
RN zBR1

u2 dx, @u P Hs
V pRNq,

where 2 ¤ 2σ{pσ � 1q ¤ 2�s . So we can apply embedding (0.2.3) to conclude the

desired result. To obtain that the path λu belongs to Cpr0,8q, Hs
V pRNqq we use

Lemma 2.5.3.

(ii) If we assume pV1q�pV2q, then we can replaceHspRNq byHs
V pRNq in Theorem 1.1.2

and the respectively norms in the assertions (1.1.5)�(1.1.8). In fact, condition

pV1q implies that DZN is a group of unitary operators in Hs
V pRNq.

Now we prove that our functional Iλ has the Mountain Pass Geometry.

Lemma 3.3.3. Suppose that fpx, tq satis�es pf1q and either pf2q�pf3q or pf4q. If

apxq � V pxq � bpxq P L1
locpRNq ful�lls pV2q and pV3q, then the functional I possess

the mountain pass geometry. Precisely,

(i) Ip0q � 0;

(ii) There exists r, b ¡ 0 such that Ipuq ¥ b, whenever }u}V � r;

(iii) There is e P Hs
V pRNq with }e}V ¡ r and Ipeq   0;
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In particular 0   cpIq   8.

Proof. Let ξR P C8
0 pRq, R ¡ 0, such that 0 ¤ ξRptq ¤ t0 and

ξRptq �

#
t0, if |t| ¤ R,

0, if |t| ¡ R � 1.

Setting vpxq :� ξRp|x� x0|q, we have v P Hs
V pRNq and by assumption pf3q we have»

RN
F px, vq dx �

»
BRpx0q

F px, t0q dx�

»
BR�1px0qzBRpx0q

F px, vq dx

¥ |BR| inf
BRpx0q

F px, t0q � |BR�1zBR| inf
px,tqPpBR�1px0qzBRpx0qq�r0,t0s

F px, tq ¡ 0.

First assume that pf2q holds. Since bpxq P LβpRNq,»
RN
bpxqu2 dx ¤

�»
RN

|bpxq|β dx


1{β �»
RN

|u|2β{pβ�1q dx


pβ�1q{β
, @u P Hs

V pRNq,

with 2   2β{pβ � 1q   2�s , by conditions pf1q and pV3q, for any ε we get that

Ipuq ¥

�
1

2

�
1�

}bpxq}β

CpβqV

� 2εC2

�
� εC2�s }u}

2�s�2
V � CεCpε}u}

pε�2
V

�
}u}2

V , (3.3.2)

for all u P Hs
V pRNq, where C2, C2�s and Cpε are positive constants provided by the

embedding described in Proposition 3.3.1. This allow us to consider ε in a such way

that the �rst term in the right-hand side of (3.3.2) is positive, once }u}V is taken small

enough. Hence there exists r ¡ 0 such that Ipuq ¡ 0 provided that }u}V � r. Since

condition pf2q is equivalent to d{dtpF px, tqt�µq ¥ 0, for t ¡ 0, we have»
RN
F px, tvq dx ¥ tµ

»
RN
F px, vq dx, whenever t ¡ 1.

Hence, as tÑ 8,

Iptvq �
t2

2
}v}2

V �

»
RN
bpxqu2 dx�

»
RN
F px, tvq dx

¤
t2

2
}v}2

V � tµ
»
RN
F px, vq dxÑ �8, as tÑ 8.

Now suppose that assumption pf4q holds. By Remark 3.2.5�(ii) we can argue as above

to conclude the existence of r ¡ 0 such that Ipuq ¡ 0 wherever }u}V   r. For any given

R ¡ 0, there exists tR ¡ 0 such that

F px, tq ¡ Rt2, @ |t| ¡ tR, @x P RN .

Let be ApR, tq :� tx P RN : t|vpxq| ¡ tRu, for t ¡ 0. We have that»
RN
F px, tvq dx �

»
Kt

F px, tvq dx�

»
ApR,tq

F px, tvq dx

¥

»
Kt

F px, tvq dx�Rt2
»
ApR,tq

v2 dx, (3.3.3)
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where Kt � pRNzApR, tqq X supppvq. Using Remark 3.2.5�(ii), for each t ¡ 0, we get

that

|F px, tvq| ¤ C, for a.e. x P Kt,

where C is a positive constant that does not depend in x and t. Consequently, for any

x P supppvq,

F px, tvqXKtpxq Ñ 0, as tÑ 8,

where we have used that, for any x P supppvq,

XRN zApR,tqpxq Ñ XRN z supppvqpxq � 0, as tÑ 8,

Thus Dominated Convergence Theorem implies that the �rst integral in the right-hand

side of inequality (3.3.3) goes to zero as t goes to in�nity. By the same reason, we also

have

lim
tÑ8

»
ApR,tq

v2 dx � lim
tÑ8

»
RN
v2XApR,tq dx �

»
RN
v2Xtv�0u dx �

»
RN
v2 dx

In particular, there exists a positive number t0,R such that

1

2

»
RN
v2 dx  

»
ApR,tq

v2 dx, @ t ¡ t0,R. (3.3.4)

Replacing (3.3.4) in (3.3.3) we obtain that

Iptvq �
t2

2
}v}2

V �
t2

2

»
RN
bpxqv2 dx�

»
RN
F px, tvq dx

¤
1

2

�
}v}2

V �R}v}2
2

�
t2 �

»
Kt

F px, tvq dx   0, for t ¡ t0,R,

provided that R is su�ciently large enough. �

Remark 3.3.4. (i) In view of Lemma 3.3.3, we de�ne the set

Γ1
I �

 
γ P Cpr0, 1s, Hs

V pRNqq : γp0q � 0, }γp1q}V ¡ r, Ipγp1qq   0
(
,

and

c1pIq � inf
γPΓI

sup
tPr0,1s

Ipγptqq,

the usual minimax level. Thus have c1pIq � cpIq.

(ii) When fpx, tq � fptq, the mountain pass geometry can be obtained by replacing

condition pf3q by pf 13q. In fact, let ξR as in the proof of Lemma 3.3.3 and de�ne

ηRpxq � ξRp|x|q. Then, arguing as in Remark 2.2.6, we have»
RN
F pηRq dx ¡ 0,

provided that R is su�ciently enough. The mountain pass geometry now follows

as in the proof of Lemma 3.3.3.
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(iii) Assume that fpx, tq satis�es pf1q and either pf2q�pf3q or pf4q; and additionally

pf7q. Suppose also that apxq and fpx, tq ful�lls pV2q�pV4q and pf9q, respectively.

Then the limiting functional I8 has the mountain pass geometry. In fact, pf9q

together with Lemma 2.5.3 implies that λuptq :� up�{tq, t ¥ 0, is an admissible

path for ΓI8 , where u P H
spRNq is such that»

RN
F8puq �

V8
2
u2 dx ¡ 0. (3.3.5)

Using the same argument as in Remark 3.3.4�(ii) we can see that there exists

ϕ0 P C
8
0 pRNq satisfying (3.3.5) and

I8pλϕ0ptqq �
1

2
tN�2srϕ0s

2
s � tN

�»
RN
F8pϕ0q �

V8
2
ϕ2

0

�
Ñ �8, as tÑ 8.

Moreover, Ipuq ¡ 0 wherever }u}V � r, for r ¡ 0 su�ciently small enough (see

proof of Lemma 3.3.3).

(iv) In addition to the assumptions of Lemma 3.3.3, assume that F px, tq ¡ 0 for a.e.

x P RN and t � 0. Then, for any u P Hs
V pRNqzt0u, the path de�ned by ζptq � tu

belongs to ΓI . In fact, we make the following modi�cation in the proof of Lemma

3.3.3, replacing v by u and taking into account the same notation. We have that$''&''%
»
RN
F px, tuq dx ¥ Rt2

»
ApR,tq

u2 dx,

lim
tÑ8

»
ApR,tq

u2 dx � lim
tÑ8

»
RN
u2XApR,tq dx �

»
RN
u2Xtu�0u dx �

»
RN
u2 dx,

which enable us to proceed as in (3.3.4) and get that

ϕptq :� Iptuq ¤
1

2

�
}u}2

V �R}u}2
2

�
t2 Ñ �8, as tÑ 8,

provided that R is large enough. Moreover, suppose that condition (3.2.2) holds.

Taking into account that

ϕ1ptq � t

�
}u}2

V �

»
RN

fpx, tuq

t
u dx

�
, t ¡ 0,

we infer that ζptq has a unique critical point.

As a consequence of the previous result, we can guarantee the existence of

bounded Palais-Smale sequence at the mountain pass level cpIq.

Proposition 3.3.5. Assume that apxq P L1
locpRNq satis�es pV2q�pV3q and fpx, tq

satis�es either

(i) pf1q�pf3q; or
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(ii) pf3q�pf6q;

Then there exists a bounded sequence pukq such that Ipukq Ñ cpIq and I 1pukq Ñ 0 in

the dual of Hs
V pRNq.

Proof. (i) By Lemma 3.3.3, we may apply the standard Mountain Pass Theorem

(see [2, 16]) in order to �nd a sequence pukq in Hs
V pRNq such that Ipukq Ñ cpIq and

I 1pukq Ñ 0. For large k, we have

cpIq � 1� }uk}V ¥ Ipukq �
1

µ
I 1pukq � uk

¥

�
1

2
�

1

µ


�
1�

}bpxq}β

CpβqV

�
}uk}

2
V �

»
RN
F px, ukq �

1

µ
fpx, ukquk dx

¥

�
1

2
�

1

µ


�
1�

}bpxq}β

CpβqV

�
}uk}

2
V ,

which implies that pukq is bounded in Hs
V pRNq.

(ii) The proof of this case is based in the arguments made in [33, Lemma 2.5],

which are similar to the ones used in [37]. By Lemma 3.3.3, we can apply a variant of

the Mountain Pass Theorem (see [21,77]), to obtain the existence of a Cerami sequence

pukq for I at the level cpIq, more precisely,

Ipukq Ñ cpIq and p1� }uk}V q}I
1pukq}� Ñ 0,

where }�}� denote the usual norm of the dual ofHs
V pRNq.We claim that pukq is bounded

in Hs
V pRNq. Assume by contradiction that, up to subsequence, }uk}V Ñ 8. De�ne the

sequence

vk �
uk

}uk}V
.

We have that

lim
kÑ8

�
1�

»
RN

fpx, ukq

}uk}V
vk dx�

1

}uk}2
V

»
RN
bpxqu2

k dx

�
� lim

kÑ8

�
1

}uk}2
V

I 1pukq � uk

�
� 0.

The idea is to use indirect arguments and prove that

lim
kÑ8

»
RN

fpx, ukq

}uk}V
vk dx � 0,

which, by assumption pV3q, leads to the following contradiction,

1 � lim
kÑ8

1

}uk}2
V

»
RN
bpxqu2

k dx  
1

2
. (3.3.6)

For 0 ¤ a   b ¤ 8, de�ning

Ωkpa, bq �
 
x P RN : a ¤ |ukpxq| ¤ b

(
,
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we are going to prove that for any given 0   ε   1, there exists kε and real numbers

aε, bε such that»
RN

fpx, ukq

}uk}V
vk dx �

»
Ωkp0,aεq

fpx, ukq

}uk}V
vk dx

�

»
Ωkpaε,bεq

fpx, ukq

}uk}V
vk dx�

»
Ωkpbε,8q

fpx, ukq

}uk}V
vk dx   ε, @ k ¡ kε. (3.3.7)

In order to do that, we �rst make some estimates involving Fpx, tq. De�ne

gprq � inf
 
Fpx, tq : x P RN , |t| ¡ r

(
,

which is positive and goes to in�nity as r Ñ 8. Indeed, thanks to assumptions pf5q

and pf6q, we have

a0Fpx, tq ¥
����fpx, tqt

����p0

¡

����2F px, tqt2

����p0

, for |t| ¡ R0.

Consequently, by condition pf4q, we obtain that Fpx, tq Ñ 8, as |t| Ñ 8, uniformly in

x. Due to assumption pf5q, we also can de�ne the positive number

mb
a � inf

"
Fpx, tq
t2

: x P RN , a ¤ |t| ¤ b

*
.

Using these notations, we see that there exists k0 such that

cpIq � 1 ¥ Ipukq �
1

2
I 1pukq � uk

�

»
Ωkp0,aq

Fpx, ukq dx�

»
Ωkpa,bq

Fpx, ukq dx�

»
Ωkpb,8q

Fpx, ukq dx

¥

»
Ωkp0,aq

Fpx, ukq dx�mb
a

»
Ωkpa,bq

u2
k dx� gpbq|Ωkpb,8q|, @ k ¡ k0. (3.3.8)

Inequality (3.3.8) implies

lim
bÑ8

|Ωkpb,8q| � 0, uniformly in k ¡ k0.

Moreover, �xed 2   q ¤ 2�s , we have»
Ωkpa,bq

|vk|
q dx ¤

�»
Ωkpa,bq

|vk|
2�s


q{2�s
|Ωkpa, bq|

p2�s�qq{2�s ,

in particular,

lim
bÑ8

»
Ωkpa,bq

|vk|
q dx � 0, uniformly in k ¡ k0. (3.3.9)

On the hand, it follows that»
Ωkpa,bq

v2
k dx �

1

}uk}2
V

»
Ωkpa,bq

u2
k dx

¤

�
1

}uk}2
V


�
1

pcpIq � 1qmb
a



Ñ 0, as k Ñ 8. (3.3.10)
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We now pass to prove the estimate (3.3.7). By condition pf4q, there exists aε ¡ 0 such

that

|fpx, tq|   ε|t|, @x P RN , provided that |t|   aε.

Thus »
Ωkp0,aεq

fpx, ukq

}uk}V
vk dx ¤

»
Ωkp0,aεqXt|uk|¡0u

fpx, ukq

|uk|
v2
k dx   ε{3, @ k ¡ kp1qε ,

where kp1qε ¡ k0 is obtained by convergence (3.3.10). Taking 2q0 :� 2p0{pp0 � 1q and

using assumption pf6q we have that»
Ωkpbε,8q

fpx, ukq

}uk}V
vk dx ¤

»
Ωkpbε,8q

fpx, ukq

|uk|
v2
k dx

¤ pa0pcpIq � 1qq1{p0

�»
Ωkpbε,8q

|vk|
2q0 dx


1{q0
  ε{3, @ k ¡ kp2qε ,

where bε and k
p2q
ε ¡ k0 are taken from convergence (3.3.9). Finally, using condition

pf4q we get that

|fpx, ukq| ¤ Cε|uk|, @x P Ωkpaε, bεq,

and some positive constant Cε that does not depends on k and x. Thus,»
Ωkpaε,bεq

fpx, ukq

}uk}V
vk dx ¤

»
Ωkpaε,bεq

fpx, ukq

|uk|
v2
k dx ¤ Cε

»
Ωkpaε,bεq

v2
k dx   ε{3, @ k ¡ kp3qε ,

where kp3qε ¡ k0 is obtained from (3.3.10). The contradiction from (3.3.6) and (3.3.7)

follows by taking kε ¥ tk
p1q
ε , k

p2q
ε k

p3q
ε u. �

3.4 Behavior of weak decomposition convergence

under nonlinearities

We now pass to describe the limit of the pro�le decomposition (Theorems 1.1.1

and 1.1.2) for bounded sequences under the considered nonlinearities.

Proposition 3.4.1. Suppose that fpx, tq satis�es pf1q, apxq � V pxq P L1
locpRNq and

pV2q. Let pukq be a bounded sequence in Hs
V pRNq such that uk Ñ u in LppRNq, for some

p P p2, 2�s q, then

lim
kÑ8

»
RN
fpx, ukquk dx �

»
RN
fpx, uqu dx,

up to subsequence. Moreover, if pvkq is a bounded sequence in Hs
V pRNq with uk�vk Ñ 0

in LppRNq, for some 2   p   2�s , then, up to subsequence,

lim
kÑ8

»
RN
F px, ukq � F px, vkq dx � 0. (3.4.1)
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Proof. First observe that uk Ñ u in LqpRNq for all q P p2, 2�s q. In fact, this follows by

a interpolation inequality, if q   p then

}uk � u}q ¤ }uk � u}θ2}uk � u}1�θ
p

where 1{q � θ{2� p1� θq{p, and if q ¡ p then

}uk � u}q ¤ }uk � u}θp}uk � u}1�θ
2�s

for 1{q � θ{p � p1 � θq{2�s . On the other hand, by embedding (0.2.3) and Proposition

3.3.1, up to subsequence u P Hs
V pRNq with,

ukpxq Ñ upxq as k Ñ 8, a.e. x P RN and |ukpxq|, |upxq| ¤ hεpxq a.e. x P RN , k P N,

for some hε P LpεpRNq. Now consider that»
RN

|fpx, ukquk�fpx, uqu| dx ¤

»
RN

|fpx, ukqpuk�uq| dx�

»
RN

|pfpx, ukq�fpx, uqqu| dx.

The �rst integral can be estimated by Hölder inequality as follows»
RN

|fpx, ukqpuk � uq| dx ¤ ε
�
}uk}2}uk � u}2 � }uk}

2�s�1

2�s
}uk � u}2�s

	
� Cε}uk}

pε�1
pε }uk � u}pε .

For the second one, consider

Eε
k :�

!
x P RN : εp|ukpxq| � |ukpxq|

2�s�1q ¤ Cε|ukpxq|
pε�1

)
and

Eε :�
!
x P RN : εp|upxq| � |upxq|2

�
s�1q ¤ Cε|upxq|

pε�1
)
.

Thus »
Eεk

|pfpx, ukq � fpx, uqqu| dx �

»
RN

|pfpx, ukq � fpx, uqqu|XHε
k

dx.

Since XEεkpxq Ñ XEεpxq in each point of RN and

|pfpx, ukq � fpx, uqquXHε
k
| ¤ 2Cεh

pε
ε P L1pRNq,

we may apply the Dominated Convergence Theorem to conclude

lim
kÑ8

»
Eεk

|pfpx, ukq � fpx, uqqu| dx � 0.

On the other way,

lim sup
kÑ8

»
RN zEεk

|pfpx, ukq � fpx, uqqu| dx ¤ Cε.
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where C is a positive constant that does not depend in ε and k. Since ε is arbitrary,

(3.4.1) holds.

Now, let us prove (3.4.1). Choose pūkq, pv̄kq in C8
0 pRNq such that

lim
kÑ8

}ūk � uk}V � lim
kÑ8

}v̄k � vk}V � 0.

Thus it su�ces to prove that

lim
kÑ8

»
RN

rF px, ūkq � F px, v̄kqs dx � 0. (3.4.2)

Consider E :� pC0pRNq, } � }pεq and the functional β : E Ñ R, given by βpuq �³
RN F px, uq dx with Gateaux derivative

β1Gpuq � v �
»
RN
fpx, uqv dx.

Thus, we may apply the Mean Value Theorem to get

|βpuq � βpvq| ¤ sup
wPE,wPru,vs

}β1Gpwq}� }u� v}pε , @ u, v P E, (3.4.3)

where ru, vs � ttu�p1�tqv : t P r0, 1su. Since pukq, pvkq, pūkq and pv̄kq lies in a bounded

set B in Hs
V pRNq, we also have, by the continuous embedding Hs

V pRNq ãÑ LpεpRNq,

that B X E is bounded in E. Consequently β1G is bounded in B X E, which allows us

to take u � ūk and v � v̄k in (3.4.3) to conclude the convergence (3.4.2). �

Our next result can be see as the nonlocal counterpart of [99, Lemma 5.1].

Moreover, it might also be seen as an generalization of the well known Brezis-Lieb

Lemma [15].

Proposition 3.4.2. Assume that fpx, tq satis�es pf1q and pf7q. Let pukq in HspRNq

be a bounded sequence and pwpnqqnPN0 in HspRNq, given by the Theorem 1.1.2. Then

lim
kÑ8

»
RN
F px, ukq dx �

»
RN
F px,wp1qq dx�

¸
nPN0,n¡1

»
RN
FPpx,w

pnqq dx.

Proof. By the Proposition 3.4.1 the functional

Φpuq :�

»
RN
F px, uq dx, u P HspRNq,

is uniformly continuous in bounded sets of LppRNq, for any 2   p   2�s , consequently,

by assertions (1.1.7) and (1.1.8) of Theorem 1.1.2, we have that

lim
kÑ8

�
Φpukq � Φ

�¸
nPN0

wpnqp� � y
pnq
k q

��
� 0.
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The uniform convergence in (1.1.8) of Theorem 1.1.2 allows us to reduce to the case

where N0 � t1, . . . ,Mu. Thus taking

ΦPpuq :�

»
RN
FPpx, uq dx, u P HspRNq,

it follows from pf7q and Dominated Convergence Theorem that

lim
kÑ8

� ¸
nPN0

Φ
�
wpnqp� � y

pnq
k q

	
� Φpwp1qq �

¸
nPN0,n¡1

ΦPpw
pnqq

�
� 0.

It remains to prove that

lim
kÑ8

�
Φ

�¸
nPN0

wpnqp� � y
pnq
k q

�
�

¸
nPN0

Φ
�
wpnqp� � y

pnq
k q

	�
� 0. (3.4.4)

Since Φ is locally Lipschitz in bounded sets of HspRNq, using a density argument,

we can assume without loss of generality that wpnq P C8
0 pRNq, for n � 1, . . . ,M.

Consequently, from 1.1.6,

supppwpnqp� � y
pnq
k qq X supppwpmqp� � y

pmq
k qq � H, for m � n and k large enough,

which implies that, for k large enough,»
RN
F

�
x,

¸
nPN0

wpnqp� � y
pnq
k q

�
dx �

»
�M
n�1 supppwpnqp��ypnqk qq

F

�
x,

M̧

m�1

wpmqp� � y
pmq
k q

�
dx

�
M̧

n�1

»
supppwpnqq

F px� y
pnq
k , wpnqq dx,

from this, (3.4.4) follows immediately. �

Corollary 3.4.3. Let pukq in HspRNq be a bounded sequence and pwpnqqnPN0 in H
spRNq,

given by Theorem 1.1.2. If fpx, tq is 1�periodic in xi, i � 1, . . . , N and satis�es pf1q,

lim
kÑ8

»
RN
F px, ukq dx �

¸
nPN0

»
RN
F px,wpnqq dx. (3.4.5)

Corollary 3.4.4. Let uk á u in HspRNq and F px, tq as in Corollary 3.4.3 then, up to

subsequence,

lim
kÑ8

»
RN
F pukq � F pu� ukq � F puq dx � 0.

Proof. Since wp1q � u, following the proof of Proposition 3.4.2, we obtain

lim
kÑ8

»
RN
F puk � uq dx �

¸
nPN�,n¡1

»
RN
F pwpnqq dx. (3.4.6)

Taking the di�erence between (3.4.5) and (3.4.6) we get the desired convergence. �
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We also need the following result, that can be understood as an generalization of

Fatou Lemma, or alternatively, that the functional u ÞÑ
³
RN V pxqu

2 dx is sequentially

weakly lower semicontinuous with respect to the pro�le decomposition of Theorem

1.1.2. Moreover, it is a complement to Proposition 3.4.2.

Proposition 3.4.5. Suppose that apxq � V pxq ¥ 0 and that pV2q holds true. Let pukq

be a bounded sequence in HspRNq and pwpnqqnPN0 given in Theorem 1.1.2.

(i) If pV1q holds, we have

lim inf
kÑ8

»
RN
V pxqu2

k dx ¥
¸
nPN0

»
RN
V pxq|wpnq|2 dx.

(ii) Under pV4q we obtain,

lim inf
kÑ8

»
RN
V pxqu2

k dx ¥

»
RN
V pxq|wp1q|2 dx�

¸
nPN0,n¡1

»
RN
V8|wpnq|2 dx.

Proof. We prove only the second inequality, the �rst one follows by a similar argument.

It su�ces to prove that

»
RN
V pxqu2

k dx �

»
RN

�����|V pxq|1{2puk � wp1qq � |V8|1{2
m̧

n�2

wpnqp� � y
pnq
k q

�����
2

dx,

�

»
RN
V pxq|wp1q|2 dx�

m̧

n�2

»
RN
V8|wpnq|2 dx� op1q, @m. (3.4.7)

where with the notation ak � opbkq we mean that ak{bk Ñ 0. To this end, we proceed

as in the proof of the iterated Brezis-Lieb Lemma [29, Proposition 6.7],thus the proof

of (3.4.7) is made by induction. We start by checking that (3.4.7) holds for m � 2. In

fact, by Proposition 3.3.1 it is clear that, up to subsequence, the classical Brezis-Lieb

Lemma [15] and assertion (1.1.6) implies that»
RN
V pxqu2

k dx �

»
RN
V pxq|wp1q|2 dx�

»
RN
V pxq|uk � wp1q|2 dx� op1q, (3.4.8)

consequently and by the same reason,»
RN
V pxq|uk � wp1q|2 dx �»

RN
V px� y

p2q
k q|ukp� � y

p2q
k q � wp1qp� � y

p2q
k q|2 dx

�

»
RN

���|V px� y
p2q
k q|1{2

�
ukp� � y

p2q
k q � wp1qp� � y

p2q
k q

	
� |V8wp2q|1{2

���2 dx

�

»
RN
V8|wp2q|2 dx� op1q.

(3.4.9)

97



Replacing identity (3.4.9) in (3.4.8) we obtain (3.4.7) for m � 2. We shall now prove

that (3.4.7) holds for m� 1 provided that it is true for m. Indeed, arguing as above,»
RN

�����|V pxq|1{2puk � wp1qq � V 1{2
8

m̧

n�2

wpnqp� � y
pnq
k q

�����
2

dx�

»
RN
V8|wpm�1q|2 dx

�

»
RN

�����|V pxq|1{2 �uk � wp1q�� V 1{2
8

m�1̧

n�2

wpnqp� � y
pnq
k q

�����
2

dx� op1q. (3.4.10)

Applying the induction hypothesis in (3.4.10) we obtain (3.4.7). �

3.5 Pohozaev Identity

We �nish the section by proving the aforementioned Pohozaev type identity.

The proof follows the same arguments used in Sect. 2.3 with some appropriated

modi�cations. It complements some well known results in the present literature,

namely: [23, Theorem 2.3], [24, Proposition 4.1] and [75, Theorem 1.1].

Proposition 3.5.1. Suppose that fpx, tq � fptq P C1pRq and apxq P C1pRNzOq, where
O is a �nite set. Let u P Ds,2pRNq be a weak solution of (Hs) such that fpuq{p1� |u|q

belongs to L
N{2s
loc pRNq. If F puq, fpuqu, apxqu2 and x∇apxq, xyu2 belongs to L1pRNq, then

u P C1pRNzOq and

N � 2s

2

»
RN

|p�∆qs{2u|2 dx�
N

2

»
RN
apxqu2 dx�

1

2

»
RN

x∇apxq, xyu2 dx � N

»
RN
F puq dx.

Proof. Firstly we prove the local regularity of u. To do that, we consider x0 P RNzO,
and observe that u � up� � x0q is a weak solution of

p�∆qsu� apxqu � fpuq in RN ,

where apxq � apx � x0q. Taking r small enough, the ball BN
r does not contains any

point of discontinuity of apxq and so

|gpuq|

1� |u|
P LN{2spBN

r q, where gpuq :� fpuq � apxqu.

This enable us to proceed as in Proposition 2.3.1, to conclude that u P LppBN
r q, for all

p ¥ 1. Moreover, since

gpuq � fpuq � apxqu �

�
fpuq

1� |u|
sgnpuq � apxq

�
u�

fpuq

1� |u|
,

we may apply Proposition 0.4.2 (the regularity results of [59]) to conclude that there

exists 0   y0, r0   r with BN
r � r0, y0s � B�

r , and α P p0, 1q, such that

w, ∇xw, y
1�2swy P C

0,αpBN
r0
� r0, y0sq,
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where w is the s-harmonic extension of u and ∇xw � pwx1 , . . . , wxN q. In particular,

since x0 is arbitrary,

w, ∇xw, y
1�2swy P CpB

N
r zO � r0, y0sq, @ r, y0 ¡ 0. (3.5.1)

Consider now ξ P C8
0 pR : r0, 1sq such that

ξptq �

#
1, if |t| ¤ 1

0, if |t| ¥ 2
and |ξ1ptq| ¤ C @ t P R,

for some C ¡ 0. Let O � txp1q, . . . , xplqu, and zpiq � pxpiq, 0q, i � 1, . . . , l. For each

n � 1, . . . , de�ne ξn : RN�1 Ñ R by

ξnpzq �

#
ξp|z|2{n2q, if |z � zpiq|2 ¡ 2{n2,

1� ξpn2|z � zpiq|2q, if |z � zpiq|2 ¤ 2{n2.

Then, for n large enough, ξn P C8
0 pRNq and veri�es

|z||∇ξnpzq| ¤ C @ z P RN�1, (3.5.2)

for some C ¡ 0. Now observe that

divpy1�2s∇wq xz,∇wy ξn

� div

�
y1�2sξn

�
xz,∇wy∇w �

|∇w|2

2
z


�
�
N � 2s

2
y1�2s|∇w|2ξn

� y1�2s |∇w|2

2
xz,∇ξny � y1�2s x∇w, zy x∇w,∇ξny . (3.5.3)

Note that BB?
2n,δ � F 1?

2n,δ
YF 2?

2n,δ
. Let ηpzq � p0, . . . ,�1q be the unit outward normal

vector of B?
2n,δ on F

1?
2n,δ

. Since ξn � 0 on F 2?
2n,δ

, by condition (0.3.2), identity (3.5.3)

and the Divergence Theorem we get

0 �

»
B?2n,δ

divpy1�2s∇wq xz,∇wy ξn dxdy

�

»
F 1?

2n,δ

y1�2sξn

�
xz,∇wy x∇w, ηy � |∇w|2

2
xz, ηy

�
dxdy � θn,δ

�

»
F 1?

2n,δ

ξn xx,∇xwy p�y
1�2swyq dx

�

»
F 1?

2n,δ

y1�2sξnw
2
yy dx�

»
F 1?

2n,δ

y1�2sξn
|∇w|2

2
y dx� θn,δ

� I1
n,δ � I2

n,δ � I3
n,δ � θn,δ,

where

θn,δ �

»
B?2n,δ

N � 2s

2
y1�2s|∇w|2ξn dxdy

�

»
B?2n,δ

y1�2s |∇w|2

2
xz,∇ξny � y1�2s x∇w, zy x∇w,∇ξny dxdy.
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We known that there exists a sequence δk Ñ 0 such that

I2
n,δk

� I3
n,δk

Ñ 0, as k Ñ 8.

Some computations leads to

ξnpx, 0q xx,∇uy pfpuq � apxquq

� div

�
ξnpx, 0q

�
F puq �

1

2
apxqu2



x

�
� x∇ξnpx, 0q, xyF puq

�Nξnpx, 0qF puq �
1

2
x∇ξnpx, 0q, xy apxqu2

�
1

2
ξnpx, 0q x∇apxq, xyu2 �

N

2
ξnpx, 0qapxqu

2.

Thus, by Remark 0.4.3, condition (3.5.1) and the Divergence Theorem we have

lim
kÑ8

I1
n,δk

� κs

»
BN?

2n

ξnpx, 0q xx,∇uy pfpuq � apxquq dx

� �κs

»
BN?

2n

x∇ξnpx, 0q, xyF puq �Nξnpx, 0qF puq dx

�
κs
2

»
BN?

2n

x∇ξnpx, 0q, xy apxqu2 dx

�
κs
2

»
BN?

2n

ξnpx, 0q x∇apxq, xyu2 �
N

2
ξnpx, 0qapxqu

2 dx.

Summing up, we get

0 � lim
kÑ8

�
I1
n,δk

� I2
n,δk

� I3
n,δk

� θn,δk
�

� �κs

»
BN?

2n

x∇ξn, xyF puq �NξnF puq dx

� κs

»
BN?

2n

1

2
x∇ξn, xy apxqu2 �

1

2
ξn x∇apxq, xyu2 �

N

2
ξnapxqu

2 dx

�

»
B?2n

N � 2s

2
y1�2s|∇w|2ξn dxdy

�

»
B?2n

y1�2s |∇w|2

2
xz,∇ξny � y1�2s x∇w, zy x∇w,∇ξny dxdy.

Consequently using condition (3.5.2) to pass the limit nÑ 8, we conclude

N � 2s

2

»
RN

|p�∆qs{2u| dx �
N � 2s

2κs

»
RN
y1�2s|∇w|2 dxdy

� N

»
RN
F puq dx�

N

2

»
RN
apxqu2 �

1

2
x∇apxq, xyu2 dx,

where in the �rst equality we used condition (0.3.2). �
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Remark 3.5.2. In previous proof we have applied [59, Theorem 2.15] and for that is

was crucial that apxq is a C1�function in RNzO.

Corollary 3.5.3. Assume that fpx, tq � fptq P C1pRq and that ful�lls pf1q. Moreover,

that apxq � a0 ¡ 0. If u P HspRNq is a weak solution for (Hs), then»
RN
F puq �

a0

2
u2 dx �

N � 2s

2N

»
RN
|p�∆qs{2u|2 dx

Corollary 3.5.4. Suppose that fpx, tq � fptq P C1pRq and that ful�lls pf�1 q. If

u P Ds,2pRNq is a weak solution for (Hs), then»
RN

|p�∆qs{2u|2 � λ|x|�2su2 dx �
2N

N � 2s

»
RN
F puq dx,

where 0   λ   ΛN,s is given by (0.0.4).

As a direct consequence of Proposition 3.5.1, we have the following non-existence

results, complementing the discussions made in [48,74].

Corollary 3.5.5 (Non-existence results). Assume that fpx, tq � fptq P C1pRNq and

either one of the following conditions are satis�ed,

(i) apxq P C1pRNzOq, where O is a �nite set, 2sapxq � x∇apxq, xy ¡ 0 for all x in a

non-zero measure domain and 2�sF ptq ¤ fptqt, for all t P R; or

(ii) apxq P C1pRNzOq, where O is a �nite set, apxq ¡ 0, x∇apxq, xy   0 for all x in

a non-zero measure domain and there exists 0   δ ¤ 2, such that δF ptq ¥ fptqt,

for all t P R; or

(iii) apxq � a0 ¡ 0 and there exists 0 ¤ δ ¤ 2s{pN � 2sq, in a such way that

2�sF ptq ¤ fptqt� δa0t
2, for all t P R;

(iv) apxq � 0 and there exists 0   p   2�s such that pF ptq ¥ fptqt for all t P R.

If u P HspRNq is a weak solution of Eq. (Hs), such that F puq, fpuqu, apxqu2,

x∇apxq, xyu2 belongs to L1pRNq and fpuq{p1� |u|q belongs to L
N{2s
loc pRNq, then u � 0.

Proof. (i) Applying Proposition 3.5.1, we get»
RN

|p�∆qs{2u|2 dx

�
N

N � 2s

»
RN
apxqu2 dx�

1

N � 2s

»
RN

x∇apxq, xyu2 dx ¤

»
RN
fpuqu dx,

furthermore using that I 1puq � u � 0, we obtain»
RN
p2sapxq � x∇apxq, xyqu2 dx ¤ 0,
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which leads to u � 0.

(ii) Using again Proposition 3.5.1 we obtain that

N � 2s

2N
δ

»
RN

|p�∆qs{2u|2 dx

�
δ

2

»
RN
apxqu2 dx�

δ

2N

»
RN

x∇apxq, xyu2 dx ¥

»
RN
fpuqu dx,

and we can derive that u � 0, because�
1�

N � 2s

2N
δ


»
RN

|p�∆qs{2u|2 dx

�

�
1�

δ

2


»
RN
apxqu2 dx�

δ

2N

»
RN

x∇apxq, xyu2 dx ¤ 0.

(iii) Once more we can use Proposition 3.5.1 to get»
RN

|p�∆qs{2u|2 dx�
N

N � 2s
a0

»
RN
u2 dx ¥

»
RN
fpuqu dx,

which implies �
N � p1� δqpN � 2sq

N � 2s

�
a0

»
RN
u2 dx ¤ 0.

In particular u � 0.

(iv) Proposition 3.5.1 implies that»
RN

|p�∆qs{2u|2 dx � 2�s

»
RN
F puq dx ¥

2�s
p

»
RN
fpuqu dx �

2�s
p

»
RN

|p�∆qs{2u|2 dx,

which yields u � 0. �

3.6 Proof of Theorem 3.2.1

Proof. (i) Here we use the pro�le decomposition given by Theorem 1.1.2. This makes

our argument easier then the one of [33, Theorem 2.1].

By Proposition 3.3.5 we know of the existence of a bounded sequence pukq such

that Ipukq Ñ cpIq and I 1pukq Ñ 0. Since it is bounded, it has a pro�le decomposition

provided by Theorem 1.1.2. If we have wpnq � 0 for all n P N0, then by assertion

(1.1.8), uk Ñ 0 in LppRNq, for any 2   p   2�s and by convergence (1.1.5) uk á 0 in

Hs
V pRNq, up to subsequence. Consequently, by Proposition 3.4.1, we have$''&''%

op1q � cpIq � Ipukq �
1

2
}uk}

2
V �

»
RN
F px, ukq dx �

1

2
}uk}

2
V � op1q,

op1q � I 1pukq � uk � }uk}
2
V �

»
RN
fpx, ukquk dx � }uk}

2
V � op1q,

(3.6.1)
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a contradiction, since cpIq ¡ 0. Thus, there must be at least one nonzero wpnq.Moreover,

we have that each wpnq is a critical point of I. In fact, it is well known that, up to

subsequence, we can take hpnq in Lσ
1
psupppϕqq, n P N0, such that

|ukpx� y
pnq
k q| ¤ hpnqpxq, a.e. x P supppϕq, (3.6.2)

where σ1 � σ{pσ�1q and ϕ P C8
0 pRNq, which can be done thanks to Proposition 3.3.1.

Thus, for a.e. x P RN we have#
|V px� y

pnq
k qukpx� y

pnq
k qϕpxq| ¤ hpnqpxq|V pxqϕpxq| P L1psupppϕqq

V px� y
pnq
k qukpx� y

pnq
k qϕpxq � V pxqukpx� y

pnq
k qϕpxq Ñ V pxqwpnqpxqϕpxq,

which, by the Dominated Convergence Theorem leads to

lim
kÑ8

puk, ϕp� � y
pnq
k qqV � lim

kÑ8

�
rukp� � y

pnq
k q, ϕss �

»
RN
V px� y

pnq
k qukp� � y

pnq
k qϕpxq dx

�
� rwpnq, ϕss �

»
RN
V pxqwpnqϕ dx.

By the same reason and pf1q, up to subsequence we have,

lim
kÑ8

»
RN
fpx� y

pnq
k , ukp� � y

pnq
k qqϕ dx �

»
RN
fpx,wpnqqϕ dx.

Consequently we may pass the limit in

I 1pukq � ϕp� � y
pnq
k q � puk, ϕp� � y

pnq
k qqV �

»
RN
fpx� y

pnq
k , ukp� � y

pnq
k qqϕ dx,

to conclude that I 1pwpnqq � 0, for all n P N0. In particular, we get that

GS � inf
 
Ipuq : u P Hs

V pRNqzt0u, I 1puq � 0
(
¥ 0.

We are going to prove that is GS is attained and is positive. Let pukq be a minimizing

sequence of GS , that is Ipukq Ñ GS and I 1pukq � 0. Arguing as in Proposition 3.3.5

we obtain that pukq is bounded. Suppose by contradiction and assume that wpnq � 0

for all n P N0. In this case we actually have that GS ¡ 0, because on the contrary, if

GS � 0, then using (3.6.1) we would conclude that }uk}V � op1q, and at the same time,

}uk}
2
V �

»
RN
fpukquk dx ¤ εpC2}uk}

2
V � C�}uk}

2�s
V q � Cε}uk}

pε
V ,

where C2, C2�s and Cpε are positive constant obtained by applying the embedding

described in Proposition 3.3.1. In particular,

p1� εC2q ¤ εC2�s }uk}
2�s�2
V � Cpε}uk}

pε�2
V , @ k P N,

which, by taking ε small enough, would lead to a contradiction with the fact that

}uk}V � op1q. In view of that, in any case, we can argue as above to conclude that
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there must be a nonzero wpn0q that is a critical point of I. We know from (1.1.5) that

ukpx�y
pn0q
k q Ñ wpn0qpxq a.e. in RN , up to subsequence, which allows us to apply Fatou

Lemma to get

GS � lim
kÑ8

Ipukq � lim
kÑ8

»
RN
Fpx, ukp� � y

pn0q
k qq dx

� lim inf
kÑ8

»
RN
Fpx, ukp� � y

pn0q
k qq dx

¥

»
RN
Fpx,wpn0qq dx � Ipwpn0qq,

where we used pf2q or pf5q to ensure that Fpx, ukp��ypn0q
k qq � Fpx, ukq ¥ 0 a.e. in RN .

Thus, once again using pf2q or pf5q, we can see that GS � Ipwpn0qq ¡ 0.

(ii) From Proposition 3.3.1, the norm

|||u|||2λ �

»
RN

|p�∆qs{2u|2 � λ|x|�2su2 dx, u P Ds,2pRNq, 0   λ   ΛN,s,

is equivalent with respect to the norm r � ss in Ds,2pRNq. Let pukq be a minimizing

sequence for Iλ, and for each k, let u�k be the Schwarz Symmetrization of uk (see [60]

for more details). Applying the fractional Polya-Szegö inequality (see [9, Theorem 3]),

for each k, we have that$''&''%
»
RN

»
RN

|u�kpxq � u�kpyq|
2

|x� y|N�2s
dxdy ¤

»
RN

»
RN

|ukpxq � ukpyq|
2

|x� y|N�2s
dxdy,»

RN
F pu�kq dx �

»
RN
F pukq dx.

Thus pu�kq � D
s,2
radpRNq and is also a minimizing sequence for (3.2.1). Now observe that

||| � |||λ is invariant with respect to the action of dilations given in Theorem 1.1.1, more

precisely,

|||u|||2λ �
���������γ N�2s

2 upγj�q
���������2
λ
, @ γ ¡ 1, u P Ds,2pRNq and j P Z,

and satis�es the homogeneity property,

|||up�{δq|||2λ � δN�2s|||u|||2λ, @u P D
s,2pRNq, δ ¡ 0.

In view of Proposition 1.4.1 and Corollary 3.5.4, we may proceed, using exactly the

same arguments, as in the proof of Theorem 2.2.3, replacing r � ss by ||| � |||λ. �

Remark 3.6.1. (i) In the context of the proof of Theorem 3.2.1�(i), if we assume in

addition that fpx, tq satis�es (3.2.2), then GS � cpIq � Ipwn0q and wpn0q is non-

negative. Indeed the truncation given in Remark 3.2.7 satis�es the assumptions

of Theorem 3.2.1�(i), and we can apply the same argument there, to conclude

that the ground state wpn0q is non-negative. Furthermore, Remark 3.3.4�(iv)

guarantees that the path ζptq � twpn0q, t ¥ 0, belongs to ΓI and cpIq ¤ Ipwpn0qq.
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On the other hand, considering pukq given in the beginning of the proof of

Theorem 3.2.1, by Corollary 3.4.3, Remark 3.3.2�(ii) and estimate (1.1.7), up

to subsequence, we have

cpIq � lim
kÑ8

�
1

2
}uk}

2
V �

»
RN
F px, ukq dx

�
¥

¸
nPN0

Ipwpnqq.

Consequently, using pf2q or pf5q to guarantee that each Ipwpnqq is non-negative,

we conclude that cpIq � GS .

(ii) If we consider the in�mum (3.2.1) de�ned over Ds,2radpRNq, by Proposition 1.4.1 we

can obtain concentration-compactness of the minimizing sequences as described in

Theorem 2.2.3. More precisely, for any minimizing sequence pukq of (3.2.1), there

exists a sequence pjkq in Z such that the sequence pγ�
N�2s

2
jkukpγ

�jk �qq contains a

convergent subsequence in Ds,2radpRNq, whose the limit is a minimizer of (3.2.1) in

Ds,2radpRNq.

(iii) In the context of the proof of Theorem 3.2.1�(ii), assume that F ptq ¥ 0 for all

t ¥ 0. Since ||||uk||||λ ¤ |||uk|||λ, without loss of generality we can assume that

each uk is non-negative. In this case, the obtained minimizer for (3.2.1) is non-

negative.

3.7 Proof of Theorem 3.2.2

Proof. As mentioned, we prove Theorem 3.2.2 by using the Nehari manifold method

(see [91]). For convenience of the reader we divide the proof in several steps.

(i) For each u P Hs
V zt0u there exists a unique τpuq ¡ 0 such that τpuqu P N and

maxt¥0 Iptuq � Ipτpuquq. In particular N � H.

We proceed in a similar way as in the Remark 3.3.4�(iv), to see that the function

huptq � Iptuq, t ¡ 0, has a maximum point tu. Moreover, h1ptuq � 0, if and only if tuu

belongs to N and

}u}2
V �

»
RN
bpxqu2 dx �

1

tu

»
RN
fpx, tuuqu dx. (3.7.1)

By condition (3.2.2) the right-hand side of the above identity occurs at most one point.

Thus there is a unique maximum point τpuq � tu for the function huptq.

(ii) The function τ : Hs
V zt0u Ñ p0,8q is continuous. Thus the map η : Hs

V zt0u Ñ N ,
de�ned by ηpuq � τpuqu is continuous and η

��
S is a homeomorphism of the unit

sphere S of Hs
V pRNq in N .
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Assume that un Ñ u in Hs
V zt0u. It is well known that the positivity of the primitive

F px, tq together with condition pf2q implies

F px, tq ¥ C1|t|
µ � C2t

2, for a.e. x P RN and @ t P R.

Thus, from identity 3.7.1 we obtain that

}un}
2
V �

»
RN
bpxqu2

n dx ¥ C1|τpunq|
µ�2

»
RN

|un|
µ dx� C2}un}

2
V , @n P N.

That is, punq � LµpRNq with

}un}
2
V ¥ C|τpunq|

µ�2

»
RN

|un|
µ dx, @n P N.

Moreover, since u � 0, the sequence punq is bounded below in the norm } � }µ by a

positive constant. Thus pτpunqq is a bounded sequence. We now pass to prove that any

given subsequence for pτpunqq has a convergent subsequence with the same limit τpuq,

from this we obtain the convergence τpunq Ñ τpuq. It is clear that for a subsequence

τpunq Ñ t0.We actually have that t0 is positive. In fact, using conditions pf1q and pV3q

in identity (3.7.1) we get the following estimate,

}un}
2
V �

»
RN
bpxqu2

n dx ¤ εC
�
}un}

2
V � τpunq

2�s�2}un}
2�s
V

	
� Cετpunq

pε�2}un}
pε
V ,

for all n P N. From which, we obtain�
1� εC2 �

}bpxq}β

CpβqV

�
}un}

2
V ¤ εC2�s τpunq

2�s�2}un}
2�s
V � CεCpετpunqpε�2}un}

pε
V , (3.7.2)

for all n P N, which implies t0 ¡ 0, by taking ε small enough. Thus we may apply

the Dominated Convergence Theorem in (3.7.1) to conclude that t0 � τpuq and the

continuity of the function τ. Using (3.7.1) to compute τpu{}u}V q we obtain that

}u}2
V �

»
RN
bpxqu2 dx �

1
τpu{}u}V q

}u}V

»
RN
f

�
x,
τpu{}u}V q

}u}V



u dx,

which by uniqueness gives τpu{}u}V q � τpuqu. Consequently the inverse of η is the

retraction map given by % : N Ñ S, %puq � u{}u}V .

(iii) N is away from the origin, that is, there exists RN ¡ 0 such that }u}V ¡ RN ,

whenever u P N .

Indeed, estimate (3.7.2) implies that

1� εC2 �
}bpxq}β

CpβqV

¤ εC2�s }u}
2�s�2
V � CεCpε}u}

pε�2
V , @u P N .

Taking ε small enough we see that }u} ¥ RN , for all u P N .
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(iv) For all ζ P ΓI we have that ζpr0,8qq XN � H.

Let us suppose that this assertion is false, that is, there exists ζ0 P ΓI which does not

intercepts N in any point. Let t0 ¡ 0 such that Ipζ0pt0qq   0 and ζ0ptq � 0, for all

p0, t0s.We prove now that τpζptqq ¡ 1 for all t P p0, t0s. In fact, by continuity, there is a

positive number δ such that }ζ0ptq}   RN , for all t P r0, δs. At the same time, we have

that }τpζ0ptqqζ0ptq}V ¡ RN , which implies τpζ0ptqq ¡ 1, for all t P p0, δs. The continuity

of τptq and the fact that ζ0ptq R N , for all t, allow us to choose δ � t0. On the other

hand, by conditions pf2q and (3.2.2), we have that

hζpt0qptq ¥
t2

2

�
}ζ0pt0q}

2
V �

»
RN
bpxq|ζ0pt0q|

2 dx�
2

µ

»
RN

fpx, tζ0pt0qq

tζ0pt0q
|ζ0pt0q|

2 dx

�
¡
t2

2

�»
RN

fpx, τpζ0pt0qqζ0pt0qq

τpζ0pt0qqζ0pt0q
|ζ0pt0q|

2 �
fpx, tζ0pt0qq

tζ0pt0q
|ζ0pt0q|

2 dx

�
¡ 0, @ t P p0, τpζpt0qqs.

In particular, 0   hζpt0qp1q � Ipζ0pt0qq, which is a contradiction with the choice of

ζ0pt0q.

(v) cN pIq � c̄pIq.

In fact, since η
��
S is a homeomorphism, we have

c̄pIq � inf
uPHs

V zt0u
Ipτpuquq � inf

uPS
Ipτpuquq � cN pIq.

(vi) c̄pIq � cpIq.

Given u P Hs
V zt0u, de�ne the path ζptq � tt0u, where t0 ¡ 0 is chosen in such way that

Ipt0uq   0. Then, by Remark 3.3.4�(iv), it is easy to see that ζ P ΓI and

max
t¥0

Iptuq � max
t¥0

Ipζptqq ¥ cpIq.

Consequently cpIq ¤ c̄pIq. On the other hand, given ζ P ΓI , we know about the

existence of t0 such that ζpt0q belongs to N . Thus,

max
t¥0

Ipζptqq ¥ Ipζpt0qq ¥ cN pIq � c̄pIq.

Since ζ P ΓI is arbitrary, we conclude cpIq ¥ c̄pIq. �

Remark 3.7.1. In this remark we illustrate how one can apply Theorem 3.2.2. Assume

that apxq � ap|x|q and fpx, tq � fp|x|, tq are radial. Let E be the space de�ned as the

completion of C8
0,radpRNq with respect to the norm } � }V . In view of Proposition 3.3.1

it is clear that E is a closed subspace of Hs
radpRNq, thus we consider I0 � I

��
Hs

radpRN q
as

the energy functional associated with (Hs) under the considerate settings. By Remark

3.3.4�(iv), it is also clear that Proposition 3.3.5 holds true in this case, that is, there is
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a sequence pukq in E such that I0pukq Ñ cpI0q and I 10pukq Ñ 0. Moreover by Corollary

1.4.2 the sequence pukq has a convergent subsequence uk Ñ u in E. Thus, applying

Proposition 3.4.1, we see that u is a radial ground state solution for (Hs) in E.Moreover,

as a consequence of the Principle of Symmetric Criticality, we have that u is a critical

point of I.

Remark 3.7.2. In view of Remark 3.2.7, if bpxq � 0, then the radial ground state

solution u obtained above can be considered as being non-negative.

3.8 Proof of Theorem 3.2.3

Before the proof of Theorem 3.2.3, for the sake of discussion, we are going to

compare the minimax level of limit functionals IP and I8 with the minimax level of

the energy functional I associated with Eq. (Hs). Some arguments used to prove this

result of comparison are used in the proof of Theorem 3.2.3.

Proposition 3.8.1. Assume that fpx, tq satis�es either pf1q�pf3q or pf3q�pf6q; and

additionally pf7q. Moreover, suppose that apxq and fpx, tq satis�es either one of the

following conditions,

(i) bpxq � 0, pV1q�pV2q, pf8q;

(ii) V pxq ¥ 0, bpxq has compact support, pV2q�pV4q, pf9q;

Then cpIq ¤ cpIPq and cpIq ¤ cpI8q, respectively. Moreover, under these conditions, if

we assume pH q, then pf10q and pf
1
10q holds true respectively for each considered case.

Proof. (i). Let u P Hs
V pRNq be a non-negative (see Remark 3.2.7) non-trivial weak

solution for the equation

p�∆qsu� V pxqu � fPpx, uq,

at the mountain pass level for IP , that is, IPpuq � cpIPq. For each k, we de�ne the path

ζkptq � tup� � ykq, t ¥ 0.

where pykq � ZN is taken such that |yk| Ñ 8. The idea is to prove that

cpIq ¤ lim
kÑ8

max
t¥0

Ipζkptqq ¤ max
t¥0

IPptuq � cpIPq. (3.8.1)

In fact, taking into account that Φ and ΦP are locally Lipschitz in Hs
V pRNq (they are

C1 in Hs
V pRNq) and the following estimate

|Ipζkptqq � IPptuq| ¤

»
RN

|F px� yk, tuq � FPpx� yk, tuq| dx,
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by using a density argument we get that

lim
kÑ8

Ipζkptqq � IPptuq, uniformly in compact sets of R.

Consequently we may proceed as in Proposition 2.6.1. First note that

lim
kÑ8

»
RN
F px� yk, tuq dx �

»
RN
FPpx, tuq dx, @ t ¡ 0.

In particular, »
RN
F px� yk, uq dx ¡ 0, for k large enough.

Thus, using the uniformity in x of the considered conditions pf1q�pf3q or pf3q�pf6q and

the arguments of Remark 3.3.4�(iv), we see that ζk belongs to ΓI , for k large enough.

As a consequence, there exist tk ¡ 0 such that

Ipζkptkqq � max
t¥0

Ipζkptqq ¡ 0.

We claim that the sequence ptkq is bounded. In fact, suppose contrary to our claim

that tk Ñ 8, up to subsequence. Thus, by the uniformity in x and the arguments of

Remark 3.3.4�(iv), we get

Ipζkptkqq �
t2k
2
}u}2

V �

»
RN
F px� yk, tkuq dxÑ �8, as tÑ 8,

which leads to a contradiction with the fact that Ipζkptkqq ¡ 0 for all k. Therefore, up

to subsequence, tk Ñ t0, and we have that

lim
kÑ8

max
t¥0

Ipζkptkqq � IPpt0uq,

which leads to (3.8.1).

(ii). The second case is proved in a similar way. Let w P Hs
V pRNq � HspRNq be

a non-trivial weak solution for the equation

p�∆qsw � V8w � f8pwq,

at the mountain pass level, more precisely, I8pwq � cpI8q. For each k, de�ne the path

λkptq � w
� � � yk

t

	
, t ¥ 0.

where pykq is chosen in a such way that |yk| Ñ 8. As before, we consider the estimate

|Ipλkptqq � I8pwp�{tqq|

¤
1

2
tN

»
RN

|pV ptx� ykq � bptx� ykqq � V8|w2 dx

� tN
»
RN

|F ptx� yk, wq � F8pwq| dx,
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and the fact that the following functionals,

Φ, Φ8, Qpuq �
»
RN
V pxqu2 dx and Bpuq �

»
RN
bpxqu2 dx,

are locally Lipschitz in HspRNq to obtain, by a density argument, that

lim
kÑ8

Ipλkptqq � I8pwp�{tqq, uniformly in compact sets of R.

We also have that the path λk belongs to ΓI , for k large enough. In fact, assuming the

contrary, we would obtain k0 and a sequence tn Ñ 8 such that Ipλk0ptnqq ¡ 0, for all

n. On the other hand, we have that

lim
nÑ8

»
RN
F ptnx� yk0 , wq �

1

2
rV ptnx� yk0q � bptnx� yk0qsw

2 dx

�

»
RN
F8pwq �

1

2
V8w2 dx,

which, by taking n large enough, leads to the contradiction Ipλk0ptnqq   0. Let tk ¡ 0

such that

Ipλkptkqq � max
t¥0

Ipλkptqq ¡ 0.

Once again we claim that the sequence ptkq is bounded. On the contrary, there is a

subsequence ptnkq that implies in the following contradiction

0   Ipλkptnkqq

�
1

2
tN�2s
nk

rws2s � tNnk

�»
RN
F ptnkx� yk, wq �

1

2
pV ptnkx� ykq � bptnkx� ykqw

2 dx

�
Ñ �8, as k Ñ 8.

Thus, up to subsequence, tk Ñ t0 and we obtain that

lim
kÑ8

max
t¥0

Ipλkptqq � I8pwp�{t0qq.

As a consequence we conclude that

cpIq ¤ lim
kÑ8

max
t¥0

Ipλkptqq ¤ max
t¥0

I8pwp�{tqq � cpI8q,

where we have used Corollary 3.5.3 to induce that t � 1 is the unique critical point of

I8pwp�{tqq.

Now assume pH q. Considering the above discussion, for each case, we have$&% cpIq ¤ max
t¥0

Ipζkptqq � Iptkup� � ykqq   IPptkuq ¤ max
t¥0

IPptuq � cpIPq,

cpIq ¤ max
t¥0

Ipλkptqq � Ipupp� � ykq{tkqq   I8pup�{tkqq ¤ max
t¥0

I8pup�{tqq � cpI8q,

where k is taken large enough. �
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Similarly as it is made in Chapter 2, to prove our existence result without the

compactness condition pf10q and pf 110q, we use a similar argument as made in [33, proof

of Theorem 1.2]. Thus we use Theorem 0.6.4 (see Remark 3.3.4�(i)).

Proof of Theorem 3.2.3 completed. From Lemma 3.3.3 and Proposition 3.3.5 we know

about the existence of a bounded sequence pukq such that Ipukq Ñ cpIq and I 1pukq Ñ

0, in both considered cases. Let be the sequences pwpnqq and py
pnq
k q provided by

the Theorem 1.1.2 for the sequence pukq. The underlying main idea to proof the

concentration-compactness of Theorem 3.2.3 follows the same one of Theorem 2.2.4

and is the following: we prove that wpnq � 0 for all n ¥ 2, which by assertions (1.1.5),

(1.1.8) and Proposition 3.4.1 implies that uk Ñ wp1q in Hs
V pRNq, up to subsequence.

In order to prove that, we argue by contradiction and assume the existence of at least

one wpn0q � 0, n0 ¥ 2.

(i) In view of Remark 3.3.2�(ii), by Proposition 3.4.2 and estimate (1.1.7), up to

subsequence, we have

cpIq � lim
kÑ8

�
1

2
}uk}

2
V �

»
RN
F px, ukq dx

�
¥ Ipwp1qq �

¸
nPN0,n¡1

IPpw
pnqq, (3.8.2)

where each term of the right-hand side of (3.8.2) is non-negative. In fact, following as

in the proof of Theorem 3.2.1 we notice that wp1q and wpnq, n ¥ 2, are critical points

for I and IP , respectively. In view of that, it is clear that pf2q or pf5q implies that

Ipwp1qq ¥ 0 and IPpwpnqq ¥ 0, n ¥ 2, respectively. On the other hand, Remark 3.3.4�

(iv) guarantees that the path ζpn0qptq � twpn0q belongs to ΓIP and cpIPq ¤ IPpw
pn0qq.

This, together with (3.8.2) and pf10q leads to a contradiction.

(ii) Following the proof of Theorem 1.1.2 it is clear that we can replace } � } by the

equivalent norm } � }V8 in assertions (1.1.5)�(1.1.8). Consequently, by estimate (1.1.7),

Propositions 3.4.2 and 3.4.5, up to subsequence, we have

cpIq � lim
kÑ8

�
1

2
}uk}

2
V �

»
RN
bpxqu2

k dx�

»
RN
F px, ukq dx

�
¥ Ipwp1qq �

¸
nPN0,n¡1

I8pwpnqq.
(3.8.3)

Thus, it su�ces to prove that the right-hand side of (3.8.3) is non-negative and

I8pwpnqq ¥ cpI8q for all n ¥ 2. In fact, in this case, we have cpIq ¥ Ipwpn0qq ¥ cpI8q,

which leads to a contradiction with pf10q. To do this, we prove that wp1q and

wpnq, n ¥ 2, are critical points for I and I8, respectively. Let ϕ in C8
0 pRNq and

hpnq P L2�s�1psupppϕqq as in (3.6.2). By pV4q and (1.1.6), there exists k0 � k0pϕq such

that

V px� y
pnq
k q   1� V8, @ k ¡ k0, x P supppϕq and n ¥ 2.

111



Thus,#
|V px� y

pnq
k qukpx� y

pnq
k qϕpxq| ¤ pε� V8qhpnqpxq|ϕpxq| P L1psupppϕqq, for k ¡ k0,

V px� y
pnq
k qukpx� y

pnq
k qϕpxq Ñ V8wpnqpxqϕpxq a.e. in RN .

This allow us to use Dominated Convergence Theorem to obtain

lim
kÑ8

puk, ϕp� � y
pnq
k qqV � lim

kÑ8

�
rukp� � y

pnq
k q, ϕss �

»
RN
V px� y

pnq
k qukp� � y

pnq
k qϕpxq dx

�
� rwpnq, ϕss �

»
RN
V8wpnqpxqϕpxq dx.

And for the same reason,

lim
kÑ8

»
RN
fpx� y

pnq
k , ukp� � y

pnq
k qqϕ dx �

»
RN
f8pwpnqqϕ dx.

Consequently, taking the limit in

I 1pukq � ϕp� � y
pnq
k q � puk, ϕp� � y

pnq
k qqV �

»
RN
fpx� y

pnq
k , ukp� � y

pnq
k qqϕ dx,

we deduce that I 1pwp1qq � 0 and I 18pw
pnqq � 0, n ¥ 2. Using pf2q or pf5q we also get

that Ipwp1qq ¥ 0 and I8pwpnqq ¥ 0, n ¥ 2. Finally, de�ne the path λpn0qptq � wpn0qp�{tq,

t ¥ 0. By Corollary 3.5.3 we have that

I8pλpn0qptqq �
1

2
tN�2srwpn0qs2s � t

N

�»
RN
F8pwpn0qq �

V8
2
|wpn0q|2 dx

�
Ñ �8, as tÑ 8,

which, by Remark 3.3.2, allow us to conclude that λpn0q belongs to ΓI8 . Corollary 3.5.3

also implies that t � 1 is the unique critical point of I8pλpn0qptqq. Consequently,

cpI8q   max
t¥0

I8pλpn0qptqq � I8pwpn0qq,

which implies the aforementioned contradiction.

(iii) Finally, assume condition (3.2.3) instead of pf10q and pf 110q. Consider the

existence of wpn0q � 0, n0 P N0, and the paths ζpn0q and λpn0q as above. Taking into

account the above discussion, by estimates (3.8.2) and (3.8.3), for each case we have$&% cpIq ¤ max
t¥0

Ipζpn0qptqq ¤ max
t¥0

IPpζ
pn0qptqq � IPpw

pn0qq ¤ cpIq,

cpIq ¤ max
t¥0

Ipλpn0qptqq ¤ max
t¥0

I8pλpn0qptqq � I8pwpn0qq ¤ cpIq,

where we have used condition (3.2.3) to ensure that the paths ζpn0q and λpn0q belongs to

ΓI . Thus, we have that the minimax level cpIq is attained and we can apply Theorem

0.6.4 to obtain the existence of a critical point u for Iλ with Iλpuq � cpIλq. If there is

no wpnq � 0, n P N0, (which is the case where strict inequalities occurs) we can argue

as above and obtain that uk Ñ wp1q, up to subsequence. �
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3.9 Proof of Theorem 3.2.4

Proof. The proof will be divided into three steps. Our argument follows the proof of

Theorem 3.2.3 and [27, Theorem 5.2]. We �rst assume the case where V pxq and fpx, tq

satis�es pH �q.

(i) Arguing in a similar way as in the proof of Lemma 3.3.3, we see that the

functional I� has the mountain pass geometry, which guarantees the existence of

a sequence pukq in Ds,2pRNq such that I�pukq Ñ cpI�q ¡ 0 and I 1�pukq Ñ 0. Let

pwpnqq, pypnqk q, pj
pnq
k q the sequences provided by Theorem 1.1.1 and de�ne the set

N7 �
!
n P N�zt1u : |γj

pnq
k y

pnq
k | is bounded

)
.

Passing to a subsequence and using a diagonal argument if necessary, we may assume

that each sequence pγj
pnq
k y

pnq
k q, n P N7, is convergent and we denote

apnq � lim
kÑ8

γj
pnq
k y

pnq
k , n P N7.

(ii) Now we shall prove the following estimate,

lim sup
k

}uk}
2
V ¥ }wp1q}2

V �
¸

nPN�zN7
rwpnqs2s

�
¸

nPN�XN7

}wpnq}2
V�p��apnq�a�q �

¸
nPN�XN7

}wpnq}2
V�p��apnq�a�q, (3.9.1)

passing to a subsequence of pukq if necessary. For each n P N�, let pϕ
pnq
j q in C8

0 pRNq

such that ϕpnqj Ñ wpnq in Ds,2pRNq. Evaluating�����uk � ¸
nPM�

d
pnq
k ϕ

pnq
j

�����
2

V

¥ 0,

in a �nite subset M� � t1, . . . ,Mu of N�, we have

}uk}
2
V ¥ 2

¸
nPM�

puk, d
pnq
k ϕ

pnq
j qV �

¸
nPM�

}d
pnq
k ϕ

pnq
j }2

V . (3.9.2)

We are now going to study the limit in inequality (3.9.2). Let

v
pnq
k :� d

pnq
k uk � γ�

N�2s
2

j
pnq
k ukpγ

�jpnqk � �y
pnq
k q.

Notice that

puk, d
pnq
k ϕ

pnq
j qV � rv

pnq
k , ϕ

pnq
j ss

�

»
RN
γ�2sj

pnq
k V pγ�j

pnq
k ppx� y

pnq
k q � a�qqv

pnq
k p� � a�qϕ

pnq
j p� � a�q dx,
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and

}d
pnq
k ϕ

pnq
j }2

V � rϕ
pnq
j s2s �

»
RN
γ�2sj

pnq
k V pγ�j

pnq
k ppx� y

pnq
k q � a�qq|ϕ

pnq
j p� � a�q|2 dx.

Fixed j, we can use condition pV �
3 q to conclude, up to a subsequence that

lim
kÑ8

puk, d
pnq
k ϕ

pnq
j qV � rwpnq, ϕpnqj ss and lim

kÑ8
}d

pnq
k ϕ

pnq
j }2

V � rϕ
pnq
j s2s, (3.9.3)

provided that n R N7 (this is the case when n P N0). Similarly, up to a subsequence,

by assumption pV �
2 q we have

lim
kÑ8

puk, d
pnq
k ϕ

pnq
j qV � pwpnq, ϕpnqj qVκp��apnq�a�q

and lim
kÑ8

}d
pnq
k ϕ

pnq
j }2

V � }ϕ
pnq
j }2

Vκp��apnq�a�q, (3.9.4)

where κ � �,�, whenever n P N� X N7 or N� X N7, respectively. Since

N�zt1u � pN�zN7q 9Y rpN� X N7q 9YpN� X N7qs ,

up to subsequence, we can apply the limits (3.9.3) and (3.9.4) in inequality (3.9.2) to

get

lim sup
k

}uk}
2
V ¥ }wp1q}2

V �
¸

nPM�XN�XN7

2pwpnq, ϕpnqj qV�p��apnq�a�q � }ϕ
pnq
j }2

V�p��apnq�a�q

�
¸

nPM�XN�XN7

2pwpnq, ϕpnqj qV�p��apnq�a�q � }ϕ
pnq
j }2

V�p��apnq�a�q

�
¸

nPM�zN7
2rwpnq, ϕpnqj ss � rϕ

pnq
j s2s. (3.9.5)

Since the norms } � }V� and } � }V� are equivalent to the norm r � ss in Ds,2pRNq we can

take the limit in j in inequality (3.9.5) and use the arbitrariness of choice for M to

obtain (3.9.1).

(iii) If wpnq � 0 for all n ¥ 2, then uk Ñ wp1q in Ds,2pRNq, with wp1q being a critical

point of I�. Let us argue by contradiction and assume the existence of wpn0q � 0, with

n0 ¥ 2. By Proposition 2.4.1 and estimate (3.9.1), up to subsequence, we have that

cpI�q ¥ I�pwp1qq �
¸

nPN�zN7
I0pw

pnqq �
¸

nPN�XN7

I
pnq
� pwpnqq �

¸
nPN�XN7

I
pnq
� pwpnqq, (3.9.6)

where

I
pnq
� puq �

1

2
}u}2

V�p��apnq�a�q �
»
RN
F�puq dx

and I0puq �
1

2
rus2s �

»
RN
F0puq dx, u P Ds,2pRNq.
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As before, we prove that each wpnq is a critical point for the functionals in the respective

index of the sums in (3.9.6), and as a consequence of pf2q, the right-hand side of (3.9.6)

is non-negative. In the next step we obtain that cpI�q   I
pnq
κ pwpnqq in the correspondent

index, which leads to a contradiction with estimate (3.9.6). In fact, given ϕ in C8
0 pRNq,

by reasoning as in the proof of (3.9.1), we get that

lim
kÑ8

puk, d
pnq
k ϕqV � rwpnq, ϕss and lim

kÑ8
puk, d

pnq
k ϕqV � pwpnq, ϕqV�p��apnq�a�q,

provided n P N�zN7 and n P N� X N7, respectively. Since,���γ�N�2s
2

j
pnq
k f

�
γ�j

pnq
k x� y

pnq
k , γ

N�2s
2

j
pnq
k t

	
ϕ
��� ¤ C|t|2

�
s�1, a.e. x P RN , @ k, n and t,

thanks to the Dominated Convergence Theorem, up to a subsequence, we may pass

the limit in k in the following identity

I 1�pukq � pd
pnq
k ϕq � pv

pnq
k , ϕqV �

»
RN
γ�

N�2s
2

j
pnq
k f

�
γ�j

pnq
k x� y

pnq
k , γ

N�2s
2

j
pnq
k v

pnq
k

	
ϕ dx,

to conclude that I 1�pw
p1qq � pI

pnq
� q1pwpnqq � I 10pw

pnqq � 0, in the corresponding index.

(iv) To conclude the proof, we prove now that cpI�q   I
pn0q
� pwpn0qq or cpI�q  

I
pn0q
� pwpn0qq, which depends on the sets N�zN7 or N� X N7 that n0 may belong. De�ne

the path #
ζpn0qptq � twpn0q, t ¥ 0, if n0 P N�zN7.

ζpn0qptq � twpn0qp� � a� � apnqq, t ¥ 0, if n0 P N� X N7.

By condition pH �q and Remark 3.3.4�(iv) we have that ζpn0q belongs to ΓI with$''''&''''%
cpI�q ¤ max

t¥0
I�pζpn0qptqq   I0pζ

pn0qpt̄qq ¤ max
t¥0

I0pζ
pn0qptqq � I0pw

pn0qq, if n0 P N�zN7.

cpI�q ¤ max
t¥0

I�pζpn0qptqq   I
pnq
� pζpn0qpt̄qq

¤ max
t¥0

I
pnq
� pζpn0qptqq � I

pnq
� pwpn0qq, if n0 P N� X N7,

where t̄ is the maximum of I�pζpn0qptqq. This together with the estimate (3.9.6) leads

to a aforementioned contradiction.

(v) We now assume only conditions (3.1.3) and (3.1.4), instead of pH �q. Arguing

in a similar way as in the proof of Theorem 3.2.3 (iii), we get that

uk Ñ wp1q in a subsequence or cpI�q � max
t¥

I�pζpn0qptqq.

If the minimax level cpI�q is attained then we apply Theorem 0.6.4 to obtain the

existence of a critical point u P ζpn0qpr0,8qq such that I�puq � cpI�q. �
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Chapter 4

Existence and non-existence results

for a class of nonlocal

Schrödinger-Poisson systems with

critical growth

In this chapter, we are concerned with the existence of non-trivial weak and

ground state solutions for the following class of nonlinear fractional Schrödinger�

Poisson System$&% p�∆qsu� apxqu� λKpxqφu � fpx, uq � gpx, uq in R3,

p�∆qαφ � Kpxqu2 in R3,
(SP)

where the nonlinearities fpx, tq and gpx, tq has oscillatory subcritical and critical growth

respectively, apxq is not necessarily bounded away from zero and Kpxq ¥ 0 belongs to a

suitable Lebesgue space. Here we follow the ideas developed in the previous chapters.

Outline. The chapter is organized as follows. In Sect. 4.3, we provide a suitable

variational settings to prove our main results, more precisely, we describe the limit

under the pro�le decomposition of the Palais-Smale sequence at the mountain pass

level of the energy functional associated with (SP) and we prove the aforementioned

Pohozaev type identity. Moreover, we estimate the minimax level for the functional

associated with (SP). In Sect. 4.6 we study the behavior of the minimax levels of the

considerate functionals. Sections 4.4, 4.5, 4.7, 4.8 and 4.9 are dedicated to the proof

of Theorems 4.2.1, 4.2.2, 4.2.3, 4.2.4 and 4.2.5 respectively.
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4.1 Hypothesis

In order to describe our results in a more precisely way, next we state the main

assumptions on the weight Kpxq, the potential apxq and the nonlinearities fpx, tq and

gpx, tq respectively. We always assume λ ¡ 0, 0   s   1, 0   α   1 and 2α � 4s ¡ 3.

• Assumptions on Kpxq.

(K1) 0 ¤ Kpxq P LrpR3q Y L8pR3q, for some r ¡ 6{p2α � 4s� 3q.

(K2) There exists KPpxq P L
rpR3q Y L8pR3q, 1�periodic in xi, i � 1, 2, 3, in a such

way that lim|x|Ñ8 |Kpxq �KPpxq| � 0.

(K3) Kpxq �KPpxq P L
8
locpR3q and KPpxq is continuous at 0.

• Assumptions on apxq � V pxq � bpxq.

(V1) V pxq P LσlocpR3q, for some σ ¡ 3{2s.

(V2) The following in�mum

CV � inf
uPC80 pR3q,}u}2�1

»
R3

|p�∆qs{2u|2 � V pxqu2 dx

is positive and V pxq ¥ �B a. e. x P R3, for some B ¡ 0.

(V3) There exists VPpxq P LσPlocpR3q, σP ¡ 3{2s, 1�periodic in xi, i � 1, 2, 3, that

satis�es pV2q such that lim|x|Ñ8 |V pxq � VPpxq| � 0.

(V4) 0 ¤ bpxq P LβpR3q, for some β ¡ 3{2s, and }bpxq}β   CpβqV , where

CpβqV � inf
uPHs

V pR3q,}u}2β1�1

»
R3

|p�∆qs{2u|2 � V pxqu2 dx, β1 � β{pβ � 1q.

• Assumptions on fpx, tq.

(f1) f : RN � R Ñ R is a Carathéodory function. Moreover, for every ε ¡ 0 there

exists pε P p2, 2�s q and Cε ¡ 0 such that

|fpx, tq| ¤ εp|t| � |t|2
�
s�1q � Cε|t|

pε�1, a.e. x P R3 and @ t P R,

where 2�s � 6{p3� 2sq.
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(f2) There exists µ ¡ 2 such that,

µF px, tq :� µ

» t

0

fpx, τq dτ ¤ fpx, tqt a.e. x P R3 and @ t P R.

(f3) There exists R ¡ 0, t0 ¡ 0, x0 P R3 such that

|BR| inf
BRpx0q

F px, t0q � |BR�1zBR| inf
px,tqPpBR�1px0qzBRpx0qq�r0,t0s

F px, tq ¡ 0.

In the autonomous case, we consider the following variant of assumption pf3q.

(f 13) There exists t0 ¡ 0 such that F pt0q ¡ 0.

(f4) The following limit are uniform in x,

lim
|t|Ñ8

F px, tq

t4
� 8.

(f5) There exists a function fPpx, tq that is 1�periodic in xi, i � 1, 2, 3. such that the

following limit exists and is uniformly convergent in compact sets in t

lim
|x|Ñ8

|fpx, tq � fPpx, tq| � 0.

Moreover, fPpx, tq satis�es pf1q and either pf2q, pf3q with µ ¡ 4 or pf4q.

(f6) For a.e. x P R3 the function

t ÞÑ
fPpx, tq

|t|
is strict increasing in R.

(f7) There exists c0 ¡ 0 and 4   p0   2�s such that

FPpx, tq ¥ c0|t|
p0 , a.e. x P R3 and @ t P R.

Notice that in condition pf7q it is implicit that s ¡ 3{4.

• Assumptions on gpx, tq.

(g1) g : RN � R Ñ R satis�es the Carathéodory conditions. Moreover, there exists a

positive constant C� such that

|gpx, tq| ¤ C�|t|2
�
s�1, a.e. x P R3 and @ t P R.

118



(g2) There exists µ� ¡ 2 such that,

0 ¤ µ�Gpx, tq :� µ�

» t

0

gpx, τq dτ ¤ gpx, tqt, a.e. x P R3 and @ t P R.

(g3) For each real numbers a1, . . . , aM , there exist C � CpMq ¡ 0 such that�����G
�
x,

M̧

n�1

an

�
�

M̧

n�1

Gpx, anq

����� ¤ CpMq
¸

m�nPt1,...,Mu
|an|

2�s�1|am|, a.e. x P R3.

(g4) There exists γ ¡ 1, such that the following limits exist and are uniformly

convergent in x and in compact sets for t

g8ptq :� lim
|x|Ñ8

gpx, tq,

g�ptq :� lim
jPZ,jÑ�8

γ�
3�2s

2
jg
�
γ�jx, γ

3�2s
2

jt
	
.

(g5) The function g8ptq is self-similar,

G8ptq � γ�3jG8
�
γ

3�2s
2

jt
	
, @ t P R and j P Z.

(g6) The function

t ÞÑ
g8ptq
|t|

, is strict increasing in R.

(g7) There exists c� ¡ 0 such that

G8ptq ¥ c�|t|2
�
s , @ t P R, where G8ptq :�

» t

0

g8pτqdτ.

(g8) g�ptq P C1pRq and there is a positive constant c� such that

G�ptq ¥ c�|t|2
�
s , @ t P R, where G�ptq :�

» t

0

g�pτqdτ.

Moreover, c� ¥ C�.

The functional associated with (SP)

As mentioned earlier, we compare the minimax level of the associated functional

of System (SP) and the one of the following limit problem$&% p�∆qsu� aPpxqu� λKPpxqφu � fPpx, uq � g8puq in R3,

p�∆qαφ � KPpxqu
2 in R3.

(4.1.1)
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In a similar fashion, we consider Hs
V pR3q as the completion of C8

0 pR3q with respect to

the norm

}u}2
V :�

»
R3

|p�∆qs{2u|2 � V pxqu2 dx.

By Proposition 3.3.1 if we assume that V pxq belongs to L1
locpR3q and satis�es pV2q, then

Hs
V pRNq is well de�ned and we have the following continuous embedding

Hs
V pR3q ãÑ HspR3q. (4.1.2)

Next, to make our discussion clearer, we de�ne the notion of weak solution.

De�nition 4.1.1. We say that a pair pu, φq P Hs
V pR3q � Dα,2pR3q is a weak solution

of the System (SP) when»
R3

p�∆qs{2up�∆qs{2v � papxq � λKpxqφquv dx �

»
R3

pfpx, uq � gpx, uqqv dx, and»
R3

p�∆qα{2φp�∆qα{2v dx �

»
R3

Kpxqu2v dx,

for all v P C8
0 pR3q and the above integrals are �nite.

Given u P HspR3q we consider the linear operator Pu : Dα,2pR3q Ñ R de�ned as

Pupvq �
»
R3

Kpxqu2v dx.

If we assume thatKpxq satis�es condition pK1q then, by Holder inequality, this operator

is continuous (see (4.3.1) estimate below). Thus, by Riesz Theorem, there exists a

unique φαrus in Dα,2pR3q that solves p�∆qαφαrus � Kpxqu2 in the weak sense, that is,

»
R3

p�∆qα{2pφαrusqp�∆qα{2v dx �

»
R3

Kpxqu2v dx, @ v P Dα,2pR3q. (4.1.3)

Replacing φ � φαrus in the �rst equation of (SP), we obtain the following nonlinear

fractional Schrödinger equation with a nonlocal term,

p�∆qsu� apxqu� λKpxqφαrusu � fpx, uq � gpx, uq. (SNL)

We consider associated with Eq. (SNL), the functional Iλ : Hs
V pR3q Ñ R given by

Iλpuq �
1

2
}u}2

V �
1

2

»
R3

bpxqu2 dx

�
λ

4

»
R3

Kpxqφαrusu
2 dx�

»
R3

F px, uq dx�

»
R3

Gpx, uq dx.
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Thus, if fpx, tq satis�es pf1q, apxq the assumptions pV2q, pV4q and gpx, tq the assumption

pg1q, then I P C1pHs
V pR3qq (see Proposition 4.3.3�(i)). Furthermore

I 1λpuq � v �
»
R3

p�∆qs{2up�∆qs{2v � pV pxq � bpxqquv dx

� λ

»
R3

Kpxqφαrusuv dx�

»
R3

pfpx, uq � gpx, uqqv dx, u, v P Hs
V pR3q.

Consequently critical points of Iλ correspond to weak solutions of (SP) and conversely.

Regarding the minimax level, we put

cpIλq � inf
γPΓIλ

sup
t¥0

Iλpγptqq. (4.1.4)

where

ΓIλ �
!
γ P Cpr0,8q, Hs

V pR3qq : γp0q � 0, lim
tÑ8

Iλpγptqq � �8
)
. (4.1.5)

Proceeding in a similar way, we can use the same argument based on Riesz theorem

with System (4.1.1) to obtain the following equation

p�∆qsu� aPpxqu� λKPpxqφ
P
α rusu � fPpx, uq � g8puq, (SP

NL)

and the corresponding C1 functional associated with (SP
NL),

IPλ puq :�
1

2
}u}2

VP
�
λ

4

»
R3

KPpxqφ
P
α rusu

2 dx�

»
R3

FPpx, uq dx�

»
R3

G8puq dx, u P Hs
V pR3q;

where

}u}2
VP

:�

»
R3

��p�∆qs{2u
��2 � VPpxqu

2 dx,

and φP
α rus P Dα,2pR3q, is the unique weak solution of p�∆qαv � KPpxqu

2. Similarly,

we consider cpIPλ q de�ned in the same way as in (4.1.4) and (4.1.5).

Next we �nally state the assumption relative to the minimax level of the considered

problems, which allow us to state the main results of the chapter.

(C ) cpIλq   cpIPλ q, @λ ¡ 0.

4.2 Statement of the main results

We �rst state our results concerning existence of ground states solutions for the

System (SP). By a ground state solution for (SNL), we consider a solution u that

satis�es Iλpuq ¤ Iλpvq for any other weak solution v for Eq. (SNL) in the same

considered space of functions.
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Theorem 4.2.1 (Periodic subcritical case). Suppose that gpx, tq � 0 and Kpxq,

apxq � V pxq and fpx, tq satisfy conditions pK1q�pK2q, pV1q�pV3q, pf1q, pf2q, pf5q with

Kpxq � KPpxq, V pxq � VPpxq and fpx, tq � fPpx, tq, respectively. If we assume that

either µ ¡ 4 and pf3q or µ � 4 and pf4q, then Eq. (SNL) has a ground state solution

u P Hs
VP
pR3q. If additionally we have pf6q, then u is non-negative and IPλ puq � cpIPλ q.

Observe that Theorem 4.2.1 deal with the case where pC q does not hold.

Moreover, the potential apxq can change sign. It is worth to mention that this result

complement the ones in [93] for the case where s ¡ 3{4. Our next result is about

existence of solutions in the case where fpx, tq has 4-superlinear growth.

Theorem 4.2.2 (Nonautonomous subcritical case). Suppose that Kpxq, apxq � V pxq�

bpxq and fpx, tq satisfy assumptions pK1q�pK2q, pV1q�pV4q, pf1q, pf2q, pf5q, pf6q and that

gpx, tq � 0. In addition, assume either one of the following conditions holds,

(i) V pxq � VPpxq, bpxq � 0 and pC q; or

(ii) V pxq ¥ 0, for a. e. x P R3, bpxq has compact support and pC q; or

(iii) Replace conditions pC q in the aboves items by

Iλpuq ¤ IPλ puq, @u P Hs
V pR3q; (4.2.1)

If we assume that either µ ¡ 4 and pf3q or µ � 4 and pf4q, then Eq. (SNL) possess a
non-trivial weak solution u in Hs

V pR3q at the mountain pass level, that is, Iλpuq � cpIλq.

Moreover, under the assumptions of items (i) and (ii), any sequence pukq in Hs
V pR3q

such that Ipukq Ñ cpIq and I 1pukq Ñ 0 has a convergent subsequence.

Note that Theorem 4.2.2 also provides concentration-compactness of the Palais-

Smale sequences at the Mountain-Pass level. Moreover, in this result the potential

apxq can change sign in two di�erent ways. Consequently, it complements some results

of [105] and extend them to the fractional framework. Theorem 4.2.2 is inspired by

Theorem 3.2.3. Our following result deals with existence of solution for Eq. (SNL)

when the nonlinearity has general oscillatory critical growth.

Theorem 4.2.3 (Nonautonomous case with critical perturbation). Assume that Kpxq,

apxq � V pxq � bpxq, fpx, tq and gpx, tq satisfy conditions pK1q�pK3q, pV2q�pV4q, pf1q,

pf2q, pf5q�pf7q, pg1q�pg7q, respectively, with 0 ¤ V pxq, VPpxq P L
8pR3q and µ ¤ µ�.

Moreover, that the following inequality holds,

C�
2�sc�

¤

��
2�s
µ�



µ� � 2

2�s � 2

� 2�s �2

2

. (4.2.2)

122



Suppose also that either one of the following conditions hold,

(i) bpxq belongs to L8pR3q and has compact support, pg8q and estimate pC q; or

(ii) Replace condition pC q and pg8q in the above item by (4.2.1).

If we assume that fpx, tq satis�es either µ ¡ 4 and pf3q or µ � 4 and pf4q, then there

exists a non-trivial weak solution u P Hs
V pR3q for Eq. (SNL), such that Iλpuq � cpIλq.

Moreover, under condition pC q of item (i), any sequence pukq in Hs
V pR3q such that

Iλpukq Ñ cpIλq and I
1
λpukq Ñ 0 has a convergent subsequence.

To the best of our knowledge, Theorem 4.2.3 is the �rst result about existence

of solution for System (SP) with general critical nonlinearity gpx, tq, therefore, it

complements the results of [94]. Moreover, it extends and improve the result of [107]

about existence of solution. Note also that in Theorem 4.2.3 gives the compactness

for Palais-Smale sequence at the mountain pass level. Next, we state our result which

treats the case where nonlinearities does not depends on x.

Theorem 4.2.4 (Autonomous case). Assume that Kpxq � K0 ¡ 0, apxq � V0,

bpxq � 0, fpx, tq � fptq satis�es pf1q, pf2q and gpx, tq � gptq. Moreover, α ¡ 3{4

and either one of the following conditions holds,

(i) pf7q, gptq is self-similar, pg2q, pg8q, µ� ¥ 3, (4.2.2) and#
fptqt ¤ pµ� � 1qF ptq,

gptqt ¤ pµ� � 1qGptq,
@ t P R; (4.2.3)

(ii) pf 13q, and (4.2.3) with µ� � µ and gptq � 0.

Then there exists 0   λ� ¤ 8 such that, for any λ P p0, λ�q, there exists a non-trivial

radial weak solution uλ in Hs
radpR3q for Eq. (SNL) satisfying Iλpuλq � cpIλq.

It seems for us that Theorem 4.2.4 is the �rst result concerning existence of

solutions for autonomous nonlinearities with critical growth satisfying condition pf2q

for any value of µ. In fact, it is common in the present literature to use a Pohozaev

type identity in order to apply L. Jeanjean Theorem [58, Theorem 1.1] to construct a

bounded Palais-Smale sequence at the mountain pass level.

Nevertheless we prove a improved version of a Pohozaev type identity given in [93]

and improve the non-existence result of [93, Theorem 1.6].

Theorem 4.2.5 (Non-existence). Suppose that Kpxq � K0 ¡ 0, fpx, tq � fptq P

C1pR3q, gpx, tq � 0 and either
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(i) apxq P C1pR3q, 2sapxq � x∇apxq, xy ¡ 0 for all x in a non-zero measure domain

and fptqt ¥ 2�sF ptq, for all t P R; or

(ii) apxq P C1pR3q, apxq ¡ 0, x∇apxq, xy   0 for all x in a non-zero measure domain

and there exists 0   δ ¤ 2, such that δF ptq ¥ fptqt, for all t P R; or

(iii) apxq � a0 ¡ 0, there exists 0 ¤ δ ¤ 2s{p3 � 2sq, in a such way that

fptqt� δa0t
2 ¥ 2�sF ptq, for all t P R; or

(iv) apxq � a0 ¡ 0, λ ¥ 1{4, α � s and |fptq| ¤ A|t|p�1, for all t P R, where
2   p ¤ 3 ¤ 2�s and 0   A ¤ mintK0, a0u.

(v) apxq � 0 and there exists 0   p   2�s such that pF ptq ¥ fptqt for all t P R.

If pu, φq P HspR3q � Dα,2pR3q is a weak solution of the System (SP), such that F puq,

fpuqu, apxqu2, x∇apxq, xyu2, φu2 belongs to L1pR3q and fpuq{p1 � |u|q belongs to

L
3{2s
loc pR3q, then u � 0.

Corollary 4.2.6. Assume that Kpxq � K0 ¡ 0, apxq � a0 ¡ 0, fpx, tq � |t|p�2t and

gpx, tq � 0. Moreover, suppose that either one of the following conditions hold,

(i) p � 2�s ;

(ii) p ¤ 2; or

(iii) s ¥ 1{2, 2   p ¤ 3 and λ ¥ 1{4.

If pu, φq P HspR3q �Dα,2pR3q is a weak solution of the System (SP), then u � φ � 0.

Remarks on the assumptions and in the main results

Remark 4.2.7. Some comments on our assumptions are in order.

(i) To the best of our knowledge, it seems that our results are the �rst concerning a

general potential Kpxq for the System (SP).

(ii) In order to get that Iλ has the mountain pass geometry, we use Ambrosetti-

Rabinowitz condition pf2q. In this case the presence of the nonlocal term Nα in

Eq. (SNL) imposes that µ ¡ 4 in our argument. Despise this, in the general case

of a non-autonomous linearity, we consider µ � 4 and to overcome the associated

di�culty we ask for assumption pf4q. The general case that µ ¡ 2 is considered

in Theorem 4.2.4.
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(iii) In our approach to study existence of weak solutions for Eq. (SNL) we use

assumption pf5q, unlike the aforementioned papers, where the authors impose

the more tight condition

|fpx, tq � fPpx, tq| ¤ hpxq|t|q�1 a.e x in R3 and all t in R,

where hpxq belongs to the class of functions in CpR3q X L8pR3q such that for

every ε ¡ 0 the set tx P R3 : |hpxq| ¥ εu has �nite Lebesgue measure.

(iv) The function g�ptq is self-similar. Moreover, if gpx, tq � gptq is self-similar then

gptq � g�ptq.

(v) Once the limits in pV3q, pf5q or pg4q exist, to obtain compactness of Palais-Smale

sequences at the minimax levels we need to require the additional condition over

the minimax level given in assumption pC q. In fact, we do not believe that it

is possible, in general, to achieve the compactness described in Theorems 4.2.2

and 4.2.3 without these conditions. We mention that this kind of approach was

introduced by P.-L. Lions in [65�68].

(vi) We also consider the case when pC q do not hold. Precisely, when it is allowed

cpIλq � cpIPλ q. In this case, the concentration-compactness argument at the

mountain pass level cannot be used. We apply [63, Theorem 2.3] to overcome

this di�culty and prove existence of solution at the mountain pass level.

Remark 4.2.8. Under the assumptions pV3q, pf5q and pg4q we describe next conditions

which guarantee that pC q is satis�ed.

(C 1) The following inequalities holds,

V pxq ¤ VPpxq, a. e. x P R3. (4.2.4)

Kpxq ¤ KPpxq, a. e. x P R3. (4.2.5)

FPpx, tq �G8ptq ¤ F px, tq �Gpx, tq, a. e. x P R3 and t P R, (4.2.6)

Moreover, at least one of the next conditions is true,

(i) The inequality (4.2.4) strict in a non-zero measure domain.

(ii) The inequality (4.2.5) strict in a non-zero measure domain.

(iii) There exists δ ¡ 0 such that the inequality (4.2.6) is strict for all t P p�δ, δq

and a. e. x P R3.

In Sect. 4.6, under suitable conditions, we obtained the following estimate for the

minimax levels: cpIq ¤ cpIPq. Moreover, we proved that under condition pC 1q we have

that pC q holds. We observe that on the corresponding assumption of Theorem 4.2.2, it

is easy to see that inequalities (4.2.4), (4.2.5) and (4.2.6) imply that (4.2.1) is satis�ed.
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Remark 4.2.9. Using the same argument of Remark 3.2.7 it can be proved the

existence of non-negative weak solutions of (SNL). In fact, assume that hpx, tq :�

fpx, tq � gpx, tq ¥ 0 for all t ¥ 0 and a. e. x in R3, and consider the truncation

h̄px, tq �

#
fpx, tq � gpx, tq, if t ¥ 0,

0, if t   0.

Assume that apxq P L1
locpR3q and that conditions pf1q, pg1q and pV2q holds true with

bpxq � 0; if u is a weak solution for (SNL), with fpx, tq� gpx, tq and replaced by h̄px, tq

then u is also a weak solution for (SNL) and u ¥ 0. To see that, let ξ P C8
0 pR : r0, 1sq

such that

ξptq �

#
1, if t P r�1, 1s

0, if |t| ¥ 2
and |ξ1ptq| ¤ C @ t P R,

for some C positive constant. For each n P N, de�ne ξn : R4 Ñ R by ξnpzq � ξp|z|2{n2q.

Then ξn P C8
0 pR4q and veri�es

|∇ξnpzq| ¤ C and |z||∇ξnpzq| ¤ C @ z P R4.

By a density argument, we can take ϕ � ξnw� in (0.3.4). Since w�pzq � Espu�q, we

have that»
R4

y1�2sξn|∇w�|2 � y1�2sξn
@
∇w�,∇w�

D
� y1�2s

@
∇w� �∇w�, w�∇ξn

D
dxdy

� κs

»
R3

ph̄px, uq � V pxqu� λKpxqφαrusuqξnp�, 0qu� dx,

and we may apply the Dominated Convergence Theorem and (0.3.2) to get

}u�}2
V � λ

»
Kpxqφαrus|u�|2 dx �

»
R3

h̄px, uqu� dx,

which implies that u� � 0.

Example 4.2.10. Our approach include the following classes of potentials

(i) For the weight Kpxq that ful�lls assumptions pK1q�pK3q we may consider

Kpxq � QpxqKPpxq, where 0 ¤ Qpxq ¤ Q8 :� lim
|x|Ñ8

Qpxq,

belongs to CpR3q and KPpxq is any function 1�periodic in x1, x2, x3 in LβpR3qX

L8locpR3q that is continuous at zero.

(ii) For potential apxq � V pxq � bpxq satisfying conditions pV1q�pV4q we set

V pxq �

�
1

1� |x|2



VPpxq
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where VPpxq ¥ 0 is any function that is 1�periodic in x1, x2, x3, belongs to CpR3q;

and

bpxq � }V pxq}8ηpxq,

where ηpxq P C8
0 pR3q is chosen in a such way that }ηpxq}β   CpβqV {}V pxq}8.

Example 4.2.11. Note that the hypotheses of Theorems 4.2.1�4.2.4 are for example

satis�ed by nonlinearities of the following forms:

(i) For a nonlinearity ful�lling assumptions pf1q�pf7q we can chose

fpx, tq � kpxq|t|p�2t� exptk0pxqpsinpln |t|q � 2qu rk0pxq cospln |t|q � ps |t|p�2t,

where fpx, 0q :� 0, s ¡ 3{4, 4   p   2�s , kpxq P CpR3q,

0   k8 :� lim
|x|Ñ8

kpxq ¤ kpxq, @x P R3 and lim
|x|Ñ8

k0pxq � 0.

Moreover, k0pxq P CpR3q, supxPR3 k0pxq ¤ p� µ and µ   p.

(ii) For a nonlinearity ful�lling conditions pf1q, pf2q with µ � 4 and pf4q�pf6q we take

hpx, tq � kpxq
�
t3 lnp1� tq � p1� cosptqqt4 � 4pt� sinptqqt2t

�
, t ¥ 0, s ¡ 1{2,

where kpxq is taken as above, and consider

fpx, tq �

#
hpx, tq, for t ¥ 0,

� hpx,�tq, for t   0.

(iii) For a nonlinearity satisfying the conditions of Theorem 4.2.1 we can take

fpx, tq � c0pxq r%
1ptqpln |t|tq � %ptqs |t|%ptq�2t, fpx, 0q :� 0,

where 0 ¤ c0pxq P L
8pR3q is 1�periodic in x1, x2, x3 and %ptq can be taken as in

Remark 3.2.5�(i) with inftPR %ptq ¡ 4.

(iv) Let 0 ¤ cpxq be a continuous 1�periodic in xi, i � 1, 2, 3, and consider

fpx, tq � cpxq rphεptq � h1εptqts |t|
p�1, 4   p   2�s ,

where hεptq P C8pRq is given in Remark 3.2.9�(iii). We empathize the fact that

F px, tq changes sign.

(v) For a nonlinearity with critical growth satisfying the assumptions of Theorem

4.2.3 we may take

gpx, tq � exptc1pxqpsinpln |t|q � 2qu rc1pxq cospln |t|q � 2�s s |t|
2�s�2t, gpx, 0q :� 0,
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where 0 ¤ c1pxq P CpR3q, lim|x|Ñ8 c1pxq � 0 and

K :� sup
xPR3

c1pxq   2�s � µ�, for some µ� P p2, 2�s q.

For s ¡ 3{4 we choose µ� ¥ 4 and K such that

expt3KupK � 2�s q ¤ 2�s

��
2�s
µ�



µ� � 2

2�s � 2

� 2�s �2

2

.

(vi) For nonlinearities satisfying the assumptions of Theorem 4.2.4 we may take

fptq � exptc0psinpln |t|q � 2qu rc0 cospln |t|q � ps |t|p�2t, 2   p   2�s , fp0q :� 0,

gptq � exptc1psinpln |t|q � 2qu rc1 cospln |t|q � 2�s s |t|
2�s�2t, gp0q :� 0,

where s ¡ 3{4, 2�s � 1   µ ¤ µ�   p, 0   c0 ¤ mintp � µ, 1 � pp � µqu,

0   c1 ¤ mint2�s � µ�, 1� p2�s � µ�qu and

expt3c1upc1 � 2�s q ¤ 2�s

��
2�s
µ�



µ� � 2

2�s � 2

� 2�s �2

2

.

4.3 Variational settings

In this section we describe the variational settings that we use in this chapter.

Remark 4.3.1. Assume that conditions pV1q�pV3q holds true. Then Hs
V pR3q � Hs

VP
pR3q

and the norms } � }V and } � }VP are equivalents. Indeed, let R1 ¡ 0 such that

|V pxq � VPpxq|   1, @ |x| ¡ R1.

Given u P C8
0 pR3q, by Hölder inequality we have

»
R3

V pxqu2 dx ¤

�»
BR1

|V pxq|σ dx

�1{σ

}u}2
2 σ
σ�1

�

»
R3zBR1

u2 dx�

»
R3zBR1

VPpxqu
2 dx,

and similarly,»
R3

VPpxqu
2 dx ¤

�»
BR1

|VPpxq|
σP dx

�1{σP
}u}2

2
σP
σP�1

�

»
R3zBR1

u2 dx�

»
R3zBR1

V pxqu2 dx.

Since 2   2σ{pσ�1q, 2σP{pσP�1q   2�s we can use embedding (4.1.2) in the inequalities

above to obtain the desired result.

128



4.3.1 Study of the nonlocal term

We now pass to the study of the nonlocal term of Eq. (SNL) and start by revisiting

the de�nition of the nonlocal term in Eq. (SNL). Assume that pK1q holds true and let

Pu : Dα,2pR3q Ñ R given by,

Pupvq �
»
R3

Kpxqu2v dx, u P HspR3q, v P Dα,2pR3q.

Fixed u P HspR3q, we have that

|Pupvq| ¤

$&% }Kpxq}8}u}2
r8}v}2�α , r8 :� 22�α{p2

�
α � 1q,

}Kpxq}r}u}
2
rα}v}2�α , rα :� 12r{pp3� 2αqr � 6q,

v P Dα,2pR3q, (4.3.1)

provided that Kpxq belongs to L8pR3q and LrpR3q, respectively.

It is expected that for our general class of Kpxq the unique weak solution

φαrus P Dα,2pR3q for the equation p�∆qαφαrus � Kpxqu2 can be characterized in

terms of Riesz potential. In what follows, we give a brie�y proof of that fact.

Proposition 4.3.2. Suppose that Kpxq satis�es assumption pK1q and let u P HspR3q.

Then

φαruspxq � cα

»
R3

Kpyqu2pyq|x� y|2α�3 dy, a. e. R3.

Proof. Denote Qpuq � Kpxqu2. Then, by Hölder inequality and condition pK1q, Qpuq

belongs to LppR3q, for p � 2�α{p2
�
α � 1q. Let pϕkq a sequence in C8

0 pR3q such that

ϕk Ñ Qpuq in LppR3q. If v P Dα,2pR3q, then»
R3

p�∆qα{2pIαrϕk � ϕlsqp�∆qα{2v dx �

»
R3

p�∆qαpIαrϕk � ϕlsqv dx

�

»
R3

pϕk � ϕlqv dxÑ 0 as k, l Ñ 8,

where we used the well know identity,

p�∆qαpIαrϕsq � ϕ, @ϕ P S pR3q.

Consequently, pIαrϕksq is a weakly Cauchy sequence in Dα,2pR3q, and must weakly

converge in Dα,2pR3q for some vα. On the other hand, by Proposition 0.1.6, the sequence

pIαrϕksq converges to IαrQpuqs in L2�αpR3q. This implies that vα � IαrQpuqs, a. e., and
moreover, given ϕ P C8

0 pR3q, we conclude that»
R3

p�∆qα{2pIαrQpuqsqp�∆qα{2ϕ dx � lim
kÑ8

»
R3

p�∆qα{2pIαrϕksqp�∆qα{2ϕ dx

� lim
kÑ8

»
R3

ϕkϕ dx �

»
R3

Qpuqϕ dx.

By unicity, φαrus � IαrQpuqs a. e. in R3. �
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We now set the nonlocal functionals

Nαpuq �
»
R3

Kpxqφαrusu
2 dx, u P HspR3q, (4.3.2)

NP
α puq �

»
R3

KPpxqφ
P
α rusu

2 dx, u P HspR3q,

and summarize their basic properties.

Proposition 4.3.3. Suppose that pK1q holds true and let u P HspR3q. Then

(i) Nα belongs to C1pHspR3qq and

N 1
αpuq � v � 4

»
R3

Kpxqφαrusuv dx, u, v P HspR3q;

(ii) If pukq and pvkq are bounded sequences in HspR3q, with uk � vk Ñ 0 in LppR3q,

for some p P p2, 2�s q, then Nαpukq �Nαpvkq Ñ 0;

(iii) φα : HspR3q Ñ Dα,2pR3q is continuous and maps bounded sets into bounded sets;

(iv) φαrus ¥ 0 and Nαpuq ¤ Cα}u}
4
q, where q � r8 or q � rα provided that

Kpxq P L8pR3q or Kpxq P LrpR3q, respectively;

(v) Nαptuq � t4Nαpuq, and if Kpxq � K0 ¡ 0, then Nαpup�{tqq � t3�2αNαpuq, for all
t ¡ 0;

(vi) If uk á u in HspR3q, then φαruks á φαrus in Ds,2pR3q;

Proof. (i) Follows by standard arguments as in the local where it is used Fubini

Theorem (for instance, see [30]).

(ii) We assume that Kpxq belongs to LrpR3q, since L8pR3q can be proved in a

similar way. Observe �rst that, by an interpolation inequality uk � vk Ñ 0 in LppR3q,

for all p P p2, 2�s q. Next, we write

|Nαpukq �Nαpvkq| ¤
»
R3

��Kpxqφαrukspu2
k � v2

kq
�� dx

�

»
R3

��Kpxqpφαruks � φαrvksqv
2
k

�� dx. (4.3.3)

The �rst integral in the right-hand side of (4.3.3) can be estimated by using estimate

(4.3.1). In fact we have

|Nαpukq �Nαpvkq| ¤
»
R3

��Kpxqφαrukspu2
k � v2

kq
�� dx

¤ }Kpxq}r}puk � vkqpuk � vkq}rα{2}φαruks}2�α Ñ 0, as k Ñ 8,
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because 2   rα   2�s , and where we used Proposition 0.1.6, with p � 2�α{p2
�
α � 1q

and q � 2�α, to guarantee that pφαruksq is bounded in L2�αpR3q. To estimate the second

integral in the right-hand of (4.3.3) we notice �rst that φαruks � φαrvks � φαru
2
k � v2

ks.

Thus,»
R3

��Kpxqpφαruks � φαrvksqv
2
k

�� dx ¤ }Kpxq}r}vk}
2
rα}φαru

2
k � v2

ks}2�α

¤ }Kpxq}2
r}vk}

2
rα}uk � vk}rα}uk � vk}rα Ñ 0, as k Ñ 8,

where it is used Proposition 0.1.6 again with p � 2�α{p2
�
α� 1q and q � 2�α, to obtain the

second inequality.

(iii) Let uk Ñ u in HspR3q. De�ne the functional

Pkpvq �
»
R3

Kpxqu2
kv dx, v P HspR3q.

In order to prove that φαruks Ñ φαrus, it su�ces to prove that Pk Ñ Pu in the dual of

HspR3q. This actually follows by (4.3.1) and using similar arguments as above.

(iv)�(vi) can be proved by using the de�nition of φαrus and the estimate

(4.3.1). �

Next we establish the behaviour of the weak convergence for the functional (4.3.2)

under the pro�le decomposition for bounded sequences.

Proposition 4.3.4. Assume that pK1q�pK2q holds true. Let pukq be a bounded sequence

in HspR3q and pwpnqqnPN0 given by Theorem 1.1.2. Then, up to subsequence,

lim
kÑ8
Nαpukq � Nαpwp1qq �

¸
nPN0,n¡1

NP
α pw

pnqq. (4.3.4)

Proof. By convergence (1.1.8) and Proposition 4.3.3 we have that

lim
kÑ8

�
Nαpukq �Nα

�¸
nPN0

wpnqp� � y
pnq
k q

��
� 0.

The uniform convergence in (1.1.8) allows us to reduce to prove that (up to

subsequence),

lim
kÑ8

�
Nα

�
M̧

n�1

wpnqp� � y
pnq
k q

�
�Nαpwp1qq �

M̧

n�2

NP
α pw

pnqq

�
� 0, @M P N. (4.3.5)

Since Nα is C1, by density, we may assume that wpnq belongs to C8
0 pR3q, for

n � 1, . . . ,M. By condition (1.1.6), there exists k0 such that supppwpmqp� � y
pmq
k qq X
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supppwpnqp� � y
pnq
k qq � H, for all m � n and k ¡ k0. Consequently,

Nα

�
M̧

m�1

wpmqp� � y
pmq
k q

�

�
M̧

m�1

M̧

n�1

»
R3

Kpx� y
pmq
k q|wpmq|2φαrwpnqp� � y

pnq
k qspx� y

pmq
k q dx. (4.3.6)

For a. e. x in R3 and n ¥ 2, we obtain that

lim
kÑ8

φαrw
pnqp� � y

pnq
k qspx� y

pnq
k q

� lim
kÑ8

»
supppwpnqq

Kpy � y
pnq
k q|wpnqpyq|2|x� y|2α�3 dy

�

»
supppwpnqq

KPpyq|w
pnqpyq|2|x� y|2α�3 dy � φP

α rw
pnqspxq,

in fact, this convergence follows by Lebesgue Theorem, once we take account that

• Kpy � y
pnq
k q|wpnqpyq|2|x� y|2α�3 Ñ KPpyq|w

pnqpyq|2|x� y|2α�3 a.e y in R3 and

• Kpy�ypnqk q   1�|KPpy�y
pnq
k q| � 1�|KPpyq| P L

1psupppwqq, for k large enough.

By a similar argument we conclude, for n ¥ 2, that

lim
kÑ8

»
R3

Kpx� y
pnq
k q|wpnq|2φαrwpnqp� � y

pnq
k qspx� y

pnq
k q dx

�

»
R3

KPpxq|w
pnq|2φP

α rw
pnqs dx. (4.3.7)

Moreover, the same argument above together with condition (1.1.6) leads to

lim
kÑ8

»
R3

Kpx� y
pmq
k q|wpmq|2φαrwpnqp� � y

pnq
k qspx� y

pmq
k q dx � 0. (4.3.8)

Convergence (4.3.5) follows by (4.3.6), (4.3.7) and (4.3.8). �

Corollary 4.3.5. Under the same assumptions of Proposition 4.3.4, we have

lim
kÑ8

�
Nαpukq �Nαpwp1qq �Nαpuk � wp1qq

�
� 0.

Proof. It is easy to see that w̃p1q � 0 and w̃pnq � wpnq, for n ¥ 2 corresponds to a pro�le

decomposition for the sequence vk � uk�w
p1q. Thus applying Proposition 4.3.4 to this

sequence we obtain

lim
kÑ8
Nαpuk � wp1qq �

¸
nPN0,n¡1

NP
α pw

pnqq. (4.3.9)

The result follows by taking the di�erence between (4.3.4) and (4.3.9) �
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The next result gives the behavior of the derivative of Nα under the pro�le

decomposition described in Theorem 1.1.1, and gives the link necessary to treat the

critical case.

Lemma 4.3.6. Assume that Kpxq ful�lls pK1q�pK3q. Let pukq be a bounded sequence

in HspR3q, and pwpnqqN� , pj
pnq
k q and py

pnq
k q given by Theorem 1.1.1. Then

lim
kÑ8
N 1
αpukq � d

pnq
k ϕ �

#
pNP

α q
1pwpnqq � ϕ, if n P N0,

0, if n P N�.
(4.3.10)

Proof. Next we use the fact that N� � N0 YN� (Proposition 1.4.4). We prove (4.3.10)

by using the Dominated Convergence Theorem. We have

N 1
αpukq � d

pnq
k ϕ �

»
R3

γ�2sj
pnq
k Kpγ�j

pnq
k x� y

pnq
k qφαrukspγ

�jpnqk � �y
pnq
k qv

pnq
k ϕ dx, (4.3.11)

where

v
pnq
k � γ�

3�2s
2

j
pnq
k ukpγ

�jpnqk � �y
pnq
k q. (4.3.12)

Notice that�
φ
pnq
k ruks

�2

α
:�

�
γ�2sj

pnq
k φαrukspγ

�jpnqk � �y
pnq
k q

�2

α
� γp3�2α�4sqjpnqk rφαrukss

2
α .

Thus, by Proposition 4.3.3, pφpnqk ruksq converges to zero in Dα,2pR3q, if n P N�; and

converges weakly, up to subsequence, for some ξpnq in Dα,2pR3q, if n P N0. Moreover,

by the Dominated Convergence Theorem we have�
ξpnq, ϕ

�
α
� lim

kÑ8

�
φ
pnq
k ruks, ϕ

�
α
� lim

kÑ8

»
R3

Kpx� y
pnq
k q|v

pnq
k |2ϕ dx

�

»
R3

KPpxq|w
pnq|2ϕ dx, for n P N0.

That is, the de�nition of φP
α implies ξpnq � φP

α rw
pnqs, n P N0. We write identity (4.3.11)

as

N 1
αpukq � d

pnq
k ϕ �

»
R3

�
Kpγ�j

pnq
k x� y

pnq
k q �KPpγ

�jpnqk x� y
pnq
k q

�
φ
pnq
k ruksv

pnq
k ϕ dx

�

»
R3

KPpγ
�jpnqk xqφ

pnq
k ruksv

pnq
k ϕ dx.

Using condition pK3q, it is easy to see that

KPpγ
�jpnqk xq   Kp0q � 1, @x P supppϕq, k large enough and n P N�.

Therefore, we can apply the Dominated Convergence Theorem again to obtain

(4.3.10) �
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4.3.2 Mountain Pass Settings

In the following result we prove that our functional Iλ has the Mountain Pass

Geometry.

Lemma 4.3.7. Suppose that Kpxq, apxq � V pxq�bpxq, fpx, tq and gpx, tq satisfy pK1q,

pV1q, pV2q, pV4q, pf1q, pg1q, pg2q, respectively. Moreover, assume either pf2q, pf3q with

µ ¡ 4 or pf4q. Then the functional Iλ possess the mountain pass geometry. Precisely,

(i) Iλp0q � 0;

(ii) There exists r, b ¡ 0 such that Iλpuq ¥ b, whenever }u}V � r;

(iii) There is eλ P H
s
V pR3q with }eλ}V ¡ r and Iλpeλq   0;

In particular, b   cpIλq   8.

Proof. We follow a similar analysis to the one made in the proof of Lemma 3.3.3.

Indeed, since bpxq P LβpR3q,»
R3

bpxqu2 dx ¤

�»
R3

|bpxq|β dx


1{β �»
R3

|u|2β{pβ�1q dx


pβ�1q{β
, @u P Hs

V pR3q,

with 2   2β{pβ � 1q   2�s , by conditions pf1q, pg1q and pV4q, for any ε we get that

Iλpuq ¥

�
1

2

�
1�

}bpxq}β

C
pβq
V

� 2εC2

�
� pε� C�qC2�s }u}

2�s�2
V � CεCpε}u}

pε�2
V

�
}u}2

V ,

for all u P Hs
V pR3q, where C2, C2�s and Cpε are positive constants provided by the

embedding described in Proposition 3.3. This allow us to choose ε in a such way that the

�rst term in the right-hand side of the above inequality is positive, once }u}V is taken

small enough. Hence there exists r ¡ 0 such that Iλpuq ¡ 0 provided that }u}V   r.

Let us assume �rst that conditions pf2q, pf3q holds true. Let ξR P C8
0 pRq, R ¡ 0, such

that 0 ¤ ξRptq ¤ t0 and

ξRptq �

#
t0, if |t| ¤ R,

0, if |t| ¡ R � 1.

Set vpxq :� ξRp|x� x0|q. Then v P Hs
V pR3q and»

R3

F px, vq dx �

»
BRpx0q

F px, t0q dx�

»
BR�1px0qzBRpx0q

F px, vq dx

¥ |BR| inf
BRpx0q

F px, t0q � |BR�1zBR| inf
px,tqPpBR�1px0qzBRpx0qq�r0,t0s

F px, tq ¡ 0.

Since pf2q and pg2q are is equivalent to d{dtpF px, tq|t|�µq, d{dtpGpx, tq|t|�µ�q ¥ 0, for

t ¡ 0, we have$''&''%
»
R3

F px, tvq dx ¥ tµ
»
R3

F px, vq dx,»
R3

Gpx, tvq dx ¥ tµ�
»
R3

Gpx, vq dx,

whenever t ¡ 1.
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Hence

Iλptvq �
1

2
t2}v}2

V �
1

2
t2
»
R3

bpxqu2 dx�
λ

4
t4Nαpvq �

»
R3

F px, tvq �Gpx, tvq dx

¤
1

2
t2}v}2

V �
λ

4
t4Nαpvq � tµ

»
R3

F px, vq dx� tµ�
»
R3

Gpx, vq dx

Ñ �8, as tÑ 8.

Now suppose that assumption pf4q holds true. For any given R ¡ 0, there exists tR ¡ 0

such that

F px, tq ¡ Rt4, @ |t| ¡ tR, and @x P R3.

Let be ApR, tq :� tx P R3 : t|vpxq| ¡ tRu, for t ¡ 0. We have that»
R3

F px, tvq dx �

»
Kt

F px, tvq dx�

»
ApR,tq

F px, tvq dx

¥

»
Kt

F px, tvq dx�Rt4
»
ApR,tq

v4 dx, (4.3.13)

where Kt � pR3zApR, tqq X supppvq. Using condition pf1q, for each t ¡ 0, we get that

|F px, tvq| ¤ C, for a. e. x P Kt,

where C is a positive constant that does not depend in x and t. Consequently,

F px, tvqXKtpxq Ñ 0, x P supppvq, as tÑ 8,

where used that

XR3zApR,tqpxq Ñ XR3z supppvqpxq � 0, x P supppvq, as tÑ 8.

Thus Lebesgue Convergence Theorem implies that the �rst integral in the right-hand

side of (4.3.13) goes to zero as t goes to in�nity. By the same reason, we also have that

lim
tÑ8

»
ApR,tq

v4 dx � lim
tÑ8

»
R3

v4XApR,tq dx �

»
R3

v4Xtv�0u dx �

»
R3

v4 dx.

In particular, there exists a positive number t0,R such that

1

4

»
R3

v4 dx  

»
ApR,tq

v4 dx, @ t ¡ t0,R. (4.3.14)

Replacing (4.3.14) in (4.3.13) we obtain that

Iλptvq �
t2

2
}v}2

V �
t2

2

»
R3

bpxqv2 dx�
t4

4
λNαpvq �

»
R3

F px, tvq �Gpx, tvq dx

¤
t2

2
}v}2

V �
t4

4
pλNαpvq �R}v}4

4q �

»
Kt

F px, tvq dx� tµ�
»
R3

Gpx, vq dx   0,

for t ¡ t0,R.

provided R is chosen large enough. �
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Remark 4.3.8. (i) In addition to the assumptions of Lemma 4.3.7, assume that

F px, tq ¡ 0 for a. e. x P R3 and t � 0. Then, for any u P Hs
V pR3qzt0u, the path

de�ned by ζptq � tu belongs to ΓI . In fact, we make the following modi�cation

in the proof of Lemma 4.3.7, replacing v by u and using the same notation. We

have that$''&''%
»
R3

F px, tuq dx ¥ Rt4
»
ApR,tq

u4 dx,

lim
tÑ8

»
ApR,tq

u4 dx � lim
tÑ8

»
R3

u4XApR,tq dx �

»
R3

u4Xtu�0u dx �

»
R3

u4 dx,

which enable us to proceed as in (4.3.14) to get

ϕptq :� Iλptuq ¤
t2

2
}u}2

V �
t4

4
pλNαpuq �R}u}4

4q Ñ �8, as tÑ 8,

provided that R is taken large enough. Moreover, suppose that hpx, tq �

fpx, tq � gpx, tq satis�es the following condition: for a. e. x P R3 the function

t ÞÑ
hpx, tq

|t|
, is strict increasing in R.

Then, taking into account that

ϕ1ptq � t

�
}u}2

V � t2λNαpuq �
»
R3

fpx, tuq

t
u dx�

»
R3

gpx, tuq

t
u dx

�
, t ¡ 0,

we infer that ϕ has a unique critical point.

(ii) In view of Lemma 4.3.7, we de�ne the set

Γ1
Iλ
�
 
γ P Cpr0, 1s, Hs

V pRNqq : γp0q � 0, }γp1q} ¡ r, Iλpγp1qq   0
(
,

and

c1pIλq � inf
γPΓ1

Iλ

sup
tPr0,1s

Iλpγptqq,

as the usual minimax level. We have that c1pIλq � cpIλq.

(iii) Using the same arguments of the previous chapters we can see that when

fpx, tq � fptq, the mountain pass geometry can be obtained by replacing pf3q with

pf 13q. In fact, let ξR as in the proof of Lemma 4.3.7 and de�ne ηRpxq � ξRp|x|q.

Then, »
R3

F pηRq dx ¡ 0,

provided that R is chosen large enough.
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Proposition 4.3.9. Suppose that Kpxq, apxq � V pxq� bpxq, fpx, tq and gpx, tq satisfy

pK1q, pV1q, pV2q, pV4q, pf1q, pf2q, pg1q, pg2q, respectively, with µ ¤ µ�.Moreover, assume

either µ ¡ 4 and pf3q or µ � 4 and pf4q. Then there exists a bounded sequence pukq

such that Iλpukq Ñ cpIλq and I
1
λpukq Ñ 0, in the dual of Hs

V pR3q.

Proof. In both cases, by Lemma 4.3.7, we may apply the standard Mountain Pass

Theorem [16] in order to �nd a sequence pukq in Hs
V pR3q such that Iλpukq Ñ cpIq and

I 1λpukq Ñ 0.

Assume �rst µ ¡ 4 and pf3q. For large k, we have

cpIλq � 1� }uk}V

¥ Iλpukq �
1

µ
I 1λpukq � uk

�

�
1

2
�

1

µ


�
1�

}bpxq}β

CpβqV

�
}uk}

2
V � λ

�
1

4
�

1

µ



Nαpukq

�

»
R3

F px, ukq �
1

µ
fpx, ukquk dx�

»
R3

Gpx, ukq �
1

µ
gpx, ukquk dx

¥

�
1

2
�

1

µ


�
1�

}bpxq}β

CpβqV

�
}uk}

2
V ,

which implies that pukq is bounded. The case where fpx, tq satis�es pf2q with µ � 4

and pf4q follows by taking µ � 4 in the above inequality. �

It is worth to mention here the following complement of Proposition 3.4.5, which

the proof follows the same argument.

Proposition 4.3.10. Suppose that V pxq satis�es pV1q�pV3q and V pxq ¥ 0. Let pukq be

a bounded sequence in HspR3q and pwpnqqnPN0 provided by Theorem 1.1.2. Then

lim inf
kÑ8

»
R3

V pxqu2
k dx ¥

»
R3

V pxq|wp1q|2 dx�
¸

nPN0,n¡1

»
R3

VPpxq|w
pnq|2 dx.

4.3.3 Estimate of the minimax level

Following the arguments of [42] we prove a estimate for the minimax level of the

associated functionals. This is needed in order to prove Theorems 4.6.1 and 4.2.3. As

might be seen in [28], the following in�mum

S�psq :� inf
uPDs,2pR3q

u�0

��³
R3 |p�∆qs{2u|2 dx

�1{2�³
R3 |u|2

�
s dx

�1{2�s

�
, (4.3.15)
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is attained by the following class of functions

uεpxq �
ε

3�2s
2

p|x|2 � ε2q
3�2s

2

, ε ¡ 0,

where

S�,s �

�
2�2sπ�s

Γ
�

3�2s
2

�
Γ
�

3�2s
2

� � Γp3q

Γp3{2q


2s{3��1{2

.

Furthermore, consider ξ P C8
0 pR : r0, 1sq a non-increasing cut-o� such that

ξptq �

$&% 1, if t P r�1{2, 1{2s

0, if |t| ¥ 1
and |ξ1ptq| ¤ C @ t P R,

and de�ne ηpxq � ξp|x|q. Then ηuε P Hs
V pR3q, provided that V pxq P L8pR3q and pV2q

holds. Moreover, we have the following result.

Lemma C. [42, Lemma 2.4] Let ηε � ηuε{}ηuε}2�s , then

rηεs
2
s ¤ S�psq2 �Opε3�2sq,

}ηε}
2
2 �

$''&''%
Opε2sq, if 3 ¡ 4s,

Opε2s logp1{εqq, if 3 � 4s,

Opε3�2sq, if 3   4s,

and

}ηε}
p
p �

$&%Opε
6�p3�2sqp

2 q, if p ¥ 3{p3� 2sq,

Opε
p3�2sqp

2 q, if p ¤ 3{p3� 2sq.

Here the notation aε � Opbεq means that aε{bε is uniformly bounded with respect to ε,

precisely, there exists positive constants c1 and c2 such that c1   aε{bε   c2, for all ε.

Proposition 4.3.11. Assume that pK1q and pV2q holds true with V pxq P L8pR3q.

Moreover, suppose that fpx, tq � fPpx, tq and gpx, tq � g8ptq satis�es pf1q, pf7q and

pg1q, pg7q, respectively. Then

cpIPλ q  
s

3

�
S�psq

p2�sc�q1{2
�
s

�3{s
. (4.3.16)

Proof. De�ne η�ε � ηε{p2
�
sc�q

1{2�s . It is easy to see that the path t ÞÑ tη�ε belongs to ΓIλ .

We are going to prove that

sup
t¥0

Iλptη
�
ε q  

s

3

�
S�psq

p2�sc�q1{2
�
s

�3{s
, for ε small enough.

By Proposition 4.3.3 we have that

Iλptη
�
ε q ¤ ψεptq :�

1

2
}η�ε }

2
V t

2 �
1

4
Cλ}η

�
ε }

4
qt

4 � c0}η
�
ε }
p0
p0
|t|p0 �

1

2�s
|t|2

�
s , @ t ¥ 0,
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where Cλ � λCα. Since ψεptq Ñ �8 as tÑ �8 and ψεptq ¡ 0 for t close to zero, there

exists tε ¡ 0 so that supt¥0 ψεptq � ψεptεq. Thus ψ1
εptεq � 0 and as consequence,

}η�ε }
2
V � C2

λ}η
�
ε }

4
qt

2
ε � c0}η

�
ε }
p0
p0
|tε|

p0�2 � |tε|
2�s�2. (4.3.17)

Moreover, the above identity (4.3.17) implies that 0   c1 ¤ tε ¤ c2 for ε   1, and some

positive constants c1 and c2. Now let

ϕεptq �
1

2
}η�ε }

2
V t

2 �
1

2�s
|t|2

�
s ,

which has a maximum point t̃ε � p}η�ε }
2
V q

1{p2�s�2q. We have

sup
t¥0

ψεptq ¤ sup
t¥0

ϕεptq �
1

4
Cλc

4
2}η

�
ε }

4
q � c0c

p0

1 }η
�
ε }
p0
p0

�
s

3
}η�ε }

3{s
V �

1

4
Cλc

4
2}η

�
ε }

4
q � c0c

p0

1 }η
�
ε }
p0
p0
, ε   1. (4.3.18)

Using Lemma C, we now pass to estimate each term in (4.3.18). Also, in what follows

we use the inequality pa � bqα ¤ aα � αpa � bqα�1b, α ¥ 1 and a, b ¡ 0, and always

consider ε   1.

• For the �rst term we have�
}η�ε }

2
V

�3{2s
¤
�
rη�ε s

2
s � }V pxq}8}η�ε }

2
2

�3{2s

¤

�
S�psq
2�sc�


3{s
� c3}η

�
ε }

2
2 �Opε3�2sq, for some positive constant c3,

�

$''''''''&''''''''%

�
S�psq
2�sc�


3{s
�Opε3�2sq �Opε2sq, if 3 ¡ 4s,�

S�psq
2�sc�


3{s
�Opε3�2sq �Opε2s logp1{εqq, if 3 � 4s,�

S�psq
2�sc�


3{s
�Opε3�2sq, if 3   4s.

• For the second term, we have

�
}η�ε }

q
q

�4{q
�

#
Opε

12�2p3�2sqq
q q, if q ¥ 3{p3� 2sq,

Opε2p3�2sqq, if q ¤ 3{p3� 2sq.

• For the third term, we have }η�ε }
p0
p0

� Opε
6�p3�2sqp0

2 q, since p0 ¡ 4 implies that

p0 ¡ 3{p3� 2sq.

Summing up, we get the following.
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• For the case q ¥ 3{p3� 2sq, we get

sup
t¥0

Iλptη
�
ε q ¤ sup

t¥0
ψεptq ¤$'''''''''''&'''''''''''%

�
S�psq
2�sc�


3{s
�Opε3�2sq �Opε2sq �Opε

12�2p3�2sqq
q q �Opε

6�p3�2sqp0
2 q, if 3 ¡ 4s,�

S�psq
2�sc�


3{s
�Opε3�2sq �Opε2s logp1{εqq

�Opε
12�2p3�2sqq

q q �Opε
6�p3�2sqp0

2 q, if 3 � 4s,�
S�psq
2�sc�


3{s
�Opε3�2sq �Opε

12�2p3�2sqq
q q �Opε

6�p3�2sqp0
2 q, if 3   4s.

• For the case q   3{p3� 2sq,

sup
t¥0

Iλptη
�
ε q ¤ sup

t¥0
ψεptq ¤$'''''''''''&'''''''''''%

�
S�psq
2�sc�


3{s
�Opε3�2sq �Opε2sq �Opε2p3�2sqq �Opε

6�p3�2sqp0
2 q, if 3 ¡ 4s,�

S�psq
2�sc�


3{s
�Opε3�2sq �Opε2s logp1{εqq

�Opε2p3�2sqq �Opε
6�p3�2sqp0

2 q, if 3 � 4s,�
S�psq
2�sc�


3{s
�Opε3�2sq �Opε2p3�2sqq �Opε

6�p3�2sqp0
2 q, if 3   4s.

Since the following inequalities are always true$''&''%
6� p3� 2sqp0

2
  2s  

12� 2p3� 2sqq

q
,

6� p3� 2sqp0

2
  3� 2s,

0   s   1

and

lim
εÑ0

ε
6�p3�2sqp0

2

ε2s logp1{εq
� �8,

the term involving the power ε
6�p3�2sqp0

2 grows faster near zero than any other terms

involving ε in each considered case. Thus we obtain estimate (4.3.16) by taking ε small

enough. �

4.3.4 Pohozaev identity

We now prove that weak solutions for Eq. (SNL) satisfy a Pohozaev type identity.

The proof follows similar arguments used in Proposition 3.5.1 with additional caution,

since we have to consider the nonlocal term in Eq. (SNL). This is the reason why we
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ask an smoothness C1 in the potential apxq instead the one in Proposition 3.5.1, that

apxq may have �nite points of discontinuity.

Proposition 4.3.12. Assume that fpx, tq � fptq P C1pRq, gpx, tq � 0, Kpxq � K0 ¡ 0

and apxq P C1pR3q. Let u P HspR3q be a weak solution of Eq. (SNL) such that

fpuq{p1 � |u|q belongs to L
N{2s
loc pR3q. If F puq, fpuqu, apxqu2 and x∇apxq, xyu2 belongs

to L1pR3q, then u P C1pR3q and

3� 2s

2

»
R3

|p�∆qs{2u|2 dx�
3

2

»
R3

apxqu2 dx�
1

2

»
R3

x∇apxq, xyu2 dx

�
3� 2α

4
λK0

»
R3

φαrusu
2 dx � 3

»
R3

F puq dx. (4.3.19)

Proof. We divide our proof in two steps. In what follows we assume without loss of

generality that λ � K0 � 1 and use that w � Espuq is a weak solution of problem

(0.3.3), where hpx, uq :� fpuq � papxq � φαrusqu.

First step (Regularity). We shall prove �rst that u belongs to LrlocpR3q for all r ¥ 1. In

order to prove this, observe that, given p ¡ 1, by Proposition 0.1.6, φαrus belongs to

LqpR3q, for some q ¡ 3{2s if, and only,

q �
3p

3� 2αp
¡

3

2s
, that is, p ¡

3

2s� 2α
. (4.3.20)

As seen in Proposition 4.3.2, we know that p � 2�α{p2
�
α � 1q, hence (4.3.20) holds true.

Furthermore, we have that
|hpuq|

1� |u|
P L

3{2s
loc pR

3q.

Thus, from now on we can follow exactly the same lines as in Proposition 2.3.1 to

conclude that u P LrlocpR3q. Moreover, since φαrus is a weak solution of p�∆qαφαrus �

K0u
2 the same conclusion follows for φαrus, once is known that u belongs to LrlocpR3q

for all r ¥ 1. Writing

hpuq �

�
fpuq

1� |u|
sgnpuq � apxq � φαrus

�
u�

fpuq

1� |u|
,

we see that the regularity follows by applying the results of [59] and proceeding as

described in Proposition 0.4.1. Thus, for any R ¡ 0 there exists 0   y0, r   R with

B3
r � r0, y0s � B�

R and 0   µ   1 such that

Espuq, ∇xEspuq, y
1�2sEspuq,

Eαpφαq, ∇xEαpφαq, y
1�2sEαpφαq P C

0,µpB3
r � r0, y0sq. (4.3.21)
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Second step (Local computation). Let ξn as in Remark 4.2.9. As before, we have

divpy1�2s∇wq xz,∇wy ξn

� div

�
y1�2sξn

�
xz,∇wy∇w �

|∇w|2

2
z


�
�
N � 2s

2
y1�2s|∇w|2ξn

� y1�2s |∇w|2

2
xz,∇ξny � y1�2s x∇w, zy x∇w,∇ξny . (4.3.22)

Note that BB?
2n,δ � F 1?

2n,δ
Y F 2?

2n,δ
. Let ηpzq � p0, 0,�1q be the unit outward normal

vector of B?
2n,δ on F

1?
2n,δ

. Since ξn � 0 on F 2?
2n,δ

, by condition (0.3.2), identity (4.3.22)

and Divergence Theorem we get

0 �

»
B?2n,δ

divpy1�2s∇wq xz,∇wy ξn dxdy

�

»
F 1?

2n,δ

y1�2sξn

�
xz,∇wy x∇w, ηy � |∇w|2

2
xz, ηy

�
dxdy � θn,δ

�

»
F 1?

2n,δ

ξn xx,∇xwy p�y
1�2swyq dx

�

»
F 1?

2n,δ

y1�2sξnw
2
yy dx�

»
F 1?

2n,δ

y1�2sξn
|∇w|2

2
y dx� θn,δ

� I1
n,δ � I2

n,δ � I3
n,δ � θn,δ,

where

θn,δ �

»
B?2n,δ

N � 2s

2
y1�2s|∇w|2ξn dxdy

�

»
B?2n,δ

y1�2s |∇w|2

2
xz,∇ξny � y1�2s x∇w, zy x∇w,∇ξny dxdy.

We know that there exists a sequence δk Ñ 0 such that

I2
n,δk

� I3
n,δk

Ñ 0, as k Ñ 8.

Some computations leads to

ξnpx, 0q xx,∇uy pfpuq � papxq � φαrusquq

� div

�
ξnpx, 0q

�
F puq �

1

2
papxq � φαrusqu

2



x

�
� x∇ξnpx, 0q, xyF puq � 3ξnpx, 0qF puq �

1

2
x∇ξnpx, 0q, xy papxq � φαrusqu

2

�
1

2
ξnpx, 0q x∇papxq � φαrusq, xyu

2 �
3

2
ξnpx, 0qpapxq � φαrusqu

2.
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Thus, by Remark 0.4.3, conditions (0.3.2), (4.3.21) and the Divergence Theorem we

have

lim
kÑ8

I1
n,δk

� κs

»
B3?

2n

ξnpx, 0q xx,∇uy pfpuq � papxq � φαrusquq dx

� �κs

»
B3?

2n

x∇ξn, xyF puq � 3ξnF puq dx

�
κs
2

»
B3?

2n

x∇ξn, xy papxq � φαrusqu
2 dx

�
κs
2

»
B3?

2n

ξn x∇papxq � φαrusq, xyu
2 � 3ξnpapxq � φαrusqu

2 dx.

Summing up, we get

0 � lim
kÑ8

�
I1
n,δk

� I2
n,δk

� I3
n,δk

� θn,δk
�

� �κs

»
B3?

2n

x∇ξn, xyF puq � 3ξnF puq dx

�
κs
2

»
B3?

2n

x∇ξn, xy papxq � φαrusqu
2 dx

�
κs
2

»
B3?

2n

ξn x∇papxq � φαrusq, xyu
2 � 3ξnpapxq � φαrusqu

2 dx

�

»
B�?

2n

3� 2s

2
y1�2s|∇w|2ξn dx

�

»
B�?

2n

1

2
y1�2s|∇w|2 xz,∇ξny � y1�2s x∇w, zy x∇w,∇ξny dx. (4.3.23)

Since v � φαrus is a weak solution for the equation p�∆qαv � u2, similar arguments

also can be applied to wα � Eαpφαrusq. Hence,

0 � �κα

»
B3?

2n

2ξnφαrusu x∇u, xy � 3ξnφαrusu
2 dx

�

»
B�?

2n

3� 2α

2
y1�2α|∇wα|2ξn �

1

2
y1�2α|∇wα|2 xz,∇ξny dx

�

»
B�?

2n

y1�2α x∇wα, zy x∇wα,∇ξny dx. (4.3.24)

On the other hand, integrating by parts, we have»
B3?

2n

ξn x∇φαrus, xyu2 dx �

�

»
B3?

2n

u2φαrus x∇ξn, xy dx�

»
B3?

2n

2ξnuφαrus x∇u, xy � 3ξnu
2φαrus dx. (4.3.25)
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Using identity (4.3.24) in (4.3.25) we obtain

κs
2

»
B3?

2n

ξn x∇φαrus, xyu2 dx �

�
κs
2

»
B3?

2n

x∇ξn, xyu2φαrus dx�
p3� 2αqκs

4κα

»
B�?

2n

y1�2α|∇wα|2ξn dx

�
κs

2κα

�»
B�?

2n

1

2
y1�2α|∇wα|2 xz,∇ξny � y1�2α x∇wα, zy x∇wα,∇ξny dx

�
.

(4.3.26)

On the other hand, by a density argument, we can choose wφξn as a test function in

de�nition (0.3.4) and get as consequence,»
B�?

2n

y1�2α|∇wφ|2ξn dxdy

� κα

»
B3?

2n

ξnφαrusu
2 dx�

»
B�?

2n

y1�2αwφ x∇wφ,∇ξny dxdy. (4.3.27)

It follows, replacing identity (4.3.27) in (4.3.26), that

κs
2

»
B3?

2n

ξnu
2 x∇φαrus, xy dx �

�
κs
2

»
B3?

2n

x∇ξn, xyu2φαrus dx

�
p3� 2αqκs

4κα

�
κα

»
B3?

2n

ξnφαrusu
2 dx�

»
B�?

2n

y1�2αwφ x∇wφ,∇ξny dxdy

�

�
κs

2κα

�»
B�?

2n

1

2
y1�2α|∇wα|2 xz,∇ξny � y1�2α x∇wα, zy x∇wα,∇ξny dxdy

�
.

(4.3.28)

Finally, replacing expression (4.3.28) in (4.3.23) we obtain

0 � �κs

»
B3?

2n

x∇ξn, xyF puq � 3ξnF puq dx�
3� 2α

4
κs

»
B3?

2n

ξnφαrusu
2 dx

�
κs
2

»
B3?

2n

x∇ξn, xy apxqu2 � ξn x∇apxq, xyu2 �
3

2
ξnapxqu

2 dx

�
κs

2κα

�»
B�?

2n

1

2
y1�2α|∇wα|2 xz,∇ξny � y1�2α x∇wα, zy x∇wα,∇ξny dxdy

�

�

»
B�?

2n

3� 2s

2
y1�2s|∇w|2ξn dx

�

»
B�?

2n

1

2
y1�2s|∇w|2 xz,∇ξny � y1�2s x∇w, zy x∇w,∇ξny dx

�
p3� 2αq

4
κs

»
B�?

2n

y1�2αwφ x∇wφ,∇ξny dxdy. (4.3.29)
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Thus the identity (4.3.19) follows from (4.3.29) by applying the Dominated Convergence

Theorem and using (0.3.2). �

4.4 Proof of Theorem 4.2.1

Proof. Our argument follows the same one in the proof of Theorem 3.2.1�(i). For the

reader convenience we divide the proof in several steps.

(i) By Proposition 4.3.9 we known of the existence of a bounded sequence pukq in

a such way that IPλ pukq Ñ cpIPλ q and pI
P
λ q

1pukq Ñ 0. Since it is bounded, it has a pro�le

decomposition provided by Theorem 1.1.2. If we have wpnq � 0 for all n P N0, then

by assertion (1.1.8), uk Ñ 0 in LppR3q, for any 2   p   2�s and by convergence (1.1.5)

uk á 0 in Hs
VP
pR3q, in a subsequence. Consequently, by Propositions 3.4.1, 3.4.2 and

4.3.4, we have$'''''''''&'''''''''%

op1q � cpIPλ q � IPλ pukq �
1

2
}uk}

2
VP
�
λ

4
NP
α pukq �

»
R3

FPpx, ukq dx

�
1

2
}uk}

2
VP
� op1q,

op1q � pIPλ q
1pukq � uk � }uk}

2
VP
� λNP

α pukq �

»
R3

fPpx, ukquk dx

� }uk}
2
VP
� op1q,

(4.4.1)

a contradiction, since cpIPλ q ¡ 0. Thus, there must be at least one nonzero wpnq.

(ii) Moreover, we have that each wpnq is a critical point of IPλ . In fact, it is well

known that, up to subsequence, we can take hpnq in Lσ
1
psupppϕqq, n P N0, such that

|ukpx� y
pnq
k q| ¤ hpnqpxq a. e. x P supppϕq, (4.4.2)

where σ1 � σ{pσ� 1q and ϕ P C8
0 pR3q, which can be done thanks to Proposition 3.3.1.

Thus, for a.e. x P R3, we have#
|VPpx� y

pnq
k qukpx� y

pnq
k qϕpxq| ¤ hpnqpxq|VPpxqϕpxq| P L1psupppϕqq

VPpx� y
pnq
k qukpx� y

pnq
k qϕpxq � VPpxqukpx� y

pnq
k qϕpxq Ñ VPpxqw

pnqpxqϕpxq,

which by the Lebesgue Convergence Theorem leads to

lim
kÑ8

puk, ϕp� � y
pnq
k qqVP � lim

kÑ8

�
rukp� � y

pnq
k q, ϕss �

»
R3

VPpx� y
pnq
k qukp� � y

pnq
k qϕpxq dx

�
� rwpnq, ϕss �

»
R3

VPpxqw
pnqϕ dx.

By the same reason and pf1q, up to subsequence we have,

lim
kÑ8

»
R3

fPp� � y
pnq
k , ukp� � y

pnq
k qqϕ dx �

»
R3

fPpx,w
pnqqϕ dx.
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Consequently, by Lemma 4.3.6, we may pass the limit in

pIPλ q
1pukq � ϕp� � y

pnq
k q � puk, ϕp� � y

pnq
k qqVP

� λpNP
α q

1pukq � ϕp� � y
pnq
k q �

»
R3

fPp� � y
pnq
k , ukp� � y

pnq
k qqϕ dx,

to conclude that pIPλ q
1pwpnqq � 0, for all n P N0.

(iii) In particular, we get that

GS � inf
 
IPλ puq : u P Hs

VP
pR3qzt0u, pIPλ q

1puq � 0
(
¥ 0,

We are going to prove that is GS is attained and is positive. Let pukq be a minimizing

sequence of GS , that is IPλ pukq Ñ GS and pIPλ q
1pukq � 0. Arguing as in Proposition

4.3.9 we obtain that pukq is bounded. We argue again by contradiction and assume

that wpnq � 0 for all n P N0. In this case we actually have that GS ¡ 0, because on the

contrary, if GS � 0, then using (4.4.1) we would conclude that }uk}VP � op1q, and at

the same time,

}uk}
2
VP
¤ }uk}

2
VP
� λNP

α pukq �

»
R3

fPpukquk dx ¤ εpC2}uk}
2
VP
� C�}uk}

2�s
VP
q � Cε}uk}

pε
VP
,

where C2, C2�s and Cpε are positive constant obtained by applying the embedding

described in Proposition 3.3.1. In particular,

p1� εC2q ¤ εC2�s }uk}
2�s�2
VP

� Cpε}uk}
pε�2
VP

, @ k P N,

which, by taking ε small enough, would lead to a contradiction with the fact that

}uk}VP � op1q. In view of that, in any case, we can argue as above to conclude that

there must be a nonzero wpn0q that is a critical point of IPλ .

(iv) Let us denote

Fpx, tq � 1

4
fpx, tqt� F px, tq, x P R3 and t P R.

We know from convergence (1.1.5) that ukpx � y
pn0q
k q Ñ wpn0qpxq a. e. in R3, up to

subsequence, which allows us to apply Fatou Lemma to get

GS � lim
kÑ8

�
1

4
}ukp� � y

pn0q
k q}2

VP
�

»
R3

Fpx, ukp� � y
pn0q
k qq dx

�
¥ lim inf

kÑ8
1

4
}ukp� � y

pn0q
k q}2

VP
� lim inf

kÑ8

»
R3

Fpx, ukp� � y
pn0q
k qq dx

¥
1

4
}wpn0q}2

VP
�

»
R3

Fpx,wpn0qq dx � IPλ pw
pn0qq,

where we used pf2q to ensure that Fpx, ukp� � ypn0q
k qq � Fpx, ukq ¥ 0 a. e. in R3. Thus,

once again by pf2q, we have GS � IPλ pw
pn0qq ¡ 0.
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(v) Now assume in addition that fPpx, tq satis�es pf6q, then GS � cpIPλ q �

IPλ pw
pn0qq, and wpn0q is non-negative. Indeed, the truncation given in Remark 4.2.9

satis�es the assumptions of Theorem 4.2.1, and we can apply the same arguments of

this remark to conclude that the ground state wpn0q is non-negative. Furthermore,

Remark 4.3.8�(i) guarantees that the path ζptq � twpn0q, t ¥ 0, belongs to ΓIPλ and

cpIPλ q ¤ IPλ pw
pn0qq. On the other hand, considering pukq the above sequence, by Remark

3.3.2�(ii), Propositions 3.4.2 and 4.3.4 and estimate (1.1.7), up to subsequence, we have

cpIPλ q � lim
kÑ8

�
1

2
}uk}

2
VP
�
λ

4
NP
α pukq �

»
R3

FPpx, ukq dx

�
¥

¸
nPN0

IPλ pw
pnqq.

Consequently, using pf2q we can guarantee that each IPλ pw
pnqq is non-negative and

conclude that cpIPλ q � GS . �

4.5 Proof of Theorem 4.2.2

In order to prove our existence result without the compactness condition pC q,

once again we use a similar argument as made in the previous chapters. Thus we need

Theorem 0.6.4, which states that the existence of a critical point of I is guaranteed

whenever the minimax level (4.1.4) is attained (see Remark 4.3.8�(ii)).

Proof of Theorem 4.2.2 completed. From Lemma 4.3.7 and Proposition 4.3.9 we know

about the existence of a bounded sequence pukq such that Iλpukq Ñ cpIλq and

I 1λpukq Ñ 0, in all considered cases. Let be the sequences pwpnqq and py
pnq
k q provided

by Theorem 1.1.2 for the sequence pukq. The underlying main idea to proof the

concentration-compactness of Theorem 4.2.2 follows the same one of Theorem 2.2.4

and 3.2.3 and is the following: we prove that wpnq � 0 for all n ¥ 2, which by assertions

(1.1.5), (1.1.8) and Propositions 3.4.2 and 4.3.4 implies that uk Ñ wp1q in Hs
V pR3q, up

to subsequence. In order to prove that, we argue by contradiction and assume the

existence of at least one wpn0q � 0, n0 ¥ 2.

(i) In view of Remark 3.3.2�(ii), estimate (1.1.7), Propositions 3.4.2 and 4.3.4, up

to subsequence, we have

cpIλq � lim
kÑ8

�
1

2
}uk}

2
V �

λ

4
Nαpukq �

»
R3

F px, ukq dx

�
¥ Iλpw

p1qq �
¸

nPN0,n¡1

IPλ pw
pnqq. (4.5.1)

Each term of the right-hand side of (4.5.1) is non-negative. In fact, following as in the

proof of Theorem 4.2.1 (using Lemma 4.3.6) we notice that wp1q and wpnq, n ¥ 2, are

critical points for Iλ and IPλ , respectively. In view of that, it is clear that pf2q implies
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that Iλpwp1qq ¥ 0 and IPλ pw
pnqq ¥ 0, n ¥ 2. On the other hand, Remark 4.3.8�(i)

guarantees that the path ζpn0qptq � twpn0q belongs to ΓIPλ and cpIPλ q ¤ IPλ pw
pn0qq. This,

together with (4.5.1) and pC q leads to a contradiction.

(ii) In this case we follow a similar argument, we apply estimate (1.1.7),

Propositions 4.3.4, 3.4.2 and 4.3.10, to get up to subsequence, that

cpIλq � lim
kÑ8

�
1

2
}uk}

2
V �

1

2

»
R3

bpxqu2
k �

λ

4
Nαpukq �

»
R3

F px, ukq dx

�
¥ Iλpw

p1qq �
¸

nPN0,n¡1

IPλ pw
pnqq. (4.5.2)

Reasoning as in (4.4.2), we see again that wp1q and wpnq, n ¥ 2, are critical points for

Iλ and IPλ , respectively. In fact, by assertion (1.1.6), there exists k0 � k0pϕq such that$&% |V px� y
pnq
k q|   1� |VPpxq|, @ k ¡ k0, x P supppϕq and n ¥ 2.

V px� y
pnq
k q �

�
V px� y

pnq
k q � VPpx� y

pnq
k q

	
� VPpxq Ñ VPpxq, a.e. in supppϕq.

Thus, using again pf2q together with pV4q, we can guarantee that Iλpw
p1qq ¥ 0

and IPλ pw
pnqq ¥ 0, n ¥ 2. Once more, Remark 4.3.8�(i) guarantees that the path

ζpn0qptq � twpn0q belongs to ΓIPλ and cpIPq ¤ IPλ pw
pn0qq. This, together with (4.5.2) and

pC q leads to a contradiction.

(iii) Finally, assume that inequality (4.2.1) holds true instead condition pC q in

the items (i) and (ii). If there exists wpn0q � 0, n0 P N0, then

cpIλq ¤ max
t¥0

Iλpζ
pn0qptqq ¤ max

t¥0
IPλ pζ

pn0qptqq � IPλ pw
pn0qq ¤ cpIλq, n0 P N0,

where we used condition (4.2.1) to ensure that the paths ζpn0q belongs to ΓIλ . Thus, we

have that the minimax level cpIλq is attained by the path t ÞÑ twpn0q and we can apply

Theorem 0.6.4 to obtain the existence of a critical point u for Iλ with Iλpuq � cpIλq. If

there is no wpnq � 0, n P N0, (which is the case where strict inequalities occurs) we can

argue as above and obtain that uk Ñ wp1q, up to subsequence. �

4.6 Study of the asymptotic problem

In order to prove Theorem 4.2.3 we �rst need to study the existence of weak

solutions for the limiting problem (4.1.1). This provides a way to compare the minimax

level of the functionals associated with systems (SP) and (4.1.1), as mentioned in

Remark 4.2.8.

Theorem 4.6.1 (Periodic case with critical perturbation). Assume that pK1q�pK3q,

pV1q�pV3q, pf1q�pf5q, pf7q pg1q�pg5q, pg7q hold true and 0 ¤ V pxq P L8pR3q. Moreover,
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Suppose that Kpxq � KPpxq, V pxq � VPpxq, bpxq � 0, fpx, tq � fPpx, tq and

gpx, tq � g8ptq. If we assume that either µ ¡ 4 and pf3q or µ � 4 and pf4q then Eq.

(SNL) possess a non-trivial weak solution u in Hs
VP
pR3q. Furthermore, if additionally

we have pf6q and pg6q, then I
P
λ puq � cpIPλ q.

Proof. We divide the proof in several steps.

(i) By Lemma 4.3.7 and Proposition 4.3.9 we get the existence of a bounded

sequence pukq such that IPλ pukq Ñ cpIPλ q and pIPλ q
1pukq Ñ 0, in all considered cases.

Let be the sequences pwpnqq, pypnqk q and pj
pnq
k q provided by the Theorem 1.1.1 for the

sequence pukq.

(ii) If there is some wpn0q � 0, for some n0 P N0, then, as proved in Theorem

4.2.1, wpn0q is a critical point of IPλ . Let us assume, by contradiction, that wpnq � 0 for

all n P N0. Thus, by Propositions 4.3.4, 3.4.1 and 3.4.2 we have,$''&''%
cpIPλ q �

1

2
}uk}

2
VP
�

»
R3

G8pukq dx� op1q,

0 � }uk}
2
VP
�

»
R3

g8pukquk dx� op1q,

(4.6.1)

In particular, up to subsequence,

b0 :� lim sup
kÑ8

}uk}
2
VP

� lim sup
kÑ8

»
R3

g8pukquk dx,

which combined with pg1q and (4.3.15) leads to

b0 ¥
�
C�pS�psqq�2�s

	� 2

2�s �2
.

Consequently from (4.6.1) and pg2q we can conclude that

cpIPλ q ¥
µ� � 2

2µ�

�
C�pS�psqq�2�s

	� 2

2�s �2
, (4.6.2)

a contradiction, because condition (4.2.2) do not allows that (4.3.16) and (4.6.2) holds

simultaneously.

(iii) Assume additionally pf6q and pg6q. By estimate (1.1.3), Propositions 1.4.4,

2.4.1, 3.4.2 and 4.3.4 we get

cpIPλ q � lim
kÑ8

�
1

2
}uk}

2
VP
�
λ

4
NP
α pukq �

»
R3

FPpx, ukq dx�

»
R3

G8pukq dx

�
¥

¸
nPN0

IPλ pw
pnqq �

¸
nPN�

J8pwpnqq,

where J8 is the following C1 functional in Ds,2pR3q

J8puq �
1

2

»
R3

|p�∆qs{2u|2 dx�

»
R3

G8puq dx, u P Ds,2pR3q.

149



(iv) Since g8ptq is self-similar, each wpnq, n P N�, is a critical point of J8. In fact,

let ϕ in C8
0 pR3q. It is easy to see that pdpnqk ϕq is bounded in Hs

VP
pR3q. Applying the

Dominated Convergence Theorem we get

lim
kÑ8

»
R3

VPpxqukd
pnq
k ϕ dx � lim

kÑ8

�
γ�2sj

pnq
k

»
R3

VPpγ
�jpnqk xqv

pnq
k ϕ dx

�
� 0, n P N�,

where vpnqk is de�ned in (4.3.12). Also, given ε ¡ 0 we can use pf1q to get the following

estimate,

lim sup
kÑ8

����»
R3

γ�
3�2s

2
j
pnq
k fPpγ

�jpnqk x� y
pnq
k , γ

3�2s
2 v

pnq
k qϕ dx

���� ¤ ε, n P N�.

Therefore, by Lemma 4.3.6, it follows that

0 � lim
kÑ8

�
pIPλ q

1pukq � pd
pnq
k ϕq

�
� J 18pw

pnqq � ϕ, n P N�.

(v) Hence, by assumption pf2q, we obtain that J8pwpnqq ¥ 0, n P N�. This allows

to conclude that IPλ pw
pn0qq ¤ cpIPλ q. On the other hand, considering Remark 4.3.8�(i),

assumptions pf6q and pg6q implies that cpIPλ q ¤ IPλ pw
pn0qq. �

In what follows, we prove what is stated in Remark 4.2.8. It is also worth to

mention that we use the next proposition to prove Theorem 4.2.3.

Proposition 4.6.2. Assume that Kpxq, apxq � V pxq�bpxq, fpx, tq and gpx, tq satis�es

either

(i) pK1q�pK2q, pV1q�pV4q, pf1q, pf2q, pf5q, pf6q and that gpx, tq � 0. Moreover,

suppose either µ ¡ 4 and pf3q or µ � 4 and pf4q.

(ii) pK1q�pK3q, pV1q�pV4q, pf1q, pf2q, pf5q�pf7q, pg1q�pg7q, respectively, with VPpxq P

L8pR3q and µ ¤ µ�. Furthermore, suppose either µ ¡ 4 and pf3q or µ � 4 and

pf4q. Also that the inequality (4.2.2) holds.

Then cpIλq ¤ cpIPλ q respectively. Moreover, under these assumptions, pC 1q implies pC q.

In addition, consider the following C1 functional in Ds,2pR3q

J�puq �
1

2

»
R3

|p�∆qs{2u|2 dx�

»
R3

G�puq dx, u P Ds,2pR3q. (4.6.3)

If the following conditions are true,

(iii) pK1q�pK3q, pV1q, pV2q, pV4q, pf1q, pf2q, pg1q�pg4q, pg8q,

then cpIλq ¤ cpJ�q, where

cpJ�q � inf
γPΓJ�

sup
t¥0

J�pγptqq.

and

ΓJ� �
!
γ P Cpr0,8q,Ds,2pR3qq : γp0q � 0, lim

tÑ8
J�pγptqq � �8

)
.
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Proof. (i). Let u in Hs
VP
pR3q be a non-negative (see Theorem 4.2.1) non-trivial weak

solution for the equation

p�∆qsu� VPpxqu� λKPpxqφ
P
α rusu � fPpx, uq,

at the mountain pass level for IPλ , that is, I
P
λ puq � cpIPλ q. For each k, we de�ne the

path

ζkptq � tup� � ykq, t ¥ 0,

where pykq is taken such that |yk| Ñ 8. The idea is to prove that

cpIλq ¤ lim
kÑ8

max
t¥0

Iλpζkptqq ¤ max
t¥0

IPλ ptuq � cpIPλ q. (4.6.4)

In fact, taking account that the following functionals,

Φ, ΦP , Nα, NP
α ,

Qpuq �

»
RN
V pxqu2 dx, QPpuq �

»
RN
VPpxqu

2 dx and Bpuq �
»
RN
bpxqu2 dx,

are locally Lipschitz in Hs
V pR3q (they are C1 in Hs

V pR3q) and the following estimate��Iλpζkptqq � IPλ ptuq
�� ¤ t2

2

»
R3

|V px� ykq � VPpx� ykq|u
2 dx�

t2

2

»
R3

bpx� ykqu
2 dx

�
λ

4
t4
��Nαpup� � ykqq �NP

α puq
��

�

»
R3

|F px� yk, tuq � FPptuq| dx,

by using a density argument we get that

lim
kÑ8

Iλpζkptqq � IPλ ptuq, uniformly in compact sets of R.

Consequently we may proceed as in Proposition 3.8.1. Before that, notice �rst that

lim
kÑ8

»
R3

F px� yk, tuq dx �

»
R3

FPpx, tuq dx, for each t ¡ 0.

In particular, »
R3

F px� yk, uq dx ¡ 0, for k large enough.

Thus, using the arguments of Remark 4.3.8�(i), we see that ζk belongs to ΓIλ , for k

large enough. As a consequence, for each k that is large enough, there exist tk ¡ 0

such that

Iλpζkptkqq � max
t¥0

Iλpζkptqq ¡ 0.

The sequence ptkq is bounded. In fact, on the contrary, up to subsequence, we have the

following contradiction

0   Iλpζkptkqq ¤
1

2
t2k}u}

2
V p��ykq �

λ

4
t4kNαpup� � ykqq �

»
R3

F px� yk, tkuq dx

Ñ �8, as k Ñ 8,

151



where, as above, we used a density argument and the arguments used to prove Lemma

4.3.7. Therefore, up to subsequence, tk Ñ t0, and we have that

lim
kÑ8

max
t¥0

Iλpζkptkqq � IPλ pt0uq,

which leads to (4.6.4).

(ii) The second case is proved in a similar way, since the existence of a solution

for the equation

p�∆qsu� VPpxqu� λKPpxqφ
P
α rusu � fPpx, uq � g8puq,

at the Mountain Pass level is guaranteed by Theorem 4.6.1. Now assume that condition

pC 1q holds true. Considering the above discussion, we have that

cpIλq ¤ max
t¥0

Iλpζkptqq   max
t¥0

IPλ pζkptqq � max
t¥0

IPλ ptuq � cpIPλ q,

where we used that ζk belongs to ΓIλ for k large enough.

(iii). Let u0 in Ds,2pR3q be a non-negative weak solution for the equation

p�∆qsu0 � g�pu0q,

at the mountain pass level, more precisely, J�pu0q � cpJ�q. We refer to one of the

existence results in Sect. 2.2 and Remark 2.2.7 about the existence of such u0. De�ne

the sequence un � u0ξnp�, 0q, where ξn is given by Remark 4.2.9. For each k, we consider

the path

λnkptq � γ
3�2s

2
jkunpγ

jk �qt, t ¥ 0,

where pjkq is a sequence in Z chosen in a such way that jk Ñ 8. Now observe that

lim
nÑ8

»
R3

G�punq dx �

»
R3

G�puq dx ¡ 0,

where the positivity of the right-hand side of this limit is guaranteed by a Pohozaev

type identity. On the other hand,

lim
kÑ8

»
R3

F px, λnkptqq �Gpx, λnkptqq dx �

»
R3

G�ptunq dx, @ t ¥ 0.

Therefore, arguing as in Remark 4.3.8�(i), we can �x �rst n0 large enough and conclude

that λnk belongs to ΓI , for k large enough. Moreover, using the same density argument

as above and the estimate

|Iλpλ
n0
k ptqq � J�ptun0q| ¤

1

2
t2
»
R3

|λn0
k p1q|

2 dx�
λ

4
t4Nαpλn0

k p1qq

�

»
R3

|F px, λn0
k ptqq| dx�

»
R3

|Gpx, λn0
k ptq �G�ptun0qq| dx,
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we may conclude that

lim
kÑ8

Iλpλ
n0
k ptqq � J�ptun0q, uniformly in compact sets of R.

Moreover, for each k that is large enough, there exist tn0
k ¡ 0 such that

Iλpλ
n0
k pt

n0
k qq � max

t¥0
Iλpλ

n0
k ptqq ¡ 0.

This sequence ptn0
k q is bounded, because on the contrary, up to subsequence, if |t

n0
k | Ñ 8

then

0   Iλpλ
n0
k ptkqq ¤

1

2
|tn0
k |

2}λn0
k p1q}

2
V �

λ

4
|tn0
k |

4Nαpλn0
k p1qq

� |tn0
k |

µ

»
R3

F px, λn0
k p1qq dx� |tn0

k |
µ�

»
R3

Gpx, λn0
k p1qq dxÑ �8 as k Ñ 8,

a contradiction. Consequently, up to subsequence tn0
k Ñ an0 and we have

cpIλq ¤ lim
kÑ8

max
t¥0

Iλpλ
n0
k ptqq � J�pan0un0q ¤ max

t¥0
J�ptun0q � J�ptn0un0q.

If tn0 Ñ 8 as n0 Ñ 8, then we get

0   J�ptn0un0q �
1

2
t2n0
run0s

2
s � tµn0

»
R3

G�pun0q dxÑ �8 as n0 Ñ 8,

where we used Proposition 2.3.2 and that$'&'%
lim
n0Ñ8

run0s
2
s � lim

n0Ñ8

�
κs}ξn0∇u� u∇ξn0}

2
L2pR4

�,y1�2sq
�
� rus2s,

lim
n0Ñ8

»
R3

G�pun0q dx �

»
R3

G�puq dx.

Therefore, the sequence ptn0q is bounded and it converges, up to subsequence, that

tn0 Ñ b0. Thus,

cpIλq ¤ lim
n0Ñ8

rJ�ptn0un0qs � lim
n0Ñ8

�
1

2
t3�2s
n0

run0s
2
s �

»
R3

G�ptn0un0q dx

�
¤ J�pb0u0q ¤ max

t¥0
J�ptu0q � J�pu0q � cpJ�q,

where we used condition pg8q to guarantee that t � 1 is a maximum point of the

function ϕptq � J�ptu0q. In fact, it su�ces to prove that

ϕptq ¤
1

2
t2ru0s

2
s � c�t2

�
s

»
R3

u
2�s
0 dx ¤

1

2
ru0s

2
s �

»
R3

G�pu0q dx, @ t ¥ 0. (4.6.5)

Using the Pohozaev type identity (Proposition 2.3.2) we observe that the second

inequality (4.6.5) is equivalent to�
2�s
2
pt2 � 1q � 1

� »
R3

G�pu0q dx ¤ c�t2
�
s

»
R3

u
2�s
0 dx, @ t ¥ 0. (4.6.6)

Since c� ¥ C� we have that�
2�s
2
pt2 � 1q � 1

�
C� ¤ c�t2

�
s , @ t ¥ 0,

which ensures the validity of inequality (4.6.6). �
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4.7 Proof of Theorem 4.2.3

Proof. The proof uses similar arguments as the one used in Theorem 4.6.1 and we

repeat some of them for completeness. Once again we may apply Lemma 4.3.7 and

Proposition 4.3.9 in order to get the existence of a bounded sequence pukq such that

Iλpukq Ñ cpIλq and I 1λpukq Ñ 0, in all considered cases. Let pwpnqq, pypnqk q and pjpnqk q be

the sequences given by the Theorem 1.1.1 for the sequence pukq.

(i) We start by noticing that assumption pC q guarantees that wpnq � 0, for all

n P N0zt1u. Indeed, assume by contradiction that there exists with wpn0q � 0, with

n0 P N0zt1u. Using estimate (1.1.3), Propositions 1.4.4, 2.4.1, 3.4.2 and 4.3.4 we get

cpIλq � lim
kÑ8

�
1

2
}uk}

2
V �

1

2

»
R3

bpxqu2 �
λ

4
Nαpukq �

»
R3

F px, ukq dx�

»
R3

Gpx, ukq dx

�
¥ Iλpw

p1qq �
¸

nPN0,n¡1

IPλ pw
pnqq �

¸
nPN�

J�pwpnqq. (4.7.1)

where J� is the C1 functional in Ds,2pR3q given by (4.6.3). Similarly as argued

before, each term in (4.7.1) is non-negative, because wp1q is a critical point of Iλ;

wpnq, n P N0zt1u is of IPλ and wpnq, n P N� is of J�. In fact, let ϕ in C8
0 pR3q. Since V pxq

belongs to L8pR3q, it is easy to see that pdpnqk ϕq is bounded in Hs
V pR3q. Moreover, up

to subsequence, applying the Dominated Convergence Theorem we get

lim
kÑ8

»
R3

V pxqukpd
pnq
k ϕq dx � lim

kÑ8

�
γ�2sj

pnq
k

»
R3

V pγ�j
pnq
k x� y

pnq
k qv

pnq
k ϕ dx

�
� 0, n P N�.

Also, given ε ¡ 0 we can use pf1q to get the following estimate,

lim sup
kÑ8

����»
R3

γ�
3�2s

2
j
pnq
k fpγ�j

pnq
k x� y

pnq
k , γ

3�2s
2 v

pnq
k qϕ dx

���� ¤ ε, n P N�.

Therefore, by Lemma 4.3.6, it follows that

0 � lim
kÑ8

�
I 1λpukq � pd

pnq
k ϕq

�
� J 1�pw

pnqq � ϕ, n P N�,

where v
pnq
k is taken as in (4.3.12). Hence, using assumption pg2q, we obtain that

J�pwpnqq ¥ 0, n P N�. Furthermore, as argued in the proof of Theorem 4.2.2, by

condition pf2q we have that IPλ pw
pnqq ¥ 0, n P N0. Thus estimate (4.7.1) and Remark

4.3.8�(i) implies that cpIλq ¥ cpIPλ q, a contradiction with assumption pC q.

Let us argue by contradiction and suppose that wp1q � 0. By Propositions 4.3.4,

3.4.1 and 3.4.2 we have,$''&''%
cpIλq �

1

2
}uk}

2
V �

»
R3

Gpx, ukq dx� op1q,

0 � }uk}
2
V �

»
R3

gpx, ukquk dx� op1q,

(4.7.2)
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In particular, up to subsequence,

b0 :� lim sup
kÑ8

}uk}
2
V � lim sup

kÑ8

»
R3

gpx, ukquk dx,

which combined with pg1q and (4.3.15) leads to

b0 ¥
�
C�pS�psqq�2�s

	� 2

2�s �2
. (4.7.3)

Using inequality (4.7.3) in (4.7.2) and condition pg2q we obtain the following estimate

for the minimax level

cpIλq ¥
µ� � 2

2µ�

�
C�pS�psqq�2�s

	� 2

2�s �2
. (4.7.4)

This leads to a contradiction with Proposition 4.3.11, because condition (4.2.2) together

with Proposition 4.6.2 do not allows that (4.3.16) and (4.7.4) holds simultaneously.

We are going to prove now that wpnq � 0, for all n P N�. In order to do this, we

argue by contradiction again and we assume the existence of wpn0q � 0, with n0 P N�. In

fact, considering the path t ÞÑ wpnqp�{tq, t ¥ 0, it is easy to see, applying the Pohozaev

identity Proposition 2.3.2, that cpJ�q ¤ J�pwpn0qq. By Proposition 4.6.2 and estimate

(4.7.1) we can conclude that

cpJ�q � Iλpw
p1qq �

¸
nPN�

J�pwpnqq.

This leads to the contradiction that J�pwpn0qq   cpJ�q. The convergence uk Ñ wp1q in

Hs
V pR3q now follows by applying Propositions 3.4.1, 3.4.2 and 4.3.4.

(ii) Assume now that inequality (4.2.1) holds true instead condition pC q. As

discussed above, taking account the existence of wpn0q � 0, n0 P N0, we have

cpIλq ¤ max
t¥0

Iλptw
pn0qq ¤ max

t¥0
IPλ ptw

pn0qq � IPλ pw
pn0qq ¤ cpIλq,

where we used estimate (4.7.1) to obtain the last inequality and condition (4.2.1) to

ensure that the path ζpn0q � twpn0q belongs to ΓIλ . Thus, we have that the minimax

level cpIλq is attained by the path t ÞÑ twpn0q and we can apply Theorem 0.6.4 to obtain

the existence of a critical point u for Iλ with Iλpuq � cpIλq. If there is no wpnq � 0,

n P N0, (which is the case where strict inequalities occurs) we can argue as above and

obtain that uk Ñ wp1q, up to subsequence. �

4.8 Proof of Theorem 4.2.4

In this section we always consider that the assumptions of Theorem 4.2.4 holds

true. Moreover, we are going to assume that 2   µ   4 since the case µ ¥ 4 is treated

in Theorems 4.2.2 and 4.2.3. We restrict the energy functional I to the closed subspace

Hs
radpR3q.
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Lemma 4.8.1 (Geometry). There exists 0   λ� ¤ 8 and a positive constant b, such

that cλ ¡ b, for all λ P p0, λ�q.

Proof. We only prove case (i), since case (ii) follows the same argument. Also we

start assuming that µ ¡ 3. Consider the radial function v P C8
0 pR3q given by Remark

4.3.8�(iii) and de�ne the paths

ζε,θptq � tεvptθ�q, where ε, θ are positive constant to be determined.

A simple computation shows that

Nαpζε,θptqq � t4ε�2αθ�3θNαpvq, @ t ¥ 0,

Since α ¡ 3{4, we may select ε and θ in such way that

3{2   ε{θ   2α{p4� µq

in order to get that for each λ ¡ 0, we have

Iλpζε,θptqq ¤
1

2
t2ε�θp3�2αqrvs2s �

1

2
V0t

2ε�3θ}v}2
2 �

λ

4
t4ε�θp3�2αqNαpvq

� tµε�3θ

»
R3

F pvq dx� tµ�ε�3θ

»
R3

Gpvq dx   0, @ t large enough.

On the other hand, arguing as in the proof of Lemma 4.3.7, we obtain the existence of

b, r ¡ 0, which does not depend in the parameters λ, such that

b  
1

2
}u}2

V0
�
λ

4
Nαpuq �

»
R3

F puq �Gpuq dx ¤ Iλpuq, for }u}V0 � r and λ ¡ 0.

Therefore for µ ¡ 3, we chose λ� � 8 in order to get that cλ ¥ b.

Finally, assume that 2   µ ¤ 3. We know that there is v1 in Hs
radpR3q such that

I0pv1q   0. Since λ ÞÑ Iλpv1q is continuous, there exists λ� ¡ 0 such that Iλpv1q   0 for

all λ P p0, λ�q. �

Hence, from the Mountain Pass Theorem, for each λ P p0, λ�q there exists a

sequence puλkq in Hs
radpR3q such that Iλpuλkq Ñ cλ and I 1λpu

λ
kq Ñ 0 in the dual of

Hs
radpR3q.

Lemma 4.8.2. (Boundedness) The sequence puλkq is bounded in Hs
radpR3q.
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Proof. In fact, considering �rst the case (i) we use condition (4.2.3) to get that

pµ� � 1qpcpIλq � 1q � }uλk}V0

¥ pµ� � 1qIλpu
λ
kq � I 1λpu

λ
kq � pu

λ
kq

�
µ� � 2

2
}uλk}

2
V0
� λ

µ� � 3

4
Nαpuλkq

�

»
R3

pµ� � 1qF puλkq � fpuλkqu
λ
k dx

�

»
R3

pµ� � 1qGpuλkq � gpuλkqu
λ
k dx

¥
µ� � 2

2
}uλk}

2
V0
, for k large enough.

For the case (ii), we take any µ� � µ in the previous estimate. �

Proof of Theorem 4.2.4 completed. In view of the results of this chapter, the proof of

(i) follows the same argument as the one used in the proof of Theorem 4.2.3. In fact, let

pwpnqq, pypnqk q and pjpnqk q be the sequences given by the Theorem 1.1.1 for the sequence

pukq.

• In view of Corollary 1.4.2, we have that wpnq � 0 for all n P N0zt1u.

• wp1q is a critical point of Iλ.

• If wp1q � 0 we use the same argument of the proof of Theorem 4.2.3: condition

(4.2.2) leads to a contradiction with Proposition 4.3.11.

• We now use estimate (1.1.3), Propositions 1.4.4, 2.4.1, 3.4.2 and 4.3.4 to obtain the

following estimate

cpJq ¥ cpIλq ¥ Iλpw
p1qq �

¸
nPN�

Jλpw
pnqq,

where J is the following C1 functional in Ds,2pR3q

Jpuq �
1

2

»
R3

|p�∆qs{2u|2 dx�

»
R3

Gpuq dx, u P Ds,2pR3q.

• wpnq, n P N�, is a critical point of J.

• We use condition (4.2.3) to get that

pµ� � 1qIλpw
p1qq � pµ� � 1qIλpw

p1qq � I 1λpw
p1qq � pwp1qq ¥ 0,

and by a Pohozaev type identity Jpwpnqq ¥ 0, n P N�.
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• If there exists wpn0q � 0, n0 P N�, then

cpJq � Iλpw
p1qq �

¸
nPN�

Jλpw
pnqq, (4.8.1)

where we used that cpJq ¤ Jpwn0q. Identity (4.8.1) leads to the contradiction cpJq ¡

Jλpw
pn0qq.

• Convergence uk Ñ wp1q in Hs
radpR3q now follows by applying Propositions 3.4.1,

3.4.2 and 4.3.4.

• The case (ii) is proved by taking the pro�les in Theorem 1.1.2 and using the

fact (given by Corollary 1.4.2) that wpnq � 0 for all n P N0zt1u. In particular, the

convergence uk Ñ wp1q in Hs
radpR3q follows. �

4.9 Proof of Theorem 4.2.5

Proof. (i) Applying Proposition 4.3.12, we get»
R3

|p�∆qs{2u|2 dx�
3

3� 2s

»
R3

apxqu2 dx

�
1

3� 2s

»
R3

x∇apxq, xyu2 dx�
3� 2α

2p3� 2sq
λNαpuq ¤

»
R3

fpuqu dx,

from which, using that I 1puq � u � 0, we obtain»
R3

p2sapxq � x∇apxq, xyqu2 dx�
1

2
p2α � 4s� 3qλNαpuq ¤ 0,

which leads to u � 0.

(ii) Using Proposition 4.3.12 again we get that

3� 2s

6
δ

»
R3

|p�∆qs{2u|2 dx�
δ

2

»
R3

apxqu2 dx�
δ

6

»
R3

x∇apxq, xyu2 dx ¥

»
R3

fpuqu dx,

and we can derive that u � 0, because�
1�

3� 2s

6
δ


»
R3

|p�∆qs{2u|2 dx�

�
1�

δ

2


»
R3

apxqu2 dx

�
δ

6

»
R3

x∇apxq, xyu2 dx�

�
1�

3� 2α

12
δ



λNαpuq ¤ 0.

(iii) Applying identity (4.3.19), we obtain»
R3

|p�∆qs{2u|2 dx

�
3

3� 2s
a0

»
R3

u2 dx�
3� 2α

2p3� 2sq
λNαpuq ¤

»
R3

fpuqu dx� δa0

»
R3

u2 dx,
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which leads to

p2s� δp2s� 3qq a0

»
R3

u2 dx�
1

2
p2α � 4s� 3qλNαpuq ¤ 0,

that implies u � 0.

(iv) Since α � s, we can choose v � |u| as test function in de�nition (4.1.3) to

get

K0

»
R3

|u|3 dx ¤
1

4

»
R3

|p�∆qα{2pφαrusq|2 dx�

»
R3

|p�∆qα{2u|2 dx, (4.9.1)

where we used Cauchy inequality (with ε � 1). Now taking v � φαrus in de�nition

(4.1.3) it follows that Nαpuq � rφαruss
2
α. Moreover, using that λ ¥ 1{4 in (4.9.1) we

have

λNαpuq ¥ K0

»
R3

|u|3 dx�

»
R3

|p�∆qα{2u|2 dx. (4.9.2)

Using estimate (4.9.2) in the equation I 1puq � u � 0 we obtain»
R3

a0u
2 �K0|u|

3 �A|u|p dx ¤ 0,

which implies that u � 0, since the function t ÞÑ V0t
2 � K0t

3 � Atp, t ¥ 0, is non-

negative.

(v) Following the same above arguments we have»
R3

|p�∆qs{2u|2 dx�
3� 2α

2p3� 2sq
λNαpuq ¥

2�s
p

»
R3

fpuqu dx

which yields u � 0, because�
2�s
p
� 1


»
R3

|p�∆qs{2u|2 dx�

�
2�s
p
�

3� 2α

2p3� 2sq



λK0Nαpuq ¤ 0. �
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